1
|
Yuan H, Zheng Y, Yan X, Wang H, Zhang Y, Ma J, Fu J. Direct cloning of a herpesvirus genome for rapid generation of infectious BAC clones. J Adv Res 2022; 43:97-107. [PMID: 36585118 PMCID: PMC9811322 DOI: 10.1016/j.jare.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The herpesviridae are DNA viruses with large and complicated genomes. The herpesvirus bacterial artificial chromosomes (BACs) have been useful for generating recombinant viruses to study the biology and pathogenesis. However, the conventional method using homologous recombination is not only time consuming but also prone to accumulate attenuating mutations during serial passage of the virus in cells. Elimination of the BAC vector from the recombinant viral genome requires additional step for phenotypically consistence with the original strain. OBJECTIVES To generate a streamlined approach for generating infectious BAC clones of herpesvirus. METHODS The 142-kb pseudorabies virus genome was directly cloned into a bacterial artificial chromosome (BAC) in Escherichia coli by Exonuclease Combined with RecET recombination (ExoCET). Placement of the BAC vector at the terminus of the linear virus genome enabled excision of the BAC backbone from the viral genome by restriction endonuclease for delivery into mammalian cells, with the subsequent rapid rescue of virus that was genetically identical to the original strain. RESULTS This new approach for molecular cloning of the genome from a large DNA virus and isolation of pure virus lacking the BAC vector from transfected mammalian cells bypass the tedious and time-consuming method of multiple rounds of plaque purification. The viral BAC was stable in E. coli, allowing further mutagenesis mediated by the Red system or various site-specific recombination methods. CONCLUSION An efficient method for construction of infectious clones of herpesvirus was established. It is expected to be potentially useful for other viruses with large double-stranded DNA genomes.
Collapse
Affiliation(s)
- Hengxing Yuan
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yaoyao Zheng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hailong Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China,Corresponding authors.
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Jun Fu
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China,Corresponding authors.
| |
Collapse
|
2
|
Quentin-Froignant C, Kappler-Gratias S, Top S, Bertagnoli S, Gallardo F. ANCHOR-tagged equine herpesvirus 1: A new tool for monitoring viral infection and discovering new antiviral compounds. J Virol Methods 2021; 294:114194. [PMID: 34022301 DOI: 10.1016/j.jviromet.2021.114194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
Equine herpesvirus 1 (EHV-1) is a causative agent of respiratory disorders, abortion and myeloencephalopathy in horses and has an important impact on equine health and economy. Several bacterial artificial chromosomes have already been developed and enabled identification and functional characterization of EHV-1 genes. Unfortunately, little is known about its replication. Here, the ANCHOR system was inserted by targeted homologous recombination into the equine herpesvirus genome. This insertion led to the conversion of EHV-1 DNA to auto-fluorescent spots easily detectable by fluorescence microscopy, and enabled production of an auto-fluorescent EHV-1 ANCHORGFP with tropism and replication kinetic like the parental strain. High resolution imaging allowed first visualization of EHV-1 replication from apparition of first viral genome to large replicative centers, in single cells or inside syncytia. Combined with high content microscopy, EHV-1 ANCHORGFP leads to identification of auranofin and azacytidine-5 as new potential antivirals to treat EHV-1 infection.
Collapse
Affiliation(s)
- Charlotte Quentin-Froignant
- NeoVirTech SAS, Centre Pierre Potier, Toulouse, France; IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | - Sokunthea Top
- NeoVirTech SAS, Centre Pierre Potier, Toulouse, France.
| | | | | |
Collapse
|
3
|
Li C, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Tian B. The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Front Microbiol 2021; 12:631523. [PMID: 33679658 PMCID: PMC7933518 DOI: 10.3389/fmicb.2021.631523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The envelope glycoprotein M (gM), a surface virion component conserved among alphaherpesviruses, is a multiple-transmembrane domain-containing glycoprotein with a complex N-linked oligosaccharide. The gM mediates a diverse range of functions during the viral life cycle. In this review, we summarize the biological features of gM, including its characterization and function in some specicial alphaherpesviruses. gM modulates the virus-induced membrane fusion during virus invasion, transports other proteins to the appropriate intracellular membranes for primary and secondary envelopment during virion assembly, and promotes egress of the virus. The gM can interact with various viral and cellular components, and the focus of recent research has also been on interactions related to gM. And we will discuss how gM participates in the life cycle of alphaherpesviruses.
Collapse
Affiliation(s)
- Chunmei Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
5
|
Poelaert KCK, Van Cleemput J, Laval K, Xie J, Favoreel HW, Nauwynck HJ. Equine herpesvirus 1 infection orchestrates the expression of chemokines in equine respiratory epithelial cells. J Gen Virol 2020; 100:1567-1579. [PMID: 31490114 DOI: 10.1099/jgv.0.001317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ancestral equine herpesvirus 1 (EHV1), closely related to human herpes viruses, exploits leukocytes to reach its target organs, accordingly evading the immune surveillance system. Circulating EHV1 strains can be divided into abortigenic/neurovirulent, causing reproductive/neurological disorders. Neurovirulent EHV1 more efficiently recruits monocytic CD172a+ cells to the upper respiratory tract (URT), while abortigenic EHV1 tempers monocyte migration. Whether similar results could be expected for T lymphocytes is not known. Therefore, we questioned whether differences in T cell recruitment could be associated with variations in cell tropism between both EHV1 phenotypes, and which viral proteins might be involved. The expression of CXCL9 and CXCL10 was evaluated in abortigenic/neurovirulent EHV1-inoculated primary respiratory epithelial cells (ERECs). The bioactivity of chemokines was tested with a functional migration assay. Replication of neurovirulent EHV1 in the URT resulted in an enhanced expression/bioactivity of CXCL9 and CXCL10, compared to abortigenic EHV1. Interestingly, deletion of glycoprotein 2 resulted in an increased recruitment of both monocytic CD172a+ cells and T lymphocytes to the corresponding EREC supernatants. Our data reveal a novel function of EHV1-gp2, tempering leukocyte migration to the URT, further indicating a sophisticated virus-mediated orchestration of leukocyte recruitment to the URT.
Collapse
Affiliation(s)
- Katrien C K Poelaert
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jolien Van Cleemput
- Department of Molecular Biology 301 Schultz Laboratory, Princeton University Washington Rd, Princeton, NJ 08544, USA.,Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kathlyn Laval
- Department of Molecular Biology 301 Schultz Laboratory, Princeton University Washington Rd, Princeton, NJ 08544, USA
| | - Jiexiong Xie
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Herman W Favoreel
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Wimer CL, Schnabel CL, Perkins G, Babasyan S, Freer H, Stout AE, Rollins A, Osterrieder N, Goodman LB, Glaser A, Wagner B. The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses. PLoS One 2018; 13:e0206679. [PMID: 30440016 PMCID: PMC6237298 DOI: 10.1371/journal.pone.0206679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
The equine herpesvirus type 1 (EHV-1) ORF1 and ORF71 genes have immune modulatory effects in vitro. Experimental infection of horses using virus mutants with multiple deletions including ORF1 and ORF71 showed promise as vaccine candidates against EHV-1. Here, the combined effects of ORF1 and ORF71 deletions from the neuropathogenic EHV-1 strain Ab4 on clinical disease and host immune response were further explored. Three groups of EHV-1 naïve horses were experimentally infected with the ORF1/71 gene deletion mutant (Ab4ΔORF1/71), the parent Ab4 strain, or remained uninfected. In comparison to Ab4, horses infected with Ab4ΔORF1/71 did not show the initial high fever peak characteristic of EHV-1 infection. Ab4ΔORF1/71 infection had reduced nasal shedding (1/5 vs. 5/5) and, simultaneously, decreased intranasal interferon (IFN)-α, interleukin (IL)-10 and soluble CD14 secretion. However, Ab4 and Ab4ΔORF1/71 infection resulted in comparable viremia, suggesting these genes do not regulate the infection of the mononuclear cells and subsequent viremia. Intranasal and serum anti-EHV-1 antibodies to Ab4ΔORF1/71 developed slightly slower than those to Ab4. However, beyond day 12 post infection (d12pi) serum antibodies in both virus-infected groups were similar and remained increased until the end of the study (d114pi). EHV-1 immunoglobulin (Ig) G isotype responses were dominated by short-lasting IgG1 and long-lasting IgG4/7 antibodies. The IgG4/7 response closely resembled the total EHV-1 specific antibody response. Ex vivo re-stimulation of PBMC with Ab4 resulted in IFN-γ and IL-10 secretion by cells from both infected groups within two weeks pi. Flow cytometric analysis showed that IFN-γ producing EHV-1-specific T-cells were mainly CD8+/IFN-γ+ and detectable from d32pi on. Peripheral blood IFN-γ+ T-cell percentages were similar in both infected groups, albeit at low frequency (~0.1%). In summary, the Ab4ΔORF1/71 gene deletion mutant is less virulent but induced antibody responses and cellular immunity similar to the parent Ab4 strain.
