1
|
Awan A, Bartlett A, Blakeley-Ruiz JA, Richie T, Ziegler A, Kleiner M. Source of dietary protein alters the abundance of proteases, intestinal epithelial and immune proteins both directly and via interactions with the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632171. [PMID: 39829768 PMCID: PMC11741435 DOI: 10.1101/2025.01.09.632171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dietary protein has been shown to impact long-term health outcomes differentially depending on its amount and source. It has been suggested that interactions of the gut microbiota with dietary proteins mediate some of the effects of dietary protein on health outcomes. However, it remains unclear what specific host responses drive the health effects of dietary proteins from different plant and animal sources. Additionally, which specific host responses are mediated by interactions of dietary protein source with the gut microbiota and which host responses are caused by dietary proteins directly is not well understood. We used metaproteomics to quantify dietary, host, and microbial proteins in fecal samples of conventional and germ-free mice fed purified dietary protein from six different plant and animal sources, including casein, egg-white, soy, brown rice, pea, and yeast. We characterized differences in the host fecal proteome across the six dietary protein sources as well as between the conventional and germ-free mice for each source to determine how the host responds to the different dietary protein sources and the role of the gut microbiota in mediating these responses. We found that both the source of dietary protein and the presence or absence of the gut microbiota drive the host response to dietary protein source in the fecal host proteome. Host proteins pertaining to immune response, digestion, and barrier function were differentially abundant in different protein sources with and without the gut microbiota. These changes in the host response correlated with changes in microbial composition and differences in protein digestibility. Our results show how dietary protein sources, through their interactions with the gut microbiota, impact several aspects of host physiology.
Collapse
Affiliation(s)
- Ayesha Awan
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - J. Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Tanner Richie
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda Ziegler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Sun R, Zhang Y, Lin X, Piao Y, Xie T, He Y, Xiang J, Shao S, Zhou Q, Zhou Z, Tang J, Shen Y. Aminopeptidase N-Responsive Conjugates with Tunable Charge-Reversal Properties for Highly Efficient Tumor Accumulation and Penetration. Angew Chem Int Ed Engl 2023; 62:e202217408. [PMID: 36594796 DOI: 10.1002/anie.202217408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Tumor enzyme-responsive charge-reversal carriers can induce efficient transcytosis and lead to efficient tumor infiltration and potent anticancer efficacy. However, the correlations of molecular structure with charge-reversal property, tumor penetration, and drug delivery efficiency are unknown. Herein, aminopeptidase N (APN)-responsive conjugates were synthesized to investigate these correlations. We found that the monomeric unit structure and the polymer chain structure determined the enzymatic hydrolysis and charge-reversal rates, and accordingly, the transcytosis and tumor accumulation and penetration of the APN-responsive conjugates. The conjugate with moderate APN responsiveness balanced the in vitro transcytosis and in vivo overall drug delivery process and achieved the best tumor delivery efficiency, giving potent antitumor efficacy. This work provides new insight into the design of tumor enzyme-responsive charge-reversal nanomedicines for efficient cancer drug delivery.
Collapse
Affiliation(s)
- Rui Sun
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yifan Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaowei Lin
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi He
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Niu X, Wang Q. Prevention and Control of Porcine Epidemic Diarrhea: The Development of Recombination-Resistant Live Attenuated Vaccines. Viruses 2022; 14:v14061317. [PMID: 35746788 PMCID: PMC9227446 DOI: 10.3390/v14061317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022] Open
Abstract
Porcine epidemic diarrhea (PED), causing up to 100% mortality in neonatal pigs, is a highly contagious enteric disease caused by PED virus (PEDV). The highly virulent genogroup 2 (G2) PEDV emerged in 2010 and has caused huge economic losses to the pork industry globally. It was first reported in the US in 2013, caused country-wide outbreaks, and posed tremendous hardship for many pork producers in 2013–2014. Vaccination of pregnant sows/gilts with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows/gilts and provide a passive protection via the colostrum and milk to suckling piglets against PED. However, there are still no safe and effective vaccines available after about one decade of endeavor. One of the biggest concerns is the potential reversion to virulence of an LAV in the field. In this review, we summarize the status and the major obstacles in PEDV LAV development. We also discuss the function of the transcriptional regulatory sequences in PEDV transcription, contributing to recombination, and possible strategies to prevent the reversion of LAVs. This article provides insights into the rational design of a promising LAV without safety issues.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-330-263-3960
| |
Collapse
|
4
|
In Vivo Molecular Imaging of the Efficacy of Aminopeptidase N (APN/CD13) Receptor Inhibitor Treatment on Experimental Tumors Using 68Ga-NODAGA-c(NGR) Peptide. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6642973. [PMID: 33778075 PMCID: PMC7972841 DOI: 10.1155/2021/6642973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
Introduction The aminopeptidase N (APN/CD13) receptor plays an important role in the neoangiogenic process and metastatic tumor cell invasion. Clinical and preclinical studies reported that bestatin and actinonin are cytotoxic to APN/CD13-positive tumors and metastases due to their APN/CD13-specific inhibitor properties. Our previous studies have already shown that 68Ga-labeled NGR peptides bind specifically to APN/CD13 expressing tumor cells. The APN/CD13 specificity of 68Ga-NGR radiopharmaceuticals enables the following of the efficacy of antiangiogenic therapy with APN/CD13-specific inhibitors using positron emission tomography (PET). The aim of this in vivo study was to assess the antitumor effect of bestatin and actinonin treatment in subcutaneous transplanted HT1080 and B16-F10 tumor-bearing animal models using 68Ga-NODAGA-c(NGR). Materials and Methods Three days after the inoculation of HT1080 and B16-F10 cells, mice were treated with intraperitoneal injection of bestatin (15 mg/kg) or actinonin (5 mg/kg) for 7 days. On the 5th and 10th day, in vivo PET scans and ex vivo biodistribution studies were performed 90 min after intravenous injection of 5.5 ± 0.2 MBq68Ga-NODAGA-c(NGR). Results Control-untreated HT1080 and B16-F10 tumors were clearly visualized by the APN/CD13-specific 68Ga-NODAGA-c(NGR) radiopharmaceutical. The western blot analysis also confirmed the strong APN/CD13 positivity in the investigated tumors. We found significantly (p ≤ 0.05) lower radiopharmaceutical uptake after bestatin treatment and higher radiotracer accumulation in the actinonin-treated HT1080 tumors. In contrast, significantly lower (p ≤ 0.01) 68Ga-NODAGA-c(NGR) accumulation was observed in both bestatin- and actinonin-treated B16-F10 melanoma tumors compared to the untreated-control tumors. Bestatin inhibited tumor growth and 68Ga-NODAGA-c(NGR) uptake in both tumor models. Conclusion The bestatin treatment is suitable for suppressing the neoangiogenic process and APN/CD13 expression of experimental HT1080 and B16-F10 tumors; furthermore, 68Ga-NODAGA-c(NGR) is an applicable radiotracer for the in vivo monitoring of the efficacy of the APN/CD13 inhibition-based anticancer therapies.
