1
|
Felici E, González-Martínez C, Griñán TV, Gato-Zambrano S, Pereira SV, Fernández-Baldo MA, Ortega-Sanchez FG. Electrochemical immunoplatform for the quantification of epithelial extracellular vesicles applied to prostate cancer diagnosis. Talanta 2025; 293:128130. [PMID: 40222093 DOI: 10.1016/j.talanta.2025.128130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, and its early detection is critical for improving patient outcomes through timely and effective treatment. In this work, we present the first electrochemical immunoplatform based on magnetic microbeads (MBs) for the determination of epithelial extracellular vesicles (EpEVs), which are emerging as promising biomarkers for PCa diagnosis and prognosis. The immunoplatform employs MBs functionalized with anti-EpCAM antibodies to selectively capture EpEVs, forming sandwich-type immune complexes that are detected via amperometry at disposable screen-printed carbon electrodes. The method demonstrated a detection limit of 0.4 ng μL-1 of EpEVs obtained from PC-3 cell line's culture, excellent reproducibility (coefficient of variation <5 %), and high selectivity against potential interferences. Comparative analysis with colorimetric immune-magnet ELISA test showed a strong correlation between the two methods, confirming the reliability of the proposed approach. Furthermore, the electrochemical platform provided better precision and a lower limit of detection than the immune magnet ELISA method, indicating its superior analytical performance. Clinical validation using patient samples revealed that the combination of EpEV detection with PSA levels significantly improves the sensitivity and specificity of PCa diagnosis. This novel immunoplatform represents a promising analytical tool for early detection and monitoring of PCa, with potential applications in personalized cancer management.
Collapse
Affiliation(s)
- Emiliano Felici
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Av. Ejército de los Andes 950, San Luis, D5700BWS, Argentina
| | - Coral González-Martínez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada, 18016, Spain; Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid, 15, Granada, 18012, Spain
| | - Teresa Valero Griñán
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada, 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid, 15, Granada, 18012, Spain; Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain.
| | - Sheila Gato-Zambrano
- Seliver Group, Institute of Biomedicine of Seville/Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Sirley V Pereira
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Av. Ejército de los Andes 950, San Luis, D5700BWS, Argentina
| | - Martín A Fernández-Baldo
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Av. Ejército de los Andes 950, San Luis, D5700BWS, Argentina.
| | - Francisco G Ortega-Sanchez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada, 18016, Spain; Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid, 15, Granada, 18012, Spain.
| |
Collapse
|
2
|
Ozerklig B, Turkel I, Yilmaz M, Vaizoglu RD, Akan HS, Dikmen ZG, Saleem A, Kosar SN. Exercise-induced extracellular vesicles mediate apoptosis in human colon cancer cells in an exercise intensity-dependent manner. Eur J Appl Physiol 2025:10.1007/s00421-025-05787-1. [PMID: 40253655 DOI: 10.1007/s00421-025-05787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Regular exercise reduces the incidence and improves the prognosis of many cancer types, but the underlying mechanisms remain elusive. Evidence suggests that exercise exerts its therapeutic effects through extracellular vesicles (EVs), which are essential for cellular communication. Here, we hypothesized that exercise-induced EVs from serum of healthy individuals would exert anti-tumorigenic effects on human colon cancer HT-29 cells, in an exercise intensity-dependent manner. Ten healthy young active males participated in a randomized crossover trial, completing two workload-matched acute exercise bouts, moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE), on a cycle ergometer. A control session of rest (PRE) was included. EVs were isolated from serum samples collected during PRE and immediately after each exercise session. EVs were co-incubated with HT-29 colon cancer cells, and the effects on cell viability, migration, and apoptosis were measured. EV treatment reduced cell viability in all groups (PRE, MICE, and HIIE) by 35%, 43% and 47%, respectively, vs. PBS. HIIE-EVs showed a significantly greater reduction in cell viability vs. PRE; therefore, only these groups were used for further analysis. PRE EVs reduced migration by 27%, and HIIE-EVs by 39%. HIIE-EVs increased expression of pro-apoptotic markers: Bax/Bcl-2 ratio by 56% and Caspase 3 by 30% vs. PBS, with no change observed in the PRE group. Further, 16% of cells in PRE and 28% of cells in HIIE were TUNEL-positive, indicating DNA fragmentation. To our knowledge, this is the first human study that illustrates the therapeutic potential of exercise-induced EVs in cancer treatment.