Collapse
Affiliation(s)
- Christine L. Wimer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christiane L. Schnabel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gillian Perkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alison E. Stout
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | - Laura B. Goodman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Amy Glaser
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Duck plague virus Glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread. Sci Rep 2018; 8:4069. [PMID: 29511274 PMCID: PMC5840427 DOI: 10.1038/s41598-018-22447-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
To analyse the function of the duck plague virus (DPV) glycoprotein J homologue (gJ), two different mutated viruses, a gJ deleted mutant ΔgJ and a gJR rescue mutant gJR with US5 restored were generated. All recombinant viruses were constructed by using two-step of RED recombination system implemented on the duck plague virus Chinese virulent strain (DPV CHv) genome cloned into a bacterial artificial chromosome. DPV-mutants were characterized on non-complementing DEF cells compared with parental virus. Viral replication kinetics of intracellular and extracellular viruses revealed that the ΔgJ virus produce a 10-fold reduction of viral titers than the gJR and parental virus, which especially the production of extracellular infectivity was affected. In addition, the ΔgJ virus produced viral plaques on DEF cells that was on average approximately 11% smaller than those produced by the gJR and parental viruses. Electron microscopy confirmed that although DPV CHv without gJ could efficiently carry out viral replication, virion assembly and envelopment within infected cells, the ΔgJ virus produced and accumulated high levels of anuclear particles in the nuclear and cytoplasm. These results show that the gJ slightly impaired in viral replication, virion assembly and cell-to-cell spread, and is not essential in virion envelopment.
Collapse
|
8
|
Pan Z, Liu J, Ma J, Jin Q, Yao H, Osterrieder N. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper. Microb Pathog 2017; 111:388-394. [DOI: 10.1016/j.micpath.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
9
|
Said A, Elmanzalawy M, Ma G, Damiani AM, Osterrieder N. An equine herpesvirus type 1 (EHV-1) vector expressing Rift Valley fever virus (RVFV) Gn and Gc induces neutralizing antibodies in sheep. Virol J 2017; 14:154. [PMID: 28807043 PMCID: PMC5556661 DOI: 10.1186/s12985-017-0811-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/21/2017] [Indexed: 11/10/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.
Collapse
Affiliation(s)
- Abdelrahman Said
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.,Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Center, El Bouhouth St., Dokki, 12622, Cairo, Egypt
| | - Mona Elmanzalawy
- Rift Valley Fever department, Veterinary Serum Vaccine Research Institute, Cairo, Egypt
| | - Guanggang Ma
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Armando Mario Damiani
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.,Instituto de Medicina y Biología Experimental de Cuyo, IMBECU-CONICET; Área de Química Biológica, Facultad de Ciencias Médicas, UNCuyo, Mendoza, Argentina
| | - Nikolaus Osterrieder
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| |
Collapse
|
10
|
Ishihara Y, Esaki M, Yasuda A. Removal of Inserted BAC after linearizatiON (RIBON)-a novel strategy to excise the mini-F sequences from viral BAC vectors. J Vet Med Sci 2016; 78:1129-36. [PMID: 27041357 PMCID: PMC4976268 DOI: 10.1292/jvms.16-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bacterial artificial chromosome (BAC) technology has been a mainstay approach for
generating recombinant viruses, and several methods for excision of the mini-F sequences
from the viral BAC vectors have been developed. However, these strategies either require
complicated procedures or leave scars of inserted sequences. To overcome these problems, a
new method to excise the mini-F sequences from viral BAC vectors based on the Removal of
Inserted BAC after linearizatiON (RIBON) strategy was developed in this study for
herpesvirus of turkeys (HVT). Enhanced green fluorescent protein (eGFP) DNA and the mini-F
sequences were inserted into the gene encoding HVT thymidine kinase (TK) by homologous
recombination in chicken embryo fibroblasts (CEFs), and the constructed HVT-BAC vector was
used to transform Escherichia coli (pHVT-BAC). To remove the inserted
eGFP and mini-F sequences, pHVT-BAC was linearized using a homing endonuclease
I-SceI and used to cotransfect CEFs together with a plasmid containing
the TK gene of HVT. The obtained viruses (44%) did not express eGFP, and DNA sequencing of
isolated clones revealed that they were completely free of the inserted BAC sequences.
Moreover, growth kinetics and plaque morphology of reconstituted viruses were comparable
with those of the parental HVT. The results of this study demonstrate that the novel RIBON
approach to remove mini-F sequences from the viral genome is simple and effective.
Collapse
Affiliation(s)
- Yukari Ishihara
- Ceva Animal Health (Japan Campus), 1-6 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
11
|
Ubiquitination and degradation of the ORF34 gene product of equine herpesvirus type 1 (EHV-1) at late times of infection. Virology 2014; 460-461:11-22. [PMID: 25010266 DOI: 10.1016/j.virol.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/21/2014] [Accepted: 05/07/2014] [Indexed: 11/23/2022]
Abstract
The equine herpesvirus type 1 (EHV-1) open reading frame 34 (ORF34) is predicted to encode a polypeptide of 161 amino acids. We show that an ORF34 deletion mutant exhibited a significant growth defect in equine peripheral blood mononuclear cells taken directly ex vivo during early but not late times of infection. ORF34 protein (pORF34)-specific antibodies specifically reacted with a 28-kDa early polypeptide present in the cytosol of infected cells. From 10h post infection, multiple smaller pORF34-specific protein moieties were detected indicating that expression of a late viral gene product(s) caused pORF34 degradation. Proteasome inhibitors blocked pORF34 degradation as did treatment of infected cells with a ubiquitin-activating enzyme (E1) inhibitor. Finally, kinetic studies showed that pORF34 is modified by addition of multiple copies of ubiquitin. Taken together, our findings suggest that the ubiquitin proteasome pathway is required for pORF34 degradation that may modulate protein activity in the course of infection.
Collapse
|
12
|
Equine herpesvirus type 1 (EHV-1) open reading frame 59 encodes an early protein that is localized to the cytosol and required for efficient virus growth. Virology 2013; 449:263-9. [PMID: 24418561 DOI: 10.1016/j.virol.2013.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/21/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) ORF59 is predicted to encode a protein consisting of 180 amino acids. To determine whether ORF59 in fact encodes a protein, sequences encoding an HA epitope (YPYDVPDYA) was inserted at the carboxyterminus of the ORF59 protein in EHV-1 strain Ab4. Using anti-HA monoclonal antibodies, a 21-kDa band was specifically detected by western blot analysis in lysates of cells infected with a recombinant EHV-1 from strain Ab4 that carries the pORF59-HA but not in cells infected with parental Ab4. Further characterization of the protein using immunofluorescence and fractionation studies showed that pORF59 is an early protein that localizes to the cytosol in virus-infected cells. Recombinant EHV-1 lacking ORF59 (rAb4∆59) exhibited a small-plaque phenotype and could not be propagated. Our findings suggest that the ORF59 protein plays a major role in EHV-1 replication in vitro and likely in vivo.
Collapse
|
13
|
Hussey GS, Goehring LS, Lunn DP, Hussey SB, Huang T, Osterrieder N, Powell C, Hand J, Holz C, Slater J. Experimental infection with equine herpesvirus type 1 (EHV-1) induces chorioretinal lesions. Vet Res 2013; 44:118. [PMID: 24308772 PMCID: PMC4028784 DOI: 10.1186/1297-9716-44-118] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022] Open
Abstract
Equine herpesvirus myeloencephalitis (EHM) remains one of the most devastating manifestations of equine herpesvirus type 1 (EHV-1) infection but our understanding of its pathogenesis remains rudimentary, partly because of a lack of adequate experimental models. EHV-1 infection of the ocular vasculature may offer an alternative model as EHV-1-induced chorioretinopathy appears to occur in a significant number of horses, and the pathogenesis of EHM and ocular EHV-1 may be similar. To investigate the potential of ocular EHV-1 as a model for EHM, and to determine the frequency of ocular EHV-1, our goal was to study: (1) Dissemination of virus following acute infection, (2) Development and frequency of ocular lesions following infection, and (3) Utility of a GFP-expressing virus for localization of the virus in vivo. Viral antigen could be detected following acute infection in ocular tissues and the central nervous system (experiment 1). Furthermore, EHV-1 infection resulted in multifocal choroidal lesions in 90% (experiment 2) and 50% (experiment 3) of experimentally infected horses, however ocular lesions did not appear in vivo until between 3 weeks and 3 months post-infection. Taken together, the timing of the appearance of lesions and their ophthalmoscopic features suggest that their pathogenesis may involve ischemic injury to the chorioretina following viremic delivery of virus to the eye, mirroring the vascular events that result in EHM. In summary, we show that the frequency of ocular EHV-1 is 50-90% following experimental infection making this model attractive for testing future vaccines or therapeutics in an immunologically relevant age group.
