1
|
Wang C, Wu Y, Jiang J. The role and mechanism of mesenchymal stem cells in immunomodulation of type 1 diabetes mellitus and its complications: recent research progress and challenges: a review. Stem Cell Res Ther 2025; 16:308. [PMID: 40528233 DOI: 10.1186/s13287-025-04431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 06/02/2025] [Indexed: 06/20/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells are of great interest because of their multipotency, immune modulation capacity, and tissue and vascular regeneration effects. They are used in treating type 1 diabetes mellitus, helping improve the pancreatic environment and insulin secretion. Type 1 diabetes mellitus predominantly affects children and adolescents, with early onset and a prolonged course that can lead to multiorgan complications and related disorders. Studies using mesenchymal stem cells to treat type 1 diabetes mellitus have yielded promising results. This review discusses the common animal models of type 1 diabetes mellitus, mesenchymal stem cell immunotherapy mechanisms, and combined diabetes treatments. Its purpose is to summarize the current evidence on mesenchymal stem cell use in type 1 diabetes, providing insights for further research directions. MAIN FINDINGS Current studies show that mesenchymal stem cells play an active role in the treatment of type 1 diabetes; however, clinical trials remain rare, necessitating more basic and preclinical research to identify optimal treatments. CONCLUSIONS Mesenchymal stem cells can treat type 1 diabetes through a variety of immune mechanisms and also play a positive role in the treatment of type 1 diabetes complications. At the same time, it can be combined with other therapies to play a better therapeutic role.
Collapse
Affiliation(s)
- Chengran Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Yimeng Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China.
| |
Collapse
|
2
|
Silvano S, Napolitano T, Plaisant M, Sousa-De-Veiga A, Fofo H, Ayachi C, Allegrini B, Rekima S, Pichery E, Becam J, Lepage V, Treins C, Etasse L, Tran L, Thévenet J, Pasquetti G, Kerr-Conte J, Pattou F, Botti P, Arduini A, Mizrahi J, Charles B, Collombat P. RSPO1, a potent inducer of pancreatic β cell neogenesis. Cell Rep Med 2025; 6:102126. [PMID: 40339569 DOI: 10.1016/j.xcrm.2025.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/02/2024] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
Inducing the neogenesis of pancreatic insulin-producing β cells holds great promise for diabetes research. However, non-toxic compounds with such activities remain to be discovered. Herein, we report the identification of RSPO1, a key agonist of the Wnt/β-catenin pathway, as an inducer of β cell replication. Specifically, we provide evidence that RSPO1 promotes a significant increase in β cell neogenesis in vitro, ex vivo, and in vivo. Importantly, RSPO1 administration is sufficient to activate Wnt/β-catenin signaling in β cells and counter chemically induced or autoimmune-mediated diabetes. Similarly, an optimized analog of RSPO1, allowing for weekly administration, also prevents diabetes in vivo. Lastly, the treatment of transplanted human islets with RSPO1 induces a significant 2.78-fold increase in human β cell numbers in only 60 days, these cells being functional. Such activities of RSPO1 to promote β cell neogenesis could therefore represent an unprecedented hope in the continued search for diabetes alternative therapies.
Collapse
Affiliation(s)
| | | | | | - Anette Sousa-De-Veiga
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Hugo Fofo
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Chaïma Ayachi
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Benoit Allegrini
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Samah Rekima
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | | | - Jérôme Becam
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Valentin Lepage
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | | | - Laura Etasse
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | - Loan Tran
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | - Julien Thévenet
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Gianni Pasquetti
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Julie Kerr-Conte
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - François Pattou
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Paolo Botti
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | | | | | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France; University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
3
|
Skrzypski M, Wojciechowicz T, Rak A, Krążek M, Fiedorowicz J, Strowski MZ, Nowak KW. The levels of adropin and its therapeutic potential in diabetes. J Endocrinol 2025; 265:e240117. [PMID: 39888316 DOI: 10.1530/joe-24-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/31/2025] [Indexed: 02/01/2025]
Abstract
Adropin, a peptide hormone encoded by the energy homeostasis-associated gene, is expressed in various tissues, including the brain. Accumulating evidence from in vivo and in vitro studies highlights adropin's pivotal role in modulating carbohydrate and lipid metabolism. Notably, circulating adropin levels are lower in overweight and obese humans, and experimental interventions involving adropin overexpression or synthetic administration demonstrate promising outcomes in mitigating obesity-related metabolic abnormalities and preventing weight gain. This review comprehensively summarizes the current understanding of adropin's potential implications in diverse types of diabetes. Specifically, it explores adropin's utility as a biomarker for different types of diabetes and elucidates its significance as a potential predictor of diabetic adverse outcomes. Furthermore, the review delves into the beneficial effects of adropin treatment in animal models of experimentally induced diabetes, shedding light on its mechanisms of action in modulating glucose metabolism. In this comprehensive overview, we aim to provide a nuanced understanding of multifaceted role of adropin in diabetes pathogenesis and its therapeutic potential in combating this global health challenge.
