1
|
Ricin: An Ancient Story for a Timeless Plant Toxin. Toxins (Basel) 2019; 11:toxins11060324. [PMID: 31174319 PMCID: PMC6628454 DOI: 10.3390/toxins11060324] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
The castor plant (Ricinus communis L.) has been known since time immemorial in traditional medicine in the pharmacopeia of Mediterranean and eastern ancient cultures. Moreover, it is still used in folk medicine worldwide. Castor bean has been mainly recommended as anti-inflammatory, anthelmintic, anti-bacterial, laxative, abortifacient, for wounds, ulcers, and many other indications. Many cases of human intoxication occurred accidentally or voluntarily with the ingestion of castor seeds or derivatives. Ricinus toxicity depends on several molecules, among them the most important is ricin, a protein belonging to the family of ribosome-inactivating proteins. Ricin is the most studied of this category of proteins and it is also known to the general public, having been used for several biocrimes. This manuscript intends to give the reader an overview of ricin, focusing on the historical path to the current knowledge on this protein. The main steps of ricin research are here reported, with particular regard to its enzymatic activity, structure, and cytotoxicity. Moreover, we discuss ricin toxicity for animals and humans, as well as the relation between bioterrorism and ricin and its impact on environmental toxicity. Ricin has also been used to develop immunotoxins for the elimination of unwanted cells, mainly cancer cells; some of these immunoconjugates gave promising results in clinical trials but also showed critical limitation.
Collapse
|
2
|
Jetzt AE, Li XP, Tumer NE, Cohick WS. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome. Toxicol Appl Pharmacol 2016; 310:120-128. [PMID: 27639428 DOI: 10.1016/j.taap.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023]
Abstract
Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarly to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication.
Collapse
Affiliation(s)
- Amanda E Jetzt
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Xiao-Ping Li
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Wendie S Cohick
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States.
| |
Collapse
|
3
|
Vance DJ, Mantis NJ. Progress and challenges associated with the development of ricin toxin subunit vaccines. Expert Rev Vaccines 2016; 15:1213-22. [PMID: 26998662 PMCID: PMC5193006 DOI: 10.1586/14760584.2016.1168701] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The past several years have seen major advances in the development of a safe and efficacious ricin toxin vaccine, including the completion of two Phase I clinical trials with two different recombinant A subunit (RTA)-based vaccines: RiVax™ and RVEc™ adsorbed to aluminum salt adjuvant, as well as a non-human primate study demonstrating that parenteral immunization with RiVax elicits a serum antibody response that was sufficient to protect against a lethal dose aerosolized ricin exposure. One of the major obstacles moving forward is assessing vaccine efficacy in humans, when neither ricin-specific serum IgG endpoint titers nor toxin-neutralizing antibody levels are accepted as definitive predictors of protective immunity. In this review we summarize ongoing efforts to leverage recent advances in our understanding of RTA-antibody interactions at the structural level to develop novel assays to predict vaccine efficacy in humans.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
4
|
Wahome N, Sully E, Singer C, Thomas JC, Hu L, Joshi SB, Volkin DB, Fang J, Karanicolas J, Jacobs DJ, Mantis NJ, Middaugh CR. Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice. J Pharm Sci 2016; 105:1603-1613. [PMID: 26987947 PMCID: PMC4846473 DOI: 10.1016/j.xphs.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
RiVax is a candidate ricin toxin subunit vaccine antigen that has proven to be safe in human phase I clinical trials. In this study, we introduced double and triple cavity-filling point mutations into the RiVax antigen with the expectation that stability-enhancing modifications would have a beneficial effect on overall immunogenicity of the recombinant proteins. We demonstrate that 2 RiVax triple mutant derivatives, RB (V81L/C171L/V204I) and RC (V81I/C171L/V204I), when adsorbed to aluminum salts adjuvant and tested in a mouse prime-boost-boost regimen were 5- to 10-fold more effective than RiVax at eliciting toxin-neutralizing serum IgG antibody titers. Increased toxin neutralizing antibody values and seroconversion rates were evident at different antigen dosages and within 7 days after the first booster. Quantitative stability/flexibility relationships analysis revealed that the RB and RC mutations affect rigidification of regions spanning residues 98-103, which constitutes a known immunodominant neutralizing B-cell epitope. A more detailed understanding of the immunogenic nature of RB and RC may provide insight into the fundamental relationship between local protein stability and antibody reactivity.