Collapse
Affiliation(s)
- Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mahmoud HYAH, Andoh K, Hattori S, Terada Y, Noguchi K, Shimoda H, Maeda K. Characterization of glycoproteins in equine herpesvirus-1. J Vet Med Sci 2013; 75:1317-21. [PMID: 23748975 PMCID: PMC3942931 DOI: 10.1292/jvms.13-0168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we attempted to express twelve glycoproteins of equine herpesvirus-1
(EHV-1) in 293T cells and to characterize these using monoclonal antibodies (MAbs) and
horse sera against EHV-1. Expression of glycoprotein B (gB), gC, gD, gG, gI and gp2 was
recognized by immunoblot analysis using horse sera, but that of gE, gH, gK, gL, gM and gN
was not. Four MAbs recognized gB, four recognized gC and one recognized gp2. Two MAbs
against gB cross-reacted with EHV-4. Interestingly, coexpression of gE and gI and gM and
gN enhanced their antigenicity. Furthermore, immunoblot analysis of gp2 showed that
different molecular masses of gp2 were recognized by the MAb against gp2 and horse sera
against EHV-1. In this study, it was demonstrated that at least six glycoproteins were
immunogenic to horses, and coexpression of gE and gI and gM and gN was important for
enhancement of antigenicity.
Collapse
Affiliation(s)
- Hassan Y A H Mahmoud
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Res 2012; 169:203-11. [PMID: 22902480 DOI: 10.1016/j.virusres.2012.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) are important pathogens of horses worldwide. Infection with EHV-4 usually remains restricted to the upper respiratory tract, whereas infection with EHV-1 can generalize after leukocyte-associated viremia. Here we examined whether differences in the immunomodulatory glycoprotein G (gG) between the two viruses determine EHV-1's ability to cause systemic infection. To this end, mutant viruses were constructed based on the neurovirulent EHV-1 strain OH-03, in which the entire gG gene or parts thereof were exchanged with EHV-4 gG sequences. In vitro chemotaxis assays showed that supernatants of cells infected with the various gG mutant viruses interfered to variable degrees with neutrophil migration. More specifically, supernatants of cells infected with the gG deletion virus (vOH-ΔgG1) or OH-03 expressing EHV-4 gG (vOH-gG4) were unable to interfere with chemotaxis. Re-insertion of the predicted chemokine-binding region of EHV-1 gG in the vOH-gG4 mutant (vOH-gG4hyp1) did not completely restore the ability to inhibit neutrophil migration, whereas insertion of the hypervariable region of EHV-4 gG into vOH-03 (vOH-gG1hyp4) did not lead to a complete loss of chemokine-binding function. Very similar results were obtained in an in vivo study where the amount of neutrophils present in bronchioalveolar lavages (BALs) of mice infected with the different mutants was analyzed by flow cytometry. Taken together, our results show that, in a virus background, the hypervariable region is not solely responsible for the immunomodulatory potential of EHV-1 gG.
Collapse
|
16
|
Serological responses and clinical outcome after vaccination of mares and foals with equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) vaccines. Vet Microbiol 2012; 160:9-16. [PMID: 22633483 DOI: 10.1016/j.vetmic.2012.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 11/23/2022]
Abstract
Equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) cause infections of horses worldwide. While both EHV-1 and EHV-4 cause respiratory disease, abortion and myeloencephalopathy are observed after infection with EHV-1 in the vast majority of cases. Disease control is achieved by hygiene measures that include immunization with either inactivated or modified live virus (MLV) vaccine preparations. We here compared the efficacy of commercially available vaccines, an EHV-1/EHV-4 inactivated combination and an MLV vaccine, with respect to induction of humoral responses and protection of clinical disease (abortion) in pregnant mares and foals on a large stud with a total of approximately 3500 horses. The MLV vaccine was administered twice during pregnancy (months 5 and 8 of gestation) to 383 mares (49.4%), while the inactivated vaccine was administered three times (months 5, 7, and 9) to 392 mares (50.6%). From the vaccinated mares, 192 (MLV) and 150 (inactivated) were randomly selected for serological analyses. There was no significant difference between the groups with respect to magnitude or duration of the humoral responses as assessed by serum neutralization assays (median range from 1:42 to 1:130) and probing for EHV-1-specific IgG isotypes, although neutralizing responses were higher in animals vaccinated with the MLV preparation at all time points sampled. The total number of abortions in the study population was 55/775 (7.1%), 9 of which were attributed to EHV-1. Seven of the abortions were in the inactivated and two in the MLV vaccine group (p=0.16). When foals of vaccinated mares were followed up, a dramatic drop of serum neutralizing titers (median below 1:8) was observed in all groups, indicating that the half-life of maternally derived antibody is less than 4 weeks.
Collapse
|
17
|
Kawabata A, Jasirwan C, Yamanishi K, Mori Y. Human herpesvirus 6 glycoprotein M is essential for virus growth and requires glycoprotein N for its maturation. Virology 2012; 429:21-8. [PMID: 22537811 DOI: 10.1016/j.virol.2012.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022]
Abstract
Human herpesvirus 6 (HHV-6) is a T-lymphotropic virus belonging to the betaherpesvirus family. Several HHV-6-encoded glycoproteins are required for cell entry and virion maturation. Glycoprotein M (gM) is conserved among all herpesviruses, and therefore thought to have important functions; however, the HHV-6 g has not been characterized. Here, we examined the expression of HHV-6 g, and examined its function in viral replication, using a mutant and revertant gM. HHV-6 g was expressed on virions as a glycoprotein modified with complex N-linked oligosaccharides. As in other herpesviruses, HHV-6 g formed a complex with glycoprotein N (gN), and was transported from the endoplasmic reticulum to the trans-Golgi network only when part of this complex. Finally, a gM mutant virus in which the gM start codon was destroyed was not reconstituted, although its revertant was, indicating that HHV-6 g is essential for virus production, unlike the gM of alphaherpesviruses.
Collapse
Affiliation(s)
- Akiko Kawabata
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | | | | | | |
Collapse
|
18
|
Ma G, Eschbaumer M, Said A, Hoffmann B, Beer M, Osterrieder N. An equine herpesvirus type 1 (EHV-1) expressing VP2 and VP5 of serotype 8 bluetongue virus (BTV-8) induces protection in a murine infection model. PLoS One 2012; 7:e34425. [PMID: 22511939 PMCID: PMC3325243 DOI: 10.1371/journal.pone.0034425] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/28/2012] [Indexed: 12/30/2022] Open
Abstract
Bluetongue virus (BTV) can infect most species of domestic and wild ruminants causing substantial morbidity and mortality and, consequently, high economic losses. In 2006, an epizootic of BTV serotype 8 (BTV-8) started in northern Europe that caused significant disease in cattle and sheep before comprehensive vaccination was introduced two years later. Here, we evaluate the potential of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus, as a novel vectored DIVA (differentiating infected from vaccinated animals) vaccine expressing VP2 of BTV-8 alone or in combination with VP5. The EHV-1 recombinant viruses stably expressed the transgenes and grew with kinetics that were identical to those of parental virus in vitro. After immunization of mice, a BTV-8-specific neutralizing antibody response was elicited. In a challenge experiment using a lethal dose of BTV-8, 100% of interferon-receptor-deficient (IFNAR(-/-)) mice vaccinated with the recombinant EHV-1 carrying both VP2 and VP5, but not VP2 alone, survived. VP7 was not included in the vectored vaccines and was successfully used as a DIVA marker. In summary, we show that EHV-1 expressing BTV-8 VP2 and VP5 is capable of eliciting a protective immune response that is distinguishable from that after infection and as such may be an alternative for BTV vaccination strategies in which DIVA compatibility is of importance.
Collapse
Affiliation(s)
- Guanggang Ma
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Michael Eschbaumer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Abdelrahman Said
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Bernd Hoffmann
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
19
|
Viral bacterial artificial chromosomes: generation, mutagenesis, and removal of mini-F sequences. J Biomed Biotechnol 2012; 2012:472537. [PMID: 22496607 PMCID: PMC3303620 DOI: 10.1155/2012/472537] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 12/29/2022] Open
Abstract
Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process.
Collapse
|
20
|
Identification and characterization of equine herpesvirus type 1 pUL56 and its role in virus-induced downregulation of major histocompatibility complex class I. J Virol 2012; 86:3554-63. [PMID: 22278226 DOI: 10.1128/jvi.06994-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules play an important role in host immunity to infection by presenting antigenic peptides to cytotoxic T lymphocytes (CTLs), which recognize and destroy virus-infected cells. Members of the Herpesviridae have developed multiple mechanisms to avoid CTL recognition by virtue of downregulation of MHC-I on the cell surface. We report here on an immunomodulatory protein involved in this process, pUL56, which is encoded by ORF1 of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus. We show that EHV-1 pUL56 is a phosphorylated early protein which is expressed as different forms and predominantly localizes to Golgi membranes. In addition, the transmembrane (TM) domain of the type II membrane protein was shown to be indispensable for correct subcellular localization and a proper function. pUL56 by itself is not functional with respect to interference with MHC-I and likely needs another unidentified viral protein(s) to perform this action. Surprisingly, pUL49.5, an inhibitor of the transporter associated with antigen processing (TAP) and encoded by EHV-1 and related viruses, appeared not to be required for pUL56-induced early MHC-I downmodulation in infected cells. In conclusion, our data identify a new immunomodulatory protein, pUL56, involved in MHC-I downregulation which is unable to perform its function outside the context of viral infection.