Collapse
|
4
|
Wagner LE, Melnyk O, Turner A, Duffett BE, Muralidharan C, Martinez-Irizarry MM, Arvin MC, Orr KS, Manduchi E, Kaestner KH, Brozinick JT, Linnemann AK. IFN-α Induces Heterogenous ROS Production in Human β-Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639120. [PMID: 40027743 PMCID: PMC11870469 DOI: 10.1101/2025.02.19.639120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Type 1 diabetes (T1D) is a multifactorial disease involving genetic and environmental factors, including viral infection. We investigated the impact of interferon alpha (IFN-α), a cytokine produced during the immune response to viral infection or the presence of un-edited endogenous double-stranded RNAs, on human β-cell physiology. Intravital microscopy on transplanted human islets using a β-cell-selective reactive oxygen species (ROS) biosensor (RIP1-GRX1-roGFP2), revealed a subset of human β-cells that acutely produce ROS in response to IFN-α. Comparison to Integrated Islet Distribution Program (IIDP) phenotypic data revealed that healthier donors had more ROS accumulating cells. In vitro IFN-α treatment of human islets similarly elicited a heterogenous increase in superoxide production that originated in the mitochondria. To determine the unique molecular signature predisposing cells to IFN-α stimulated ROS production, we flow sorted human islets treated with IFN-α. RNA sequencing identified genes involved in inflammatory and immune response in the ROS-producing cells. Comparison with single cell RNA-Seq datasets available through the Human Pancreas Analysis Program (HPAP) showed that genes upregulated in ROS-producing cells are enriched in control β-cells rather than T1D donors. Combined, these data suggest that IFN-α stimulates mitochondrial ROS production in healthy human β-cells, potentially predicting a more efficient antiviral response.
Collapse
Affiliation(s)
- Leslie E. Wagner
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Abigail Turner
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Bryce E. Duffett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Charanya Muralidharan
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Matthew C. Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Kara S. Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | | | - Amelia K. Linnemann
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Wang CM, Chen YJ, Yang BC, Yang JW, Wang W, Zeng Y, Jiang J. Supplementation with active vitamin D3 ameliorates experimental autoimmune thyroiditis in mice by modulating the differentiation and functionality of intrathyroidal T-cell subsets. Front Immunol 2025; 16:1528707. [PMID: 39949783 PMCID: PMC11821646 DOI: 10.3389/fimmu.2025.1528707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Objective People with Hashimoto's thyroiditis (HT) often have low vitamin D3 concentrations. Some research has suggested that vitamin D3 supplementation reduces thyroid inflammation, but this remains controversial. Methods EAT was induced in female NOD/ShiLtJ mice by giving them water containing 0.05% sodium iodide, and 1μg/kg of 1α,25-(OH)2D3 was injected intraperitoneally every other day. After 8 weeks, the morphological architecture of the mouse thyroid follicles was examined by histological sections, thyroid autoantibodies and thyroid hormone concentrations were determined by enzyme-linked immunosorbent assays (ELISAs), and the major functions and subsets of B- and T-lymphocytes in the mouse thyroid were determined by tissue multiple immunofluorescence technology and ELISA. Results EAT caused thyroiditis follicle destruction and interfollicular lymphocyte infiltration in mice, increased concentrations of circulating thyroid autoimmune antibodies TG-Ab and TPO-Ab, and abnormal thyroid hormone levels. EAT also increased the number and functionality of CD4+ Tfh, Th17,Th1 and Th2 cells in the thyroid, while decreasing the number and functionality of CD4+ Treg cells and CD19+B10 cells. Treatment with VD3 reversed these changes. Conclusion Vitamin D3 supplementation can effectively treat autoimmune thyroiditis in mice. VD3 reduces autoimmune thyroid damage and decreases serum thyroid antibody levels in mice by inhibiting the differentiation and functionality of pro-inflammatory Tfh, Th17, Th1 and Th2 cells and by facilitating the differentiation and functionality of anti-inflammatory B10 cells and Treg.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying-Jie Chen
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo-Cheng Yang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jia-Wen Yang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Wang
- Department of Thyroid, Head, Neck and Maxillofacial Surgery, Mianyang Third People’s Hospital, Mianyang, Sichuan, China
| | - Yang Zeng
- Department of Orthodontics, Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
He K, An F, Zhang H, Yan D, Li T, Wu J, Wu R. Akkermansia muciniphila: A Potential Target for the Prevention of Diabetes. Foods 2024; 14:23. [PMID: 39796314 PMCID: PMC11720440 DOI: 10.3390/foods14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Akkermansia muciniphila, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of A. muciniphila abundance. Thus, A. muciniphil and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus. Diabetes treatments that rely on altering changes in A. muciniphila abundance are also reviewed, including the identification of A. muciniphila active ingredients, and dietary and pharmacological interventions for A. mucinihila abundance. The potential and challenges of using A. muciniphila are also highlighted, and it is anticipated that this work will serve as a reference for more in-depth studies on A. muciniphila and diabetes development, as well as the creation of new therapeutic targets by colleagues domestically and internationally.