Collapse
Affiliation(s)
- Newton Wahome
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Erin Sully
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12208
| | - Christopher Singer
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223
| | - Justin C Thomas
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Lei Hu
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Jianwen Fang
- Applied Bioinformatics Laboratory, Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - John Karanicolas
- Department of Molecular Biosciences, Center for Computational Biology, University of Kansas, Lawrence, Kansas 66045
| | - Donald J Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223.
| | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12208; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201.
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
5
|
Zhang T, Yang H, Kang L, Gao S, Xin W, Yao W, Zhuang X, Ji B, Wang J. Strong protection against ricin challenge induced by a novel modified ricin A-chain protein in mouse model. Hum Vaccin Immunother 2016; 11:1779-87. [PMID: 26038805 PMCID: PMC4514271 DOI: 10.1080/21645515.2015.1038446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ricin toxin (RT) is an extremely potent toxin derived from the castor bean plant. As a possible bioterrorist weapon, it was categorized as a level B agent in international society. With the growing awareness and concerns of the “white powder incident” in recent years, it is indispensable to develop an effective countermeasure against RT intoxication. In this study we used site-directed mutagenesis and polymerase chain reaction (PCR) techniques to modify the gene of ricin A-chain (RTA). As a result, we have generated a mutated and truncated ricin A-chain (mtRTA) vaccine antigen by E.coli strain. The cytotoxicity assay was used to evaluate the safety of the as-prepared mtRTA antigen, and the results showed that there was no residual toxicity observed when compared to the recombinant RTA (rRTA) or native RT. Furthermore, BALB/c mice were subcutaneously (s.c.) vaccinated with mtRTA 3 times at an interval of 2 weeks, and then the survivals were evaluated after intraperitoneal (i.p.) or intratracheal challenge of RT. The vaccinated mice developed a strong protective immune response that was wholly protective against 40 × LD50 of RT i.p. injection or 20 × LD50 of RT intratracheal spraying. The mtRTA antigen has great potential to be a vaccine candidate for future application in humans.
Collapse
Key Words
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- HRP, horseradish peroxidase
- IPTG, isopropyl-1-thio-β-galactopyranoside
- LD50, median lethal dose
- RT, ricin toxin
- RTA, ricin toxin A chain
- RTB, ricin toxin B chain
- SD, standard deviation
- i.p, intraperitoneally
- i.p., intraperitoneal
- immunity
- intratracheal
- mRTA, mutated RTA
- mtRTA, mutated and truncated RTA
- mutant
- rRTA, recombinant RTA
- ricin
- s.c., subcutaneously subcutaneous
- toxicity
- toxin
- truncation
- vaccine
Collapse
Affiliation(s)
- Tao Zhang
- a State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fan Y, Moon JJ. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27038091 DOI: 10.1002/wnan.1403] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 01/15/2023]
Abstract
Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. WIREs Nanomed Nanobiotechnol 2017, 9:e1403. doi: 10.1002/wnan.1403 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Neutralizing Monoclonal Antibodies against Disparate Epitopes on Ricin Toxin's Enzymatic Subunit Interfere with Intracellular Toxin Transport. Sci Rep 2016; 6:22721. [PMID: 26949061 PMCID: PMC4779987 DOI: 10.1038/srep22721] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
Ricin is a member of the A-B family of bacterial and plant toxins that exploit retrograde trafficking to the Golgi apparatus and endoplasmic reticulum (ER) as a means to deliver their cytotoxic enzymatic subunits into the cytoplasm of mammalian cells. In this study we demonstrate that R70 and SyH7, two well-characterized monoclonal antibodies (mAbs) directed against distinct epitopes on the surface of ricin’s enzymatic subunit (RTA), interfere with toxin transport from the plasma membrane to the trans Golgi network. Toxin-mAb complexes formed on the cell surface delayed ricin’s egress from EEA-1+ and Rab7+ vesicles and enhanced toxin accumulation in LAMP-1+ vesicles, suggesting the complexes were destined for degradation in lysosomes. Three other RTA-specific neutralizing mAbs against different epitopes were similar to R70 and SyH7 in terms of their effects on ricin retrograde transport. We conclude that interference with toxin retrograde transport may be a hallmark of toxin-neutralizing antibodies directed against disparate epitopes on RTA.
Collapse
|
8
|
Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity. Sci Rep 2016; 6:18781. [PMID: 26728251 PMCID: PMC4700442 DOI: 10.1038/srep18781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.
