1
|
Zhang Q, Zhang X, Jiang Q, Li X, Xu J, Jiang M. Exploring the role of diarylheptanoids derived from turmeric in trapping methylglyoxal with natural deep eutectic solvents. Food Chem 2025; 479:143851. [PMID: 40086388 DOI: 10.1016/j.foodchem.2025.143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Methylglyoxal (MGO) is a reactive carbonyl compound that forms advanced glycation end products (AGEs), which are associated with diseases such as diabetes, cancer, and Alzheimer's disease. Turmeric, which contains bioactive diarylheptanoids, has compounds like curcumin that can trap MGO and inhibit the formation of AGEs. However, diarylheptanoids suffer from poor stability and solubility, complicating their use in standard methods. Natural deep eutectic solvents (NADES), particularly the BG12-10 % system (betaine and glycerol mixed in a 1:2 ratio with 10 % water added), can improve these properties by enhancing solubility and stability, thus enabling more accurate reaction kinetics. The NADES extract of turmeric can also directly react with MGO, simplifying the experimental process. Liquid chromatography-mass spectrometry has identified 21 diarylheptanoids in turmeric, 10 of which can trap MGO, curcumin being the only one previously reported in the literature.
Collapse
Affiliation(s)
- Qingrui Zhang
- National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoxiao Zhang
- National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qibao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoge Li
- National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Aliyari M, Ghoflchi S, Hashemy SI, Hashemi SF, Reihani A, Hosseini H. The PI3K/Akt pathway: a target for curcumin's therapeutic effects. J Diabetes Metab Disord 2025; 24:52. [PMID: 39845908 PMCID: PMC11748622 DOI: 10.1007/s40200-025-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
Purpose The purpose of this review study is to investigate the effect of curcumin on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in various diseases. Curcumin, the main compound found in turmeric, has attracted a lot of attention for its diverse pharmacological properties. These properties have increased the therapeutic potential of curcumin in chronic diseases such as cardiovascular disease, Type 2 diabetes, obesity, non-alcoholic fatty liver disease, kidney disease, and neurodegenerative diseases. One of the main mechanisms of the effect of curcumin on health is its ability to modulate the PI3K/Akt signaling pathway. This pathway plays an important role in regulating vital cellular processes such as growth, cell survival, metabolism, and apoptosis. Disruption of the PI3K/Akt signaling pathway is associated with the incidence of several diseases. Methods Electronic databases including PubMed, Google Scholar, and Scopus were searched with the keywords "phosphoinositide 3-kinase" AND "protein kinase B "AND "curcumin" in the title/abstract. Also, following keywords "non-alcoholic fatty liver disease" AND "diabetes" AND "obesity" AND "kidney disease" and "neurodegenerative diseases" was searched in the whole text. Results Research indicates that curcumin offers potential benefits for several health conditions. Studies have shown it can help regulate blood sugar, reduce inflammation, and protect the heart, kidneys, and brain. Conclusion This protective effect is partially achieved by regulating the PI3K-Akt survival pathway, which helps improve metabolic disorders and oxidative stress. By examining how curcumin affects this vital cell pathway, researchers can discover new treatment strategies for a range of diseases.
Collapse
Affiliation(s)
- Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Iijima S, Takeda K, Nagahiro T, Watanabe K, Ikegaya Y, Matsumoto N. Acute curcumin administration enhances delta oscillations in the hippocampus underlying object memory improvement. J Pharmacol Sci 2025; 158:95-102. [PMID: 40288828 DOI: 10.1016/j.jphs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Curcumin mitigates memory deficits or improves memory when it is chronically administered to animals. Due to limited bioavailability of curcumin, it remains almost unknown whether acutely treated curcumin influences cognitive function and underlying neural activity. To address this question, we monitored behavior and neural activity in the hippocampus and medial prefrontal cortex of mice treated with vehicle or curcumin while they were engaged in a novel object recognition task. Object recognition memory performance in the novel object recognition task was increased in curcumin-treated mice. Moreover, delta oscillations in the hippocampus were enhanced in the curcumin-administered mice in the test trial. Altogether, acute curcumin treatment boosts delta oscillations for memory recognition possibly by neuromodulation.
Collapse
Affiliation(s)
- Sena Iijima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kinjiro Takeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Nagahiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kisa Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Zeng Y, He T, Ma X, Guo Q, Zhang J. Comparative Efficacy of Nutritional Supplements in Modulating Lung Function and Exercise Capacity in COPD Patients: A Network Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2025; 20:1525-1541. [PMID: 40401105 PMCID: PMC12094480 DOI: 10.2147/copd.s517252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/25/2025] [Indexed: 05/23/2025] Open
Abstract
Objective To compare the effects of nutritional supplements on lung function and exercise tolerance in chronic obstructive pulmonary disease (COPD). Methods We searched PubMed, Embase, Cochrane Library, and Web of Science for randomized controlled trials (RCTs) on nutritional supplements in COPD patients, with the search ending December 31, 2023. Two authors independently screened studies, extracted data, and assessed quality using the Cochrane risk of bias tool. Data were analyzed using RevMan 5.4 and R 4.2.3. Results Forty-eight studies with 2481 COPD patients were included. Network meta-analysis showed six supplements significantly improved the 6-minute walk distance (6MWD) (all p<0.05), with the top three being: Coenzyme Q10+ Creatine [MD=63, 95% CI (36, 90)], L-carnitine [MD=53, 95% CI (24, 82)], and anabolic steroids [MD=44, 95% CI (7.1, 82)]. Four supplements improved FEV1%(all p<0.05): nanocurcumin [MD=13, 95% CI (7.7, 18)], Vitamin D [MD=7.5, 95% CI (5.1, 9.9)], probiotics [MD=7.1, 95% CI (5.2, 9.1)] and BSO [MD=4.9, 95% CI (1.6, 8.3)]. In pairwise comparisons, nanocurcumin outperformed BSO and Probiotics. Nanocurcumin [MD=12, 95% CI (4.6, 19), p<0.05] improved FEV1/FVC, and nitrate [MD=26, 95% CI (9.7, 42), p<0.05] was effective for the Incremental Shuttle Walk Test (ISWT). Traditional Chinese Medicine (TCM) products [MD=-1.3, 95% CI (-1.9, -0.67)], melatonin (MLT) [MD=-0.9, 95% CI (-1.6, -0.21)] and Calcitriol [MD=-0.66, 95% CI (-0.93, -0.39)] improved the modified Medical Research Council(mMRC) dyspnea score (all p<0.05), with comparable efficacy among them. Conclusion Nutritional supplements improve lung function and exercise endurance in COPD. Coenzyme Q10+Creatine is most effective for endurance, while Nanocurcumin has the greatest impact on lung function.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Tian He
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Xinyi Ma
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Qiong Guo
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Wang J, Ren Y, Qu S. Modulation of Sirtuins to address aging related disorders through the use of selected phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156648. [PMID: 40359853 DOI: 10.1016/j.phymed.2025.156648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Aging is a complex phenomenon involving oxidative stress, inflammation, and cellular damage subsequently leading to various disorders, such as cardiovascular diseases, neurodegenerative disorders, diabetes, and cancer. Sirtuin (SIRT) proteins are one of the major molecular factors that affect human aging. Sirtuins are a class of NAD+-dependent enzymes that control oxidative stress response, DNA damage repair, inflammation and metabolism, all of which are involved in aging and age-related diseases. PURPOSE The objective of this review is to elucidate the potential role of SIRT in the aging process and modulation of SIRT pathway through selected phytochemicals like Curcumin, Resveratrol, Quercetin, and Kaempferol. RESULTS Studies convincedly revealed that SIRT pathway represents a promising avenue for extending the human health span and addressing age-related conditions. Phytochemicals like Curcumin, Resveratrol, Quercetin, and Kaempferol have shown excellent potential to mediate aging effects through their potent antioxidant, anti-inflammatory, and regulatory activities. These potent bioactive compounds enhance oxidative stress response, genomic integrity, neuroprotective and anti-inflammatory activities through SIRT pathway modulation. Furthermore, in addition to antiaging effects, other therapeutic benefits are also associated with each compound including nervous disorders, cancer, and metabolic disorders are also briefly highlighted. Studies reported convincing evidence that Curcumin, Resveratrol, Quercetin, and Kaempferol, effectively modulate SIRT expression/activity leading to improved cell stress tolerance, reduced oxidation and enhanced metabolic state. CONCLUSIONS Collectively, studies revealed the comprehensive nutraceutical significance of Curcumin, Resveratrol, Quercetin, and Kaempferol as anti-aging therapeutics and warrant future studies to exploit the full potential of these natural compounds.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University. 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Yaoyao Ren
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao St, Shenyang 110004, PR China.
| |
Collapse
|
6
|
Yang D, Xu Z, Huang D, Luo Q, Zhang C, Guo J, Tan L, Ge L, Mu C, Li D. Immunomodulatory multifunctional janus collagen-based membrane for advanced bone regeneration. Nat Commun 2025; 16:4264. [PMID: 40335547 PMCID: PMC12059164 DOI: 10.1038/s41467-025-59651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Guided bone regeneration (GBR) is a standard therapy for treating bone defects, with collagen-based barrier membranes widely used clinically. However, these membranes face challenges like poor mechanical properties, early bacterial invasion and immunomodulation deficiency, potentially risking GBR failure. Orchestrating macrophage activation and controlling their M1 or M2 polarization are effective strategies for bone repair. Here, we present a Janus collagen-based barrier membrane with immunomodulation. The porous layer promotes direct osteogenic differentiation and inward growth of osteoblasts. The dense layer prevents invasion of soft tissue into bone defects and protects bone defects from bacterial infection. The membrane also enhances rat bone marrow-derived mesenchymal stem cell infiltration, proliferation, and osteogenic differentiation by regulating the immune microenvironment, demonstrating superior bone regeneration compared to the commercial Bio-Gide® membrane. Overall, the Janus collagen-based membrane reduces tissue inflammation and fosters an osteoimmune environment conducive to new bone formation, offering effective material design for advanced GBR technology.
Collapse
Affiliation(s)
- Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Dou Huang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qi Luo
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Chunli Zhang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jimin Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P. R. China.