Collapse
Affiliation(s)
- Kairu He
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| |
Collapse
|
7
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Soldevila G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: challenges and opportunities. J Leukoc Biol 2024; 116:947-965. [PMID: 38630873 DOI: 10.1093/jleuko/qiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| |
Collapse
|
8
|
Kato M, Abdollahi M, Omori K, Malek V, Lanting L, Kandeel F, Rawson J, Tsark W, Zhang L, Wang M, Tunduguru R, Natarajan R. Lowering an ER stress-regulated long noncoding RNA protects mice from diabetes and isolated pancreatic islets from cell death. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102252. [PMID: 39071954 PMCID: PMC11278341 DOI: 10.1016/j.omtn.2024.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
We investigated the role of the endoplasmic reticulum (ER) stress-regulated long noncoding RNA (lncRNA) lncMGC in pancreatic islets and the pathology of type 1 diabetes (T1D), as well as the potential of lncMGC-based therapeutics. In vivo, blood glucose levels (BGLs) and HbA1c were significantly lower in lncMGC-knockout (KO)-streptozotocin (STZ)-treated diabetic mice compared to wild-type STZ. Antisense oligonucleotides (GapmeR) targeting lncMGC significantly attenuated insulitis and BGLs in T1D NOD mice compared to GapmeR-negative control (NC). GapmeR-injected T1D Akita mice showed significantly lower BGLs compared to Akita-NC mice. hlncMGC-GapmeR lowered BGLs in partially humanized lncMGC (hlncMGC)-STZ mice compared to NC-injected mice. CHOP (ER stress regulating transcription factor) and lncMGC were upregulated in islets from diabetic mice but not in lncMGC-KO and GapmeR-injected diabetic mice, suggesting ER stress involvement. In vitro, hlncMGC-GapmeR increased the viability of isolated islets from human donors and hlncMGC mice and protected them from cytokine-induced apoptosis. Anti-ER stress and anti-apoptotic genes were upregulated, but pro-apoptotic genes were down-regulated in lncMGC KO mice islets and GapmeR-treated human islets. Taken together, these results show that a GapmeR-targeting lncMGC is effective in ameliorating diabetes in mice and also preserves human and mouse islet viability, implicating clinical translation potential.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Walter Tsark
- Transgenic Mouse Facility, Center for Comparative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lingxiao Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Li YR, Lyu Z, Chen Y, Fang Y, Yang L. Frontiers in CAR-T cell therapy for autoimmune diseases. Trends Pharmacol Sci 2024; 45:839-857. [PMID: 39147651 DOI: 10.1016/j.tips.2024.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has demonstrated significant success in treating cancers. The potential of CAR-T cells is now being explored in the context of autoimmune diseases. Recent clinical trials have shown sustained and profound elimination of autoreactive B cells by CAR-T cells, leading to promising autoimmune disease control with minimal safety concerns. These encouraging results have inspired further investigation into CAR-T cell applications for a broader range of autoimmune diseases and the development of advanced cell products with improved efficacy and safety. In this review, we discuss the mechanisms by which CAR-T cells target autoimmune conditions, summarize current preclinical models, and highlight ongoing clinical trials, including CAR-T therapy design, clinical outcomes, and challenges. Additionally, we discuss the limitations and future directions of CAR-T therapy in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Pignet AL, Schellnegger M, Hecker A, Kamolz LP, Kotzbeck P. Modeling Wound Chronicity In Vivo: The Translational Challenge to Capture the Complexity of Chronic Wounds. J Invest Dermatol 2024; 144:1454-1470. [PMID: 38483357 DOI: 10.1016/j.jid.2023.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 06/24/2024]
Abstract
In an aging society with common lifestyle-associated health issues such as obesity and diabetes, chronic wounds pose a frequent challenge that physicians face in everyday clinical practice. Therefore, nonhealing wounds have attracted much scientific attention. Several in vitro and in vivo models have been introduced to deepen our understanding of chronic wound pathogenesis and amplify therapeutic strategies. Understanding how wounds become chronic will provide insights to reverse or avoid chronicity. Although choosing a suitable model is of utmost importance to receive valuable outcomes, an ideal in vivo model capturing the complexity of chronic wounds is still missing and remains a translational challenge. This review discusses the most relevant mammalian models for wound healing studies and provides guidance on how to implement the hallmarks of chronic wounds. It highlights the benefits and pitfalls of established models and maps out future avenues for research.
Collapse
Affiliation(s)
- Anna-Lisa Pignet
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria.
| | - Andrzej Hecker
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Daniels Gatward LF, King AJF. Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology. Methods Cell Biol 2024; 192:39-68. [PMID: 39863393 DOI: 10.1016/bs.mcb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans. This includes pathogenesis specifically involving the beta cell, which is no longer considered to be innocuous in the development and progression of diabetes. In this chapter we explore rodent models that incorporate the initiating factors believed to be involved in type 1 diabetes (autoimmunity) and type 2 diabetes (insulin resistance), before further discussing rodents that can be used to model specific mechanisms involved in a failure of functional beta cell mass (impaired beta cell function and beta cell apoptosis). We segregate models of beta cell pathogenesis based on the beta cell stressor predominantly associated with phenotype, but it is important to consider that most rodent models will exhibit more than one beta cell stressor. Similarly, many models exhibit more than one pathogenic mechanism, for example the same model may show insulin resistance, impaired beta cell function as well as beta cell loss. This can complicate interpretation of results and should be considered, and the model thoroughly researched, during the experimental planning stage.