Collapse
|
9
|
Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: Epitope-specific neutralizing antibodies correlate with protection. Proc Natl Acad Sci U S A 2015; 112:3782-7. [PMID: 25775591 DOI: 10.1073/pnas.1502585112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ricin toxin (RT) is the second most lethal toxin known; it has been designated by the CDC as a select agent. RT is made by the castor bean plant; an estimated 50,000 tons of RT are produced annually as a by-product of castor oil. RT has two subunits, a ribotoxic A chain (RTA) and galactose-binding B chain (RTB). RT binds to all mammalian cells and once internalized, a single RTA catalytically inactivates all of the ribosomes in a cell. Administered as an aerosol, RT causes rapid lung damage and fibrosis followed by death. There are no Food and Drug Administration-approved vaccines and treatments are only effective in the first few hours after exposure. We have developed a recombinant RTA vaccine that has two mutations V76M/Y80A (RiVax). The protein is expressed in Escherichia coli and is nontoxic and immunogenic in mice, rabbits, and humans. When vaccinated mice are challenged with injected, aerosolized, or orally administered (gavaged) RT, they are completely protected. We have now developed a thermostable, aluminum-adjuvant-containing formulation of RiVax and tested it in rhesus macaques. After three injections, the animals developed antibodies that completely protected them from a lethal dose of aerosolized RT. These antibodies neutralized RT and competed to varying degrees with a panel of neutralizing and nonneutralizing mouse monoclonal antibodies known to recognize specific epitopes on native RTA. The resulting antibody competition profile could represent an immunologic signature of protection. Importantly, the same signature was observed using sera from RiVax-immunized humans.
Collapse
|
10
|
Schieltz DM, McWilliams LG, Kuklenyik Z, Prezioso SM, Carter AJ, Williamson YM, McGrath SC, Morse SA, Barr JR. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon 2015; 95:72-83. [PMID: 25576235 PMCID: PMC5303535 DOI: 10.1016/j.toxicon.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/06/2015] [Indexed: 11/22/2022]
Abstract
The seeds of the Ricinus communis (Castor bean) plant are the source of the economically important commodity castor oil. Castor seeds also contain the proteins ricin and R. communis agglutinin (RCA), two toxic lectins that are hazardous to human health. Radial immunodiffusion (RID) and the enzyme linked immunosorbent assay (ELISA) are two antibody-based methods commonly used to quantify ricin and RCA; however, antibodies currently used in these methods cannot distinguish between ricin and RCA due to the high sequence homology of the respective proteins. In this study, a technique combining antibody-based affinity capture with liquid chromatography and multiple reaction monitoring (MRM) mass spectrometry (MS) was used to quantify the amounts of ricin and RCA independently in extracts prepared from the seeds of eighteen representative cultivars of R. communis which were propagated under identical conditions. Additionally, liquid chromatography and MRM-MS was used to determine rRNA N-glycosidase activity for each cultivar and the overall activity in these cultivars was compared to a purified ricin standard. Of the cultivars studied, the average ricin content was 9.3 mg/g seed, the average RCA content was 9.9 mg/g seed, and the enzymatic activity agreed with the activity of a purified ricin reference within 35% relative activity.
Collapse
Affiliation(s)
- David M Schieltz
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Lisa G McWilliams
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Samantha M Prezioso
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Andrew J Carter
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Yulanda M Williamson
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Sara C McGrath
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Stephen A Morse
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - John R Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA.
| |
Collapse
|
11
|
Vance DJ, Rong Y, Brey RN, Mantis NJ. Combination of two candidate subunit vaccine antigens elicits protective immunity to ricin and anthrax toxin in mice. Vaccine 2015; 33:417-21. [PMID: 25475957 PMCID: PMC4274239 DOI: 10.1016/j.vaccine.2014.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/30/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population.
Collapse
Affiliation(s)
- David J Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Yinghui Rong
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, University at Albany, Albany, NY, USA.
| |
Collapse
|
12
|
Characterization and epitope mapping of the polyclonal antibody repertoire elicited by ricin holotoxin-based vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1534-40. [PMID: 25209559 DOI: 10.1128/cvi.00510-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine.