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, P. R. China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | - Lu Tan
- Department of Osteology, Wushan County Hospital of Traditional Chinese Medicine, Wushan, Chongqing, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
7
|
Hamour HM, Marangoz AH, Altun G, Kaplan S. Neuroprotective effects of Garcinia kolaand curcumin on diabetic transected sciatic nerve. Biomed Mater 2025; 20:035025. [PMID: 40267944 DOI: 10.1088/1748-605x/adcfe3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
The growing interest in peripheral nerve regeneration and developing post-traumatic repair methods under diabetes was the impetus for this study, which aims to investigate the effect of curcumin andGarcinia kola(GK) on the transected and diabetic sciatic nerves. Thirty-five male Wistar albino rats were used. The animals were divided into five groups; each consisted of seven rats. The sciatic nerve was transected in all groups of rats except the control (Cont) group, which underwent no treatment. In the transected animals, a 10 mm nerve stump was removed from the 2 cm distal to the sciatic notch. The external jugular vein was used as a conduit to repair the gap between the two ends of the sciatic nerve. Diabetes was induced in the transected + diabetes mellitus (T + DM), the transected + diabetes mellitus + GK (T + DM + GK), and the transected + diabetes mellitus + Curcumin (T + DM + Cur) groups except for the sham group. A dose of 300 mg kg-1d-1of curcumin dissolved in olive oil was administered to the T + DM + Cur group (via oral gavage every day for 28 d) and 200 mg kg-1d-1of GK to the T + DM + GK group (via oral gavage every day for 7 d). All animals were sacrificed after three months. Stereological analysis and functional and microscopic evaluations were done to evaluate the sciatic nerve regeneration and function. In the T + DM + GK and the sham groups, the number of axons increased. A slight improvement in the axonal area in the T + DM + Cur and the sham groups was also observed, and an increase in the myelin sheath thickness was found in the T + DM + GK and the sham group. When the SFI test results were evaluated, it was seen that GK had a stronger effect than curcumin in terms of functional regeneration. Additionally, no significant difference was observed between T + DM and Cont groups when the electrophysiological results were examined. The study showed GK's efficiency in treating diabetic peripheral nerve regeneration.
Collapse
Affiliation(s)
- Hala Mahgoub Hamour
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Gamze Altun
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2025; 39:2872-2894. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
9
|
Xue C, Yan Z, Cheng W, Zhang D, Zhang R, Duan H, Zhang L, Ma X, Hu J, Kang J, Ma X. Curcumin ameliorates aging-induced blood-testis barrier disruption by regulating AMPK/mTOR mediated autophagy. PLoS One 2025; 20:e0321752. [PMID: 40273194 PMCID: PMC12021166 DOI: 10.1371/journal.pone.0321752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/08/2025] [Indexed: 04/26/2025] Open
Abstract
The blood-testis barrier (BTB) is composed of tight junctions (TJ) between adjacent Sertoli cells (SCs) and is crucial for sperm growth and development. Aging-induced TJ impairment is closely related to testicular dysfunction. Curcumin, a natural compound, has been widely demonstrated to have a wide range of pharmacological activities, but its regulatory effects on tight junction damage in the testis remain unclear. We here explored the effect of curcumin on TJ function and its underlying molecular mechanism by using D-galactose (D-gal)-induced mouse testis and mouse testicular SCs (TM4) aging models in vitro. In this study, D-gal increased the expression of aging-related proteins p16 and p21, whereas significantly decreased the expression of TJ proteins (ZO-1, Claudin-4, Claudin-7, and Occludin). In addition, curcumin restored the adverse effects of D-gal in the SCs. Autophagy is a degradation system for maintaining cell renewal and homeostasis. D-gal significantly decreased the autophagy level, whereas curcumin restored the effect of D-gal. Using chloroquine (CQ), an inhibitor of autophagy, and rapamycin (RAPA), an activator of autophagy, it was demonstrated that autophagy plays a key role in curcumin amelioration of TJ injury in testicular SCs. Further studies unveiled that autophagy activation was mediated through the AMPK/mTOR pathway. In conclusion, curcumin ameliorates aging-induced TJ damage through AMPK/mTOR signaling pathway-regulated autophagy. This study thus clearly identifies a novel action mechanism of curcumin in the treatment of age-related male reproductive disorders.
Collapse
Affiliation(s)
- Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Wenjing Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Rong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| | - Jian Kang
- School of Animal Science and technology, Guangdong polytechnic of science and trade, Guangzhou, Guangdong, China
| | - Xiaojun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation in Gansu Province, Lanzhou, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Chang YH. Curcumin as a potential therapeutic agent for Parkinson's disease: a systematic review. Front Pharmacol 2025; 16:1593191. [PMID: 40331193 PMCID: PMC12052530 DOI: 10.3389/fphar.2025.1593191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Importance Parkinson's disease (PD) is a growing global health concern with the number of affected individuals projected to double by 2040. Current treatments primarily address motor symptoms but do not prevent disease progression and often have significant side effects. Objective To evaluate the clinical efficacy and safety of curcumin as an adjunctive treatment for PD, with a focus on its impact on motor and non-motor symptoms, quality of life, and neuroprotective mechanisms, especially regarding α-synuclein aggregation. Evidence Review A systematic search was conducted in Web of Science, Embase, PubMed, CINAHL, and Cochrane Library from February to March 2025, using specific search terms, and following the PRISMA 2020 guidelines. The search strategy used the terms ("Parkinson's disease" OR "Parkinson Disease" OR "Parkinsonism") AND ("Curcumin" OR "Turmeric" OR "Diferuloylmethane" OR "Curcuminoids"), limiting results to English-language publications. The Cochrane Risk of Bias 2 Tool was used for assessing the risk of bias in RCTs, and the Newcastle-Ottawa scale was used for the cohort study. Findings The review included two randomized controlled trials and one cohort study, comprising a total of 125 PD participants. The studies suggest that curcumin may offer modest benefits as an adjunct therapy in PD when administered in formulations designed to enhance its bioavailability. Long-term curcumin supplementation was associated with a slower deterioration of motor function and a tendency to reduce the deposition of phosphorylated α-synuclein in skin nerves. A nanomicelle formulation of curcumin significantly improved sleep quality and overall quality of life in PD patients over a three-month period, while no significant effect was observed on fatigue severity. Conclusion and Relevance Curcumin, particularly in formulations that enhance its bioavailability, may be a beneficial add-on treatment for PD, potentially improving non-motor symptoms and slowing the advancement of motor dysfunction. However, current clinical practice guidelines do not recommend curcumin due to the limited and preliminary nature of the evidence. Additional validation through larger trials with standardized methodologies is necessary to confirm these findings. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD420251000404.
Collapse
Affiliation(s)
- Yu-Hsien Chang
- School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Grosu-Bularda A, Vancea CV, Hodea FV, Cretu A, Bordeanu-Diaconescu EM, Dumitru CS, Ratoiu VA, Teodoreanu RN, Lascar I, Hariga CS. Optimizing Peripheral Nerve Regeneration: Surgical Techniques, Biomolecular and Regenerative Strategies-A Narrative Review. Int J Mol Sci 2025; 26:3895. [PMID: 40332790 PMCID: PMC12027958 DOI: 10.3390/ijms26083895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Peripheral nerve injury disrupts the function of the peripheral nervous system, leading to sensory, motor, and autonomic deficits. While peripheral nerves possess an intrinsic regenerative capacity, complete sensory and motor recovery remains challenging due to the unpredictable nature of the healing process, which is influenced by the extent of the injury, age, and timely intervention. Recent advances in microsurgical techniques, imaging technologies, and a deeper understanding of nerve microanatomy have enhanced functional outcomes in nerve repair. Nerve injury initiates complex pathophysiological responses, including Wallerian degeneration, macrophage activation, Schwann cell dedifferentiation, and axonal sprouting. Complete nerve disruptions require surgical intervention to restore nerve continuity and function. Direct nerve repair is the gold standard for clean transections with minimal nerve gaps. However, in cases with larger nerve gaps or when direct repair is not feasible, alternatives such as autologous nerve grafting, vascularized nerve grafts, nerve conduits, allografts, and nerve transfers may be employed. Autologous nerve grafts provide excellent biocompatibility but are limited by donor site morbidity and availability. Vascularized grafts are used for large nerve gaps and poorly vascularized recipient beds, while nerve conduits serve as a promising solution for smaller gaps. Nerve transfers are utilized when neither direct repair nor grafting is possible, often involving re-routing intact regional nerves to restore function. Nerve conduits play a pivotal role in nerve regeneration by bridging nerve gaps, with significant advancements made in material composition and design. Emerging trends in nerve regeneration include the use of 3D bioprinting for personalized conduits, gene therapy for targeted growth factor delivery, and nanotechnology for nanofiber-based conduits and stem cell therapy. Advancements in molecular sciences have provided critical insights into the cellular and biochemical mechanisms underlying nerve repair, leading to targeted therapies that enhance axonal regeneration, remyelination, and functional recovery in peripheral nerve injuries. This review explores the current strategies for the therapeutic management of peripheral nerve injuries, highlighting their indications, benefits, and limitations, while emphasizing the need for tailored approaches based on injury severity and patient factors.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Cristian-Vladimir Vancea
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Andrei Cretu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Eliza-Maria Bordeanu-Diaconescu
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Catalina-Stefania Dumitru
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Vladut-Alin Ratoiu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Razvan-Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ioan Lascar
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Cristian-Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
12
|
Hadadi M, Farazi MM, Mehrabani M, Tashakori-Miyanroudi M, Behroozi Z. Curcumin reduces pain after spinal cord injury in rats by decreasing oxidative stress and increasing GABAA receptor and GAD65 levels. Sci Rep 2025; 15:12910. [PMID: 40234536 PMCID: PMC12000590 DOI: 10.1038/s41598-025-93726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
About 70% of spinal cord injury (SCI) patients experience neuropathic pain (NP), posing an important medical challenge. Painkillers are used to manage pain today and often have undesirable side effects. Curcumin's antioxidant properties may help alleviate NP following SCI (NP-SCI). We decided to study curcumin's effects on NP-SCI for the first time. Male Wistar rats were divided into five groups (n = 8): Control (no injury/no treatment), Sham (laminectomy), SCI (spinal cord compression at T11-T12 using a clip), Curcumin100 and Curcumin200 (Curcumin at 100 and 200 mg/kg administered 30 min after SCI for 10days). Motor function, allodynia, and hyperalgesia were assessed using the BBB scale, acetone, and tail-flick until six weeks after SCI. H&E staining for assaying cavity, western blot for measuring GAD65 and GABA-A receptors, and biochemical kits for assaying SOD, catalase, total antioxidant capacity, and MDA were used. PRISM software analyzed data. Results showed significant improvements in motion, allodynia, hyperalgesia, cavity, urinary retention (P < 0.0001), and weight in curcumin treatments. There was also a reduction in MDA, with increasing GABA-A receptors, GAD65, and antioxidants in them. Findings suggest curcumin may provide good analgesic effects through its antioxidants, and extensive studies are needed to confirm it as a treatment for NP-SCI in the clinic. Keyboards: spinal cord injury, curcumin, antioxidant, pain, GABA, GAD65 enzyme.