Collapse
|
21
|
Said A, Damiani A, Ma G, Kalthoff D, Beer M, Osterrieder N. An equine herpesvirus 1 (EHV-1) vectored H1 vaccine protects against challenge with swine-origin influenza virus H1N1. Vet Microbiol 2011; 154:113-23. [PMID: 21803510 DOI: 10.1016/j.vetmic.2011.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 12/22/2022]
Abstract
In 2009, a novel swine-origin H1N1 influenza A virus (S-OIV), antigenically and genetically divergent from seasonal H1N1, caused a flu pandemic in humans. Development of an effective vaccine to limit transmission of S-OIV in animal reservoir hosts and from reservoir hosts to humans and animals is necessary. In the present study, we constructed and evaluated a vectored vaccine expressing the H1 hemagglutinin of a recent S-OIV isolate using equine herpesvirus 1 (EHV-1) as the delivery vehicle. Expression of the recombinant protein was demonstrated by immunofluorescence and western blotting and the in vitro growth properties of the modified live vector were found to be comparable to those of the parental virus. The EHV-1-H1 vaccine induced an influenza virus-specific antibody response when inoculated into mice by both the intranasal and subcutaneous routes. Upon challenge infection, protection of vaccinated mice could be demonstrated by reduction of clinical signs and faster virus clearance. Our study shows that an EHV-1-based influenza H1N1 vaccine may be a promising alternative for protection against S-OIV infection.
Collapse
Affiliation(s)
- Abdelrahman Said
- Institute für Virologie, Freie Universität Berlin, Philippstraße 13, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Carvalho RF, Spilki FR, Cunha EM, Stocco RC, Arns CW. Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1. Res Vet Sci 2011; 93:494-7. [PMID: 21684566 DOI: 10.1016/j.rvsc.2011.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) is associated with abortions, respiratory distress, and neurological disturbances in horses. The ORF37 of EHV-1 encodes a protein homolog to UL24 gene product of human herpesvirus that has been associated with neurovirulence. In the present work, ORF37 PCR fragments derived from two Brazilian EHV-1 isolates, a German isolate and an American reference strain were sequenced and characterized by molecular phylogenetic analysis. This genomic region is highly conserved an allowed to infer genetic distances between EHV-1 strains and other animal herpesvirus.
Collapse
Affiliation(s)
- R F Carvalho
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, CEP 05503-900, Brazil.
| | | | | | | | | |
Collapse
|
23
|
Soboll Hussey G, Hussey SB, Wagner B, Horohov DW, Van de Walle GR, Osterrieder N, Goehring LS, Rao S, Lunn DP. Evaluation of immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant. Vet Res 2011; 42:23. [PMID: 21314906 PMCID: PMC3045331 DOI: 10.1186/1297-9716-42-23] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/13/2011] [Indexed: 01/12/2023] Open
Abstract
Equine herpesvirus-1 (EHV-1) infection remains a significant problem despite the widespread use of vaccines. The inability to generate a protective immune response to EHV-1 vaccination or infection is thought to be due to immunomodulatory properties of the virus, and the ORF1 and ORF2 gene products have been hypothesized as potential candidates with immunoregulatory properties. A pony infection study was performed to define immune responses to EHV-1, and to determine if an EHV-1 ORF1/2 deletion mutant (ΔORF1/2) would have different disease and immunoregulatory effects compared to wild type EHV-1 (WT). Infection with either virus led to cytokine responses that coincided with the course of clinical disease, particularly the biphasic pyrexia, which correlates with respiratory disease and viremia, respectively. Similarly, both viruses caused suppression of proliferative T-cell responses on day 7 post infection (pi). The ΔORF1/ORF2 virus caused significantly shorter primary pyrexia and significantly reduced nasal shedding, and an attenuated decrease in PBMC IL-8 as well as increased Tbet responses compared to WT-infected ponies. In conclusion, our findings are (i) that infection of ponies with EHV-1 leads to modulation of immune responses, which are correlated with disease pathogenesis, and (ii) that the ORF1/2 genes are of importance for disease outcome and modulation of cytokine responses.
Collapse
Affiliation(s)
- Gisela Soboll Hussey
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 W, Drake Rd, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Azab W, Kato K, Abdel-Gawad A, Tohya Y, Akashi H. Equine herpesvirus 4: recent advances using BAC technology. Vet Microbiol 2011; 150:1-14. [PMID: 21292410 DOI: 10.1016/j.vetmic.2011.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/17/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
The equine herpesviruses are major infectious pathogens that threaten equine health. Equine herpesvirus 4 (EHV-4) is an important equine pathogen that causes respiratory tract disease, known as rhinopneumonitis, among horses worldwide. EHV-4 genome manipulation with subsequent understanding of the viral gene functions has always been difficult due to the limited number of susceptible cell lines and the absence of small-animal models of the infection. Efficient generation of mutants of EHV-4 would significantly contribute to the rapid and accurate characterization of the viral genes. This problem has been solved recently by the cloning of the genome of EHV-4 as a stable and infectious bacterial artificial chromosome (BAC) without any deletions of the viral genes. Very low copy BAC vectors are the mainstay of present genomic research because of the high stability of inserted clones and the possibility of mutating any gene target in a relatively short time. Manipulation of EHV-4 genome is now feasible using the power of BAC technology, and should aid greatly in assessing the role of viral genes in the virus-host interaction.
Collapse
Affiliation(s)
- Walid Azab
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
25
|
Herpesvirus BACs: past, present, and future. J Biomed Biotechnol 2010; 2011:124595. [PMID: 21048927 PMCID: PMC2965428 DOI: 10.1155/2011/124595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/19/2010] [Indexed: 12/12/2022] Open
Abstract
The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs) that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis). We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy.
Collapse
|
26
|
A vectored equine herpesvirus type 1 (EHV-1) vaccine elicits protective immune responses against EHV-1 and H3N8 equine influenza virus. Vaccine 2010; 28:1048-55. [DOI: 10.1016/j.vaccine.2009.10.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/20/2009] [Accepted: 10/20/2009] [Indexed: 01/24/2023]
|
27
|
Equine herpesvirus 1 entry via endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D. J Virol 2008; 82:11859-68. [PMID: 18815313 DOI: 10.1128/jvi.00868-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae, and its broad tissue tropism suggests that EHV-1 may use multiple receptors to initiate virus entry. EHV-1 entry was thought to occur exclusively through fusion at the plasma membrane, but recently entry via the endocytic/phagocytic pathway was reported for Chinese hamster ovary cells (CHO-K1 cells). Here we show that cellular integrins, and more specifically those recognizing RGD motifs such as alphaVbeta5, are important during the early steps of EHV-1 entry via endocytosis in CHO-K1 cells. Moreover, mutational analysis revealed that an RSD motif in the EHV-1 envelope glycoprotein D (gD) is critical for entry via endocytosis. In addition, we show that EHV-1 enters peripheral blood mononuclear cells predominantly via the endocytic pathway, whereas in equine endothelial cells entry occurs mainly via fusion at the plasma membrane. Taken together, the data in this study provide evidence that EHV-1 entry via endocytosis is triggered by the interaction between cellular integrins and the RSD motif present in gD and, moreover, that EHV-1 uses different cellular entry pathways to infect important target cell populations of its natural host.
Collapse
|
28
|
Abstract
Bacterial artificial chromosomes (BACs) are DNA molecules assembled in vitro from defined constituents and are stably maintained as one large DNA fragment in Escherichia coli. Artificial chromosomes are useful for genome sequencing programs, for transduction of DNA segments into eukaryotic cells, and for functional characterization of genomic regions and entire viral genomes such as cytomegalovirus (CMV) genomes. CMV genomes in BACs are ready for the advanced tools of E. coli genetics. Homologous and site-specific recombination, or transposon-based approaches allow for the engineering of virtually any kind of genetic change.
Collapse
Affiliation(s)
- Z Ruzsics
- Max von Pettenkofer Institute, Dept. of Virology, Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | |
Collapse
|
29
|
Rosas C, Van de Walle GR, Metzger SM, Hoelzer K, Dubovi EJ, Kim SG, Parrish CR, Osterrieder N. Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine 2008; 26:2335-43. [PMID: 18407383 DOI: 10.1016/j.vaccine.2008.02.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/24/2008] [Accepted: 02/28/2008] [Indexed: 12/20/2022]
Abstract
In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and found to be closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce virus spread.