Collapse
|
5
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Regulatory effect and mechanism of APN gene on porcine epidemic diarrhea virus resistance. Gene 2021; 775:145448. [PMID: 33482281 DOI: 10.1016/j.gene.2021.145448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/19/2020] [Accepted: 01/13/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE The expression level of aminopeptidase N (APN) is evidently correlated with porcine epidemic diarrhea virus (PEDV) infectivity. This study aims to examine the mechanisms regulating APN expression level in response to PEDV infection. METHODS Quantitative real time PCR was performed herein to detect gene expression dynamics at various timepoints after PEDV infection. Subsequently, CRISPR/Cas9 gene editing technology was used to generate a APN-knockout IPEC-J2 cell line, exploring the effects of APN on cell proliferation by propidium iodide staining and anti-PEDV activity by indirect immunofluorescence assay. Ultimately, the effects of single nucleotide polymorphisms (SNPs) and methylation in the APN promoter region on gene expression were analyzed by using bisulfite sequencing PCR and dual luciferase reporter gene assay. RESULTS APN expression was significantly upregulated within 4-24 h post-infection. The cytoactivity of the APN-knockout IPEC-J2 cell line was markedly suppressed at different timepoints. Further, cell cycle analyses indicated an increase in the number of G1-phase cells and a significant decrease in that of S-phase cells. Moreover, key cyclical factors regulating the G1 phase were highly expressed in APN-knockout cells. The RNA copies of viral particles and mRNA levels of antiviral genes and inflammatory cytokines in APN-knockout cells were markedly decreased within 24 h of PEDV infection. Similarly, indirect immunofluorescence assay confirmed that the number of PEDV particles was significantly decreased. Sequence analysis revealed two CpG islands in the APN promoter region. However, there was no evident correlation between the methylation status of APN promoter and mRNA levels. Dual luciferase reporter gene assay showed that the SNP rs326030589 (G/A) significantly increased the promoter activity of APN. CONCLUSIONS These results suggested that APN knockout enhanced the resistance of IPEC-J2 cells to PEDV. Moreover, rs326030589 in the APN promoter region participated in gene transcription regulation. Our results provide a reference for studying the mechanisms regulating APN and may contribute to the application of APN gene in resistance breeding of swine epidemic diarrhea.
Collapse
|
7
|
Resistance to ETEC F4/F18-mediated piglet diarrhoea: opening the gene black box. Trop Anim Health Prod 2019; 51:1307-1320. [PMID: 31127494 DOI: 10.1007/s11250-019-01934-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/15/2019] [Indexed: 01/08/2023]
Abstract
Diarrhoea, a significant problem in pig rearing industry affecting pre- and post-weaning piglets is caused by enterotoxigenic Escherichia coli (ETEC). The ETEC are classified as per the fimbriae types which are responsible for bacterial attachment with enterocytes and release of toxins causing diarrhoea. However, genetic difference exists for susceptibility to ETEC infection in piglets. The different phenotypes found in pigs determine their (pigs') susceptibility or resistance towards fimbrial subtypes/variants (F4ab, F4ac, F4ad and F18). Specific receptors are present on intestinal epithelium for attachment of these fimbriae, which do not express to same level in all animals. This differential expression is genetically determined and thus their genetic causes (may be putative candidate gene or mutations) render some animals resistant or susceptible to one or more fimbrial subtypes. Genetic linkage studies have revealed the mapping location of the receptor loci for the two most frequent variants F4ab and F4ac to SSC13q41 (i.e. q arm of 13th chromosome of Sus scrofa). Some SNPs have been identified in mucin gene family, transferring receptor gene, fucosyltransferase 1 gene and swine leucocyte antigen locus that are proposed to be linked mutations for resistance/susceptibility towards ETEC diarrhoea. However, owing to the variety of fimbrial types and subtypes, it would be difficult to identify a single causative mutation and the candidate loci may involve more number of genes/regions. In this review, we focus on the genetic mutations in genes involved in imparting resistance/susceptibility to F4 or F18 ETEC diarrhoea and possibilities to use them as marker for selection against susceptible animals.
Collapse
|
8
|
Cao J, Zang J, Ma C, Li X, Hou J, Li J, Huang Y, Xu W, Wang B, Zhang Y. Design, Synthesis, and Biological Evaluation of Pyrazoline-Based Hydroxamic Acid Derivatives as Aminopeptidase N (APN) Inhibitors. ChemMedChem 2018; 13:431-436. [PMID: 29377564 DOI: 10.1002/cmdc.201700690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/12/2018] [Indexed: 11/11/2022]
Abstract
Aminopeptidase N (APN) has been recognized as a target for anticancer treatment due to its overexpression on diverse malignant tumor cells and association with cancer invasion, metastasis and angiogenesis. Herein we describe the synthesis, biological evaluation, and structure-activity relationship study of two new series of pyrazoline analogues as APN inhibitors. Among these compounds, 5-(2-(2-(hydroxyamino)-2-oxoethoxy)phenyl)-3-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamide (compound 13 e) showed the best APN inhibition with an IC50 value of 0.16±0.02 μm, which is more than one order of magnitude lower than that of bestatin (IC50 =9.4±0.5 μm). Moreover, compound 13 e was found to inhibit the proliferation of diverse carcinoma cells and to show potent anti-angiogenesis activity. At the same concentration, compound 13 e presents significantly higher anti-angiogenesis activity than bestatin in human umbilical vein endothelial cells (HUVECs) capillary tube formation assays. The putative binding mode of 13 e in the active site of APN is also discussed.
Collapse
Affiliation(s)
- Jiangying Cao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jie Zang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chunhua Ma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xiaoguang Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jinning Hou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yongxue Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| |
Collapse
|
9
|
Goetstouwers T, Van Poucke M, Nguyen VU, Melkebeek V, Coddens A, Deforce D, Cox E, Peelman LJ. F4-related mutation and expression analysis of the aminopeptidase N gene in pigs. J Anim Sci 2014; 92:1866-73. [PMID: 24663207 PMCID: PMC7109699 DOI: 10.2527/jas.2013-7307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intestinal infections with F4 enterotoxigenic Escherichia coli (ETEC) are worldwide an important cause of diarrhea in neonatal and recently weaned pigs. Adherence of F4 ETEC to the small intestine by binding to specific receptors is mediated by F4 fimbriae. Porcine aminopeptidase N (ANPEP) was recently identified as a new F4 receptor. In this study, 7 coding mutations and 1 mutation in the 3′ untranslated region (3' UTR)were identified in ANPEP by reverse transcriptase (RT–) PCR and sequencing using 3 F4 receptor-positive (F4R+) and 2 F4 receptor-negative (F4R–) pigs, which were F4 phenotyped based on the MUC4 TaqMan, oral immunization, and the in vitro villous adhesion assay. Three potential differential mutations (g.2615C > T, g.8214A > G, and g.16875C > G) identified by comparative analysis between the 3 F4R+ and 2 F4R– pigs were genotyped in 41 additional F4 phenotyped pigs. However, none of these 3 mutations could be associated with F4 ETEC susceptibility. In addition, the RT-PCR experiments did not reveal any differential expression or alternative splicing in the small intestine of F4R+ and F4R– pigs. In conclusion, we hypothesize that the difference in F4 binding to ANPEP is due to modifications in its carbohydrate moieties.