Collapse
Affiliation(s)
- Maryam Hadadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mojtaba Farazi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Tashakori-Miyanroudi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Bao Q, Wang Z, Yang T, Su X, Chen Y, Liu L, Deng Q, Liu Q, Shao C, Zhu W. Curcumin induces mitochondrial dysfunction-associated oxidative DNA damage in ovarian cancer cells. PLoS One 2025; 20:e0319846. [PMID: 40163489 PMCID: PMC11957317 DOI: 10.1371/journal.pone.0319846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/08/2025] [Indexed: 04/02/2025] Open
Abstract
Resistance to chemotherapeutic agents is a critical challenge for the clinical management of ovarian cancer. While curcumin has been reported to possess anti-cancer properties, how it exerts its anti-neoplastic effect on ovarian cancer cells remains to be explored. We here characterized the fate of human ovarian cancer cell lines HO8910 and OVCAR3 treated with curcumin. Cell proliferation, cell death, mitochondrial function, oxidative damage and tumor formation in nude mice were examined. Significant inhibition of proliferation and induction of apoptosis were observed in ovarian cells treated with curcumin. The cancer cells exhibit cell cycle arrest at G2/M phase, mitochondrial accumulation, mitochondrial oxidative stress and high level of DNA damage after curcumin treatment. This effect of curcumin is independent of the BRCA mutation status. Curcumin-induced proliferation inhibition and apoptosis were effectively attenuated by the application of antioxidant N-acetylcysteine (NAC), suggesting that curcumin exerts its anti-cancer effect by inflicting oxidative stress. Curcumin applied at 200 mg/kg intraperitoneal infusion daily also inhibited the growth, oxidative damage, and mitochondrial accumulation of tumor xenografts in vivo. Together, the results indicate that curcumin can exert its anti-tumor effect via inducing mitochondrial dysfunction-associated oxidative DNA damage and can be potentially used in combination with other DNA repair-interfering therapeutics, such as PARP inhibitor, in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qi Bao
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Liyang Peoples Hospital, Liyang, Jiangsu, China
| | - Zihan Wang
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Yang
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Xiao Su
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Chen
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lifen Liu
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qicheng Deng
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingyang Liu
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Weipei Zhu
- Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Kumar R, Pandey A, Vibhuti A, Ali M, Chang CM, Pandey RP. Unlocking Mysteries: Exploring the Dynamic Interplay among Sleep, the Immune System, and Curcumin in Contemporary Research. Sleep Sci 2025. [DOI: 10.1055/s-0045-1802321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
AbstractThe scientific disciplines encompassing sleep, the immune system, and curcumin have garnered considerable interest due to their interconnectedness and potential implications for human health. Sleep is a crucial factor in maintaining optimal immune function, as it facilitates the release of cytokines, which are signaling molecules responsible for regulating immune responses. On the contrary, sleep deprivation has the potential of inhibiting immune function, thereby heightening the susceptibility to infection and disease. Curcumin, a naturally occurring polyphenol derived from the turmeric plant, has been observed to possess immunomodulatory characteristics through its ability to modulate the equilibrium between pro- and anti-inflammatory cytokines. It is worth noting that there is evidence suggesting that curcumin supplementation could enhance the quality of sleep. Scientific studies have indicated that curcumin supplementation has been associated with an increase in the duration of sleep and a decrease in wakefulness among individuals who are in good health. Additionally, curcumin supplementation has been found to enhance sleep quality and alleviate symptoms of depression in individuals diagnosed with major depressive disorder. The intricate interplay among sleep, the immune system, and curcumin is multifaceted, and scientific investigations indicate that curcumin may serve as a beneficial dietary adjunct to enhance immune function and optimize sleep quality. Nevertheless, additional investigation is required to fully comprehend the mechanisms through which curcumin alters the immune system and enhances sleep, as well as to ascertain the most effective dose and timing of curcumin supplementation.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Arpana Vibhuti
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
| | - Manzoor Ali
- Genomics and Genome Biology Unit, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Chung-Ming Chang
- Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
- Laboratory Animal Center, Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
| | - Ramendra Pati Pandey
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
15
|
Upadhyay S, Rajan Swami, Shrivastava S, Jeengar MK. Molecular insights into anti-inflammatory activities of selected Indian herbs. J Ayurveda Integr Med 2025; 16:101081. [PMID: 40154100 PMCID: PMC11986983 DOI: 10.1016/j.jaim.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 04/01/2025] Open
Abstract
Inflammation is a universal response of mammalian tissue to harm, comprising reactions to injuries, pathogens, and foreign particles. Chronic inflammation, often present in allergies and autoimmune disorders, poses significant risks, potentially leading to conditions such as rheumatoid arthritis, Alzheimer's disease, asthma, and inflammatory bowel disease. It can also be a common precursor to cancer. However, Contemporary therapies like NSAIDs and corticosteroids often provide incomplete relief from chronic inflammation and carry significant side effects, underscoring the need for exploring traditional and plant-based medicines for new, effective treatments. As such, there is a growing demand for natural bioactive substances for health maintenance and disease risk reduction. Traditional and plant-based medicines, long-used in managing inflammation and other disorders, hold promise for the discovery of bioactive lead compounds and subsequent drug development for treating inflammatory disorders. This review encompasses an extensive study of the anti-inflammatory potential of selected traditional Indian herbal medicines and the associated pharmacological mechanisms of action. The inflammatory process often entails the activation of transcription factors, induction of various signaling cascades, gene expression, activation of inflammatory enzymes, and release of pro-inflammatory cytokines in inflammatory or immune cells. Detailed exploration of active components in traditional herbal medicines such as the Neem (Azadirachta indica), Salai guggul (Boswellia serrata), Green tea (Camellia sinensis), Saffron (Crocus sativus), Turmeric (Curcuma longa), Mangosteen (Garcinia mangostana), Indian mulberry (Morinda citrifolia), Black cumin (Nigella sativa), Ashwagandha (Withania somnifera), and Ginger (Zingiber officinale) reveals their potential anti-inflammatory properties. The in-depth study of these plants provides insight into their potential applications in managing inflammatory disorders. Further research and development are necessary to substantiate these findings and translate them into clinically effective therapeutics.
Collapse
Affiliation(s)
- Saumya Upadhyay
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, 140 401, Punjab, India
| | - Shweta Shrivastava
- School of Pharmacy, School of Health & Allied Sciences, ARKA JAIN University, Gamaharia, Seraikela Kharsawan, 832108, Jharkhand, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India.
| |
Collapse
|
16
|
Mohseni S, Tavakoli A, Ghazipoor H, Pouralimohamadi N, Zare R, Rampp T, Shayesteh M, Pasalar M. Curcumin for the clinical treatment of inflammatory bowel diseases: a systematic review and meta-analysis of placebo-controlled randomized clinical trials. Front Nutr 2025; 12:1494351. [PMID: 40196017 PMCID: PMC11973083 DOI: 10.3389/fnut.2025.1494351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Inflammatory Bowel Disease (IBD), encompassing Crohn disease (CD) and ulcerative colitis (UC), presents complex challenges in management due to dysregulated immune responses and genetic predispositions. This study explored the potential of curcumin as an adjunctive therapy in IBD, assessing its efficacy and safety through a systematic review of clinical trials to enhance treatment strategies and outcomes. Methods To identify placebo-controlled randomized clinical trials on curcumin treatment in IBD, databases such as Medline/PubMed, Scopus, Embase, Web of Knowledge, and Google Scholar were searched till May 2024. Inclusion criteria focused on RCTs comparing curcumin with placebo in IBD patients, with data extraction and analysis conducted using established methodologies and tools for comprehensive synthesis and assessment of study findings. Results In this meta-analysis, 13 placebo-controlled RCTs on curcumin treatment in IBD were included after screening 362 records and conducting a full-text review. Most trials focused on UC patients and were published post-2010, utilizing oral curcumin with varying dosages and durations. The analysis showed curcumin's significant efficacy in achieving clinical remission and response in UC patients, with heterogeneity observed. Adverse events and withdrawal rates did not significantly differ between curcumin and placebo groups. In CD patients, curcumin did not show superiority over placebo for clinical and endoscopic remission. Conclusion The findings highlight curcumin's potential as a treatment for UC but indicate inconclusive results for CD, emphasizing the need for further research. The multifaceted mechanisms of curcumin's efficacy in IBD involve anti-inflammatory, antioxidant, microbiota modulatory, and immune-regulating properties. Further research is warranted to enhance understanding and treatment efficacy. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024567247.
Collapse
Affiliation(s)
- Saeid Mohseni
- Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghazipoor
- Department of Family Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Pouralimohamadi
- Department of Family Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayeh Zare
- Department of Persian Medicine, School of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Ardakan, Yazd, Iran
| | - Thomas Rampp
- Center for Integrative Medicine and Planetary Health, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maryam Shayesteh
- Department of Traditional Pharmacy and Persian Medicine, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Zhang A, Mahotra M, Yu H, Zhu T, Loo SCJ. Nanocomplexation between curcumin and proteins by charge-switch method for improved physicochemical and biological properties of curcumin. RSC Adv 2025; 15:9443-9453. [PMID: 40151536 PMCID: PMC11948305 DOI: 10.1039/d4ra07613c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Curcumin, a natural polyphenol, has various biological functions including antioxidant and antimicrobial properties, but the functions are limited by its low aqueous solubility. To address this, two proteins, bovine serum albumin (BSA) and gelatin were used to form curcumin-protein nanocomplexes using a charge-switch method, by mixing oppositely charged curcumin and proteins. Complexation with BSA and gelatin increased the curcumin solubility to 391.77 (±15.70) μg mL-1 and 143.64 (±2.29) μg mL-1 respectively, and the loading amount (LA) of curcumin to 21.36% and 15.57%, respectively. Moreover, enhanced bioaccessibility, and antioxidant and antimicrobial properties were observed after complexation. After complexation, the minimum inhibitory concentration (MIC) of curcumin decreased by eightfold against Vibrio parahaemolyticus, more than eightfold against Vibrio harveyi, and twofold against Bacillus cereus and Streptococcus iniae, which are food and aquaculture related pathogens. The curcumin-protein nanocomplexes presented in this work could serve as non-antibiotic additives for preventing and managing microbial diseases in agri-food applications.
Collapse
Affiliation(s)
- Anyu Zhang
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Manish Mahotra
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Hong Yu
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Tianqi Zhu
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 59 Nanyang Drive 636921 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University 60 Nanyang Drive 637551 Singapore
| |
Collapse
|
18
|
Hao M, Zhang C, Wang T, Hu H. Pharmacological effects, formulations, and clinical research progress of curcumin. Front Pharmacol 2025; 16:1509045. [PMID: 40166470 PMCID: PMC11955698 DOI: 10.3389/fphar.2025.1509045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Curcumin, a polyphenolic compound derived from the traditional Chinese medicine turmeric, which has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, antioxidant, and antiviral properties. However, its clinical application is hindered by low solubility and bioavailability. To overcome these limitations, researchers have developed various formulations such as nanoformulations, solid dispersions, and microspheres. These advancements have led to improved therapeutic effects and have facilitated the progression of clinical research, primarily focusing on Phase I and Phase II trials for conditions like diabetes, obesity, and metabolic syndrome. In recent years, there has been a noticeable increase in Phase III and IV clinical trials, particularly concerning oral and dental diseases and arthritis. This article reviews recent literature from both domestic and international sources, providing a comprehensive overview of curcumin's research progress, including its pharmacological mechanisms, formulation developments, and clinical studies.