Collapse
Affiliation(s)
- Cristina Rosas
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Varicella-zoster virus glycoprotein M homolog is glycosylated, is expressed on the viral envelope, and functions in virus cell-to-cell spread. J Virol 2007; 82:795-804. [PMID: 17977964 DOI: 10.1128/jvi.01722-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although envelope glycoprotein M (gM) is highly conserved among herpesviruses, the varicella-zoster virus (VZV) gM homolog has never been investigated. Here we characterized the VZV gM homolog and analyzed its function in VZV-infected cells. The VZV gM homolog was expressed on virions as a glycoprotein modified with a complex N-linked oligosaccharide and localized mainly to the Golgi apparatus and the trans-Golgi network in infected cells. To analyze its function, a gM deletion mutant was generated using the bacterial artificial chromosome system in Escherichia coli, and the virus was reconstituted in MRC-5 cells. VZV is highly cell associated, and infection proceeds mostly by cell-to-cell spread. Compared with wild-type VZV, the gM deletion mutant showed a 90% reduction in plaque size and 50% of the cell-to-cell spread in MRC-5 cells. The analysis of infected cells by electron microscopy revealed numerous aberrant vacuoles containing electron-dense materials in cells infected with the deletion mutant virus but not in those infected with wild-type virus. However, enveloped immature particles termed L particles were found at the same level on the surfaces of cells infected with either type of virus, indicating that envelopment without a capsid might not be impaired. These results showed that VZV gM is important for efficient cell-to-cell virus spread in cell culture, although it is not essential for virus growth.
Collapse
|
31
|
Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N. A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol 2007; 81:13200-8. [PMID: 17913822 PMCID: PMC2169085 DOI: 10.1128/jvi.01148-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to facilitate the generation of mutant viruses of varicella-zoster virus (VZV), the agent causing varicella (chicken pox) and herpes zoster (shingles), we generated a full-length infectious bacterial artificial chromosome (BAC) clone of the P-Oka strain. First, mini-F sequences were inserted into a preexisting VZV cosmid, and the SuperCos replicon was removed. Subsequently, mini-F-containing recombinant virus was generated from overlapping cosmid clones, and full-length VZV DNA recovered from the recombinant virus was established in Escherichia coli as an infectious BAC. An inverted duplication of VZV genomic sequences within the mini-F replicon resulted in markerless excision of vector sequences upon virus reconstitution in eukaryotic cells. Using the novel tool, the role in VZV replication of the major tegument protein encoded by ORF9 was investigated. A markerless point mutation introduced in the start codon by two-step en passant Red mutagenesis abrogated ORF9 expression and resulted in a dramatic growth defect that was not observed in a revertant virus. The essential nature of ORF9 for VZV replication was ultimately confirmed by restoration of the growth of the ORF9-deficient mutant virus using trans-complementation via baculovirus-mediated gene transfer.
Collapse
Affiliation(s)
- B Karsten Tischer
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
32
|
von Einem J, Smith PM, Van de Walle GR, O'Callaghan DJ, Osterrieder N. In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 2007; 362:151-62. [PMID: 17250864 DOI: 10.1016/j.virol.2006.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/06/2006] [Accepted: 12/06/2006] [Indexed: 11/26/2022]
Abstract
Glycoprotein G (gG) of equine herpesvirus type 1 (EHV-1), a structural component of virions and secreted from virus-infected cells, was shown to bind to a variety of different chemokines and as such might be involved in immune modulation. Little is known, however, about its role in the replication cycle and infection of EHV-1 in vivo. Here we report on the function of gG in context of virus infection in vitro and in vivo. A gG deletion mutant of pathogenic EHV-1 strain RacL11 (vL11DeltagG) was constructed and analyzed. Deletion of gG had virtually no effect on the growth properties of vL11DeltagG in cell culture when compared to parental virus or a rescuant virus vL11DeltagGR, respectively, and virus titers and plaque formation were unaffected in the absence of the glycoprotein. Similarly, in the murine model of EHV-1 infection, no significant differences in virulence between the gG deletion mutant and RacL11 or vL11DeltagGR were found at high doses of infection. However, infection of mice at lower doses revealed that the gG deletion mutant was able to replicate to higher titers in lungs of infected mice. Additionally, these mice lost significantly more weight than those infected with RacL11 and a more pronounced inflammatory response in lungs was observed. Therefore we concluded that deletion of gG in EHV-1 seems to lead to an exacerbation of respiratory disease in the mouse.
Collapse
Affiliation(s)
- Jens von Einem
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
33
|
Rosas CT, König P, Beer M, Dubovi EJ, Tischer BK, Osterrieder N. Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. J Gen Virol 2007; 88:748-757. [PMID: 17325347 DOI: 10.1099/vir.0.82528-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle that is maintained in the population by persistently infected animals. Virus infection may result in reproductive failure, respiratory disease and diarrhoea in naïve, susceptible bovines. Here, the construction and characterization of a novel vectored vaccine, which is based on the incorporation of genes encoding BVDV structural proteins (C, Erns, E1, E2) into a bacterial artificial chromosome of the equine herpesvirus type 1 (EHV-1) vaccine strain RacH, are reported. The reconstituted vectored virus, rH_BVDV, expressed BVDV structural proteins efficiently and was indistinguishable from parental vector virus with respect to growth properties in cultured cells. Intramuscular immunization of seronegative cattle with rH_BVDV resulted in induction of BVDV-specific serum neutralizing and ELISA antibodies. Upon experimental challenge infection of immunized calves with the heterologous BVDV strain Ib SE5508, a strong anamnestic boost of the neutralizing-antibody response was observed in all vaccinated animals. Immunized animals presented with reduced viraemia levels and decreased nasal virus shedding, and maintained higher leukocyte counts than mock-vaccinated controls.
Collapse
Affiliation(s)
- Cristina T Rosas
- Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Patricia König
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Boddenblick 5A, D-17493 Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Boddenblick 5A, D-17493 Insel Riems, Germany
| | - Edward J Dubovi
- Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
34
|
Rosas CT, Tischer BK, Perkins GA, Wagner B, Goodman LB, Osterrieder N. Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Res 2007; 125:69-78. [PMID: 17241683 DOI: 10.1016/j.virusres.2006.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 12/20/2022]
Abstract
The immunogenicity in horses of a recombinant equine herpesvirus type 1 (EHV-1) vaccine expressing West Nile virus (WNV) prM and E proteins was studied. To construct the recombinant EHV-1, two-step en passant mutagenesis was employed for manipulation of a bacterial artificial chromosome (BAC) of vaccine strain RacH. Recombinant EHV-1 stably expressed the WNV prM and E proteins as demonstrated by indirect immunofluorescence and Western blotting. In addition, growth properties in vitro of the EHV-1/WNV recombinant were found to not be significantly different from those of the parental virus. To determine if vaccination of horses induces an antibody response, 10 horses were allocated in two groups. Group A consisted of six horses that were vaccinated three times with the recombinant EHV-1/WNV virus in 28- to 31-day intervals. Group B consisted of four horses that were sham-vaccinated using the same regimen. Serum was collected on days 0, 31, 45 and 66. Plaque reduction neutralization test and IgG(T)- and IgGb-specific WNV E antibody-capture ELISAs were used. After a single vaccination (day 31), at least four of the six horses from group A had detectable levels of serum neutralizing antibodies against WNV, and three horses retained SN titers until the end of the study. None of the horses in the control group B sero-converted. On days 31 and 45, five of the six horses in group A had a marked increase of WNV-specific IgG(T), and at least four exhibited modestly elevated WNV-specific IgGb titers. From the results, we concluded that the EHV-1 vectored virus is able to express the WNV structural proteins and that vaccination of horses results in the induction of WNV E-protein-specific IgG(T), IgGb, and neutralizing antibodies.
Collapse
Affiliation(s)
- Cristina T Rosas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hansen K, Napier I, Koen M, Bradford S, Messerle M, Bell E, Seshadri L, Stokes HW, Birch D, Whalley JM. In vitro transposon mutagenesis of an equine herpesvirus 1 genome cloned as a bacterial artificial chromosome. Arch Virol 2006; 151:2389-405. [PMID: 16855811 DOI: 10.1007/s00705-006-0815-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
The 150-kbp genome of the alphaherpesvirus equine herpesvirus 1 (EHV-1) strain HVS25A was cloned as a bacterial artificial chromosome (EHV-1 BAC), with mini F plasmid sequences inserted between genes 62 and 63. Transfection of EHV-1 BAC DNA purified from E. coli gave rise to progeny virus that had a similar growth rate and yield in mammalian cell culture to those of parental wild-type EHV-1. Using in vitro mutagenesis with a Mu transposon, a large library of EHV-1 BAC mutants was generated, and sequence analysis indicated that insertions were dispersed randomly across the EHV-1 genome. Following transfections of a pilot sample of mutant EHV-1 BAC DNAs into mammalian cells, no CPE was observable by light microscopy for mutants carrying insertions in genes for the major capsid protein, large tegument protein, glycoprotein K, catalytic subunit of DNA polymerase, or single-stranded DNA-binding protein. Mutants that were able to produce CPE similar to wild-type EHV-1 included those with interruptions in ORFs of several tegument proteins. Analysis of several glycoprotein gene mutants indicated that those carrying insertions near the start of genes encoding glycoproteins E and I were viable, but showed markedly diminished plaque areas. These results were supported by confocal microscopy of transfected or infected cultures. Electron microscopy of cells infected with a gE mutant revealed accumulations of particles within cytoplasmic vesicles, consistent with a partial obstruction of maturation. The transposon library is a resource for comprehensive functional analysis of the HVS25A genome, with multiple mutants available in any of the predicted genes of EHV-1.