Collapse
Affiliation(s)
- Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Türkiye.
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada.
- The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Canada.
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Türkiye
| | - Merve Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Refika Dilara Vaizoglu
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Handan Sevim Akan
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Z Gunnur Dikmen
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ayesha Saleem
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Canada
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2025; 48:269-293. [PMID: 39298081 PMCID: PMC11997007 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
4
|
Abdulmonem WA, Ahsan M, Mallick AK, Mohamed AH, Waggiallah HA, Shafie A, Alzahrani HS, Ashour AA, Rab SO, Mirdad MT, Ali HTO. The Role of Exosomal miRNAs in Female Infertility: Therapeutic Potential and Mechanisms of Action. Stem Cell Rev Rep 2025:10.1007/s12015-025-10869-w. [PMID: 40126819 DOI: 10.1007/s12015-025-10869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Reproductive disorders, including preeclampsia (PE), endometriosis, premature ovarian failure (POF), and polycystic ovary syndrome (PCOS), present substantial challenges to women's reproductive health. Exosomes (EXOs) are cell-derived vesicles containing molecules that influence target cells' gene expression and cellular behavior. Among their cargo, microRNAs (miRNAs)-short, non-coding RNAs typically 19-25 nucleotides in length-play a crucial role in post-transcriptional gene regulation and have been extensively studied for their therapeutic potential. miRNAs are considered therapeutic targets because they regulate key cellular pathways such as proliferation, apoptosis, angiogenesis, and tissue repair. This review examines the role of exosomal miRNAs from sources such as mesenchymal stem cells (MSCs), plasma, and amniotic fluid in female reproductive disorders, including PE, POF, PCOS, and endometriosis. We discuss their biological origins, mechanisms of miRNA sorting and packaging, and their therapeutic applications in modulating disease progression. By categorizing miRNAs according to their beneficial or detrimental effects in specific conditions, we aim to simplify the understanding of their roles in female infertility.
Collapse
Affiliation(s)
- Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Marya Ahsan
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Ayaz Khurram Mallick
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Hassan Swed Alzahrani
- Counseling Healthy Marriage, Jeddah Regional Laboratory, Jeddah First Cluster , Jeddah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Tarek Mirdad
- Medical Intern MBBS, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hatim T O Ali
- Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Popova AK, Vashukova ES, Illarionov RA, Maltseva AR, Pachuliia OV, Postnikova TB, Glotov AS. Extracellular Vesicles as Biomarkers of Pregnancy Complications. Int J Mol Sci 2024; 25:11944. [PMID: 39596014 PMCID: PMC11594130 DOI: 10.3390/ijms252211944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) are double-membrane vesicles that facilitate intercellular communication and play a pivotal role in both physiological and pathological processes. A substantial body of evidence suggests that EVs play a role in the pathogenesis of various pregnancy complications. Because EVs can be detected in the peripheral blood, they are potential biomarkers for the early diagnosis of pregnancy complications and foetal developmental disorders. The majority of studies have demonstrated a correlation between alterations in the concentration of EVs and changes in their contents and the occurrence of pregnancy complications. Despite the current limitations in establishing a clear link between these findings and the pathogenesis of the disease, as well as the lack of sufficient evidence to support their use in clinical practice, it is noteworthy to highlight the potential role of specific miRNAs carried by EVs in the development of pregnancy complications. These include miR-210 and miR-136-5p for pre-eclampsia and gestational diabetes mellitus, miR-155, miR-26b-5p, miR-181a-5p, miR-495 and miR-374c for pre-eclampsia and preterm birth. The following miRNAs have been identified as potential biomarkers for preterm birth and gestational diabetes mellitus: miR-197-3p and miR-520h, miR-1323, miR-342-3p, miR-132-3p, miR-182-3p, miR-517-3p, miR-222-3p, miR-16-5p and miR-126-3p. Additionally, miR-127-3p has been linked to foetal growth restriction and preterm birth. Nevertheless, it would be premature to propose that EVs can be employed as biomarkers for pregnancy complications. Further research and the accumulation of results obtained using the methods proposed in the MISEV2023 guidelines will enable a definitive conclusion to be reached.