Collapse
Affiliation(s)
- Minghui Hao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chungang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, China
- Qimeng Co., LTD, Chifeng, China
| | - Ti Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Heng Hu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
19
|
Kang HS, Lim HK, Jang WY, Cho JY. Anti-Colorectal Cancer Activity of Panax and Its Active Components, Ginsenosides: A Review. Int J Mol Sci 2025; 26:2593. [PMID: 40141242 PMCID: PMC11941759 DOI: 10.3390/ijms26062593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Colorectal cancer (CRC) poses a significant health burden worldwide and necessitates novel treatment approaches with fewer side effects than conventional chemotherapy. Many natural compounds have been tested as possible cancer treatments. Plants in the genus Panax have been widely studied due to their therapeutic potential for various diseases such as inflammatory disorders and cancers. Extracts from plants of genus Panax activate upstream signals, including those related to autophagy and the generation of reactive oxygen species, to induce intrinsic apoptosis in CRC cells. The root extract of Panax notoginseng (P. notoginseng) regulated the gut microbiota to enhance the T-cell-induced immune response against CRC. Protopanaxadiol (PPD)-type ginsenosides, especially Rh2, Rg3, Rb1, and Rb2, significantly reduced proliferation of CRC cells and tumor size in a xenograft mouse model, as well as targeting programmed death (PD)-1 to block the immune checkpoint of CRC cells. Moreover, modified nanocarriers with ginsenosides upregulated drug efficacy, showing that ginsenosides can also be utilized as drug carriers. An increasing body of studies has demonstrated the potential of the genus Panax in curing CRC. Ginsenosides are promising active compounds in the genus Panax, which can also support the activity of conventional cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.S.K.); (H.K.L.); (W.Y.J.)
| |
Collapse
|
20
|
Kumar A, Banjara RA, Aneshwari RK, Khan J, Bernarde PS. A comprehensive review on recent advances in the use of ethnomedicinal plants and their metabolites in snake bite treatment. Front Pharmacol 2025; 16:1548929. [PMID: 40196363 PMCID: PMC11973492 DOI: 10.3389/fphar.2025.1548929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/12/2025] [Indexed: 04/09/2025] Open
Abstract
Snakebites are a severe medical and social issue, particularly in tropical and subtropical countries with minimal medical facilities, where the most dangerous snakes are found. Worldwide, most rural areas use medicinal plants alone or in combination as antidotes for snakebite treatment. Local knowledge of medicinal plants for snakebite treatment plays a more critical role in primary healthcare services in rural areas. As a result of this review, it is revealed that 39% of herbs, 38% of shrubs, 18% of trees, 2% of climbers, 2% of bulbs, and 1% of ferns have snake antivenom potential, which is indicative of the presence of numerous phytochemicals such as alkaloids, coumarins, curcuminoids, flavonoids, steroids, triterpenoids, and cinnamic acid in particular plants. According to the availability of information, the data focus on the plants, their families, and their parts from various literature sources. In the future, the valuable plants reported here and their phytoconstituents may be potential sources for developing effective natural drugs for snake bite treatments. Therefore, this review is a comprehensive study of the snake antivenom potential of various medicinal plants and their bioactive compounds.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Rameshwari A. Banjara
- Department of Chemistry, Rajeev Gandhi Government Postgraduate College, Ambikapur, Chhattisgarh, India
| | | | - Junaid Khan
- Department of Pharmacy, Sant Gahira Guru Vishwavidyalaya, Sarguja Ambikapur, Chhattisgarh, India
| | - Paulo Sergio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, Acre, Brazil
| |
Collapse
|
21
|
Fu X, Zhang Y, Chen G, Mao G, Tang J, Xu J, Han Y, Chen H, Ding L. Responsive nanoparticles synergize with Curcumin to break the "reactive oxygen Species-Neuroinflammation" vicious cycle, enhancing traumatic brain injury outcomes. J Nanobiotechnology 2025; 23:172. [PMID: 40045354 PMCID: PMC11881390 DOI: 10.1186/s12951-025-03251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious "ROS-neuroinflammation" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)120 scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the "ROS-neuroinflammation" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.
Collapse
Affiliation(s)
- Xianhua Fu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yongkang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guojie Chen
- Clinical Laboratory, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Guangyao Mao
- Clinical Laboratory, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jiajia Tang
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Jin Xu
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yuhan Han
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Honglin Chen
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China.
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
| |
Collapse
|
22
|
Li Y, Guo L, Zhang D, Ma J. Impact of exercise intervention with or without curcumin supplementation on body fat composition, glucose, and lipid metabolism in obese adults: A meta-analysis. Lipids 2025; 60:65-75. [PMID: 39508270 DOI: 10.1002/lipd.12422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024]
Abstract
This study was carried out to systematically review and evaluate the influence of exercise with and without curcumin on body fat composition, glucose, and lipid metabolism in obese adults. Search for eligible studies through four databases, and then proceed with screening. The inclusion criteria are as follows: (1) obese adults; (2) randomized controlled trial (RCT); (3) classified the exercise intervention with curcumin supplementation as the exercise with curcumin (CU) group and without curcumin supplementation as the exercise without curcumin (EX) group; (4) Conducted pre- and post-training assessments, which include body fat composition, glucose and lipid metabolism parameters. Use the Cochrane bias risk assessment tool to evaluate the quality of the selected study. Select standardized mean difference (SMD) as the appropriate effect scale index, and use Revman 5.4 software to analyze the mean difference of the selected article data with a 95% confidence interval (CI). A total of seven studies fulfilled the inclusion criteria and were selected for the meta-analysis. The included studies involved 72 males and 111 females, where 94 belonged to the EX group and 89 from the CU group. The CU group benefited more from the reduced Fat% (SMD, 2.18 [0.12, 4.24], p < 0.05, I2 = 0%, p for heterogeneity = 0.98) than the EX group. The study demonstrated that the combined exercise intervention with curcumin supplementation significantly reduced Fat% in obese adults compared with exercise without supplementing curcumin.
Collapse
Affiliation(s)
- Yinghao Li
- Department of Physical Education, Zhengzhou Shengda University, Zhengzhou, China
- School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Longfei Guo
- School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Dandan Zhang
- Institute of Finance and Economics, Shanghai Lida University, Shanghai, China
| | - Jiayuan Ma
- Department of Physical Education, Hebei University of Architecture, Zhangjiakou, China
| |
Collapse
|
23
|
Zhu Y, Tian M, Lu S, Qin Y, Zhao T, Shi H, Li Z, Qin D. The antioxidant role of aromatic plant extracts in managing neurodegenerative diseases: A comprehensive review. Brain Res Bull 2025; 222:111253. [PMID: 39938752 DOI: 10.1016/j.brainresbull.2025.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Neurodegenerative diseases (NDDs) are a class of cognitive and motor disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), and others. They are caused by lesions in cells and tissues of the central nervous system, resulting in corresponding dysfunctions and consequent decline in cognitive and motor functions. Neural tissues are extremely vulnerable to oxidative stress, which plays critical biological roles in NDDs. Aromatic compounds are found extensively in natural plants and have substantial effects of anti-oxidative stress damage, which not only have a wide range of research applications in cosmetics, foods, etc., but are also frequently utilized in the treatment of various central nervous system diseases. This review summarizes the relevant oxidative stress mechanisms in NDDs (AD, PD, HD, and ALS) and reviews aromatic compounds such as polyphenols, terpenoids, and flavonoids that can be used in the management of neurodegenerative diseases, as well as their specific mechanisms of antioxidant action. This review will serve as a reference for future experimental studies on neurodegenerative illnesses while also offering fresh insights into clinical therapy.
Collapse
Affiliation(s)
- Youyang Zhu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Miao Tian
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Shiyu Lu
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Honghe, Yunnan 661100, China.
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
24
|
Hirasawa T, Miyake K, Shinozuka K, Yonehara Y, Tsuda H. Curcumin pretreatment prevents butyrate-induced cell death and release of damage-associated molecular patterns on gingival epithelial Ca9-22 cells. J Oral Biosci 2025; 67:100613. [PMID: 39824384 DOI: 10.1016/j.job.2025.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
OBJECTIVES Exposure of gingival epithelial cells to butyrate, a short-chain fatty acid produced by dental plaque bacteria, cause cell death and subsequent damage-associated molecular pattern (DAMP) release. We investigated the effects of curcumin, a polyphenol extracted from turmeric, on butyrate-induced human gingival epithelial Ca9-22 cell death and DAMP release. METHODS Ca9-22 cells were pretreated with curcumin before butyrate exposure. Cell death was quantified using SYTOX green dye, and histone H3 acetylation was analyzed by Western blot. Conditioned media were collected to detect DAMPs by Western blot. We also assessed the effects of the histone acetyltransferase (HAT) inhibitor C646, instead of curcumin, on butyrate-induced cell death, DAMP release, and histone H3 acetylation, and examined the effects of curcumin pretreatment on cell death, DAMP release, and histone H3 acetylation induced by the histone deacetylase (HDAC) inhibitors, valproate and suberoylanilide hydroxamic acid (SAHA). RESULTS Curcumin pretreatment attenuated butyrate-induced Ca9-22 cell death, histone H3 acetylation, and release of the DAMPs. The C646 also attenuated butyrate-induced cell death, DAMP release, and histone H3 acetylation. Curcumin also suppressed cell death, DAMP release, and histone H3 acetylation triggered by the HDAC inhibitors (valproate and SAHA). CONCLUSIONS Curcumin pretreatment ameliorated butyrate-induced histone H3 acetylation, cell death, and DAMP release. As elevated histone acetylation by HDAC inhibitors correlates with increased cell death, while reduced acetylation by a HAT inhibitor is associated with their attenuation, protective effects of curcumin against butyrate-induced Ca9-22 cell death and subsequent DAMP release may occur via suppression of histone acetylation.