Collapse
Affiliation(s)
- K Hansen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rosas CT, Goodman LB, von Einem J, Osterrieder N. Equine herpesvirus type 1 modified live virus vaccines: quo vaditis? Expert Rev Vaccines 2006; 5:119-31. [PMID: 16451114 DOI: 10.1586/14760584.5.1.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infections of horses with equine herpesvirus type 1 (EHV-1) have garnered new attention over the last few years. Devastating outbreaks occurring worldwide, primarily of the neurologic form of the disease, have resulted in a reassessment of the control strategies, and particularly the prophylactic measures, that are necessary to keep the infection and spread of disease in check. Most of the available EHV-1 vaccines are based on preparations of inactivated virus, which are applied monovalently for prevention of EHV-1-caused abortion in pregnant mares or as part of multivalent vaccines to prevent respiratory disease. Despite the importance of an induction of cytotoxic immune responses for protection against EHV-1-induced disease, only two modified live virus vaccine preparations, which are both based on the avirulent EHV-1 strain RacH and were developed more than 40 years ago, are commercially available. Current efforts focus on exploiting the available infectious bacterial artificial chromosome clones of various EHV-1 strains to engineer a new generation of modified live virus vaccines. Both more efficient and long-lasting anti-EHV-1 immunity and delivery of immunogens of other pathogens are attempted and within immediate reach. The improvement of modified live virus vaccines will likely be a major focus of research in the future, and will hopefully help to more completely protect horses against one of the most important and devastating viral diseases.
Collapse
Affiliation(s)
- Cristina T Rosas
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
37
|
Tischer BK, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2006; 40:191-7. [PMID: 16526409 DOI: 10.2144/000112096] [Citation(s) in RCA: 662] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Red recombination using PCR-amplified selectable markers is a well-established technique for mutagenesis of large DNA molecules in Escherichia coli. The system has limited efficacy and versatility, however, for markerless modifications including point mutations, deletions, and particularly insertions of longer sequences. Here we describe a procedure that combines Red recombination and cleavage with the homing endonuclease I-SceI to allow highly efficient, PCR-based DNA engineering without retention of unwanted foreign sequences. We applied the method to modification of bacterial artificial chromosome (BAC) constructs harboring an infectious herpesvirus clone to demonstrate the potential of the mutagenesis technique, which was used for the insertion of long sequences such as coding regions or promoters, introduction of point mutations, scarless deletions, and insertion of short sequences such as an epitope tag. The system proved to be highly reliable and efficient and can be adapted for a variety of different modifications of BAC clones, which are fundamental tools for applications as diverse as the generation of transgenic animals and the construction of gene therapy or vaccine vectors.
Collapse
MESH Headings
- Chromosomes, Artificial, Bacterial
- Cloning, Molecular
- DNA Primers
- DNA, Bacterial
- DNA, Viral/chemistry
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genetic Engineering
- Mutagenesis, Insertional
- Plasmids
- Point Mutation
- Polymerase Chain Reaction
- Recombination, Genetic
- Selection, Genetic
Collapse
|
38
|
von Einem J, Schumacher D, O'Callaghan DJ, Osterrieder N. The alpha-TIF (VP16) homologue (ETIF) of equine herpesvirus 1 is essential for secondary envelopment and virus egress. J Virol 2006; 80:2609-20. [PMID: 16501071 PMCID: PMC1395446 DOI: 10.1128/jvi.80.6.2609-2620.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The equine herpesvirus 1 (EHV-1) alpha-trans-inducing factor homologue (ETIF; VP16-E) is a 60-kDa virion component encoded by gene 12 (ORF12) that transactivates the immediate-early gene promoter. Here we report on the function of EHV-1 ETIF in the context of viral infection. An ETIF-null mutant from EHV-1 strain RacL11 (vL11deltaETIF) was constructed and analyzed. After transfection of vL11deltaETIF DNA into RK13 cells, no infectious virus could be reconstituted, and only single infected cells or small foci containing up to eight infected cells were detected. In contrast, after transfection of vL11deltaETIF DNA into a complementing cell line, infectious virus could be recovered, indicating the requirement of ETIF for productive virus infection. The growth defect of vL11deltaETIF could largely be restored by propagation on the complementing cell line, and growth on the complementing cell line resulted in incorporation of ETIF in mature and secreted virions. Low- and high-multiplicity infections of RK13 cells with phenotypically complemented vL11deltaETIF virus resulted in titers of virus progeny similar to those used for infection, suggesting that input ETIF from infection was recycled. Ultrastructural studies of vL11deltaETIF-infected cells demonstrated a marked defect in secondary envelopment at cytoplasmic membranes, resulting in very few enveloped virions in transport vesicles or extracellular space. Taken together, our results demonstrate that ETIF has an essential function in the replication cycle of EHV-1, and its main role appears to be in secondary envelopment.
Collapse
Affiliation(s)
- Jens von Einem
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
| | - Daniel Schumacher
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
| | - Dennis J. O'Callaghan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
| | - Nikolaus Osterrieder
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
- Corresponding author. Mailing address: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. Phone: (607) 253-4045. Fax: (607) 253-3384. E-mail:
| |
Collapse
|
39
|
Trapp S, von Einem J, Hofmann H, Köstler J, Wild J, Wagner R, Beer M, Osterrieder N. Potential of equine herpesvirus 1 as a vector for immunization. J Virol 2005; 79:5445-54. [PMID: 15827159 PMCID: PMC1082783 DOI: 10.1128/jvi.79.9.5445-5454.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key problems using viral vectors for vaccination and gene therapy are antivector immunity, low transduction efficiencies, acute toxicity, and limited capacity to package foreign genetic information. It could be demonstrated that animal and human cells were efficiently transduced with equine herpesvirus 1 (EHV-1) reconstituted from viral DNA maintained and manipulated in Escherichia coli. Between 13 and 23% of primary human CD3+, CD4+, CD8+, CD11b+, and CD19+ cells and more than 70% of CD4+ MT4 cells or various human tumor cell lines (MeWo, Huh7, HeLa, 293T, or H1299) could be transduced with one infectious unit of EHV-1 per cell. After intranasal instillation of EHV-1 into mice, efficient transgene expression in lungs was detectable. Successful immunization using EHV-1 was shown after delivery of the human immunodeficiency virus type 1 Pr55gag precursor by the induction of a Gag-specific CD8+ immune response in mice. Because EHV-1 was not neutralized by human sera containing high titers of antibodies directed against human herpesviruses 1 to 5, it is concluded that this animal herpesvirus has enormous potential as a vaccine vector, because it is able to efficiently transduce a variety of animal and human cells, has high DNA packaging capacity, and can conveniently be maintained and manipulated in prokaryotic cells.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cattle
- Cell Line
- Cross Reactions
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- Herpesvirus 1, Equid/genetics
- Herpesvirus 1, Equid/immunology
- Horses
- Humans
- Immune Sera
- Immunity, Cellular
- Immunization
- Leukocytes, Mononuclear/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Spleen/immunology
- Transduction, Genetic
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
Collapse
Affiliation(s)
- Sascha Trapp
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kawaguchi Y, Tanaka M. [BAC system: A novel method for manipulation of herpesvirus genomes based on bacterial genetics]. Uirusu 2005; 54:255-64. [PMID: 15745165 DOI: 10.2222/jsv.54.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although methods for reverse genetics of herpesviruses have been established in early 1980s, the steps are laborious and time-consuming. In 1997, Dr. Koszinwski's group reported a novel approach for the construction of herpesvirus mutants, based on cloning the viral genome as a bacterial artificial chromosome (BAC) in E. coli. This technique allows the maintenance of viral genomes as plasmid in E. coli and the reconstitution of viral progeny by transfection of the BAC plasmid into eukaryotic cells. Any genetics modification of the viral genome in E. coli using bacterial genetics is possible, thereby facilitating the introduction of mutagenesis into herpesvirus genome. This 'BAC system' has opened new avenues for reverse and forward genetics of herpesviruses in basic research and in vector development for human therapy. Here we describe the principle of the 'BAC system' in herpesvirus researches.
Collapse
Affiliation(s)
- Yasushi Kawaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan.
| | | |
Collapse
|
41
|
Nagaike K, Mori Y, Gomi Y, Yoshii H, Takahashi M, Wagner M, Koszinowski U, Yamanishi K. Cloning of the varicella-zoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli. Vaccine 2005; 22:4069-74. [PMID: 15364458 DOI: 10.1016/j.vaccine.2004.03.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 03/03/2004] [Accepted: 03/23/2004] [Indexed: 11/17/2022]
Abstract
The complete genome of the varicella-zoster virus (VZV) Oka strain has been cloned as a bacterial artificial chromosome (BAC). Following electroporation into Escherichia coli (E. coli) strain DH10B, the VZV BAC was stably propagated over multiple generations of its host. Human embryonic lung (HEL) cells transfected with VZV BAC DNA recovered from DH10B showed cytopathic effect (CPE), and virus spread to neighbouring cells was observed. BAC vector sequences are flanked by loxP sites and, coinfection of the reconstituted virus, with a recombinant adenovirus expressing Cre recombinase removed the bacterial sequences. The resulting recombinant rV02 grew as well as the parental virus in HEL cells. The recombinant VZV will promote VZV research and increase use of the viral genome as an investigative tool.