Collapse
Affiliation(s)
- Lydia F Daniels Gatward
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom
| | - Aileen J F King
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
12
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
13
|
Cobb J, Rawson J, Gonzalez N, Orr C, Kandeel F, Husseiny MI. Reversal of diabetes by an oral Salmonella-based vaccine in acute and progressive diabetes in NOD mice. PLoS One 2024; 19:e0303863. [PMID: 38781241 PMCID: PMC11115281 DOI: 10.1371/journal.pone.0303863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Type 1 diabetes (T1D)-associated hyperglycemia develops, in part, from loss of insulin-secreting beta cells. The degree of glycemic dysregulation and the age at onset of disease can serve as indicators of the aggressiveness of the disease. Tracking blood glucose levels in prediabetic mice may demonstrate the onset of diabetes and, along with animal age, also presage disease severity. In this study, an analysis of blood glucose levels obtained from female NOD mice starting at 4 weeks until diabetes onset was undertaken. New onset diabetic mice were orally vaccinated with a Salmonella-based vaccine towards T1D-associated preproinsulin combined with TGFβ and IL10 along with anti-CD3 antibody. Blood glucose levels were obtained before and after development of disease and vaccination. Animals were classified as acute disease if hyperglycemia was confirmed at a young age, while other animals were classified as progressive disease. The effectiveness of the oral T1D vaccine was greater in mice with progressive disease that had less glucose excursion compared to acute disease mice. Overall, the Salmonella-based vaccine reversed disease in 60% of the diabetic mice due, in part, to lessening of islet inflammation, improving residual beta cell health, and promoting tolerance. In summary, the age of disease onset and severity of glucose dysregulation in NOD mice predicted response to vaccine therapy. This suggests a similar disease categorization in the clinic may predict therapeutic response.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Chris Orr
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| |
Collapse
|
14
|
Fenske RJ, Wienkes HN, Peter DC, Schaid MD, Hurley LD, Pennati A, Galipeau J, Kimple ME. Gα z-independent and -dependent Improvements With EPA Supplementation on the Early Type 1 Diabetes Phenotype of NOD Mice. J Endocr Soc 2024; 8:bvae100. [PMID: 38831864 PMCID: PMC11146416 DOI: 10.1210/jendso/bvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 06/05/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the β-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates β-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and β-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of β-cell mass, and measurements of β-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.
Collapse
Affiliation(s)
- Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Clinical Research Unit, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
| | - Haley N Wienkes
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Liam D Hurley
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
15
|
Balasenthilkumaran NV, Whitesell JC, Pyle L, Friedman R, Kravets V. Network approach reveals preferential T-cell and macrophage association with α-linked β-cells in early stage of insulitis in NOD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592831. [PMID: 38766090 PMCID: PMC11100702 DOI: 10.1101/2024.05.06.592831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
One of the challenges in studying islet inflammation - insulitis - is that it is a transient phenomenon. Traditional reporting of the insulitis progression is based on cumulative, donor-averaged values of leucocyte density in the vicinity of pancreatic islets, that hinders intra- and inter-islet heterogeneity of disease progression. Here, we aimed to understand why insulitis is non-uniform, often with peri-insulitis lesions formed on one side of an islet. To achieve this, we demonstrated applicability of network theory in detangling intra-islet multi-cellular interactions during insulitis. Specifically, we asked the question "what is unique about regions of the islet which interact with immune cells first". This study utilized the non-obese diabetic mouse model of type one diabetes and examined the interplay among α-, β-, T-cells, myeloid cells, and macrophages in pancreatic islets during the progression of insulitis. Disease evolution was tracked based on T/β cell ratio in individual islets. In the early stage, we found that immune cells are preferentially interacting with α-cell-rich regions of an islet. At the islet periphery α-linked β-cells were found to be targeted significantly more compared to those without α-cell neighbors. Additionally, network analysis revealed increased T-myeloid, and T-macrophage interactions with all β-cells.
Collapse
|
16
|
Migotsky N, Kumar S, Shuster JT, Coulombe JC, Senwar B, Gestos AA, Farber CR, Ferguson VL, Silva MJ. Multi-scale cortical bone traits vary in females and males from two mouse models of genetic diversity. JBMR Plus 2024; 8:ziae019. [PMID: 38634075 PMCID: PMC11021811 DOI: 10.1093/jbmrpl/ziae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the genetic basis of cortical bone traits can allow for the discovery of novel genes or biological pathways regulating bone health. Mice are the most widely used mammalian model for skeletal biology and allow for the quantification of traits that cannot easily be evaluated in humans, such as osteocyte lacunar morphology. The goal of our study was to investigate the effect of genetic diversity on multi-scale cortical bone traits of 3 long bones in skeletally-mature mice. We measured bone morphology, mechanical properties, material properties, lacunar morphology, and mineral composition of mouse bones from 2 populations of genetic diversity. Additionally, we compared how intrabone relationships varied in the 2 populations. Our first population of genetic diversity included 72 females and 72 males from the 8 inbred founder strains used to create the Diversity Outbred (DO) population. These 8 strains together span almost 90% of the genetic diversity found in mice (Mus musculus). Our second population of genetic diversity included 25 genetically unique, outbred females and 25 males from the DO population. We show that multi-scale cortical bone traits vary significantly with genetic background; heritability values range from 21% to 99% indicating genetic control of bone traits across length scales. We show for the first time that lacunar shape and number are highly heritable. Comparing the 2 populations of genetic diversity, we show that each DO mouse does not resemble a single inbred founder, but instead the outbred mice display hybrid phenotypes with the elimination of extreme values. Additionally, intrabone relationships (eg, ultimate force vs. cortical area) were mainly conserved in our 2 populations. Overall, this work supports future use of these genetically diverse populations to discover novel genes contributing to cortical bone traits, especially at the lacunar length scale.