Collapse
Affiliation(s)
- Anastasiia K. Popova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Roman A. Illarionov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Anastasia R. Maltseva
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Olga V. Pachuliia
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Tatiana B. Postnikova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Kim G, Seo M, Xu J, Park J, Gim S, Chun H. Large-Area Silicon Nitride Nanosieve for Enhanced Diffusion-Based Exosome Isolation. SMALL METHODS 2024; 8:e2301624. [PMID: 38801014 DOI: 10.1002/smtd.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Nanoporous membranes have a variety of applications, one of which is the size-selective separation of nanoparticles. In drug delivery, nanoporous membranes are becoming increasingly important for the isolation of exosomes, which are bio-nanoparticles. However, the low pore density and thickness of commercial membranes limit their efficiency. There have been many attempts to fabricate sub-micrometer thin membranes, but the limited surface area has restricted their practicality. In this study, large-area silicon nitride nanosieves for enhanced diffusion-based isolation of exosomes are presented. Notably, these nanosieves are scaled to sizes of up to 4-inch-wafers, a significant achievement in overcoming the fabrication challenges associated with such expansive areas. The method employs a 200 nm porous sieve (38.2% porosity) for exosome separation and a 50 nm sieve (10.7% porosity) for soluble protein removal. These 300 nm thick nanosieves outperform conventional polycarbonate membranes by being 50 times thinner, thereby increasing nanoparticle permeability. The method enables a 90% recovery rate of intact exosomes from human serum and a purity ratio of 3 × 107 particles/µg protein, 4.6 times higher than ultracentrifugation methods. The throughput of the method is up to 15 mL by increasing the size of the nanosieve, making it an ideal solution for large-scale exosome production for therapeutic purposes.
Collapse
Affiliation(s)
- Gijung Kim
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Mingyu Seo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jiaxin Xu
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jinhyeok Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Sangjun Gim
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Fei Z, Zheng J, Zheng X, Ren H, Liu G. Engineering extracellular vesicles for diagnosis and therapy. Trends Pharmacol Sci 2024; 45:931-940. [PMID: 39304474 DOI: 10.1016/j.tips.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicle (EV)-based therapeutics have gained substantial interest in the areas of drug delivery, immunotherapy, and regenerative medicine. However, the clinical translation of EVs has been slowed due to limited yields and functional heterogeneity, as well as inadequate targeting. Engineering EVs to modify their inherent function and endow them with additional functions has the potential to advance the clinical translation of EV applications. Bio-orthogonal click chemistry is an engineering approach that modifies EVs in a controlled, specific, and targeted way without compromising their intrinsic structure. Here, we provide an overview of bio-orthogonal labeling approaches involved in EV engineering. We also present the isolation methods of bio-orthogonally labeled vesicles using magnetic beads, microfluidics, and microarray chip technologies. We highlight the in vivo applications of bio-orthogonal labeling EVs for diagnosis and therapy, especially the exciting potential of bio-orthogonal glycometabolic engineered EVs for targeted therapies.