Collapse
Affiliation(s)
- Takayuki Hirasawa
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Kiwa Miyake
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo, Japan
| | - Keiji Shinozuka
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
25
|
Truong DH, Dinh TT, Trinh TMD, Pham THM, Pham MQ, Gawlik-Dziki U, Dao DQ. HOO radical scavenging activity of curcumin I and III in physiological conditions: a theoretical investigation on the influence of acid-base equilibrium and tautomerism. RSC Adv 2025; 15:5649-5664. [PMID: 39990812 PMCID: PMC11843644 DOI: 10.1039/d4ra07769e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Curcumin possesses various effective medicinal properties, such as anti-cancer, anti-Alzheimer's, anti-inflammatory, and antioxidant effects, where its free radical scavenging activities play a crucial role in its therapeutic mechanisms. Although the antioxidant properties of curcumin and its derivatives have been previously studied, a systematic investigation of the thermodynamics and kinetics of the reaction with the hydroperoxide radical (HOO˙) - a standardized free radical - in different solvents is lacking. This study examined the HOO˙ radical scavenging activities of two curcumin derivatives, specifically curcumin I (Cur-I) and curcumin III (Cur-III), in water and pentyl ethanoate (PEA) solutions using Density Functional Theory (DFT) approaches. The antioxidant properties of the neutral and anionic forms of their tautomers, including the keto-enol and diketone forms, were explored via three standard mechanisms: hydrogen abstraction (Abs), radical addition (Add), and single electron transfer (SET). Intrinsic parameters, thermochemical parameters, and kinetics of the curcumin-HOO˙ reactions were systematically characterized. As a result, the overall rate constant for the reaction of Cur-I in the water (9.36 × 107 M-1 s-1) is approximately 3.6 times higher than that of Cur-III (2.60 × 107 M-1 s-1). Meanwhile, the rate constants in PEA solvent are less significant, being 4.02 × 101 M-1 s-1 and 8.16 × 102 M-1 s-1 for Cur-I and Cur-III, respectively. Due to the dominant molar fraction of the keto-enol form compared to the diketone, the reaction rates are primarily attributed to the keto-enol form. The SET reaction of dianionic form contributes a decisive proportion to the overall rate constants of both Cur-I and Cur-III. Finally, an analysis of the chemical nature of the Abs reactions reveals that the most predominant hydrogen transfer at the phenolic -OH groups (i.e., O22H and O23H) occurs via a proton-coupled electron transfer (PCET) mechanism.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- School of Engineering and Technology, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Tu Dinh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | | | - Thi Hong Minh Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin 8 Skromna St. 20-704 Lublin Poland
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- School of Engineering and Technology, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
26
|
Mubango E, Fu Z, Dou P, Tan Y, Luo Y, Chen L, Wu K, Hong H. Dual function antioxidant and anti-inflammatory fish maw peptides: Isolation and structure-activity analysis via tandem molecular docking and quantum chemical calculation. Food Chem 2025; 465:141970. [PMID: 39546995 DOI: 10.1016/j.foodchem.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The structure-function relationship of gastrointestinal tract digestion-derived fish maw peptides remains largely unknown. This study aims to elucidate the active sites and cellular bioactivities of these peptides through molecular docking (MD), density functional theory (DFT) computations, in silico bioinformatic analysis, and in cellulo Caco-2 cell studies. In silico screening identified 29 non-toxic, non-allergenic, and water-soluble peptides. Seven peptides exhibited favorable binding to the Keap1-Kelch (2FLU) and TNF-α (2AZ5) proteins. Specifically, peptides WIDPNQG, GFPGER, and FLLFRQ demonstrated the highest electron affinities and smallest HOMO-LUMO energy gaps, suggesting strong free-radical scavenging potential. Both DFT and ex situ MD confirmed the active sites of the seven peptides. The guanidinium group was the dominant active site on six peptides. The isolated peptides improved cellular redox balance, reduced malonaldehyde, and suppressed inflammatory cytokines. This study confirmed DFT computations as a novel tool for elucidating the structure-function relationship of food-derived peptides.
Collapse
Affiliation(s)
- Elliot Mubango
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Chen
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Hui Hong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
27
|
Aleksandrova Y, Neganova M. Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment. Antioxidants (Basel) 2025; 14:199. [PMID: 40002385 PMCID: PMC11851806 DOI: 10.3390/antiox14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a general biological process inherent in all living organisms. It is characterized by progressive cellular dysfunction. For many years, aging has been widely recognized as a highly effective mechanism for suppressing the progression of malignant neoplasms. However, in recent years, increasing evidence suggests a "double-edged" role of aging in cancer development. According to these data, aging is not only a tumor suppressor that leads to cell cycle arrest in neoplastic cells, but also a cancer promoter that ensures a chronic proinflammatory and immunosuppressive microenvironment. In this regard, in our review, we discuss recent data on the destructive role of senescent cells in the pathogenesis of cancer. We also identify for the first time correlations between the modulation of the senescence-associated secretory phenotype and the antitumor effects of naturally occurring molecules.
Collapse
Affiliation(s)
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Bld. 1, Moscow 119991, Russia;
| |
Collapse
|
28
|
Xiao CL, Lai HT, Zhou JJ, Liu WY, Zhao M, Zhao K. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 2025; 62:2230-2249. [PMID: 39093381 DOI: 10.1007/s12035-024-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hong-Tong Lai
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Jiang-Jun Zhou
- Hospital 908, Joint Logistics Support Force, 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang City, Jiangxi Province, 330001, People's Republic of China
| | - Wu-Yang Liu
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Min Zhao
- Department of Spine Surgery, Yingtan People's Hospital, 116 Shengli West Road, Yuehu District, Yingtan City, Jiangxi Province, 335000, People's Republic of China.
| | - Kai Zhao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
29
|
Jiang Z, Piao L, Ren C, Zhang W, Zhu Y, Kong R. Identifying Natural Products as Feline Coronavirus M pro Inhibitors by Structural-Based Virtual Screening and Enzyme-Based Assays. ACS OMEGA 2025; 10:2092-2101. [PMID: 39866606 PMCID: PMC11755153 DOI: 10.1021/acsomega.4c08601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025]
Abstract
The main protease (Mpro) is a pivotal target in the life cycle of feline coronavirus (FCoV), which causes a high mortality feline disease, feline infectious peritonitis (FIP). Virtual screening was performed against the feline coronavirus Mpro to find active compounds with low toxicity from a library of natural products. Eighty-six compounds were selected by using the rank of docking score and binding pose analysis. In the enzyme-based assay, 12 compounds showed a more than 40% inhibitory effect on Mpro at a concentration of 200 μmol/L. The IC50 values of theaflavin 3,3'-digallate (25.0 μmol/L), sennoside C (25.2 μmol/L), pinocembrin-galloyl-HHDP-G (33.3 μmol/L), and thonningianin A (50.6 μmol/L) were determined. In addition, curcuminoids (51.7-64.3% under 200 μmol/L) and flavonoids (41.3-60.3% under 200 μmol/L) also exhibited certain inhibitory effects on Mpro. Molecular dynamics simulations and binding free energy calculations were employed to reveal the atomic details of the binding of these compounds with Mpro. The results showed that most of the compounds formed significant interactions with key residues on the catalytic site, such as His-41, Cys-144, and Glu-165. These compounds could serve as a starting point to develop FCoV Mpro inhibitors with high potency.
Collapse
Affiliation(s)
- Zunyun Jiang
- Jiangsu Key
Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lianhua Piao
- Institute
of Bioinformatics and Medical Engineering, School of Electrical and
Information Engineering, Jiangsu University
of Technology, Changzhou 213001, P.R. China
- Primary
Biotechnology Co., Ltd., Suzhou 215125, P.R. China
| | - Changyi Ren
- Primary
Biotechnology Co., Ltd., Suzhou 215125, P.R. China
| | - Weihua Zhang
- Jiangsu Key
Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yingguang Zhu
- Jiangsu Key
Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ren Kong
- Institute
of Bioinformatics and Medical Engineering, School of Electrical and
Information Engineering, Jiangsu University
of Technology, Changzhou 213001, P.R. China
- Primary
Biotechnology Co., Ltd., Suzhou 215125, P.R. China
| |
Collapse
|
30
|
Majumdar A, Prasad MAVV, Gandavarapu SR, Reddy KSK, Sureja V, Kheni D, Dubey V. Efficacy and safety evaluation of Boswellia serrata and Curcuma longa extract combination in the management of chronic lower back pain: A randomised, double-blind, placebo-controlled clinical study. Explore (NY) 2025; 21:103099. [PMID: 39700654 DOI: 10.1016/j.explore.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIM Chronic lower back pain (CLBP) is a major condition that leads to disability and reduced quality of life (QoL). This randomised, double-blind, placebo-controlled clinical study evaluated the efficacy and safety of a novel Boswellia serrata and Curcuma longa combination (CL20192) for the treatment of CLBP. MATERIAL AND METHODS Participants with CLBP were randomised to receive either a 300 mg CL20192 capsule (n = 45) or placebo capsule (n = 45) once daily for 90 days. Efficacy was evaluated using the Descriptor Differential Scale and Oswestry Disability Index scores for pain, unpleasantness, and disability. Additionally, the 36-item short form questionnaire was used for QoL evaluation. Frequency of painkiller use, serum levels of inflammatory biomarkers (tumour necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein), and phytoconstituents (total boswellic acids and curcuminoids) were determined. Therapy satisfaction was assessed using the Physician and Patient Global Assessment Scales. RESULTS All randomised participants completed the study. CL20192 supplementation significantly reduced Descriptor Differential Scale pain, unpleasantness, and Oswestry Disability Index scores compared with the placebo group (p < 0.001 for all parameters). Critical QoL scores greatly improved in the CL20192 group. Serum phytoconstituent levels were elevated in the CL20192-treated group. This group demonstrated a significant reduction in inflammatory biomarker levels (tumour necrosis factor-α, interleukin-6, and high-sensitivity C-reactive protein), confirming efficacy in abating CLBP compared with the placebo. Moreover, therapy satisfaction scores were significantly high in the CL20192-treated group, and intervention with CL20192 was well tolerated. CONCLUSION Intervention with 300 mg CL20192 capsules, containing a novel combination of Boswellia serrata and Curcuma longa extracts, effectively alleviated pain, unpleasantness, and disability in patients with CLBP compared with the placebo. This outcome was consistent with a decrease in serum inflammatory markers and improved therapy assessment scores.
Collapse
Affiliation(s)
- Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, India
| | | | - Satish Reddy Gandavarapu
- Aster Prime Hospital, Maitrivanam, Satyam Theatre Road, Srinivasa Nagar, Ameerpet, Hyderabad, Telangana, India
| | | | - Varun Sureja
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India.
| | - Dharmeshkumar Kheni
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Vishal Dubey
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| |
Collapse
|
31
|
Nemati MM, Heidari R, Keshavarzi A, Ahmadi A, Abedi M, Ranjbar S, Ghasemi Y. In Vitro and In Vivo Evaluation of Electrospun PVA Nanofiber Containing ZnO/Curcumin for Wound Healing Application. Appl Biochem Biotechnol 2025; 197:194-215. [PMID: 39110331 DOI: 10.1007/s12010-024-05018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
The development of biocompatible wound dressings containing therapeutic agents to accelerate wound healing is an interesting field of study in biomedical sciences. Polyvinyl alcohol (PVA) nanofibers were loaded with zinc oxide nanoparticles (ZnO NPs) and curcumin (Cur) through electrospinning. The dressings were characterized by SEM and XRD and FTIR. The antioxidant, antibacterial, and cytotoxic activities Cur/ZnO/PVA nano dressing were evaluated using DPPH radical scavenging assay, disc diffusion method, and MTT assay, respectively. Cur/ZnO/PVA nano dressing showed sustained Cur release about 19.7% and 61.1% after 8h and 168h, respectively. Cur/ZnO NPs/PVA mixture had higher antioxidant potential than PVA, ZnO NPs, and Cur. The dressing showed a good antibacterial effect. The in vivo wound healing effect of different types of prepared dressings, including PVA, Cur/PVA, Cur/ZnO/PVA, and ZnO/ PVA nanofibers, was also investigated. PVA dressing containing Cur/ZnO NPs resulted in the highest increase of wound contraction in rats. The assembly of Cur and ZnO NPs on PVA nanofibers could propose as an effective delivery method to improve the wound healing process. The investigated wound dressing could be commercialized and used on a large scale after proper further studies, including clinical trials.