Collapse
Affiliation(s)
- Nicole Migotsky
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Surabhi Kumar
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - John T Shuster
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Adrian A Gestos
- Materials Instrumentation and Multimodal Imaging Core, University of Colorado, Boulder, CO 80309, United States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, United States
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States
- Materials Instrumentation and Multimodal Imaging Core, University of Colorado, Boulder, CO 80309, United States
| | - Matthew J Silva
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| |
Collapse
|
17
|
Liao CC, Hsieh CC, Shia WC, Chou MY, Huang CC, Lin JH, Lee SH, Sung HH. Refined protocol for newly onset identification in non-obese diabetic mice: an animal-friendly, cost-effective, and efficient alternative. Lab Anim Res 2024; 40:16. [PMID: 38649958 PMCID: PMC11034171 DOI: 10.1186/s42826-024-00202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Therapeutic interventions for diabetes are most effective when administered in the newly onset phase, yet determining the exact onset moment can be elusive in practice. Spontaneous autoimmune diabetes among NOD mice appears randomly between 12 and 32 weeks of age with an incidence range from 60 to 90%. Furthermore, the disease often progresses rapidly to severe diabetes within days, resulting in a very short window of newly onset phase, that poses significant challenge in early diagnosis. Conventionally, extensive blood glucose (BG) testing is typically required on large cohorts throughout several months to conduct prospective survey. We incorporated ultrasensitive urine glucose (UG) testing into an ordinary BG survey process, initially aiming to elucidate the lag period required for excessive glucose leaking from blood to urine during diabetes progression in the mouse model. RESULTS The observations unexpectedly revealed that small amounts of glucose detected in the urine often coincide with, sometimes even a couple days prior than elevated BG is diagnosed. Accordingly, we conducted the UG-based survey protocol in another cohort that was validated to accurately identified every individual near onset, who could then be confirmed by following few BG tests to fulfill the consecutive BG + criteria. This approach required fewer than 95 BG tests, compared to over 700 tests with traditional BG survey, to diagnose all the 37-38 diabetic mice out of total 60. The average BG level at diagnosis was slightly below 350 mg/dl, lower than the approximately 400 mg/dl observed with conventional BG monitoring. CONCLUSIONS We demonstrated a near perfect correlation between BG + and ultrasensitive UG + results in prospective survey with no lag period detected under twice weekly of testing frequency. This led to the refined protocol based on surveying with noninvasive UG testing, allowing for the early identification of newly onset diabetic mice with only a few BG tests required per mouse. This protocol significantly reduces the need for extensive blood sampling, lancet usage, labor, and animal distress, aligning with the 3Rs principle. It presents a convenient, accurate, and animal-friendly alternative for early diabetes diagnosis, facilitating research on diagnosis, pathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Chia-Chi Liao
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chia-Chun Hsieh
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chung Shia
- Molecular Medicine Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Lab, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chuan-Chuan Huang
- Biomedical Technology and Device Research Lab, Industrial Technology Research Institute, Hsinchu, Taiwan
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jhih-Hong Lin
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Shu-Hsien Lee
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan.
| |
Collapse
|
18
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Patel S, Becker E, Ploix C, Steiner G, Scepanovic P, Fueth M, de Vera Mudry MC, Eichinger-Chapelon A, Marrer-Berger E, Claesson MJ. Gut Microbiota Is Associated with Onset and Severity of Type 1 Diabetes in Nonobese Diabetic Mice Treated with Anti-PD-1. Immunohorizons 2023; 7:872-885. [PMID: 38147032 PMCID: PMC10759162 DOI: 10.4049/immunohorizons.2300103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023] Open
Abstract
Our bodies are home to individual-specific microbial ecosystems that have recently been found to be modified by cancer immunotherapies. The interaction between the gut microbiome and islet autoimmunity leading to type I diabetes (T1D) is well described and highlights the microbiome contribution during the onset and T1D development in animals and humans. As cancer immunotherapies induce gut microbiome perturbations and immune-mediated adverse events in susceptible patients, we hypothesized that NOD mice can be used as a predictive tool to investigate the effects of anti-PD-1 treatment on the onset and severity of T1D, and how microbiota influences immunopathology. In this longitudinal study, we showed that anti-PD-1 accelerated T1D onset, increased glutamic acid decarboxylase-reactive T cell frequency in spleen, and precipitated destruction of β cells, triggering high glucose levels and pancreatic islet reduction. Anti-PD-1 treatment also resulted in temporal microbiota changes and lower diversity characteristic of T1D. Finally, we identified known insulin-resistance regulating bacteria that were negatively correlated with glucose levels, indicating that anti-PD-1 treatment impacts the early gut microbiota composition. Moreover, an increase of mucin-degrading Akkermansia muciniphila points to alterations of barrier function and immune system activation. These results highlight the ability of microbiota to readily respond to therapy-triggered pathophysiological changes as rescuers (Bacteroides acidifaciens and Parabacteroides goldsteinii) or potential exacerbators (A. muciniphila). Microbiome-modulating interventions may thus be promising mitigation strategies for immunotherapies with high risk of immune-mediated adverse events.