Collapse
|
13
|
Rudolph MJ, Vance DJ, Cheung J, Franklin MC, Burshteyn F, Cassidy MS, Gary EN, Herrera C, Shoemaker CB, Mantis NJ. Crystal structures of ricin toxin's enzymatic subunit (RTA) in complex with neutralizing and non-neutralizing single-chain antibodies. J Mol Biol 2014; 426:3057-68. [PMID: 24907552 PMCID: PMC4128236 DOI: 10.1016/j.jmb.2014.05.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/17/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
Abstract
Ricin is a select agent toxin and a member of the RNA N-glycosidase family of medically important plant and bacterial ribosome-inactivating proteins. In this study, we determined X-ray crystal structures of the enzymatic subunit of ricin (RTA) in complex with the antigen binding domains (VHH) of five unique single-chain monoclonal antibodies that differ in their respective toxin-neutralizing activities. None of the VHHs made direct contact with residues involved in RTA's RNA N-glycosidase activity or induced notable allosteric changes in the toxin's subunit. Rather, the five VHHs had overlapping structural epitopes on the surface of the toxin and differed in the degree to which they made contact with prominent structural elements in two folding domains of the RTA. In general, RTA interactions were influenced most by the VHH CDR3 (CDR, complementarity-determining region) elements, with the most potent neutralizing antibody having the shortest and most conformationally constrained CDR3. These structures provide unique insights into the mechanisms underlying toxin neutralization and provide critically important information required for the rational design of ricin toxin subunit vaccines.
Collapse
Affiliation(s)
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Jonah Cheung
- New York Structural Biology Center, New York, NY 10027, USA
| | | | | | | | - Ebony N Gary
- New York Structural Biology Center, New York, NY 10027, USA
| | - Cristina Herrera
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | | | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA.
| |
Collapse
|
14
|
O'Hara JM, Kasten-Jolly JC, Reynolds CE, Mantis NJ. Localization of non-linear neutralizing B cell epitopes on ricin toxin's enzymatic subunit (RTA). Immunol Lett 2014; 158:7-13. [PMID: 24269767 PMCID: PMC4070743 DOI: 10.1016/j.imlet.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Efforts to develop a vaccine for ricin toxin are focused on identifying highly immunogenic, safe, and thermostable recombinant derivatives of ricin's enzymatic A subunit (RTA). As a means to guide vaccine design, we have embarked on an effort to generate a comprehensive neutralizing and non-neutralizing B cell epitope map of RTA. In a series of previous studies, we identified three spatially distinct linear (continuous), neutralizing epitopes on RTA, as defined by monoclonal antibodies (mAbs) PB10 (and R70), SyH7, and GD12. In this report we now describe a new collection of 19 toxin-neutralizing mAbs that bind non-linear epitopes on RTA. The most potent toxin-neutralizing mAbs in this new collection, namely WECB2, TB12, PA1, PH12 and IB2 each had nanamolar (or sub-nanomolar) affinities for ricin and were each capable of passively protecting mice against a 5-10xLD50 toxin challenge. Competitive binding assays by surface plasmon resonance revealed that WECB2 binds an epitope that overlaps with PB10 and R70; TB12, PA1, PH12 recognize epitope(s) close to or overlapping with SyH7's epitope; and GD12 and IB2 recognize epitopes that are spatially distinct from all other toxin-neutralizing mAbs. We estimate that we have now accounted for ∼75% of the predicted epitopes on the surface of RTA and that toxin-neutralizing mAbs are directed against a very limited number of these epitopes. Having this information provides a framework for further refinement of RTA mutagenesis and vaccine design.
Collapse
Affiliation(s)
- Joanne M O'Hara
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, United States
| | - Jane C Kasten-Jolly
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Claire E Reynolds
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, United States.
| |
Collapse
|
15
|
Hassett KJ, Cousins MC, Rabia LA, Chadwick CM, O’Hara JM, Nandi P, Brey RN, Mantis NJ, Carpenter JF, Randolph TW. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization. Eur J Pharm Biopharm 2013; 85:279-86. [PMID: 23583494 PMCID: PMC3797224 DOI: 10.1016/j.ejpb.2013.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/12/2013] [Accepted: 03/23/2013] [Indexed: 10/26/2022]
Abstract
Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge.