Collapse
Affiliation(s)
- Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmadreza Ahmadi
- Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research and Development Department, Danesh Salamat Kowsar Co, Shiraz, Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Dash P, Nayak S, Parida PK. The Efficacy of Curcumin in Reducing Immunosuppressive States of Peripheral Blood Mononuclear Cells Extracted From Oral Squamous Cell Carcinoma Patients: An In Vitro Study. Cureus 2025; 17:e77899. [PMID: 39991356 PMCID: PMC11847154 DOI: 10.7759/cureus.77899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Background and objectives Prior studies have shown that patients with oral cancer overexpress programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) in cancer cells and immunocompetent lymphocytes. Current immunotherapeutic interventions include antibodies targeting PD-1/PD-L1. This observational, in vitro, cell culture-based study aimed to assess the concentrations of PD-1 and PD-L1 in the peripheral blood mononuclear cells (PBMCs) of patients with oral squamous cell carcinoma (OSCC) and compare their levels with those in healthy controls, both pre- and post-curcumin intervention. This study also compared the soluble fraction of PD-L1 in the serum of patients with that in controls. We aimed to determine a cutoff level for cell surface PD-1/PD-L1 to differentiate between patients and healthy controls, in order to identify potential targets for immunotherapy. Methodology Blood samples (5 mL) were collected from both controls (n=20) and patients (n=20). Of this, 2 mL was used to collect serum samples, and 3 mL was used for isolation and culture of PBMCs. Cells were analyzed pre- and post-intervention with curcumin for PD-1 and PD-L1 expression. Results This study provides relevant data regarding cellular and serum PD-1/PD-L1 levels in patients with OSCC, which were significantly higher than in controls. Intervention with curcumin decreased PD-L1/PD-1 levels, indicating the therapeutic efficacy of curcumin in suppressing immunotolerance in the tumor microenvironment. We also found that cell lysate PD-L1 and PD-1 had a sensitivity of 75% and specificity of 89%, with cutoff values of 0.602 and 5.53 ng/mL for PD-L1 and PD-1, respectively. The receiver operating characteristic (ROC) curve analysis determined that these markers were suitable for OSCC diagnosis and identifying the appropriate cohort for immunotherapy. Conclusions Our study showed that serum and PBMC lysate PD-1 and PD-L1 levels were higher in advanced cancer cases compared to patients with localized disease without metastasis. Curcumin reduced the levels of PD-1 and PD-L1 in PBMC lysates. Further studies and clinical trials are required to gain deeper insights into its utility as an effective chemo adjuvant.
Collapse
Affiliation(s)
- Prakruti Dash
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Saurav Nayak
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Pradipta K Parida
- Otorhinolaryngology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
- ENT-Head and Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
33
|
Singh M, Sachdeva M, Kumar N. Assessment of the Anti-adipogenic Effect of Crateva religiosa Bark Extract for Molecular Regulation of Adipogenesis: In Silico and In Vitro Approaches for Management of Hyperlipidemia Through the 3T3-L1 Cell Line. Curr Pharm Biotechnol 2025; 26:778-794. [PMID: 39206484 DOI: 10.2174/0113892010314594240816050240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
AIMS This study aimed to determine the phytoconstituents of Crateva religiosa bark (CRB) and evaluate the hypolipidemic effect of bioactive CRB extract by preventing adipocyte differentiation and lipogenesis. BACKGROUND After performing the preliminary phytochemicals screening, the antioxidant activity of CRB extracts was determined through a DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay. Ethyl acetate extract (CREAE) and ethanol extract (CRETE) of CRB were selected for chromatographic evaluation. METHODS The antihyperlipidemic potential was analyzed by molecular docking through the PKCMS software platform. Further, a 3T3-L1 cell line study via in vitro sulforhodamine B assay and western blotting was performed to confirm the prevention of adipocyte differentiation and lipogenesis. RESULTS The total phenolic contents in CREAE and CRETE were estimated as 29.47 and 81.19 μg/mg equivalent to gallic acid, respectively. The total flavonoid content was found to be 8.78 and 49.08 μg/mg, equivalent to quercetin in CREAE and CRETE, respectively. CRETE exhibited greater scavenging activity with the IC50 value of 61.05 μg/ mL. GC-MS analysis confirmed the presence of three bioactive molecules, stigmasterol, gamma sitosterol, and lupeol, in CRETE. Molecular docking studies predicted that the bioactive molecules interact with HMG-CoA reductase, PPARγ, and CCAAT/EBP, which are responsible for lipid metabolism. In vitro, Sulforhodamine B assays revealed that CRETE dose-dependently reduced cell differentiation and viability. Cellular staining using 'Oil Red O' revealed a decreased lipid content in the CRETE-treated cell lines. CRETE significantly inhibited the induction of PPARγ and CCAAT/EBP expression, as determined through protein expression via western blotting. CONCLUSION The influence of CRETE on lipid metabolism in 3T3-L1 cells is potentially suggesting a new approach to managing hyperlipidemia.
Collapse
Affiliation(s)
- Monika Singh
- Department of Pharmacology, I.T.S. College of Pharmacy, Ghaziabad, U.P., Affiliated with Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Monika Sachdeva
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Ghaziabad U.P., Affiliated with Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Nitin Kumar
- Department of Pharmacy, Meerut Institute of Technology, Meerut, Affiliated with Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| |
Collapse
|
34
|
Singh H, Kamal YT, Pandohee J, Mishra AK, Biswas A, Mohanto S, Kumar A, Nag S, Mishra A, Singh M, Gupta H, Chopra H. Dietary phytochemicals alleviate the premature skin aging: A comprehensive review. Exp Gerontol 2025; 199:112660. [PMID: 39694450 DOI: 10.1016/j.exger.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Skin aging, often called as premature skin aging, is the hastened deterioration of the skin resulting from multiple factors, including UV radiation, environmental contaminants, inadequate nutrition, stress, etc. Dietary phytochemicals, present in fruits, vegetables, and other plant-derived meals, have gained interest due to their efficiency to eradicate free radicals and lowering the release of inflammatory mediators which accounts for premature skin aging. Several dietary phytochemicals, i.e., carotenoids, polyphenols, flavonoids, terpenes, alkaloids, phytosterols, etc., exhibited potential anti-oxidant, anti-inflammatory, suppression of UV damage, and promote collagen synthesis. In addition, dietary phytochemicals include sulfur, present in various foods safeguard the skin against oxidative stress and inflammation. Thus, this article delves into the comprehension of various dietary phytochemicals investigated to alleviate the premature skin aging. The article further highlights specific phytochemicals and their sources, bioavailability, mechanisms, etc., in the context of safeguarding the skin against oxidative stress and inflammation. The present manuscript is a systematic comprehension of the available literature on dietary phytochemicals and skin aging in various database, i.e., PubMed, ScienceDirect, Google Scholar using the keywords, i.e., "dietary phytochemicals", "nutraceuticals", "skin aging" etc., via Boolean operator, i.e., "AND". The dietary guidelines presented in the manuscript is a unique summarization for a broad reader to understand the inclusion of various functional foods, nutrients, supplements, etc., to prevent premature skin aging. Thus, the utilization of dietary phytochemicals has shown a promising avenue in preventing skin aging, however, the future perspectives and challenges of such phytochemicals should be comprehended via clinical investigations.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Y T Kamal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 611441, Saudi Arabia
| | - Jessica Pandohee
- Sydney Mass Spectrometry, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal 700118, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mhaveer Singh
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
35
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
36
|
Choi D, Lee JG, Heo SH, Cho MK, Nam HS, Lee SH, Lee YJ. Curcumin and Its Potential to Target the Glycolytic Behavior of Lactate-Acclimated Prostate Carcinoma Cells with Docetaxel. Nutrients 2024; 16:4338. [PMID: 39770959 PMCID: PMC11677565 DOI: 10.3390/nu16244338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. Methods: In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined. Results: PC-3AcT and DU145AcT cells that preadapted to lactic acid displayed increased growth behavior, increased dependence on glycolysis, and reduced sensitivity to docetaxel compared to parental PC-3 and DU145 cells. Molecular analyses revealed activation of the c-Raf/MEK/ERK pathway, upregulation of cyclin D1, cyclin B1, and p-cdc2Thr161, and increased levels and activities of key regulatory enzymes in glycolysis, including HK2, in lactate-acclimated cells. HK2 knockdown resulted in decreased cell growth and glycolytic activity, decreased levels of complexes I-V in the mitochondrial electron transport chain, loss of mitochondrial membrane potential, and depletion of intracellular ATP, ultimately leading to cell death. In a xenograft animal model, curcumin combined with docetaxel reduced tumor size and weight, induced downregulation of glycolytic enzymes, and stimulated the upregulation of apoptotic and necroptotic proteins. This was consistent with the in vitro results from 2D monolayer and 3D spheroid cultures, suggesting that the efficacy of curcumin is not affected by docetaxel. Conclusions: Overall, our findings suggest that metabolic plasticity through enhanced glycolysis observed in lactate-acclimated PC cells may be one of the underlying causes of docetaxel resistance, and targeting glycolysis by curcumin may provide potential for drug development that could improve treatment outcomes in PC patients.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| | - Jun Gi Lee
- Biochemistry and Molecular Biology, Marquette University, Milwaukee, WI 53233, USA;
| | - Su-Hak Heo
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University Glocal Campus, Chungju 27478, Republic of Korea;
| | - Moon-Kyen Cho
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151, Republic of Korea; (M.-K.C.); (H.-S.N.)
| | - Hae-Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151, Republic of Korea; (M.-K.C.); (H.-S.N.)
| | - Sang-Han Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31511, Republic of Korea; (D.C.); (S.-H.L.)
| |
Collapse
|
37
|
Praveen A, Hitlamani V, Nagarajan S, Matche RS, Chaudhari SR. Enrichment of Peanut butter using Curcuma Longa (turmeric) industrial byproducts and its impact on shelf life. Food Chem 2024; 461:140839. [PMID: 39154463 DOI: 10.1016/j.foodchem.2024.140839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
This study explores the potential of Curcuma longa byproducts, called Curcuminoid removed turmeric oleoresin (CRTO), to extend the shelf life of peanut butter. CRTO, rich in curcuminoids, was added to peanut butter formulations to assess its preservative effects, flavour impact, and nutritional benefits. Results demonstrated that CRTO oil and curcuminoids effectively prolonged peanut butter shelf life by delaying rancidity. The study also compared results using oxygen scavenger film (OSF) packaging. Over time, water activity and oil separation increased, but CRTO oil and OSF helped to mitigate these effects. Sensory evaluations favored CRTO oil and curcuminoids, while microbial analysis confirmed safety of both the control and OSF samples for six months at 27 °C and 65% RH, and for four months at 37 °C and 95% RH. This study proposes a natural and sustainable method for extending peanut butter shelf life while enriching it with curcuminoids, with significant implications for the food industry.