Collapse
Affiliation(s)
- T Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fairweather S, Bröer A, O'Mara M, Bröer S. Intestinal peptidases form functional complexes with the neutral amino acid transporter B(0)AT1. Biochem J 2012; 446:135-48. [PMID: 22677001 PMCID: PMC3408045 DOI: 10.1042/bj20120307] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 01/01/2023]
Abstract
The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B(0)AT1 [broad neutral ((0)) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B(0)AT1 and B(0)AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B(0)AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B(0)AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (V(max)). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B(0)AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B(0)AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.
Collapse
Key Words
- aminopeptidase n
- angiotensin-converting enzyme 2 (ace2)
- broad neutral (0) amino acid transporter 1 (b0at1)
- brush-border membrane
- nutrient absorption
- protein complex
- ace2, angiotensin-converting enzyme 2
- apn, aminopeptidase n
- b0at, broad neutral (0) amino acid transporter
- bbmv, brush-border membrane vesicle
- dtt, dithiothreitol
- egfp, enhanced green fluorescent protein
- fbs, fetal bovine serum
- gfp, green fluorescent protein
- hek, human embryonic kidney
- lap, leucine aminopeptidase
- ncbi, national centre for biotechnology information
- rmsd, root mean square deviation
- slc, solute carrier
- sulfo-nhs-lc-biotin, sulfosuccinimidyl 6′-(biotinamido) hexanoate
Collapse
Affiliation(s)
- Stephen J. Fairweather
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Angelika Bröer
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Megan L. O'Mara
- †School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Bröer
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
11
|
Loftus JP, Williams JM, Belknap JK, Black SJ. In vivo priming and ex vivo activation of equine neutrophils in black walnut extract-induced equine laminitis is not attenuated by systemic lidocaine administration. Vet Immunol Immunopathol 2010; 138:60-9. [DOI: 10.1016/j.vetimm.2010.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 12/24/2022]
|
12
|
Lai A, Ghaffari A, Ghahary A. Inhibitory effect of anti-aminopeptidase N/CD13 antibodies on fibroblast migration. Mol Cell Biochem 2010; 343:191-9. [PMID: 20589526 PMCID: PMC7088764 DOI: 10.1007/s11010-010-0513-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 05/04/2010] [Indexed: 01/21/2023]
Abstract
Aminopeptidase N (APN)/CD13 is a widely expressed transmembrane ectoenzyme and has been implicated in a myriad of physiological processes that are specific to cell type and tissue origin, including cancer cell metastasis, angiogenesis, cholesterol uptake, apoptosis, and cell migration. Skin cells, in particular fibroblasts have a relatively high level of APN/CD13 expression. The migratory capacity of skin cells is critical for the outcome of wound repair, as successful wound healing requires timely re-epithelialization which involves reformation of epithelium over wound surface by migrating keratinocytes. While failure of keratinocytes to undergo proper migration leads to chronic non-healing wounds, the presence of excess fibroblasts may contribute to formation of hypertrophic scars and keloids. The aim of this study was to investigate the role of APN/CD13 in skin cell migration and explore its potential as a therapeutic target in wound healing. Our results show an elevated expression of APN/CD13 in fibroblasts on the edge of the wound compared to unwounded cells. The presence of anti-APN/CD13 antibodies WM15, 3D8, and H300 reduces the migratory activity of human dermal fibroblasts in a dose-dependent manner by 42, 21, and 28%, respectively. However, the antibodies have no effect on keratinocyte migration. Further, none of the anti-APN/CD13 antibodies used in this study has any antiproliferative and cytotoxic effect on primary human keratinocytes or fibroblasts when used at 10 μg/ml in vitro. The differential inhibition on the migratory capacity of fibroblasts and keratinocytes presents an opportunity for anti-APN/CD13 antibodies to be used as a therapeutic agent for high fibroblast cellularity seen in fibroproliferative disorders.
Collapse
Affiliation(s)
- Amy Lai
- BC Professional Fire Fighters’ Burn and Wound Healing Laboratory, Department of Surgery, Jack Bell Research Center, University of British Columbia, 350-2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Abdi Ghaffari
- BC Professional Fire Fighters’ Burn and Wound Healing Laboratory, Department of Surgery, Jack Bell Research Center, University of British Columbia, 350-2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Aziz Ghahary
- BC Professional Fire Fighters’ Burn and Wound Healing Laboratory, Department of Surgery, Jack Bell Research Center, University of British Columbia, 350-2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
13
|
Li QR, Fan KX, Li RX, Dai J, Wu CC, Zhao SL, Wu JR, Shieh CH, Zeng R. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:823-832. [PMID: 20187088 DOI: 10.1002/rcm.4441] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Increasing attention has been paid to the urinary proteome because it holds the promise of discovering various disease biomarkers. However, most of the urine proteomics studies routinely relied on protein pre-fractionation and so far did not present characterization on phosphorylation status. Two robust approaches, integrated multidimensional liquid chromatography (IMDL) and Yin-yang multidimensional liquid chromatography (MDLC) tandem mass spectrometry, were recently developed in our laboratory, with high-coverage identification of peptide mixtures. In this study, we adopted a strategy without pre-fractionation on the protein level for urinary proteome identification, using both the IMDL and the Yin-yang MDLC methods for peptide fractionation followed by identification using a linear ion trap-orbitrap (LTQ-Orbitrap) mass spectrometer with high resolution and mass accuracy. A total of 1310 non-redundant proteins were highly confidently identified from two experiments, significantly including 59 phosphorylation sites. More than half the annotated identifications were membrane-related proteins. In addition, the lysosomal as well as kidney-associated proteins were detected. Compared with the six largest datasets of urinary proteins published previously, we found our data included most of the reported proteins. Our study developed a robust approach for exploring the human urinary proteome, which would provide a catalogue of urine proteins on a global scale. It is the first report, to our best knowledge, to profile the urinary phosphoproteome. This work significantly extends current comprehension of urinary protein modification and its potential biological significance. Moreover, the strategy could further serve as a reference for biomarker discovery.