Collapse
Affiliation(s)
- Shriram Patel
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
- SeqBiome Ltd, Cork, Ireland
| | - Eugenia Becker
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Corinne Ploix
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Guido Steiner
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Petar Scepanovic
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Matthias Fueth
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Maria Cristina de Vera Mudry
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Anne Eichinger-Chapelon
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Estelle Marrer-Berger
- Pharmaceutical Sciences, Roche Innovation Center Basel, Pharma Research & Early Development, Hoffmann-La Roche, Basel, Switzerland
| | - Marcus J. Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
- SeqBiome Ltd, Cork, Ireland
| |
Collapse
|
20
|
Cristelo C, Nunes R, Pinto S, Marques JM, Gama FM, Sarmento B. Targeting β Cells with Cathelicidin Nanomedicines Improves Insulin Function and Pancreas Regeneration in Type 1 Diabetic Rats. ACS Pharmacol Transl Sci 2023; 6:1544-1560. [PMID: 37854630 PMCID: PMC10580391 DOI: 10.1021/acsptsci.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 10/20/2023]
Abstract
Type 1 diabetes (T1D) is an incurable condition with an increasing incidence worldwide, in which the hallmark is the autoimmune destruction of pancreatic insulin-producing β cells. Cathelicidin-based peptides have been shown to improve β cell function and neogenesis and may thus be relevant while developing T1D therapeutics. In this work, a cathelicidin-derived peptide, LLKKK18, was loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), surface-functionalized with exenatide toward a GLP-1 receptor, aiming the β cell-targeted delivery of the peptide. The NPs present a mean size of around 100 nm and showed long-term stability, narrow size distribution, and negative ζ-potential (-10 mV). The LLKKK18 association efficiency and loading were 62 and 2.9%, respectively, presenting slow and sustained in vitro release under simulated physiologic fluids. Glucose-stimulated insulin release in the INS-1E cell line was observed in the presence of the peptide. In addition, NPs showed a strong association with β cells from isolated rat islets. After administration to diabetic rats, NPs induced a significant reduction of the hyperglycemic state, an improvement in the pancreatic insulin content, and glucose tolerance. Also remarkable, a considerable increase in the β cell mass in the pancreas was observed. Overall, this novel and versatile nanomedicine showed glucoregulatory ability and can pave the way for the development of a new generation of therapeutic approaches for T1D treatment.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Rute Nunes
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| | - Soraia Pinto
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Moreira Marques
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Faculdade
de Farmácia, Universidade do Porto, Porto 4099-002, Portugal
| | - Francisco Miguel Gama
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Bruno Sarmento
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| |
Collapse
|
21
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
22
|
Grassi F, Salina G. The P2X7 Receptor in Autoimmunity. Int J Mol Sci 2023; 24:14116. [PMID: 37762419 PMCID: PMC10531565 DOI: 10.3390/ijms241814116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel that, upon intense stimulation, can progress to the opening of a pore permeable to molecules up to 900 Da. Apart from its broad expression in cells of the innate and adaptive immune systems, it is expressed in multiple cell types in different tissues. The dual gating property of P2X7R is instrumental in determining cellular responses, which depend on the expression level of the receptor, timing of stimulation, and microenvironmental cues, thus often complicating the interpretation of experimental data in comprehensive settings. Here we review the existing literature on P2X7R activity in autoimmunity, pinpointing the different functions in cells involved in the immunopathological processes that can make it difficult to model as a druggable target.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
23
|
Tucker TR, Knitter CA, Khoury DM, Eshghi S, Tran S, Sharrock AV, Wiles TJ, Ackerley DF, Mumm JS, Parsons MJ. An inducible model of chronic hyperglycemia. Dis Model Mech 2023; 16:dmm050215. [PMID: 37401381 PMCID: PMC10417516 DOI: 10.1242/dmm.050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Transgene driven expression of Escherichia coli nitroreductase (NTR1.0) renders animal cells susceptible to the antibiotic metronidazole (MTZ). Many NTR1.0/MTZ ablation tools have been reported in zebrafish, which have significantly impacted regeneration studies. However, NTR1.0-based tools are not appropriate for modeling chronic cell loss as prolonged application of the required MTZ dose (10 mM) is deleterious to zebrafish health. We established that this dose corresponds to the median lethal dose (LD50) of MTZ in larval and adult zebrafish and that it induced intestinal pathology. NTR2.0 is a more active nitroreductase engineered from Vibrio vulnificus NfsB that requires substantially less MTZ to induce cell ablation. Here, we report on the generation of two new NTR2.0-based zebrafish lines in which acute β-cell ablation can be achieved without MTZ-associated intestinal pathology. For the first time, we were able to sustain β-cell loss and maintain elevated glucose levels (chronic hyperglycemia) in larvae and adults. Adult fish showed significant weight loss, consistent with the induction of a diabetic state, indicating that this paradigm will allow the modeling of diabetes and associated pathologies.
Collapse
Affiliation(s)
- Tori R. Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Courtney A. Knitter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Deena M. Khoury
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sheida Eshghi
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sophia Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Travis J. Wiles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeff S. Mumm
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J. Parsons
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
24
|
He H, Luo H, Xu H, Qian B, Zou X, Zhang G, Zeng F, Zou J. Preclinical models and evaluation criteria of prostatitis. Front Immunol 2023; 14:1183895. [PMID: 37228599 PMCID: PMC10203503 DOI: 10.3389/fimmu.2023.1183895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Prostatitis is a common urological condition that affects almost half of all men at some point in their life. The prostate gland has a dense nerve supply that contributes to the production of fluid to nourish sperm and the mechanism to switch between urination and ejaculation. Prostatitis can cause frequent urination, pelvic pain, and even infertility. Long-term prostatitis increases the risk of prostate cancer and benign prostate hyperplasia. Chronic non-bacterial prostatitis presents a complex pathogenesis, which has challenged medical research. Experimental studies of prostatitis require appropriate preclinical models. This review aimed to summarize and compare preclinical models of prostatitis based on their methods, success rate, evaluation, and range of application. The objective of this study is to provide a comprehensive understanding of prostatitis and advance basic research.