Collapse
Affiliation(s)
- Aishwarya Praveen
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veeranna Hitlamani
- Department of Flour Milling, Baking and Confectionery Technology, CSIR-Central Food Technological Research Institue, Mysuru, Karnataka, India
| | - Subban Nagarajan
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Department of Flour Milling, Baking and Confectionery Technology, CSIR-Central Food Technological Research Institue, Mysuru, Karnataka, India
| | - Rajeshwar S Matche
- Department of Food Packaging Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin R Chaudhari
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
38
|
Sulieman AME, Idriss H, Alshammari M, Almuzaini NAM, Ibrahim NA, Dahab M, Alhudhaibi AM, Alrushud HMA, Saleh ZA, Abdallah EM. Comprehensive In Vitro Evaluation of Antibacterial, Antioxidant, and Computational Insights into Blepharis ciliaris (L.) B. L. Burtt from Hail Mountains, Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2024; 13:3491. [PMID: 39771189 PMCID: PMC11728784 DOI: 10.3390/plants13243491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
The arid mountainous region of Hail in Saudi Arabia has a variety of desert vegetation, some of which are conventionally used in Bedouin traditional medicine. These plants need scientific examination. This research seeks to examine Blepharis ciliaris using a thorough multi-analytical methodology that includes antibacterial and antioxidant assessments as well as computational modeling. GC-MS analysis of the methanolic extract revealed 17 organic compounds, including pentadecanoic acid, ethyl methyl ester (2.63%); hexadecanoic acid, methyl ester (1.00%); 9,12-octadecadienoic acid (Z,Z)-, methyl ester (2.74%); 9-octadecenoic acid, methyl ester (E) (2.78%); octadecanoic acid (5.88%); 9-tetradecenoic acid (Z) (3.22%); and undec-10-enoic acid, undec-2-n-1-yl ester (5.67%). The DPPH test evaluated antioxidant activity, revealing a notable increase with higher concentrations of the methanolic extract, achieving maximum inhibition of 81.54% at 1000 µg/mL. The methanolic extract exhibited moderate antibacterial activity, with average inhibition zones of 10.33 ± 1.53 mm, 13.33 ± 1.53 mm, 10.67 ± 1.53 mm, and 10.00 ± 2.00 mm against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Serratia marcescens, respectively, as determined by the disk diffusion method. The minimum inhibitory concentration (MIC) values were 500 µg/mL for S. aureus and B. subtilis, whereas E. coli and S. marcescens showed susceptibility at 1000 µg/mL. Computational simulations were employed to assess the toxicity, drug-likeness, and ADMET profiles of compounds derived from Blepharis ciliaris. Thirteen bioactive compounds were assessed in silico against Staphylococcus aureus sortase A (PDB: 1T2O), Bacillus subtilis BsFabHb (PDB: 8VDB), Escherichia coli LPS assembly protein (LptD) (PDB: 4RHB), and a modeled Serratia marcescens outer-membrane protein TolC, focusing on cell wall and membrane structures. Compound 3, (+)-Ascorbic acid 2,6-dihexadecanoate, shown significant binding affinities to B. subtilis BsFabHb, E. coli LPS assembly protein, and S. marcescens TolC.
Collapse
Affiliation(s)
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Mamdouh Alshammari
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
| | - Nujud A. M. Almuzaini
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
| | - Nosyba A. Ibrahim
- Department of Public Health, College of Public Health & Health Informatics, University of Hail, Hail 2440, Saudi Arabia;
| | - Mahmoud Dahab
- Faculty of Pharmacy, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia;
| | | | | | - Zakaria Ahmed Saleh
- Department of Research and Training, Research and Training Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Emad M. Abdallah
- Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
39
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
40
|
Feghhi F, Ghaznavi H, Sheervalilou R, Razavi M, Sepidarkish M. Effects of metformin and curcumin in women with polycystic ovary syndrome: A factorial clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156160. [PMID: 39461199 DOI: 10.1016/j.phymed.2024.156160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women, associated with dyslipidemia, insulin resistance, and hormonal imbalances. Metformin and curcumin have shown promise in improving these metabolic and hormonal parameters individually, but their combined effects in PCOS remain unclear. METHODS We conducted a randomized, double-blind, placebo-controlled, 12-week factorial trial involving 200 women with PCOS. Participants were randomly assigned in a 1:1:1:1 ratio to receive metformin (500-mg/8 h) + placebo, nanocurcumin soft gel capsule (80-mg/8 h) + placebo, metformin (500-mg/8 h) + nanocurcumin (80-mg/8 h), or double placebo. Lipid profiles, glucose metabolism markers, hormonal parameters, body weight, and body mass index (BMI) were assessed at baseline and week 12. RESULTS The combination of metformin and curcumin demonstrated significant improvements in lipid profiles, glucose metabolism, hormonal parameters, body weight, and BMI compared to individual agents or placebo. Greater reductions in low-density lipoproteins (LDL) cholesterol, total cholesterol (TC), and triglyceride (TG) levels were observed with the combination therapy, along with increased high-density lipoproteins (HDL) cholesterol. Additionally, the combination therapy significantly improved markers of glucose metabolism and showed synergistic effects in reducing body weight and BMI. Reductions in testosterone and improvements in Follicle-stimulating hormone (FSH) and Luteinizing hormone (LH) levels were also observed with combination therapy. CONCLUSION The combination of metformin and curcumin demonstrates superior efficacy in improving lipid profiles, glucose metabolism, hormonal parameters, body weight, and BMI in women with PCOS compared to individual agents or placebo. This highlights the potential synergistic effects of combining these agents for the management of PCOS.
Collapse
Affiliation(s)
- Fatemeh Feghhi
- Department of Obstetrics and Gynaecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Maryam Razavi
- Department of Obstetrics and Gynaecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Sepidarkish
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
41
|
Singh H, Singh R, Singh A, Singh H, Singh G, Kaur S, Singh B. Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Arch Physiol Biochem 2024; 130:616-641. [PMID: 37571852 DOI: 10.1080/13813455.2023.2243651] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 08/13/2023]
Abstract
Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Arshdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harshbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
42
|
Wu J, Huang C, Ren S, Wu T, Li Y, Zhong H, Su T, Chen Y, Tan X, Wu W, Wang J, Li W. Design, green synthesis, and anti-glutamate damage screening of chalcone derivatives with spiro-heterocyclic structures as potential anti-ischemic brain and eye damage agents. Bioorg Chem 2024; 153:107870. [PMID: 39423774 DOI: 10.1016/j.bioorg.2024.107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Antagonizing excessive glutamate-induced neuroexcitatory toxicity is one of the treatments for brain and retinal nerve damage in ischemic stroke patients. In this work, a series of 3-benzoyl-4-phenyl-spiropyrrolidone (spiroheterocyclic) compounds were designed and synthesized by modifying the Michael receptor of chalcone to reduce its toxicity. Several compounds with superior protective effects on PC12 cells were screened through an experimental model of glutamate-induced damage, and a quantitative evaluation of the structure-activity relationship (QSAR) model with a regression coefficient of R2 = 0.90723 was established through the random forest (RF) algorithm. Among these compounds, E38 significantly increased the survival rate of damaged cells, promoted colony formation, and inhibited LDH release and apoptosis, and the protective effect of E38 was possibly partly through the HO-1/SIRT1 pathway. More importantly, in mice model of middle cerebral artery occlusion (MCAO), E38 decreased cerebral infarct size, improved neurological scores, and mitigated retinal damage. In conclusion, this work presents a novel class of chalcone derivatives with neuroprotective activity and offers potential compounds for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jianzhang Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chenyang Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuo Ren
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Wu
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yujia Li
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hongliang Zhong
- The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tiande Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yinqi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangpeng Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Jingsong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wulan Li
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
43
|
Yamdech R, Terahsongkran V, Terahsongkran V, Cherdchom S, Aramwit P. Development of Antioxidant-Active Sericin-Curcumin-Loaded Sodium Alginate/Polyvinyl Alcohol Films Crosslinked with Calcium Chloride as a Promising Wound Dressing Application. Polymers (Basel) 2024; 16:3197. [PMID: 39599288 PMCID: PMC11598768 DOI: 10.3390/polym16223197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Silk sericin (SS) and curcumin (Cur) possess significant antioxidant properties, making them highly beneficial for wound healing applications. This study aimed to develop SS-Cur-loaded sodium alginate/polyvinyl alcohol (SA/PVA) films crosslinked with calcium chloride, creating a biomaterial with enhanced stability and antioxidant properties. Wound dressings containing SS-Cur were fabricated by mixing SA and PVA at different ratios of 1:1, 1:2, 1:4, and 1:6. The resulting films were then crosslinked with calcium chloride in an ethanol solution to enhance film integrity. These films were characterized using several techniques, revealing that the presence of ethanol in calcium chloride affected film properties, including the gel fraction, swelling, film thickness, and FTIR analysis. The presence of ethanol in calcium chloride revealed the highest drug content in the SA/PVA films. In vitro release studies demonstrated sustained release of SS-Cur from all formulations. Cytotoxicity and antioxidant activity tests showed that SS-Cur-loaded SA/PVA films with ethanol in calcium chloride increased cell viability and enhanced antioxidant effects in L929 cells. In conclusion, this study demonstrates that the presence of ethanol in the crosslinking solution improved the functionality of SS-Cur-loaded SA/PVA films, making them promising candidates for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Vareesa Terahsongkran
- Mater Dei School, 534 Phloen Chit Rd., Lumphini, Pathum Wan, Bangkok 10330, Thailand;
| | - Varis Terahsongkran
- Patumwan Demonstration School, Srinakharinwirot University, Henri Dunant Rd., Pathum Wan, Bangkok 10330, Thailand;
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
44
|
Chotipinit T, Supronsinchai W, Chantarangsu S, Suttamanatwong S. Healing effect of curcumin on tooth extraction sockets in diabetic rats. J Appl Oral Sci 2024; 32:e20240251. [PMID: 39570178 PMCID: PMC11643075 DOI: 10.1590/1678-7757-2024-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE Diabetes mellitus (DM) delays wound healing, including those following tooth extractions. Curcumin (CCM) can promote soft tissue and bone healing. The present study investigates the healing effects of CCM on tooth extraction sockets in diabetic rats. METHODOLOGY Ninety-six male Wistar rats were divided into the following four groups: Control+Corn Oil (CO), Control+CCM, DM+CO, and DM+CCM. Each group was subdivided into 7-, 14-, and 28-day time point subgroups comprising eight rats. All animals had their maxillary first molars extracted. CCM-treated rats received 100 mg/kg of CCM orally for 7, 14, and 28 days. The lesion area was evaluated using macroscopic analyses, whereas socket healing was assessed by hematoxylin and eosin staining. Keratinocyte growth factor (KGF), Runt-related transcription factor 2 (Runx2), and collagen type I (COL1) expression levels were obtained using quantitative polymerase chain reaction (qPCR). Bone healing was analyzed by means of microcomputed tomography (μCT). RESULTS After 7 days, the groups showed no significant differences in lesion area and by day 14, no lesions were present. CCM treatment increased KGF mRNA expression in diabetic rats; however, diabetic rats showed delayed bone healing unrelated to CCM. CCM treatment resulted in increased Runx2 mRNA expression only in control rats, whereas COL1 mRNA expression remained unaffected by CCM. CONCLUSION CCM shows potential as a soft tissue healing enhancer in diabetic rats and could serve as an additional treatment to promote soft tissue repair in diabetic individuals. Although CCM did not impact alveolar bone healing, it may enhance bone healing in other skeleton regions.