Collapse
Affiliation(s)
- Zhengyue Fei
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Jiamin Zheng
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Xiangxiang Zheng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China.
| | - Hao Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Jiangsu Province, China.
| | - Guannan Liu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Jiangsu Province, China.
| |
Collapse
|
8
|
Bok EY, Seo SY, Lee HG, Wimalasena SHMP, Kim E, Cho A, Jung YH, Hur TY, So KM, Lee SL, Do YJ. Exosomes isolation from bovine serum: qualitative and quantitative comparison between ultracentrifugation, combination ultracentrifugation and size exclusion chromatography, and exoEasy methods. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1021-1033. [PMID: 39398302 PMCID: PMC11466739 DOI: 10.5187/jast.2024.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 10/15/2024]
Abstract
Exosomes have been extensively studied as disease biomarker in humans, given their role in transporting bioactive molecules. However, despite the great potential of exosomes as noninvasive diagnostic markers and therapeutic nanocarriers for bovine diseases, few studies have been conducted on bovine exosome. Thus, this study aimed to quantitatively and qualitatively compare three isolation methods to identify a suitable method for bovine serum. Exosomes were isolated using ultracentrifugation alone (UC), a combination of ultracentrifugation and size exclusion chromatography (US), or membrane affinity-based exoEasy kit (EE). Isolated particles were evaluated using a range of complementary techniques. Transmission electron microscopy showed that all three isolation methods resulted in particles with a cup-shaped morphology. The particle concentration measured by nanoparticle trafficking analyzer of US was lower compared to those of UC and EE method. As a result of immunoblotting, exosome markers including TSG101, CD81, and HSP70 were detected in US particles, while in UC and EE, only TSG101 expression was confirmed. Particles isolated from UC and EE showed a contamination with the blood protein albumin, whereas particles from US did not show albumin contamination. In addition, to evaluate the possibility of using exosomes as biomarkers, the profiles of the small RNA in the exosomes were compared using the bioanalyzer 2100. As a result, in the EE method, the band of small RNA (25-200 nt) was most prominent, and in the US methods, a distinct band was observed in the small RNA range. Collectively, the purity of exosomes without non-exosomal contamination was highest in the US method. However, for the detection of small RNA, the EE method was found to be the most suitable. Therefore, the results suggest that the optimal isolation method varies depending on the specific purpose of exosome isolation.
Collapse
Affiliation(s)
- Eun-Yeong Bok
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Sang Young Seo
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Han Gyu Lee
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | | | - Eunju Kim
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Ara Cho
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Young-Hun Jung
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Tai-Young Hur
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Kyoung-Min So
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang
National University, Jinju 52828, Korea
- Research Institute of Life Sciences,
Gyeongsang National University, Jinju 52828, Korea
| | - Yoon Jung Do
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| |
Collapse
|
9
|
Van Es LJC, Possee RD, King LA. Characterisation of extracellular vesicles in baculovirus infection of Spodoptera frugiperda cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e163. [PMID: 38947876 PMCID: PMC11212295 DOI: 10.1002/jex2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an enveloped DNA virus of the Baculoviridae family. This baculovirus is widely exploited for the biological control of insect pest species and as an expression platform to produce recombinant proteins in insect cells. Extracellular vesicles (EVs) are secreted by all cells and are involved in key roles in many biological processes through their cargo consisting of proteins, RNA or DNA. In viral infections, EVs have been found to transfer both viral and cellular cargo that can elicit either a pro- or antiviral response in recipient cells. Here, small EVs (sEVs) released by Spodoptera frugiperda (Sf) insect cells were characterised for the first time. Using S. frugiperda (SfC1B5) cells stably expressing the baculovirus gp64, the viral envelope protein GP64 was shown to be incorporated into sEVs. Sf9 cells were also transfected with a bacmid AcMNPV genome lacking p6.9 (AcΔP6.9) to prevent budded virus production. The protein content of sEVs from both mock- and AcΔP6.9-transfected cells were analysed by mass spectrometry. In addition to GP64, viral proteins Ac-F, ME-53 and viral ubiquitin were identified, as well as many host proteins including TSG101-which may be useful as a protein marker for sEVs.