Collapse
Affiliation(s)
- Hailan He
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Fei Zeng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| |
Collapse
|
25
|
Lo Conte M, Antonini Cencicchio M, Ulaszewska M, Nobili A, Cosorich I, Ferrarese R, Massimino L, Andolfo A, Ungaro F, Mancini N, Falcone M. A diet enriched in omega-3 PUFA and inulin prevents type 1 diabetes by restoring gut barrier integrity and immune homeostasis in NOD mice. Front Immunol 2023; 13:1089987. [PMID: 36713378 PMCID: PMC9880528 DOI: 10.3389/fimmu.2022.1089987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction The integrity of the gut barrier (GB) is fundamental to regulate the crosstalk between the microbiota and the immune system and to prevent inflammation and autoimmunity at the intestinal level but also in organs distal from the gut such as the pancreatic islets. In support to this idea, we recently demonstrated that breakage of GB integrity leads to activation of islet-reactive T cells and triggers autoimmune Type 1 Diabetes (T1D). In T1D patients as in the NOD mice, the spontaneous model of autoimmune diabetes, there are alterations of the GB that specifically affect structure and composition of the mucus layer; however, it is yet to be determined whether a causal link between breakage of the GB integrity and occurrence of autoimmune T1D exists. Methods Here we restored GB integrity in the NOD mice through administration of an anti-inflammatory diet (AID- enriched in soluble fiber inulin and omega 3-PUFA) and tested the effect on T1D pathogenesis. Results We found that the AID prevented T1D in NOD mice by restoring GB integrity with increased mucus layer thickness and higher mRNA transcripts of structural (Muc2) and immunoregulatory mucins (Muc1 and Muc3) as well as of tight junction proteins (claudin1). Restoration of GB integrity was linked to reduction of intestinal inflammation (i.e., reduced expression of IL-1β, IL-23 and IL-17 transcripts) and expansion of regulatory T cells (FoxP3+ Treg cells and IL-10+ Tr1 cells) at the expenses of effector Th1/Th17 cells in the intestine, pancreatic lymph nodes (PLN) and intra-islet lymphocytes (IIL) of AID-fed NOD mice. Importantly, the restoration of GB integrity and immune homeostasis were associated with enhanced concentrations of anti-inflammatory metabolites of the ω3/ω6 polyunsaturated fatty acids (PUFA) and arachidonic pathways and modifications of the microbiome profile with increased relative abundance of mucus-modulating bacterial species such as Akkermansia muciniphila and Akkermansia glycaniphila. Discussion Our data provide evidence that the restoration of GB integrity and intestinal immune homeostasis through administration of a tolerogenic AID that changed the gut microbial and metabolic profiles prevents autoimmune T1D in preclinical models.
Collapse
Affiliation(s)
- Marta Lo Conte
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy
| | - Martina Antonini Cencicchio
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy
| | - Marynka Ulaszewska
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Nobili
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Cosorich
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Massimino
- Experimental Gastroenterology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Ungaro
- Experimental Gastroenterology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy,Laboratory of Medical Microbiology and Virology, Università “Vita-Salute” San Raffaele, Milan, Italy
| | - Marika Falcone
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy,*Correspondence: Marika Falcone,
| |
Collapse
|
26
|
Panfili E, Orecchini E, Mondanelli G. Unrevealing the Role of TLRs in the Pathogenesis of Autoimmune Disease by Using Mouse Model of Diabetes. Methods Mol Biol 2023; 2700:187-198. [PMID: 37603182 DOI: 10.1007/978-1-0716-3366-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Toll-like receptors (TLRs) are receptors of the innate immune system specialized in recognizing conserved molecular pattern of pathogens and initiating an appropriate immune response. Along with the recognition of foreign materials, TLRs have also been shown to respond to endogenous molecules, thus mediating the development of autoimmune diseases. Type 1 diabetes (T1D) is a prototypic autoimmune disease in which TLRs play a pathogenic role. We here describe a protocol to study the role of TLRs in the development and progression of T1D by resorting to the nonobese diabetic (NOD) mouse model.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Orecchini
- Department of Onco-Hematology and Cell and Gene Therapy, Bambin Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
27
|
Syed F, Singhal D, Raedschelders K, Krishnan P, Bone RN, McLaughlin MR, Van Eyk JE, Mirmira RG, Yang ML, Mamula MJ, Wu H, Liu X, Evans-Molina C. A discovery-based proteomics approach identifies protein disulphide isomerase (PDIA1) as a biomarker of β cell stress in type 1 diabetes. EBioMedicine 2023; 87:104379. [PMID: 36463755 PMCID: PMC9719098 DOI: 10.1016/j.ebiom.2022.104379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stress responses within the β cell have been linked with both increased β cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet β cell protein expression during T1D development is lacking. METHODS Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. FINDINGS In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of β cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. INTERPRETATION We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D. FUNDING NIH (R01DK093954, DK127308, U01DK127786, UC4DK104166, R01DK060581, R01GM118470, and 5T32DK101001-09). VA Merit Award I01BX001733. JDRF (2-SRA-2019-834-S-B, 2-SRA-2018-493-A-B, 3-PDF-20016-199-A-N, 5-CDA-2022-1176-A-N, and 3-PDF-2017-385-A-N).