Collapse
Affiliation(s)
- Qing-Run Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mina-Osorio P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med 2008; 14:361-71. [PMID: 18603472 PMCID: PMC7106361 DOI: 10.1016/j.molmed.2008.06.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 12/13/2022]
Abstract
Aminopeptidase N (CD13) is a widely expressed ectoenzyme with functions that do not always depend on its enzymatic activity: an aspect that has been overlooked. Numerous CD13-targeting tools have been developed in the last few years. Several of them are already undergoing clinical trials, and there are promising reports on the effectiveness of others in animal models of disease. However, their efficacy might be obscured by their effects on unrecognized functions of CD13, resulting in unexpected complications. The purpose of this review is (i) to discuss the various functions ascribed to CD13 and the possible mechanisms behind them and (ii) to consider some of the questions that need to be answered to achieve a better understanding of the biological relevance of these functions, a more precise interpretation of the results obtained after their manipulation and a more rational design of CD13-targeting agents.
Collapse
Affiliation(s)
- Paola Mina-Osorio
- The Feinstein Institute for Medical Research, Autoimmune Disease Center, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
15
|
Padia SH, Kemp BA, Howell NL, Fournie-Zaluski MC, Roques BP, Carey RM. Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension 2007; 51:460-5. [PMID: 18158338 DOI: 10.1161/hypertensionaha.107.103242] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the kidney, angiotensin II (Ang II) is metabolized to angiotensin III (Ang III) by aminopeptidase A (APA). In turn, Ang III is metabolized to angiotensin IV by aminopeptidase N (APN). Renal interstitial (RI) infusion of Ang III, but not Ang II, results in angiotensin type-2 receptor (AT(2)R)-mediated natriuresis. This response is augmented by coinfusion of PC-18, a specific inhibitor of APN. The present study addresses the hypotheses that Ang II conversion to Ang III is critical for the natriuretic response. Sprague-Dawley rats received systemic angiotensin type-1 receptor (AT(1)R) blockade with candesartan (CAND; 0.01 mg/kg/min) for 24 hours before and during the experiment. After a control period, rats received either RI infusion of Ang II or Ang II+PC-18. The contralateral kidney received a RI infusion of vehicle in all rats. Mean arterial pressure (MAP) was monitored, and urinary sodium excretion rate (U(Na)V) was calculated separately from experimental and control kidneys for each period. In contrast to Ang II-infused kidneys, U(Na)V from Ang II+PC-18-infused kidneys increased from a baseline of 0.03+/-0.01 to 0.09+/-0.02 micromol/min (P<0.05). MAP was unchanged by either infusion. RI addition of PD-123319, an AT(2)R antagonist, inhibited the natriuretic response. Furthermore, RI addition of EC-33, a selective APA inhibitor, abolished the natriuretic response to Ang II+PC-18. These data demonstrate that RI addition of PC-18 to Ang II enables natriuresis mediated by the AT(2)R, and that conversion of Ang II to Ang III is critical for this response.
Collapse
Affiliation(s)
- Shetal H Padia
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1414, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kotlo K, Shukla S, Tawar U, Skidgel RA, Danziger RS. Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells. Am J Physiol Renal Physiol 2007; 293:F1047-53. [PMID: 17634404 DOI: 10.1152/ajprenal.00074.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aminopeptidase N/CD13 (Anpep) is a membrane-bound protein that catalyzes the formation of natriuretic hexapeptide angiotensin IV (ANG IV) from ANG III. We previously reported that Anpep is more highly expressed in the kidneys of Dahl salt-resistant (SR/Jr) than salt-sensitive (SS/Jr) rats, Anpep maps to a quantitative trait locus for hypertension, and that the Dahl SR/Jr rat contains a functional polymorphism of the gene. This suggests that renal Anpep may be linked to salt sensitivity; however, its effect on renal Na handling has not been determined. Here, we examined regulation of basolateral Na(+)-K(+)-ATPase, a preeminent basolateral Na(+) transporter in proximal tubule cells, by Anpep in LLC-PK1 cells. Treatment of the cells with Anpep siRNA increased total cellular Na(+)-K(+)-ATPase activity and basolateral Na(+)-K(+)-ATPase abundance by approximately twofold. Conversely, Anpep overexpression reduced Na(+)-K(+)-ATPase activity and basolateral abundance by approximately 50%. Similar effects were observed after treatment with ANG IV (10 nM, x30 min and 12 h). ANG IV receptor (AGTRIV) knockdown via specific siRNA relieved the decreases in basolateral Na(+)-K(+)-ATPase levels and activity induced by Anpep overexpression. In sum, these results demonstrate that Anpep reduces basolateral Na(+)-K(+)-ATPase levels via ANG IV/AGTRIV signaling. This novel pathway may be important in renal adaptation to high salt.
Collapse
Affiliation(s)
- Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
17
|
Ruiz-Ortega M, Esteban V, Egido J. The regulation of the inflammatory response through nuclear factor-kappab pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 2007; 17:19-25. [PMID: 17210474 DOI: 10.1016/j.tcm.2006.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 10/07/2006] [Indexed: 10/23/2022]
Abstract
The renin angiotensin system (RAS) participates in the pathogenesis of cardiovascular diseases. Although angiotensin II has been considered the effector peptide of RAS, accumulating evidence shows that other RAS peptides also posses important functions, some of them involved in cardiovascular pathology. Many studies support the importance of N-terminal angiotensin degradation product, angiotensin IV (AngIV), in the fields of cognition, renal metabolism, and pathophysiologic conditions. The novel data discussed here show that AngIV could contribute to cardiovascular damage. Angiotensin IV can be generated by degradation of angiotensin II, by aminopeptidase (AP) N, or by other proteases, which could be activated during tissue damage, suggesting that elevated AngIV levels can be found in pathologic conditions. Angiotensin IV binds to a specific receptor, AT(4), which has recently been identified as an insulin-regulated AP. In vascular cells, correspondence between AT(4) binding sites and insulin-regulated AP has been described. Angiotensin IV regulates cell growth in cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells (VSMCs). In VSMC, AngIV, through AT(4), independently of AT(1) and AT(2) receptors, activates the nuclear factor-kappaB pathway and up-regulates several nuclear factor-kappaB-related genes, including the monocyte chemokine monocyte chemoattractant protein-1, the adhesion molecule intercellular adhesion molecule-1, and the cytokines interleukin 6 and tumor necrosis factor alpha. These data indicate that AngIV could be involved in the vascular inflammatory response. Thus, in endothelial cells and VSMC, AngIV up-regulates plasminogen activator inhibitor-1 expression and could participate in thrombus formation. These results reveal novel concepts of RAS in the cardiovascular system, suggesting that AngIV could play an active role in vascular diseases.