Collapse
Affiliation(s)
- Lex J. C. Van Es
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Oxford Expression Technologies LtdOxfordUK
| | | | - Linda A. King
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
10
|
Patra D, Ramprasad P, Sharma S, Dey U, Kumar V, Singh S, Dasgupta S, Kumar A, Tikoo K, Pal D. Adipose tissue macrophage-derived microRNA-210-3p disrupts systemic insulin sensitivity by silencing GLUT4 in obesity. J Biol Chem 2024; 300:107328. [PMID: 38679332 PMCID: PMC11145551 DOI: 10.1016/j.jbc.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
Management of chronic obesity-associated metabolic disorders is a key challenge for biomedical researchers. During chronic obesity, visceral adipose tissue (VAT) undergoes substantial transformation characterized by a unique lipid-rich hypoxic AT microenvironment which plays a crucial role in VAT dysfunction, leading to insulin resistance (IR) and type 2 diabetes. Here, we demonstrate that obese AT microenvironment triggers the release of miR-210-3p microRNA-loaded extracellular vesicles from adipose tissue macrophages, which disseminate miR-210-3p to neighboring adipocytes, skeletal muscle cells, and hepatocytes through paracrine and endocrine actions, thereby influencing insulin sensitivity. Moreover, EVs collected from Dicer-silenced miR-210-3p-overexpressed bone marrow-derived macrophages induce glucose intolerance and IR in lean mice. Mechanistically, miR-210-3p interacts with the 3'-UTR of GLUT4 mRNA and silences its expression, compromising cellular glucose uptake and insulin sensitivity. Therapeutic inhibition of miR-210-3p in VAT notably rescues high-fat diet-fed mice from obesity-induced systemic glucose intolerance. Thus, targeting adipose tissue macrophage-specific miR-210-3p during obesity could be a promising strategy for managing IR and type 2 diabetes.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shivam Sharma
- Department of Pharmacology and Toxicology, NIPER, S.A.S. Nagar, Punjab, India
| | - Upalabdha Dey
- Department of Molecular Biology & Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, NIPER, S.A.S. Nagar, Punjab, India
| | - Satpal Singh
- Department of Gastro Surgery, DMC&H, Ludhiana, Punjab, India
| | - Suman Dasgupta
- Department of Molecular Biology & Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Aditya Kumar
- Department of Molecular Biology & Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, NIPER, S.A.S. Nagar, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
11
|
Liu Z, Huang H, Ren J, Song T, Ni Y, Mao S, Yang Y, Liu D, Tang H. Plasma exosomes contain protein biomarkers valuable for the diagnosis of lung cancer. Discov Oncol 2024; 15:194. [PMID: 38806979 PMCID: PMC11133266 DOI: 10.1007/s12672-024-01022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Accumulating evidence indicates that exosomal proteins are critical in diagnosing malignant tumors. To identify novel exosomal biomarkers for lung cancer diagnosis, we isolated plasma exosomes from 517 lung cancer patients and 168 healthy controls (NLs)-186 lung adenocarcinoma (LUAD) patients (screening (SN): 20, validation (VD): 166), 159 lung squamous carcinoma (LUSC) patients (SN: 20, VD: 139), 172 benign nodules (LUBN) patients (SN: 20, VD: 152) and 168 NLs (SN: 20, VD: 148)-and randomly assigned them to the SN or VD group. Proteomic analysis by LC-MS/MS and PRM were performed on all groups. The candidate humoral markers were evaluated and screened by a machine learning method. All selected biomarkers were identified in the VD groups. For LUAD, a 7-protein panel had AUCs of 97.9% and 87.6% in the training and test sets, respectively, and 89.5% for early LUAD. For LUSC, an 8-protein panel showed AUCs of 99.1% and 87.0% in the training and test sets and 92.3% for early LUSC. For LUAD + LUSC (LC), an 8-protein panel showed AUCs of 85.9% and 80.3% in the training and test sets and 87.1% for early LC diagnosis. The characteristics of the exosomal proteome make exosomes potential diagnostic tools.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Hong Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Jing Ren
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Tingting Song
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Yinyun Ni
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Ying Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China.