Collapse
Affiliation(s)
- Kimberly J. Hassett
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Megan C. Cousins
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Lilia A. Rabia
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Chrystal M. Chadwick
- Wadsworth Center, New York Department of Health, Albany, New York 12208, United States
| | - Joanne M. O’Hara
- Wadsworth Center, New York Department of Health, Albany, New York 12208, United States
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, United States
| | - Pradyot Nandi
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Robert N. Brey
- Soligenix, Inc., Princeton, New Jersey 08540, United States
| | - Nicholas J. Mantis
- Wadsworth Center, New York Department of Health, Albany, New York 12208, United States
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, United States
| | - John F. Carpenter
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Theodore W. Randolph
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
16
|
Bhaskaran M, Didier PJ, Sivasubramani SK, Doyle LA, Holley J, Roy CJ. Pathology of lethal and sublethal doses of aerosolized ricin in rhesus macaques. Toxicol Pathol 2013; 42:573-81. [PMID: 23761937 DOI: 10.1177/0192623313492248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ricin toxin, a type 2 ribosome-inactivating protein and a category B bioterrorism agent, is produced from the seeds of castor oil plant (Ricinus communis). Chronic pathological changes in survivors of aerosolized ricin exposure have not been reported in primates. Here we compare and contrast the pathological changes manifested between rhesus macaques (RM) that succumbed to lethal dose of ricin (group I) and survivor RM exposed to low dose of ricin (group II). All animals in group I exhibited severe diffuse, necrotizing bronchiolitis and alveolitis with fibrinopurulent bronchointerstitial pneumonia, massive alveolar, perivascular and peribronchial/bronchiolar edema with hemorrhage, and necropurulent and hemorrhagic tracheobronchial lymphadenitis. All animals from group II had multifocal, fibrosing interstitial pneumonia with prominent alveolar histiocytosis and type II pneumocyte hyperplasia. Subacute changes like infiltration by lymphocytes and plasma cells and persistence of edematous fluid were occasionally present in lung and tracheobronchial lymph nodes. The changes appear to be a continuum wherein the inflammatory response shifts from an acute to subacute/chronic reparative process if the animals can survive the initial insult.
Collapse
Affiliation(s)
- Manoj Bhaskaran
- 1Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
17
|
Thomas JC, O'Hara JM, Hu L, Gao FP, Joshi SB, Volkin DB, Brey RN, Fang J, Karanicolas J, Mantis NJ, Middaugh CR. Effect of single-point mutations on the stability and immunogenicity of a recombinant ricin A chain subunit vaccine antigen. Hum Vaccin Immunother 2013; 9:744-52. [PMID: 23563512 DOI: 10.4161/hv.22998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.
Collapse
Affiliation(s)
- Justin C Thomas
- Macromolecule and Vaccine Stabilization Center; Department of Pharmaceutical Chemistry; University of Kansas; Lawrence, KS USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Comparative efficacy of two leading candidate ricin toxin a subunit vaccines in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:789-94. [PMID: 23515013 DOI: 10.1128/cvi.00098-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The two leading ricin toxin vaccine candidates, RVEc and RiVax, are recombinant derivatives of the toxin's 267-amino-acid enzymatic A chain (RTA). RVEc is truncated at the C terminus (residues 199 to 267) to improve protein thermostability, while RiVax has two point mutations (V76M and Y80A) that eliminate the RNA N-glycosidase activity of RTA, as well as its ability to induce vascular leak syndrome. The two vaccines have never been directly compared in terms of their ability to stimulate RTA-specific antibodies (Abs), toxin-neutralizing activity (TNA), or protective immunity. To address this issue, groups of female BALB/c mice were immunized two or three times with Alhydrogel-adsorbed RiVax or RVEc at a range of doses (0.3 to 20 μg) and then challenged with 10 50% lethal doses (LD(50)s) of ricin. We found that the vaccines were equally effective at eliciting protective immunity at the doses tested. There were, however, quantitative differences in the antibody responses. RVEc tended to elicit higher levels of ricin-specific RTA IgG and TNA than did RiVax. Pepscan analysis revealed that serum Abs elicited by RVEc were skewed toward a solvent-exposed immunodominant α-helix known to be the target of potent toxin-neutralizing Abs. Finally, immunodepletion experiments suggest that the majority of toxin-neutralizing Abs elicited by RiVax were confined to residues 1 to 198, possibly explaining the equal effectiveness of RVEc as a vaccine.
Collapse
|
19
|
Wolfe DN, Florence W, Bryant P. Current biodefense vaccine programs and challenges. Hum Vaccin Immunother 2013; 9:1591-7. [PMID: 23428906 DOI: 10.4161/hv.24063] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Defense Threat Reduction Agency's Joint Science and Technology Office manages the Chemical and Biological Defense Program's Science and Technology portfolio. The Joint Science and Technology Office's mission is to invest in transformational ideas, innovative people and actionable technology development for Chemical and Biological Defense solutions, with the primary goal to deliver Science and Technology products and capabilities to the warfighter and civilian population that outpace the threat. This commentary focuses on one thrust area within this mission: the Vaccine program of the Joint Science and Technology Office's Translational Medical Division. Here, we will describe candidate vaccines currently in the S&T pipeline, enabling technologies that should facilitate advanced development of these candidates into FDA licensed vaccines, and how the ever-changing biological threat landscape impacts the future of biodefense vaccines.