Collapse
Affiliation(s)
- Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Fundación Jiménez Diaz, Universidad Autónoma Madrid, Spain 28040.
| | | | | |
Collapse
|
18
|
Kotlo K, Hughes DE, Herrera VLM, Ruiz-Opazo N, Costa RH, Robey RB, Danziger RS. Functional polymorphism of the Anpep gene increases promoter activity in the Dahl salt-resistant rat. Hypertension 2007; 49:467-72. [PMID: 17242304 DOI: 10.1161/01.hyp.0000256303.40359.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have reported that aminopeptidase N/CD13, which metabolizes angiotensin III to angiotensin IV, exhibits greater renal tubular expression in the Dahl salt-resistant (SR/Jr) rat than its salt-sensitive (SS/Jr) counterpart. In this work, aminopeptidase N (Anpep) genes from SS/Jr and SR/Jr strains were compared. The coding regions contained only silent single nucleotide polymorphisms between strains. The 5' flanking regions also contained multiple single nucleotide polymorphisms, which were analyzed by electrophoretic mobility-shift assay using renal epithelial cell (HK-2) nuclear extracts and oligonucleotides corresponding with single nucleotide polymorphism-containing regions. A unique single nucleotide polymorphism 4 nucleotides upstream of a putative CCAAT/enhancer binding protein motif (nucleotides -2256 to -2267) in the 5' flanking region of the SR/Jr Anpep gene was associated with DNA-protein complex formation, whereas the corresponding sequences in SS rats were not. A chimeric reporter gene containing approximately 4.4 Kb of Anpep 5' flank from the Dahl SR/Jr rat exhibited 2.5- to 3-fold greater expression in HK-2 cells than the corresponding construct derived from the SS strain (P<0.05). Replacing the CCAAT/enhancer binding protein cis-acting element from the SS rat with that from the SR strain increased reporter gene expression by 2.5-fold (P<0.05) and abolished this difference. CCAAT/enhancer binding protein association was confirmed by chromatin immunoprecipitation and correlated with expression, suggesting selection for a functional CCAAT/enhancer binding protein polymorphism in the 5' flank of Anpep in the Dahl SR/Jr rat. These results highlight a possible association of the Anpep gene with hypertension in Dahl rat and raise the prospect that increased Anpep may play a mechanistic role in adaptation to high salt.
Collapse
Affiliation(s)
- Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, 840 S Wood St, Chicago, IL 60612.
| | | | | | | | | | | | | |
Collapse
|
19
|
Mina-Osorio P, Soto-Cruz I, Ortega E. A role for galectin-3 in CD13-mediated homotypic aggregation of monocytes. Biochem Biophys Res Commun 2006; 353:605-10. [PMID: 17189612 PMCID: PMC7173192 DOI: 10.1016/j.bbrc.2006.12.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 11/25/2022]
Abstract
We recently reported that anti-CD13 mAbs induce homotypic aggregation of monocytic cells. This phenomenon is signal transduction dependent and does not require CD13 aminopeptidase activity. Since CD13 is heavily glycosylated and a member of the galectin family (galectin-4) has been shown to associate with CD13 in the intestinal epithelium, we hypothesized that CD13-mediated aggregation might proceed through a carbohydrate-dependent mechanism involving galectin-3, the most highly expressed galectin on monocytes. We report here that lactose and anti-galectin-3 antibodies completely abrogate homotypic aggregation induced by anti-CD13 antibodies. Furthermore, galectin-3 co-immunoprecipitates with CD13 from resting U-937 cells and this association decreases during the aggregation process, a phenomenon that may have functional implications. Together, the results presented here point to a key role for galectin-3 in CD13-mediated homotypic aggregation of monocytic cells.
Collapse
Affiliation(s)
- Paola Mina-Osorio
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
- Corresponding authors. Fax: +52 5622 3369.
| | - Isabel Soto-Cruz
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México, D.F., México
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
- Corresponding authors. Fax: +52 5622 3369.
| |
Collapse
|
20
|
Orsó E, Werner T, Wolf Z, Bandulik S, Kramer W, Schmitz G. Ezetimib influences the expression of raft-associated antigens in human monocytes. Cytometry A 2006; 69:206-8. [PMID: 16479608 PMCID: PMC7162404 DOI: 10.1002/cyto.a.20229] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aminopeptidase N (CD13) was recently identified as a molecular target of the cholesterol absorption inhibitor Ezetimib. Regarding that CD13 is expressed in lipid rafts of monocytic cells, we have investigated whether Ezetimib influences raft function in these cells. Expression of raft‐associated antigens (CD11b, CD13, CD14, CD16, CD36, and CD64) was followed by flow cytometry and/or immunoblot in human monocyte‐derived macrophages in response to in vitro administration of Ezetimib. Cellular redistribution of CD13 was assessed by confocal imaging. Ezetimib significantly decreased the surface expression of CD13, CD16, CD64, and CD36; furthermore, it induced a shift of CD13 from plasma membrane to intracellular vesicles, and thus it quite likely modulated monocytic raft‐assembly. © 2006 International Society for Analytical Cytology
Collapse
Affiliation(s)
- Evelyn Orsó
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Tobias Werner
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Zsuzsanna Wolf
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Sascha Bandulik
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Werner Kramer
- Aventis Pharma Deutschland GmbH, Group of Sanofi‐Aventis, Frankfurt am Main, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 2006; 99:6-38. [PMID: 16177542 DOI: 10.1254/jphs.srj05001x] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The kallikrein-kinin system is an endogenous metabolic cascade, triggering of which results in the release of vasoactive kinins (bradykinin-related peptides). This complex system includes the precursors of kinins known as kininogens and mainly tissue and plasma kallikreins. The pharmacologically active kinins, which are often considered as either proinflammatory or cardioprotective, are implicated in many physiological and pathological processes. The interest of the various components of this multi-protein system is explained in part by the multiplicity of its pharmacological activities, mediated not only by kinins and their receptors, but also by their precursors and their activators and the metallopeptidases and the antiproteases that limit their activities. The regulation of this system by serpins and the wide distribution of the different constituents add to the complexity of this system, as well as its multiple relationships with other important metabolic pathways such as the renin-angiotensin, coagulation, or complement pathways. The purpose of this review is to summarize the main properties of this kallikrein-kinin system and to address the multiple pharmacological interventions that modulate the functions of this system, restraining its proinflammatory effects or potentiating its cardiovascular properties.
Collapse
|
22
|
Mina‐Osorio P, Shapiro LH, Ortega E. CD13 in cell adhesion: aminopeptidase N (CD13) mediates homotypic aggregation of monocytic cells. J Leukoc Biol 2006; 79:719-30. [PMID: 16415167 PMCID: PMC7166514 DOI: 10.1189/jlb.0705425] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Homotypic aggregation (HA) of cells plays key roles in physiological and pathological processes, such as embryogenesis, immune responses, angiogenesis, tumor cell invasion, and metastasis. Aminopeptidase N (CD13) has been implicated in most of these phenomena, although its participation has been attributed to its enzymatic activity, while its role as an adhesion molecule has been almost unexplored. Here, we show that certain anti‐CD13 monoclonal antibodies induce HA of monocytic U‐937 cells, independently of their effect on enzymatic activity. The phenomenon is related to binding to a specific site on the CD13 molecule and is independent of integrins. It is abrogated by low temperature, by the glycolysis inhibitor 2‐deoxyglucose, and by inhibitors of tyrosine and mitogen‐activated protein kinases. The inhibitor of microtubule polymerization colchicine has a synergistic effect on CD13‐mediated aggregation, suggesting an inhibitory role of microtubules in this process. Finally, during HA, CD13 actively redistributes to the zones of cell‐cell contact, as determined by live cell imaging studies, demonstrating a direct role of CD13 in the adhesion phenomenon. Together, these data show for the first time the participation of CD13 in monocytic cell adhesion.