| | - Huairong Tang
- Center of Health Management, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Rakshit I, Mandal S, Pal S, Bhattacharjee P. Advancements in bladder cancer detection: a comprehensive review on liquid biopsy and cell-free DNA analysis. THE NUCLEUS 2024. [DOI: 10.1007/s13237-024-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 01/06/2025] Open
|
13
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
14
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
15
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
16
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
17
|
Han W, Zhang H, Feng L, Dang R, Wang J, Cui C, Jiang P. The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm (Beijing) 2023; 4:e410. [PMID: 37916034 PMCID: PMC10616655 DOI: 10.1002/mco2.410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Exosomes, membrane-enclosed vesicles, are secreted by all types of cells. Exosomes can transport various molecules, including proteins, lipids, functional mRNAs, and microRNAs, and can be circulated to various recipient cells, leading to the production of local paracrine or distal systemic effects. Numerous studies have proved that exosomes can pass through the blood-brain barrier, thus, enabling the transfer of peripheral substances into the central nervous system (CNS). Consequently, exosomes may be a vital factor in the exchange of information between the periphery and CNS. This review will discuss the structure, biogenesis, and functional characterization of exosomes and summarize the role of peripheral exosomes deriving from tissues like the lung, gut, skeletal muscle, and various stem cell types in communicating with the CNS and influencing the brain's function. Then, we further discuss the potential therapeutic effects of exosomes in brain diseases and the clinical opportunities and challenges. Gaining a clearer insight into the communication between the CNS and the external areas of the body will help us to ascertain the role of the peripheral elements in the maintenance of brain health and illness and will facilitate the design of minimally invasive techniques for diagnosing and treating brain diseases.
Collapse
Affiliation(s)
- Wenxiu Han
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Hailiang Zhang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Lei Feng
- Department of NeurosurgeryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
| | - Ruili Dang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Jing Wang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Changmeng Cui
- Department of NeurosurgeryAffiliated Hospital of Jining Medical UniversityJiningP. R. China
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| |
Collapse
|
18
|
Collado A, Gan L, Tengbom J, Kontidou E, Pernow J, Zhou Z. Extracellular vesicles and their non-coding RNA cargos: Emerging players in cardiovascular disease. J Physiol 2023; 601:4989-5009. [PMID: 36094621 DOI: 10.1113/jp283200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, have recently received attention as essential mechanisms for cell-to-cell communication in cardiovascular disease. EVs can be released from different types of cells, including endothelial cells, smooth muscle cells, cardiac cells, fibroblasts, platelets, adipocytes, immune cells and stem cells. Non-coding (nc)RNAs as EV cargos have recently been investigated in the cardiovascular system. Up- or downregulated ncRNAs in EVs have been shown to play a crucial role in various cardiovascular diseases. Communication via EV-derived ncRNAs can occur between cells of the same type and between different types of cells involved in the pathophysiology of cardiovascular disease. In the present review, we highlight the important aspects of diverse cell-derived EVs and their ncRNA cargos as disease mediators and potential therapeutic targets in atherosclerosis, coronary artery disease, ischaemic heart disease and cardiac fibrosis. In addition, we summarize the potential of EV-derived ncRNAs in the treatment of cardiovascular disease. Finally, we discuss the different methods for EV isolation and characterization. A better understanding of the specific role of EVs and their ncRNA cargos in the regulation of cardiovascular (dys)function will be of importance for the development of diagnostic and therapeutic tools for cardiovascular disease.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lu Gan
- Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Tavasolian F, Lively S, Pastrello C, Tang M, Lim M, Pacheco A, Qaiyum Z, Yau E, Baskurt Z, Jurisica I, Kapoor M, Inman RD. Proteomic and genomic profiling of plasma exosomes from patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:1429-1443. [PMID: 37532285 DOI: 10.1136/ard-2022-223791] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zeynep Baskurt
- Department of Biostatistics, Princess Margaret Cancer Center, 610 University Ave, Toronto, Ontario, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery and Department of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Lee Y, Ni J, Wasinger VC, Graham P, Li Y. Comparison Study of Small Extracellular Vesicle Isolation Methods for Profiling Protein Biomarkers in Breast Cancer Liquid Biopsies. Int J Mol Sci 2023; 24:15462. [PMID: 37895140 PMCID: PMC10607056 DOI: 10.3390/ijms242015462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are an important intercellular communicator, participating in all stages of cancer metastasis, immunity, and therapeutic resistance. Therefore, protein cargoes within sEVs are considered as a superior source for breast cancer (BC) biomarker discovery. Our study aimed to optimise the approach for sEV isolation and sEV proteomic analysis to identify potential sEV protein biomarkers for BC diagnosis. sEVs derived from BC cell lines, BC patients' plasma, and non-cancer controls were isolated using ultracentrifugation (UC), a Total Exosome Isolation kit (TEI), and a combined approach named UCT. In BC cell lines, the UC isolates showed a higher sEV purity and marker expression, as well as a higher number of sEV proteins. In BC plasma samples, the UCT isolates showed the highest proportion of sEV-related proteins and the lowest percentage of lipoprotein-related proteins. Our data suggest that the assessment of both the quantity and quality of sEV isolation methods is important in selecting the optimal approach for the specific sEV research purpose, depending on the sample types and downstream analysis.