Collapse
Affiliation(s)
- Daniel N Wolfe
- Defense Threat Reduction Agency; J9-Chemical and Biological Technologies Department; Translational Medical Division; Fort Belvoir, VA USA
| | | | | |
Collapse
|
20
|
Jetzt AE, Cheng JS, Li XP, Tumer NE, Cohick WS. A relatively low level of ribosome depurination by mutant forms of ricin toxin A chain can trigger protein synthesis inhibition, cell signaling and apoptosis in mammalian cells. Int J Biochem Cell Biol 2012; 44:2204-11. [PMID: 22982239 DOI: 10.1016/j.biocel.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/27/2012] [Accepted: 09/05/2012] [Indexed: 11/25/2022]
Abstract
The A chain of the plant toxin ricin (RTA) is an N-glycosidase that inhibits protein synthesis by removing a specific adenine from the 28S rRNA. RTA also induces ribotoxic stress, which activates stress-induced cell signaling cascades and apoptosis. However, the mechanistic relationship between depurination, protein synthesis inhibition and apoptosis remains an open question. We previously identified two RTA mutants that suggested partial independence of these processes in a yeast model. The goals of this study were to establish an endogenous RTA expression system in mammalian cells and utilize RTA mutants to examine the relationship between depurination, protein synthesis inhibition, cell signaling and apoptosis in mammalian cells. The non-transformed epithelial cell line MAC-T was transiently transfected with plasmid vectors encoding precursor (pre) or mature forms of wild-type (WT) RTA or mutants. PreRTA was glycosylated indicating that the native signal peptide targeted RTA to the ER in mammalian cells. Mature RTA was not glycosylated and thus served as a control to detect changes in catalytic activity. Both pre- and mature WT RTA induced ribosome depurination, protein synthesis inhibition, activation of cell signaling and apoptosis. Analysis of RTA mutants showed for the first time that depurination can be reduced by 40% in mammalian cells with minimal effects on inhibition of protein synthesis, activation of cell signaling and apoptosis. We further show that protein synthesis inhibition by RTA correlates more linearly with apoptosis than ribosome depurination.
Collapse
Affiliation(s)
- Amanda E Jetzt
- Department of Animal Sciences, School of Environmental and Biological Sciences, 59 Dudley Road, Rutgers, The State University of NJ, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | |
Collapse
|
21
|
Yermakova A, Vance DJ, Mantis NJ. Sub-domains of ricin's B subunit as targets of toxin neutralizing and non-neutralizing monoclonal antibodies. PLoS One 2012; 7:e44317. [PMID: 22984492 PMCID: PMC3439471 DOI: 10.1371/journal.pone.0044317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/01/2012] [Indexed: 12/30/2022] Open
Abstract
The B subunit (RTB) of ricin toxin is a galactose (Gal)−/N-acetylgalactosamine (GalNac)-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ) that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD), although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs). All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicty assay and to partially (or completely) block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB’s high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB’s sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin.
Collapse
Affiliation(s)
- Anastasiya Yermakova
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - David J. Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
O'Hara JM, Yermakova A, Mantis NJ. Immunity to ricin: fundamental insights into toxin-antibody interactions. Curr Top Microbiol Immunol 2012; 357:209-41. [PMID: 22113742 PMCID: PMC4433546 DOI: 10.1007/82_2011_193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ricin toxin is an extraordinarily potent inducer of cell death and inflammation. Ricin is also a potent provocateur of the humoral immune system, eliciting a mixture of neutralizing, non-neutralizing and even toxin-enhancing antibodies. The characterization of dozens of monoclonal antibodies (mAbs) against the toxin's enzymatic (RTA) and binding (RTB) subunits has begun to reveal fundamental insights into the underlying mechanisms by which antibodies neutralize (or fail to neutralize) ricin in systemic and mucosal compartments. This information has had immediate applications in the design, development and evaluation of ricin subunit vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- Joanne M. O'Hara
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
| | - Anastasiya Yermakova
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
| |
Collapse
|