Collapse
Affiliation(s)
- Paola Mina‐Osorio
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F.; and
| | - Linda H. Shapiro
- Department of Cellular Biology, Center for Vascular Biology, University of Connecticut Health Center, Farmington
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F.; and
| |
Collapse
|
23
|
Moffatt S, Wiehle S, Cristiano RJ. Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine-DNA polyplex targeting aminopeptidase N/CD13. Hum Gene Ther 2005; 16:57-67. [PMID: 15703489 DOI: 10.1089/hum.2005.16.57] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have developed a novel polyethylenimine (PEI)-DNA vector formulation that is capable of efficient tumor-specific delivery after intravenous administration to nude mice. To further increase the specificity of delivery, we have attached the peptide CNGRC to the vector, which is specific for aminopeptidase N (CD13). The strategy for coupling this peptide to PEI was based on a novel method involving the strong affinity between phenyl(di)boronic acid (PDBA) and salicylhydroxamic acid (SHA) as well as a polyethylene glycol (PEG) linker to reduce steric hindrance between the vector and the peptide. In vitro assessment of targeting by the CNGRC/PEG/PEI/DNA vector carrying a beta-galactosidase (beta-Gal)-expressing plasmid showed as much as a 5-fold increase in transduction, relative to the untargeted PEG/PEI/DNA-betagal vector, of CD13-positive lung cancer, fibrosarcoma, bladder cancer, and human umbilical vein endothelial cells. Competition with free peptide resulted in up to a 90% reduction in delivery, indicating that gene delivery was specific for CD13-positive cells. Intravenous administration of the CNGRC/PEG/PEI/DNA-betagal vector to nude mice bearing subcutaneous tumors resulted in as much as a 12-fold increase in beta-Gal expression in tumors as compared with expression in either lungs or tumors from animals treated with the original PEI/DNA-betagal vector. In vivo transduction analysis using the CNGRC/PEG/PEI/DNA vector to target the intravenous delivery of a yellow fluorescence protein (YFP)-expressing plasmid to subcutaneous H1299 tumors confirmed delivery of YFP to both tumor cells and tumor endothelial cells. The use of this peptide to further increase tumor-specific delivery mediated by our novel PEI/DNA vector now provides a basis for developing tumor-targeted gene therapies for use in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Stanley Moffatt
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
24
|
Lassnig C, Sanchez CM, Egerbacher M, Walter I, Majer S, Kolbe T, Pallares P, Enjuanes L, Müller M. Development of a transgenic mouse model susceptible to human coronavirus 229E. Proc Natl Acad Sci U S A 2005; 102:8275-80. [PMID: 15919828 PMCID: PMC1140478 DOI: 10.1073/pnas.0408589102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human coronavirus (HCoV) 229E is a group 1 coronavirus and is specific to humans. So far, no animal model is available to study the pathogenesis of infection by HCoV-229E. We show here that the expression of aminopeptidase N (APN, also termed CD13), the receptor for HCoV-229E, is required but not sufficient to confer susceptibility in vivo. HCoV-229E infection was facilitated by crossing APN transgenic mice into signal transducers and activators of transcription (Stat) 1 null mice and by adaptation of HCoV-229E to grow in primary APN transgenic, Stat1 null fibroblasts. Double transgenic mice allow the study of human coronavirus group 1 infections in an animal model, in particular, viral tropism, replication, recombination, and spread in an immunocompromised situation. Furthermore, these mice provide an important tool for the evaluation of biosafety and efficacy of coronavirus-based vectors.
Collapse
MESH Headings
- Animals
- CD13 Antigens/genetics
- CD13 Antigens/metabolism
- Cells, Cultured
- Coronavirus 229E, Human/genetics
- Coronavirus 229E, Human/pathogenicity
- Coronavirus 229E, Human/physiology
- Disease Models, Animal
- Disease Susceptibility
- Fibroblasts
- Genotype
- Humans
- Mice
- Mice, Transgenic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombination, Genetic/genetics
- Species Specificity
- Transgenes/genetics
- Virus Replication
Collapse
Affiliation(s)
- Caroline Lassnig
- Ludwig Boltzmann Institute for Immunogenetic, Cytogenetic, and Molecular Genetic Research, 1210 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mina‐Osorio P, Ortega E. Aminopeptidase N (CD13) functionally interacts with FcgammaRs in human monocytes. J Leukoc Biol 2005; 77:1008-17. [PMID: 15758076 PMCID: PMC7167080 DOI: 10.1189/jlb.1204714] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aminopeptidase N (E.C. 3.4.11.2) is a membrane-bound metalloproteinase expressed in many tissues. Although its cytoplasmic portion has only eight amino acids, cross-linking of CD13 by monoclonal antibodies (mAb) has been shown to trigger intracellular signaling. A functional association between CD13 and receptors for immunoglobulin G (FcgammaRs) has been proposed. In this work, we evaluated possible functional interactions between CD13 and FcgammaRs in human peripheral blood monocytes and in U-937 promonocytic cells. Our results show that during FcgammaR-mediated phagocytosis, CD13 redistributes to the phagocytic cup and is internalized into the phagosomes. Moreover, modified erythrocytes that interact with the monocytic cell membrane through FcgammaRI and CD13 are ingested simultaneously, more efficiently than those that interact through the FcgammaRI only. Also, co-cross-linking of CD13 with FcgammaRI by specific mAbs increases the level and duration of Syk phosphorylation induced by FcgammaRI cross-linking. Finally, FcgammaRI and CD13 colocalize in zones of cellular polarization and coredistribute after aggregation of either of them. These results demonstrate that CD13 and FcgammaRI can functionally interact on the monocytic cell membrane and suggest that CD13 may act as a signal regulator of FcgammaR function.