Collapse
Affiliation(s)
- Yujin Lee
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Jie Ni
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia;
| | - Peter Graham
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
21
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
22
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
23
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Surappa S, Multani P, Parlatan U, Sinawang PD, Kaifi J, Akin D, Demirci U. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. LAB ON A CHIP 2023; 23:2942-2958. [PMID: 37314731 PMCID: PMC10834032 DOI: 10.1039/d2lc01076c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Collapse
Affiliation(s)
- Sushruta Surappa
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Priyanka Multani
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Ugur Parlatan
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jussuf Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
25
|
Abstract
Exosomes are nanoscale vesicles derived from endocytosis, formed by fusion of multivesicular bodies with membranes and secreted into the extracellular matrix or body fluids. Many studies have shown that exosomes can be present in a variety of biological fluids, such as plasma, urine, saliva, amniotic fluid, ascites, and sweat, and most types of cells can secrete exosomes. Exosomes play an important role in many aspects of human development, including immunity, cardiovascular diseases, neurodegenerative diseases, and neoplasia. Urine can be an alternative to blood or tissue samples as a potential source of disease biomarkers because of its simple, noninvasive, sufficient, and stable characteristics. Therefore, urinary exosomes have valuable potential for early screening, monitoring disease progression, prognosis, and treatment. The method for isolating urinary exosomes has been perfected, and exosome proteomics is widely used. Therefore, we review the potential use of urinary exosomes for disease diagnosis and summarize the related literature.
Collapse
Affiliation(s)
- Yizhao Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
26
|
Sen S, Xavier J, Kumar N, Ahmad MZ, Ranjan OP. Exosomes as natural nanocarrier-based drug delivery system: recent insights and future perspectives. 3 Biotech 2023; 13:101. [PMID: 36860361 PMCID: PMC9970142 DOI: 10.1007/s13205-023-03521-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Exosomes are nanosized (size ~ 30-150 nm) natural vesicular structures released from cells by physiological processes or pathological circumstances. Exosomes are growing in popularity as a result of their many benefits over conventional nanovehicles, including their ability to escape homing in the liver or metabolic destruction and their lack of undesired accumulation before reaching their intended targets. Various therapeutic molecules, including nucleic acids, have been incorporated into exosomes by different techniques, many of which have shown satisfactory performance in various diseases. Surface-modified exosomes are a potentially effective strategy, and it increases the circulation time and produces the specific drug target vehicle. In this comprehensive review, we describe composition exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research and discuss future perspectives. In addition to the current status of exosomes as a therapeutic carrier, the lacuna in the clinical development lifecycles along with the possible strategies to fill the lacuna have been addressed.