Collapse
MESH Headings
- Adenoviridae/genetics
- Cells, Cultured
- Chromosomes, Artificial, Bacterial
- Cloning, Molecular
- Cytopathogenic Effect, Viral
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Escherichia coli/genetics
- Genes, Bacterial
- Genetic Vectors/genetics
- Genome, Viral
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/physiology
- Humans
- Recombinases/genetics
- Recombinases/metabolism
- Transfection
- Virus Replication
Collapse
Affiliation(s)
- Kazuhiro Nagaike
- Department of Microbiology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fuchs W, Wiesner D, Veits J, Teifke JP, Mettenleiter TC. In vitro and in vivo relevance of infectious laryngotracheitis virus gJ proteins that are expressed from spliced and nonspliced mRNAs. J Virol 2005; 79:705-16. [PMID: 15613298 PMCID: PMC538576 DOI: 10.1128/jvi.79.2.705-716.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The positional homologue in the infectious laryngotracheitis virus (ILTV) genome of the glycoprotein gJ gene of herpes simplex virus and the gp2 gene of equine herpesvirus 1 is expressed into four proteins of 85, 115, 160, and 200 kDa (J. Veits, B. Kollner, J. P. Teifke, H. Granzow, T. C. Mettenleiter, and W. Fuchs, Avian Dis. 47:330-342, 2003). RNA analyses revealed that these proteins are expressed from two different late (gamma2) transcripts, an unspliced 5.5-kb and a spliced 4.3-kb mRNA that are translated into proteins of 985 and 611 amino acids, respectively. ILTV gJ is incorporated into virions and is modified by N- and O-linked glycosylation. After cotransfection of chicken cells with genomic DNA of a pathogenic ILTV strain and transfer plasmids, gJ-negative ILTV mutants could be isolated. In vitro growth studies demonstrated that deletion of the gJ gene has only minor effects on direct cell-to-cell spread as measured by plaque size. However, progeny virus titers of ILTV-DeltagJ were significantly reduced in comparison to those of the parental virus and a gJ rescue mutant. After experimental infection of chickens the gJ rescue mutant, like wild-type ILTV, caused severe disease and considerable mortality, whereas ILTV-DeltagJ was significantly attenuated. All immunized animals were protected against subsequent challenge infection with virulent ILTV. In sera collected after immunization with the gJ-rescue mutant or with wild-type ILTV, gJ-specific antibodies were detectable by immunofluorescence on cells that had been transfected with a gJ expression plasmid. As expected, no gJ-specific antibodies were found in sera obtained from chickens immunized with ILTV-DeltagJ. Thus, gJ deletion mutants of ILTV might be usable as attenuated live-virus vaccines. Furthermore, the gJ gene might constitute a reliable marker for serological discrimination between vaccinated and field virus-infected chickens.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|
43
|
Neubauer A, Osterrieder N. Equine herpesvirus type 1 (EHV-1) glycoprotein K is required for efficient cell-to-cell spread and virus egress. Virology 2004; 329:18-32. [PMID: 15476871 DOI: 10.1016/j.virol.2004.07.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 04/16/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The function of the equine herpesvirus type 1 (EHV-1) glycoprotein K (gK) homologue was investigated. Deletion of 88% of the UL53-homologous open reading frame in EHV-1 strain RacH resulted in a severe growth defect of the gK-negative virus (HDeltagK) as reflected by a significant decrease in the production of infectious virus progeny on RK13 cells. The HDeltagK virus induced only minute plaques, was unable to form syncytia, and its penetration efficiency into RK13 cells was reduced by approximately 40%. To further analyze gK function and intracellular trafficking, gK of strain RacH was replaced by a C-terminally truncated gK-green fluorescent protein fusion protein (gK-GFP). The generated recombinant virus was shown to replicate well on non-complementing cells, and virus penetration and syncytium formation were comparable to parental RacH. A reduction in plaque size and slightly decreased intra- and extracellular virus titers, however, were observed. The gK-GFP fusion protein was expressed with early-late kinetics, and multiple forms of the protein exhibiting M(r)s between 50,000 and 85,000 were detected by Western blot analysis. The various gK-GFP forms were shown to be N-glycosylated, associated with membranes of the Golgi apparatus, and were incorporated into extracellular virions. Complete processing of gK-GFP was only observed within the context of viral infection. From the results, we concluded that EHV-1 gK is required for efficient virus growth in vitro and that the carboxy-terminal amino acids are not required for its function, because the gK-GFP fusion protein was able to complement for EHV-1 growth in the absence of authentic gK.
Collapse
Affiliation(s)
- Antonie Neubauer
- Institute for Medical Microbiology, Infectious and Epidemic Diseases, Ludwig-Maximilians-Universität München, D-80539 Munich, Germany.
| | | |
Collapse
|
44
|
Moorman NJ, Lin CY, Speck SH. Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 2004; 78:10282-90. [PMID: 15367594 PMCID: PMC516406 DOI: 10.1128/jvi.78.19.10282-10290.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current methods for determining the role of a given gene product in the gammaherpesvirus 68 (gammaHV68) life cycle require generation of a specific mutation by either homologous recombination in mammalian cells or bacterial artificial chromosome-mediated mutagenesis in Escherichia coli. The mutant virus is then compared to wild-type virus, and the role of the gene in the viral life cycle is deduced from its phenotype. This process is both time-consuming and labor intensive. Here we present the use of random, transposon-mediated signature-tagged mutagenesis for the identification of candidate viral genes involved in virus replication. Pools of viral mutants, each containing a random insertion of a transposon, were generated with a transposon donor library in which each transposon contains a unique sequence identifier. These pools were transfected into mammalian cells, and the ability of each mutant to replicate was assessed by comparing the presence of virus in the output pool to that present in the input pool of viral genomes. With this approach we could rapidly screen up to 96 individual mutants simultaneously. The location of the transposon insertion was determined by sequencing individual clones with a common primer specific for the transposon end. Here we present the characterization of 53 distinct viral mutants that correspond to insertions in 29 open reading frames within the gammaHV68 genome. To confirm the results of the signature-tagged mutagenesis screen, we quantitated the ability of each mutant to replicate compared to wild-type gammaHV68. From these analyses we identified 16 gammaHV68 open reading frames that, when disrupted by transposon insertions, score as essential for virus replication, and six other open reading frames whose disruption led to significant attenuation of virus replication. In addition, transposon insertion in five other gammaHV68 open reading frames did not affect virus replication. Notably, all but one of the candidate essential replication genes identified in this screen have been shown to be essential for the replication of at least one other herpesvirus.
Collapse
Affiliation(s)
- Nathaniel J Moorman
- Center for Emerging Infectious Diseases, Division of Microbiology & Immunology, Yerkes National Primate Center, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
45
|
von Einem J, Wellington J, Whalley JM, Osterrieder K, O'Callaghan DJ, Osterrieder N. The truncated form of glycoprotein gp2 of equine herpesvirus 1 (EHV-1) vaccine strain KyA is not functionally equivalent to full-length gp2 encoded by EHV-1 wild-type strain RacL11. J Virol 2004; 78:3003-13. [PMID: 14990719 PMCID: PMC353745 DOI: 10.1128/jvi.78.6.3003-3013.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most equine herpesvirus 1 (EHV-1) strains, including the naturally occurring virulent RacL11 isolate, encode a large glycoprotein, gp2 (250 kDa), which is expressed from gene 71. Besides other alterations in the viral genome, the avirulent strain KyA harbors an in-frame deletion of 1,242 nucleotides in gene 71. To examine the contributions of gp2 variation to virus growth and virulence, mutant RacL11 and KyA viruses expressing full-length or truncated gp2 were generated. Western blot analyses demonstrated expression of a 250-kDa gp2 in cells infected with RacL11 virus or a mutant KyA virus harboring full-length gene 71, whereas a 75- to 80-kDa gp2 was detected in cells infected with KyA or mutant RacL11 virus expressing KyA gp2. The RacL11 gp2 precursor of 250 kDa in size and its truncated KyA counterpart of 80 kDa, as well as the 42-kDa carboxy-terminal gp2 subunit, were incorporated into virus particles. Absence of gp2 in RacL11 resulted in a 6-fold reduction of extracellular virus titers and a 13% reduction of plaque diameters, whereas gp2-negative KyA exhibited a 55% reduction in plaque diameter and a 51-fold decrease in extracellular virus titers. The massive growth defects of gp2-negative KyA could be restored by reinsertion of the truncated but not the full-length gp2 gene. The virulence of the generated gp2 mutant viruses was compared to the virulence of KyA and RacL11 in a murine infection model. RacL11 lacking gp2 was apathogenic for BALB/c mice, and insertion of the truncated KyA gp2 gene into RacL11 was unable to restore virulence. Similarly, replacement in the KyA genome of the truncated with the full-length RacL11 gene 71 did not result in the generation of virulent virus. From the results we conclude that full-length and truncated EHV-1 gp2 are not functionally equivalent and cannot compensate for the action of their homologues in allogeneic virus backgrounds.