Collapse
Affiliation(s)
- Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Divya Singhal
- Department of Biochemistry and Molecular Biology, University of Calgary, 2500 University Drive NW, Alberta, Canada, T2N1N4
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Preethi Krishnan
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Robert N Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Madeline R McLaughlin
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Raghavendra G Mirmira
- Kovler Diabetes Center, University of Chicago, 900 E 57th St, Chicago, IL, USA, 60637
| | - Mei-Ling Yang
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Mark J Mamula
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Huanmei Wu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 535 W. Michigan Street, Indianapolis, IN, USA, 46202; Department of Health Services Administration and Policy, Temple University College of Public Health, 1101 W. Montgomery Ave, Philadelphia, PA, USA, 19122
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA, 70112
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202; Department of Medicine, Indiana University School of Medicine, 340 W 10th St, Indianapolis, IN, USA, 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, USA, 46202; Richard L. Roudebush VA Medical Center, Indiana University School of Informatics and Computing, 1481 W 10th St, Indianapolis, IN, USA, 46202.
| |
Collapse
|
28
|
A Monovalent Mt10-CVB3 Vaccine Prevents CVB4-Accelerated Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2022; 11:vaccines11010076. [PMID: 36679922 PMCID: PMC9864234 DOI: 10.3390/vaccines11010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Enteroviruses, which include Coxsackieviruses, are a common cause of virus infections in humans, and multiple serotypes of the group B Coxsackievirus (CVB) can induce similar diseases. No vaccines are currently available to prevent CVB infections because developing serotype-specific vaccines is not practical. Thus, developing a vaccine that induces protective immune responses for multiple serotypes is desired. In that direction, we created a live-attenuated CVB3 vaccine virus, designated mutant (Mt)10, that offers protection against myocarditis and pancreatitis induced by CVB3 and CVB4 in disease-susceptible A/J mice. Here, we report that the Mt10 vaccine protected against CVB4-triggered type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but the expected subsequent development of spontaneous T1D in these genetically predisposed NOD mice was not altered. We noted that Mt10 vaccine induced significant amounts of neutralizing antibodies, predominantly of the IgG2c isotype, and the virus was not detected in vaccine-challenged animals. Furthermore, monitoring blood glucose levels-and to a lesser extent, insulin antibodies-was found to be helpful in predicting vaccine responses. Taken together, our data suggest that the monovalent Mt10 vaccine has the potential to prevent infections caused by multiple CVB serotypes, as we have demonstrated in various pre-clinical models.
Collapse
|
29
|
Kalaitzoglou E, Fowlkes JL, Thrailkill KM. Mouse models of type 1 diabetes and their use in skeletal research. Curr Opin Endocrinol Diabetes Obes 2022; 29:318-325. [PMID: 35749285 PMCID: PMC9271636 DOI: 10.1097/med.0000000000000737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW In this review, we describe the three primary mouse models of insulin-deficiency diabetes that have been used to study the effects of type 1 diabetes (T1D) on skeletal outcomes. These models include streptozotocin (chemically)-induced diabetes, autoimmune-mediated diabetes (the nonobese diabetes mouse), and a mutation in the insulin gene (the Akita mouse). We then describe the skeletal findings and/or skeletal phenotypes that have been delineated using these models. RECENT FINDINGS Humans with T1D have decreased bone mineral density and an increased risk for fragility fracture. Mouse models of insulin-deficiency diabetes (hereafter denoted as T1D) in many ways recapitulate these skeletal deficits. Utilizing techniques of microcomputed tomography, bone histomorphometry, biomechanical testing and fracture modeling, bone biomarker analysis, and Raman spectroscopy, mouse models of T1D have demonstrated abnormalities in bone mineralization, bone microarchitecture, osteoblast function, abnormal bone turnover, and diminished biomechanical properties of bone. SUMMARY Mouse models have provided significant insights into the underlying mechanisms involved in the abnormalities of bone observed in T1D in humans. These translational models have provided targets and pathways that may be modifiable to prevent skeletal complications of T1D.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - John L Fowlkes
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
31
|
Boldison J, Thayer TC, Davies J, Wong FS. Natural Protection From Type 1 Diabetes in NOD Mice Is Characterized by a Unique Pancreatic Islet Phenotype. Diabetes 2021; 70:955-965. [PMID: 33531355 DOI: 10.2337/db20-0945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022]
Abstract
The NOD mouse develops spontaneous type 1 diabetes, with some features of disease that are very similar to the human disease. However, a proportion of NOD mice are naturally protected from developing diabetes, and currently, studies characterizing this cohort are very limited. Here, using both immunofluorescence and multiparameter flow cytometry, we focus on the pancreatic islet morphology and immune infiltrate observed in naturally protected NOD mice. We show that naturally protected NOD mice are characterized by an increased frequency of insulin-containing, smaller-sized, pancreatic islets. Although mice remain diabetes free, florid immune infiltrate remains. However, this immune infiltrate is skewed toward a regulatory phenotype in both T- and B-cell compartments. Pancreatic islets have an increased frequency of IL-10-producing B cells and associated cell surface markers. Resident memory CD69+CD8+ T cells show a significant shift toward reduced CD103 expression, while CD4+ T cells have increased FoxP3+CTLA4+ expression. These data indicate that naturally protected NOD mice have a unique islet signature and provide new insight into regulatory mechanisms within pancreatic islets.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K.
| | - Terri C Thayer
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K
| |
Collapse
|
32
|
Elhag DA, Kumar M, Al Khodor S. Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. Int J Mol Sci 2020; 22:ijms22010125. [PMID: 33374418 PMCID: PMC7795494 DOI: 10.3390/ijms22010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.
Collapse
|
33
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|