Collapse
Affiliation(s)
- Paola Mina‐Osorio
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
| |
Collapse
|
26
|
Vijgen L, Keyaerts E, Zlateva K, Van Ranst M. Identification of six new polymorphisms in the human coronavirus 229E receptor gene (aminopeptidase N/CD13). Int J Infect Dis 2004; 8:217-22. [PMID: 15234325 PMCID: PMC7129141 DOI: 10.1016/j.ijid.2004.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 03/18/2004] [Indexed: 11/27/2022] Open
Abstract
Objective: Human aminopeptidase N (APN/CD13/ANPEP) has been identified as the receptor for human coronavirus (HCoV) 229E. In this study, we analyzed the region of the APN gene that encodes a stretch of amino acid residues, essential for its HCoV-229E receptor function (amino acids 260–353). Methods: Full-length APN exon 3, intron 3 and exon 4, was PCR-amplified and sequenced in DNA samples from 100 unrelated Caucasian Belgian healthy volunteers. Results: We identified seven polymorphisms, including four intron 3 and three exon 4 variations. Apart from the already known C956T exon 4 mutation, the six other polymorphisms have not yet been described. The most prevalent APN variations in this population (C956T leading to an alanine to valine substitution, G978T, G987A and intron3-C389T) always occurred together at an allele frequency of 8.5%. Haploid DNA sequencing demonstrated the presence of these four variations on the same allele. Three polymorphisms in intron 3, intron3-G395C, intron3-C86T, and intron3-C429T, were identified with an allele frequency of 3.5%, 1% and 0.5% respectively. Five haplotypes were identified in the population of 100 individuals. Conclusion: These results demonstrate that there is a relatively broad spectrum of variations in the APN domain critical for coronavirus binding. The nucleotide sequence reported here has been submitted to the GenBank database with the following accession number: AF527789.
Collapse
Affiliation(s)
| | | | | | - Marc Van Ranst
- Corresponding author. Tel.: +32-16-347908; fax: +32-16-347900.
| |
Collapse
|
27
|
Farjah M, Washington TL, Roxas BP, Geenen DL, Danziger RS. Dietary NaCl regulates renal aminopeptidase N: relevance to hypertension in the Dahl rat. Hypertension 2004; 43:282-5. [PMID: 14718364 DOI: 10.1161/01.hyp.0000111584.15095.8a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminopeptidase N (APN) is an abundant metallohydrolase in the brush border of kidney proximal tubule cells that degrades angiotensin III (Ang III) to angiotensin IV (Ang IV) and, along with dipeptidylaminopeptidase, degrades Ang IV. We examined the impact of a high-salt diet on renal APN activity and transcript abundance in the Sprague-Dawley and Dahl salt-sensitive (SS/Jr) rat strains. APN transcript abundance and protein abundance were approximately 2-fold greater (P<0.05; n=6) in the kidneys of Sprague-Dawley and Lewis rats ingesting 8% versus 0.3% salt diets, suggesting that increased aminopeptidase activity may contribute to decreased renal sodium uptake during adaptation to a high-salt diet. In contrast, renal APN transcript abundance and activity were the same in Dahl SS/Jr rats ingesting 8.0% versus 0.3% salt diets. The APN gene was mapped, using a radiation-hybrid panel, to known quantitative loci on chromosome 1 for blood pressure in the Dahl SS/Jr rat. The results suggest that the APN gene is a good candidate for salt-sensitivity in the Dahl SS/Jr rat.
Collapse
Affiliation(s)
- Mariam Farjah
- Section of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Ill 60612, USA
| | | | | | | | | |
Collapse
|
28
|
van Hensbergen Y, Broxterman HJ, Elderkamp YW, Lankelma J, Beers JCC, Heijn M, Boven E, Hoekman K, Pinedo HM. A doxorubicin-CNGRC-peptide conjugate with prodrug properties. Biochem Pharmacol 2002; 63:897-908. [PMID: 11911842 DOI: 10.1016/s0006-2952(01)00928-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is increasing interest in the exploitation of molecular addresses for the targeting of tumor imaging or therapeutic agents. A recent study demonstrated anticancer activity in human xenografts of doxorubicin (DOX)-peptide conjugates targeted to the tumor vascular endothelium, among them DOX coupled to the cyclic pentapeptide CNGRC [Science 279 (1998) 377]. In order to learn more about the mechanism of action of this type of DOX-peptide conjugates, we have studied the interaction of DOX-CNGRC with primary human umbilical cord vein endothelial cells (HUVEC) and tumor cells under defined in vitro conditions. We used a DOX conjugate, in which the cyclic CNGRC peptide, for which an in vivo endothelial address has recently been identified as aminopeptidase N (APN)/CD13, has been coupled via a hydrolysable spacer to the C-14 anthracycline-side chain. First we determined that the t(1/2) of DOX-CNGRC conjugate in human blood was 442 min (at 37 degrees ) allowing sufficient time for endothelial targeting when administered i.v. When cultured cells were exposed for 30 min to DOX-CNGRC a more cytoplasmic localization of fluorescent drug was seen when compared to DOX exposure and intracellular DOX-CNGRC was identified after extraction from the cells. This revealed differences in the cellular uptake process of the conjugate compared to DOX. The antiproliferative effect of DOX-CNGRC was determined by 30 min exposure in medium with a high protein content in order to mimick the in vivo targeting situation. In this medium, the IC(50) was 1.1 microM for highly CD13 expressing HT-1080, 1.45 microM for CD13 negative SK-UT-1 sarcoma cells and 6.5 microM for CD13 positive HUVEC. The IC(50) of DOX for these cells were 1.0, 2.0 and 7.3 microM, respectively. Although DOX-CNGRC inhibited the peptidase activity of CD13 up to 50%, our data do not favor an important role for the enzyme inhibition in the cytotoxic effect of the conjugate. The antitumor activity was tested in nude mice bearing human ovarian cancer xenografts (OVCAR-3). A weekly i.v. administration (3mg/kg DOX-equivalent, 3x) showed a minor (40%) growth delay, which does not indicate efficacy better than that expected for free DOX. In conclusion, this study indicates that the antiproliferative and anti-angiogenic effects of DOX-CNGRC as reported before, are likely caused by the cytostatic effects of intracellularly released parent drug DOX, independent of CD13 expression/activity. More research is needed to identify the optimal specific chemical configuration of DOX-peptide conjugates for in vivo targeting and receptor-mediated cellular uptake.
Collapse
Affiliation(s)
- Yvette van Hensbergen
- Department of Medical Oncology, Vrije Universiteit Medical Centre, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Peipp M, Simon N, Loichinger A, Baum W, Mahr K, Zunino SJ, Fey GH. An improved procedure for the generation of recombinant single-chain Fv antibody fragments reacting with human CD13 on intact cells. J Immunol Methods 2001; 251:161-76. [PMID: 11292491 PMCID: PMC7172470 DOI: 10.1016/s0022-1759(01)00298-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2000] [Accepted: 12/21/2000] [Indexed: 11/26/2022]
Abstract
A procedure was developed to generate recombinant single chain Fv (scFv) antibody fragments reacting with the extracellular domain of human cell surface antigen CD13 (hCD13; aminopeptidase N) on intact cells. Membrane fractions prepared from a stably transfected hCD13-positive murine NIH/3T3 cell line were used to immunize BALB/c mice, with the intention that hCD13 would be the major immunogenic molecule recognized by the immune system. Spleen RNA from the immunized mice served to generate a combinatorial scFv phage display library. The library was adsorbed against non-transfected NIH/3T3 or Sf21 insect cells to eliminate nonrelevant binders. The supernatant was then used for panning with either hCD13-transfected Sf21 insect cells or a hCD13-expressing human leukemia-derived cell line. Therefore, the key concepts of the procedure were the presentation of hCD13 as the sole human antigen on murine NIH/3T3 cells and a screening strategy where hCD13 was the major common antigen of the material used for immunization and panning. Two different hCD13-reactive phages were isolated and the soluble scFvs were expressed in E. coli and purified. The two scFvs, anti-hCD13-1 and anti-hCD13-3, differed at four amino acid positions in their V(H) regions and both had high affinities for hCD13 as determined by surface plasmon resonance (K(D)=7 and 33x10(-10) M, respectively). Both efficiently recognized hCD13 on intact cells. Therefore, the procedure allowed the production of high affinity scFvs reacting with a desired antigen in its native conformation without requiring extensive purification of the antigen and should be useful for the preparation of scFvs against other conformation-sensitive cell-surface antigens.