Collapse
Affiliation(s)
- Tipthanan Chotipinit
- Chulalongkorn UniversityFaculty of Graduate SchoolBangkokThailandChulalongkorn University, Faculty of Graduate School, Interdisciplinary Program of Physiology, Bangkok, Thailand.
| | - Weera Supronsinchai
- Chulalongkorn UniversityFaculty of DentistryDepartment of PhysiologyBangkokThailandChulalongkorn University, Faculty of Dentistry, Department of Physiology, Bangkok, Thailand.
| | - Soranun Chantarangsu
- Chulalongkorn UniversityFaculty of DentistryDepartment of Oral PathologyBangkokThailandChulalongkorn University, Faculty of Dentistry, Department of Oral Pathology, Bangkok, Thailand.
| | - Supaporn Suttamanatwong
- Chulalongkorn UniversityFaculty of DentistryDepartment of PhysiologyBangkokThailandChulalongkorn University, Faculty of Dentistry, Department of Physiology, Bangkok, Thailand.
| |
Collapse
|
45
|
Poulios A, Papanikolaou K, Draganidis D, Tsimeas P, Chatzinikolaou A, Tsiokanos A, Jamurtas AZ, Fatouros IG. The Effects of Antioxidant Supplementation on Soccer Performance and Recovery: A Critical Review of the Available Evidence. Nutrients 2024; 16:3803. [PMID: 39599590 PMCID: PMC11597853 DOI: 10.3390/nu16223803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Soccer is linked to an acute inflammatory response and the release of reactive oxygen species (ROS). Antioxidant supplements have shown promising effects in reducing muscle damage and oxidative stress and enhancing the recovery process after eccentric exercise. This critical review highlights the influence of antioxidant supplements on performance and recovery following soccer-related activity, training, or competition. Methods: English-language publications from the main databases that examine how antioxidant-based nutrition and supplements affect the recovery process before, during, and after soccer practice or competition were used. Results:Coenzyme Q10 (CoQ10), astaxanthin (Asx), red orange juice (ROJS), L-carnitine (LC), N-acetyl cysteine (NAC), beetroot (BET), turmeric root, and tangeretin reduce muscle damage (creatine kinase, myoglobin, cortisol, lactate dehudrogenase, muscle soreness). Tangeretin, docosahexaenoic acid (DHA), turmeric root, and aronia melanocarpa restrict inflammation (leukocytes, prostalagdin E2, C-reactive protein, IL-6 and 10). Q10, DHA, Asx, tangeretin, lippia citriodora, quercetin, allopurinol, turmeric root, ROJS, aronia melanocarpa, vitamins C-E, green tea (GTE), and sour tea (STE) reduce oxidative stress (malondialdehude, glutathione, total antioxidant capacity, superoxide dismutases, protein carbonyls, ascorbate, glutathione peroxidase, and paraoxonase 1). BET and NAC reinforce performance (endurance, jump, speed, strength). Conclusions: Further research is needed to determine the main mechanism and the acute and long-term impacts of antioxidant supplements in soccer.
Collapse
Affiliation(s)
- Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Athanasios Chatzinikolaou
- Department of Physical Education and Sport Science, Democritus University of Thrace, 691 00 Komotini, Greece;
| | - Athanasios Tsiokanos
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 382 21 Trikala, Greece; (A.P.); (K.P.); (D.D.)
| |
Collapse
|
46
|
Hur J, Rhee CK, Yoon HK, Park CK, Lim JU, An TJ, Choi JY, Jo YS. Influence and distinctions of particulate matter exposure across varying etiotypes in chronic obstructive pulmonary disease (COPD) mouse model. J Inflamm (Lond) 2024; 21:42. [PMID: 39487493 PMCID: PMC11529024 DOI: 10.1186/s12950-024-00416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Air pollution, notably particulate matter (PM), significantly impacts chronic respiratory disease such chronic obstructive pulmonary disease (COPD). Although asthma-COPD overlap (ACO), considered one of the COPD etiotype, is associated with greater severity in both symptoms and outcomes, effects of PM exposure remain unclear. Thus, this study aimed to evaluate impact of PM on chronic airway disease animal models. METHODS We established two distinct COPD etiotypes, cigarette smoking-related COPD (COPD-C) and COPD with asthma (COPD-A), using porcine pancreatic elastase (PPE) for COPD-C and a combination of PPE with ovalbumin for COPD-A. To reflect smoking influence, cigarette smoking extract was administered to both disease models. To assess impact of PM exposure, bronchoalveolar lavage fluid (BALF), proinflammatory cytokines, lung histology, and cellular damage mechanisms were analyzed. RESULTS In the COPD-A model, cell counts and type 2 cytokines were elevated in BALF independent of PM exposure. All models exhibited increased lung inflammation and emphysema due to PM exposure. Expression levels of apoptosis-related protein B-cell lymphoma protein 2 (Bcl-2) associated X (Bax) showed an inclination to increase with PM exposure. In the COPD-A model, decreased expression of basal nuclear factor erythroid-derived 2-like 2 (Nrf-2) and increased production of reactive oxygen species (ROS) due to PM exposure were noted. CONCLUSION We developed two distinct models for the etiotypes of COPD and found increased vulnerability to cell damage in COPD-A after PM exposure. Moreover, the control group displayed escalated airway inflammation and emphysema due to PM exposure, substantiating the risk of respiratory diseases.
Collapse
Affiliation(s)
- Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong Suk Jo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
47
|
Chuang AEY, Lin YW, Jheng PR, Rethi L, Nguyen HT, Weng PW. Bio-intelligent plasma-engineered diferuloylmethane/fucoidan/neutrophil lysate/iron oxide nanoclusters for phototherapeutic and magnetotherapeutic with in situ magnetic gelation mitigating inflammatory diseases. Colloids Surf B Biointerfaces 2024; 243:114054. [PMID: 39079188 DOI: 10.1016/j.colsurfb.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 09/17/2024]
Abstract
Creating a versatile and remotely self-assembling biocomposite for delivering therapeutics to alleviate inflammatory diseases poses significant challenges. This study introduces a novel biocomposite, created through cold-atmosphere plasma treatment, that combines fucoidan (Fu) and neutrophil lysate (Nu) to mediate the self-assembly of diferuloylmethane (DIF) and iron oxide (IO) nanoclusters, termed DIF-Nu/Fu-IO NC. This biocomposite forms a phototherapeutic and magnetically-driven in situ gel with open-porous architecture loaded with DIF, offering non-invasive theranostic capabilities for treating inflammatory diseases. It demonstrates efficacy in both an intraarticular zymosan-induced rheumatoid arthritis animal model and an intranasal LPS-induced inflammatory lung model. Upon administration, near-infrared (NIR) irradiation and magnet application significantly improved the condition of the animals with rheumatoid arthritis and lung inflammation. This breakthrough heralds a new paradigm in bioinspired, versatile, theranostic, self-assembling biocomposites for addressing clinical inflammatory diseases.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan, Republic of China; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan, Republic of China
| | - Yung-Wei Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China; Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan, Republic of China; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; Research Center of Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, Republic of China.
| |
Collapse
|
48
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
49
|
Higashi Y, Dashek R, Delafontaine P, Rector RS, Chandrasekar B. EF24, a Curcumin Analog, Reverses Interleukin-18-Induced miR-30a or miR-342-Dependent TRAF3IP2 Expression, RECK Suppression, and the Proinflammatory Phenotype of Human Aortic Smooth Muscle Cells. Cells 2024; 13:1673. [PMID: 39451191 PMCID: PMC11505909 DOI: 10.3390/cells13201673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from the widely used spice Curcuma longa, has shown anti-atherosclerotic effects in animal models and cultured vascular cells. Inflammation is a major contributor to atherosclerosis development and progression. We previously reported that the induction of the proinflammatory molecule TRAF3IP2 (TRAF3 Interacting Protein 2) or inhibition of the matrix metallopeptidase (MMP) regulator RECK (REversion Inducing Cysteine Rich Protein with Kazal Motifs) contributes to pro-oxidant, proinflammatory, pro-mitogenic and pro-migratory effects in response to external stimuli in vascular smooth muscle cells. Here we hypothesized that EF24, a curcumin analog with a better bioavailability and bioactivity profile, reverses interleukin (IL)-18-induced TRAF3IP2 induction, RECK suppression and the proinflammatory phenotype of primary human aortic smooth muscle cells (ASMC). The exposure of ASMC to functionally active recombinant human IL-18 (10 ng/mL) upregulated TRAF3IP2 mRNA and protein expression, but markedly suppressed RECK in a time-dependent manner. Further investigations revealed that IL-18 inhibited both miR-30a and miR-342 in a p38 MAPK- and JNK-dependent manner, and while miR-30a mimic blunted IL-18-induced TRAF3IP2 expression, miR-342 mimic restored RECK expression. Further, IL-18 induced ASMC migration, proliferation and proinflammatory phenotype switching, and these effects were attenuated by TRAF3IP2 silencing, and the forced expression of RECK or EF24. Together, these results suggest that the curcumin analog EF24, either alone or as an adjunctive therapy, has the potential to delay the development and progression of atherosclerosis and other vascular inflammatory and proliferative diseases by differentially regulating TRAF3IP2 and RECK expression in ASMC.
Collapse
Affiliation(s)
- Yusuke Higashi
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Ryan Dashek
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (R.D.); (R.S.R.)
- Comparative Medicine Program, University of Missouri, Columbia, MO 65211, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65201, USA
| | - Patrice Delafontaine
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Randy Scott Rector
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (R.D.); (R.S.R.)
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65201, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65201, USA
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65203, USA
| |
Collapse
|
50
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|