Collapse
Affiliation(s)
- Jens von Einem
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yao H, Osterrieder N, O'Callaghan DJ. Generation and characterization of an EICP0 null mutant of equine herpesvirus 1. Virus Res 2003; 98:163-72. [PMID: 14659563 DOI: 10.1016/j.virusres.2003.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The EICP0 gene (gene 63) of equine herpesvirus 1 (EHV-1) encodes an early regulatory protein that is a promiscuous trans-activator of all classes of viral genes. Bacterial artificial chromosome (BAC) technology and RecE/T cloning were employed to delete the EICP0 gene from EHV-1 strain KyA. Polymerase chain reaction, Southern blot analysis, and DNA sequencing confirmed the deletion of the EICP0 gene and its replacement with a kanamycin resistance gene in mutant KyA. Transfection of rabbit kidney cells with the EICP0 mutant genome produced infectious virus, indicating that the EICP0 gene is not essential for KyA replication in cell culture. Experiments to assess the effect of the EICP0 deletion on EHV-1 gene programming revealed that mRNA expression of the immediate-early gene and representative early and late genes as well as the synthesis of these viral proteins were reduced as compared to the kinetics of viral mRNA and protein synthesis observed for the wild type virus. However, the transition from early to late viral gene expression was not prevented or delayed, suggesting that the absence of the EICP0 gene did not disrupt the temporal aspects of EHV-1 gene regulation. The extracellular virus titer and plaque areas of the EICP0 mutant virus KyADeltaEICP0, in which the gp2-encoding gene 71 gene that is absent in the KyA BAC was restored, were reduced by 10-fold and 19%, respectively, when compared to parental KyA virus; while the titer and plaque areas of mutant KyADeltaEICP0Deltagp2 that lacks both the EICP0 gene and gene 71 were reduced more than 50-fold and 67%, respectively. The above results show that the EICP0 gene is dispensable for EHV-1 replication in cell culture, and that the switch from early to late viral gene expression for the representative genes examined does not require the EICP0 protein, but that the EICP0 protein may be structurally required for virus egress and cell-to-cell spread.
Collapse
Affiliation(s)
- Haijun Yao
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
47
|
Kirisawa R, Kobayashi T, Uematsu R, Ikeda A, Kuroiwa R, Urakami A, Iwai H. Growth of recombinant equine herpesvirus 1 (EHV-1) replaced with passage-induced mutant gene 1 and gene 71 derived from an attenuated EHV-1 in cell cultures and in the lungs of mice. Vet Microbiol 2003; 95:159-74. [PMID: 12935744 DOI: 10.1016/s0378-1135(03)00154-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relationship of passage-induced mutant genes 1 and 71 of an attenuated equine herpesvirus 1 (EHV-1) with virulence was analysed by constructing nine recombinant EHV-1 viruses by homologous recombination. Gene 1 or/and gene 71 of a virulent EHV-1 strain, HH1, was replaced by a mutant gene 1 or/and 71 of an attenuated HH1 strain, BK343, respectively. The beta-galactosidase gene of Escherichia coli was inserted within the gene 1 or 71 coding sequence of HH1 to inactivate the genes. Virus replications of these recombinant viruses in cell cultures were similar, but release of the gene 71-inactivated virus from infected cells was delayed compared to that of the other viruses. Plaque sizes of the recombinant viruses were similar to those of HH1, but those of BK343 were significantly smaller, indicating an effect of some unknown factor(s) on viral cell-to-cell spread. The growth abilities of the recombinant viruses with a mutant gene 1 or/and 71 in lungs of mice were similar to those of HH1, but those of gene 71-inactivated viruses were reduced to the level of BK343 and the titers were about 100-times lower than those of the other recombinant viruses. These results indicate that the mutant genes 1 and 71 of BK343 might not confer an attenuated nature to EHV-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- DNA, Recombinant/genetics
- Female
- Genes, Viral/immunology
- Herpesviridae Infections/immunology
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/virology
- Herpesvirus 1, Equid/genetics
- Herpesvirus 1, Equid/immunology
- Herpesvirus 1, Equid/pathogenicity
- Horse Diseases/immunology
- Horse Diseases/virology
- Horses
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutagenesis, Insertional
- Sequence Alignment
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Structural Proteins/genetics
- Viral Structural Proteins/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Rikio Kirisawa
- Department of Veterinary Microbiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Schimmer C, Neubauer A. The equine herpesvirus 1 UL11 gene product localizes to the trans-golgi network and is involved in cell-to-cell spread. Virology 2003; 308:23-36. [PMID: 12706087 DOI: 10.1016/s0042-6822(02)00060-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Experiments were conducted to identify and characterize the equine herpesvirus type 1 (EHV-1) UL11 homologous protein. At early-late times after EHV-1 infection of Rk13 cells several proteins at an M(r) of 8000 to 12,000 were detected using a UL11 protein-specific antiserum. Particularly, an M(r) of 11,000 protein was found abundantly in purified virions and could be assigned to the tegument fraction. As demonstrated by confocal laser scanning microscopy, UL11 reactivity localized predominantly to the trans-Golgi network of infected cells, but was also noted at the plasma membrane, specifically of transfected cells. Deletion of UL11 sequences in EHV-1 vaccine strain RacH (Hdelta11) and in the virulent isolate RacL22 (Ldelta11) resulted in viruses that were able to replicate on noncomplementing cells. It was shown in one-step growth kinetics on Rk13 cells that the reduction of intracellular and of extracellular virus titers caused by the absence of UL11 expression in either virus was somewhat variable, but approximately 10- to 20-fold. In contrast, a marked influence on the plaque phenotype was noted, as mean maximal diameters of plaques were reduced to 23.2% (RacL22) or 34.7% (RacH) of parental virus plaques and as an effect on the ability of RacH to cause syncytia upon infection was noted. It was therefore concluded that the EHV-1 UL11 product is not essential for virus replication in Rk13 cells but is involved in cell-to-cell spread.
Collapse
Affiliation(s)
- Christopher Schimmer
- Institute for Medical Microbiology, Infectious, and Epidemic Diseases, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 Munich, Germany
| | | |
Collapse
|
49
|
Adler H, Messerle M, Koszinowski UH. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol 2003; 13:111-21. [PMID: 12627394 DOI: 10.1002/rmv.380] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herpesviruses, which are important pathogens for both animals and humans, have large and complex genomes with a coding capacity for up to 225 open reading frames (ORFs). Due to the large genome size and the slow replication kinetics in vitro of some herpesviruses, mutagenesis of viral genes in the context of the viral genome by conventional recombination methods in cell culture has been difficult. Given that mutagenesis of viral genes is the basic strategy to investigate function, many of the herpesvirus ORFs could not be defined functionally. Recently, a completely new approach for the construction of herpesvirus mutants has been developed, based on cloning of the virus genome as a bacterial artificial chromosome (BAC) in E. coli. This technique allows the maintenance of viral genomes as a plasmid in E. coli and the reconstitution of viral progeny by transfection of the BAC plasmid into eukaryotic cells. Any genetic modification of the viral genome in E. coli using prokaryotic recombination proteins is possible, thereby allowing the generation of mutant viruses and facilitating the analysis of herpesvirus genomes cloned as infectious BACs. In this review, we describe the principle of cloning a viral genome as a BAC using murine gammaherpesvirus 68 (MHV-68), a mouse model for gammaherpesvirus infections, as an example.
Collapse
Affiliation(s)
- Heiko Adler
- GSF-Research Center for Environment and Health, Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, Munich, Germany.
| | | | | |
Collapse
|
50
|
Trapp S, Osterrieder N, Keil GM, Beer M. Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome: analysis of glycoprotein E and G double deletion mutants. J Gen Virol 2003; 84:301-306. [PMID: 12560561 DOI: 10.1099/vir.0.18682-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of bovine herpesvirus type 1 Schönböken was cloned as a bacterial artificial chromosome (BAC) by inserting mini F plasmid sequences into the glycoprotein (g) E gene. The resulting BAC clone, pBHV-1DeltagE, was transfected into bovine kidney cells and viable gE-negative BHV-1 (BHV-1DeltagE) was recovered. By RecE/T mutagenesis in Escherichia coli, the gG open reading frame was deleted from pBHV-1DeltagE. From the mutated BAC, double negative BHV-1DeltagE-gG was reconstituted and its growth properties were compared to those of rescuant viruses in which the gE gene was restored (BHV-1rev, BHV-1DeltagG). The mutant viruses did not exhibit markedly lowered virus titres. Plaque sizes of BHV-1DeltagE, BHV-1DeltagE-gG and BHV-1DeltagG, however, were reduced by 19 to 55 % compared to parental strain Schönböken or BHV-1rev. Our results suggested that gE and gG function independently from each other in cell-to-cell spread, because an additive effect on plaque formation was observed in the gE/gG double deletion mutant.
Collapse
Affiliation(s)
- Sascha Trapp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Nikolaus Osterrieder
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Günther M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Martin Beer
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| |
Collapse
|