Collapse
Affiliation(s)
- Matthias Peipp
- Chair of Genetics, University of Erlangen-Nürnberg, D 91058 Erlangen, Germany
| | - Nicola Simon
- Chair of Genetics, University of Erlangen-Nürnberg, D 91058 Erlangen, Germany
| | | | - Wolfgang Baum
- Department of Clinical Immunology, University of Erlangen-Nürnberg, D 91058 Erlangen, Germany
| | - Kerstin Mahr
- Chair of Microbiology, University of Erlangen-Nürnberg, Staudtstrasse 5, D 91058 Erlangen, Germany
| | - Susan J. Zunino
- Chair of Genetics, University of Erlangen-Nürnberg, D 91058 Erlangen, Germany
| | - Georg H. Fey
- Chair of Genetics, University of Erlangen-Nürnberg, D 91058 Erlangen, Germany
| |
Collapse
|
30
|
Dybkaer K, Kristensen JS, Pedersen FS. Single site polymorphisms and alternative splicing of the human CD13 gene--different splicing frequencies among patients with acute myeloid leukaemia and healthy individuals. Br J Haematol 2001; 112:691-6. [PMID: 11260074 DOI: 10.1046/j.1365-2141.2001.02613.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Within the haematopoietic system, CD13/aminopeptidase N (APN), a transmembrane glycoprotein, is expressed on the surface of early committed progenitors of granulocytes and monocytes and by all cells of these lineages as they mature. CD13 is expressed on the majority of leukaemic myeloblasts in acute myeloid leukaemia (AML), and on leukaemic lymphoblasts in a small percentage of acute lymphoid leukaemia cases. Thus, anti-CD13 monoclonal antibodies are used as diagnostic markers in leukaemia typing. By systematically amplifying overlapping reverse transcription polymerase chain reaction (RT-PCR) amplicons throughout the CD13 mRNA, we identified two splice variants in which exon 3 and exon 14 were lost. Fourteen healthy individuals and 34 patients with AML were screened for these splice variants. All healthy individuals, and the majority of AML patients, had both splice variants but they represented less than 10% of the total RT-PCR-amplified CD13 product. Increased expression of both truncated CD13 mRNA forms were observed in 6% of AML patients, whereas no detectable exon 3 or exon 14 splice variants could be generated in 26% and 9% of AML patients respectively. The different splicing frequencies may reflect altered processing of pre-mRNA or expansion of certain cell types for some AML patients, even though no correlation existed to blast percentage, FAB classification, surface antigens or cytogenetic characteristics. In addition, we identified an intron of 506 bp between exon 1 and exon 2 as well as two sites of single nucleotide polymorphism with a heterozygosity index of about 0.5, making them useful as genetic markers.
Collapse
Affiliation(s)
- K Dybkaer
- Department of Haematology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
31
|
Kataoka H, Joh T, Miura Y, Tamaoki T, Senoo K, Ohara H, Nomura T, Tada T, Asai K, Kato T, Itoh M. AT motif binding factor 1-A (ATBF1-A) negatively regulates transcription of the aminopeptidase N gene in the crypt-villus axis of small intestine. Biochem Biophys Res Commun 2000; 267:91-5. [PMID: 10623580 DOI: 10.1006/bbrc.1999.1911] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This is the first study to demonstrate that the AT motif binding factor 1-A (ATBF1-A) is expressed in the crypts and the bases of villi of the small intestine and negatively regulates transcription of brush-border enzyme gene, aminopeptidase-N (APN). In situ hybridization visualized a limited ATBF1-A mRNA expression in the crypts and the bases of villi. Transient transfection and dual luciferase-reporter assay demonstrated that ATBF1-A suppressed the activity of APN promoter, but did not that of AT motif deleted promoter. These results imply that ATBF1-A inhibits the transcription of APN gene through its direct binding to the AT motif element. Furthermore, butyrate-induced differentiation of Caco-2 cells, retaining the enterocytic phenotypes such as a villus structure and the expression of brush-border enzymes, leads to a reduced expression of ATBF1-A mRNA. We proposed that ATBF1-A regulating APN gene expression in the crypt-villus axis of the small intestine is a landmark of enterocyte differentiation and maturation.
Collapse
Affiliation(s)
- H Kataoka
- First Department of Internal Medicine, Nagoya City University Medical School, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lian WN, Tsai JW, Yu PM, Wu TW, Yang SC, Chau YP, Lin CH. Targeting of aminopeptidase N to bile canaliculi correlates with secretory activities of the developing canalicular domain. Hepatology 1999; 30:748-60. [PMID: 10462382 DOI: 10.1002/hep.510300302] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We have used human hepatoma cell lines as an in vitro model to study the development of hepatic bile canaliculi (BC). Well-differentiated hepatoma cells cultured for 72 hours could develop characteristic spheroid structures at sites of cell-cell contact that contained tight junctions and various membrane protein markers, resembling BC found in vivo. Intact cytoskeleton was essential for this differentiation process. In the coculture experiments in which cells of different origins were populated together, BC only formed between hepatic cells and preferentially among well-differentiated cells. Poorly differentiated hepatoma cells never formed BC among themselves, but could be induced to undergo canalicular differentiation by interacting with well-differentiated cells. During BC morphogenesis, integral canalicular membrane proteins were gradually delivered and accumulated at the developing BC. Among them, targeting of aminopeptidase N (APN) seemed to correlate with activation of certain secretory functions. Specifically, only APN-positive BC supported excretion of fluorescein diacetate (FDA) and 70-kd dextran, but had no relationship with secretion of horseradish peroxidase (HRP). Targeting of another BC protein, dipeptidyl peptidase IV (DPPIV), on the other hand, bore no association with any secretory activity examined. In addition, inhibition of enzymatic activity of APN could perturb canalicular differentiation without affecting cell proliferation. Our results suggest that targeting of APN proteins may reflect or even play an important role in the development and functional maturation of the canalicular structures.
Collapse
Affiliation(s)
- W N Lian
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|