Collapse
Affiliation(s)
- Srijita Sen
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101 India
| | - Joyal Xavier
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102 India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102 India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001 Kingdom of Saudi Arabia
| | - Om Prakash Ranjan
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101 India
| |
Collapse
|
27
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
28
|
Abstract
Exosomes are extracellular vesicles, which have the ability to convey various types of cargo between cells. Lately, a great amount of interest has been paid to exosomal microRNAs (miRNAs), since much evidence has suggested that the sorting of miRNAs into exosomes is not an accidental process. It has been shown that exosomal miRNAs (exo-miRNAs) are implicated in a variety of cellular processes including (but not limited to) cell migration, apoptosis, proliferation, and autophagy. Exosomes can play a role in cardiovascular diseases and can be used as diagnostic biomarkers for several diseases, especially cancer. Tremendous advances in technology have led to the development of various platforms for miRNA profiling. Each platform has its own limitations and strengths that need to be understood in order to use them properly. In the current review, we summarize some exo-miRNAs that are relevant to exo-miRNA profiling studies and describe new methods used for the measurement of miRNA profiles in different human bodily fluids.
Collapse
|
29
|
Pallares-Rusiñol A, Bernuz M, Moura SL, Fernández-Senac C, Rossi R, Martí M, Pividori MI. Advances in exosome analysis. Adv Clin Chem 2022; 112:69-117. [PMID: 36642486 DOI: 10.1016/bs.acc.2022.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is growing demand for novel biomarkers that detect early stage disease as well as monitor clinical management and therapeutic strategies. Exosome analysis could provide the next advance in attaining that goal. Exosomes are membrane encapsulated biologic nanometric-sized particles of endocytic origin which are released by all cell types. Unfortunately, exosomes are exceptionally challenging to characterize with current technologies. Exosomes are between 30 and 200nm in diameter, a size that makes them out of the sensitivity range to most cell-oriented sorting or analysis platforms, i.e., traditional flow cytometers. The most common methods for targeting exosomes to date typically involve purification followed by the characterization and the specific determination of their cargo. The whole procedure is time consuming, requiring thus skilled personnel as well as laboratory facilities and benchtop instrumentation. The most relevant methodology for exosome isolation, characterization and quantification is addressed in this chapter, including the most up-to-date approaches to explore the potential usefulness of exosomes as biomarkers in liquid biopsies and in advanced nanomedicine.
Collapse
Affiliation(s)
- Arnau Pallares-Rusiñol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Bernuz
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silio Lima Moura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carolina Fernández-Senac
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosanna Rossi
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Martí
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Isabel Pividori
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
30
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
31
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
32
|
Wu HY, Trevino JG, Fang BL, Riner AN, Vudatha V, Zhang GH, Li YP. Patient-Derived Pancreatic Cancer Cells Induce C2C12 Myotube Atrophy by Releasing Hsp70 and Hsp90. Cells 2022; 11:cells11172756. [PMID: 36078164 PMCID: PMC9455268 DOI: 10.3390/cells11172756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer (PC) patients are highly prone to cachexia, a lethal wasting syndrome featuring muscle wasting with an undefined etiology. Recent data indicate that certain murine cancer cells induce muscle wasting by releasing Hsp70 and Hsp90 through extracellular vesicles (EVs) to activate p38β MAPK-mediated catabolic pathways primarily through Toll-like receptor 4 (TLR4). However, whether human PC induces cachexia through releasing Hsp70 and Hsp90 is undetermined. Here, we investigated whether patient-derived PC cells induce muscle cell atrophy directly through this mechanism. We compared cancer cells isolated from patient-derived xenografts (PDX) from three PC patients who had cachexia (PCC) with those of three early-stage lung cancer patients without cachexia (LCC) and two renal cancer patients who were not prone to cachexia (RCC). We observed small increases of Hsp70 and Hsp90 released by LCC and RCC in comparison to non-cancer control cells (NCC). However, PCC released markedly higher levels of Hsp70 and Hsp90 (~ 6-fold on average) than LCC and RCC. In addition, PCC released similarly increased levels of Hsp70/90-containing EVs. In contrast to RCC and LCC, PCC-conditioned media induced a potent catabolic response in C2C12 myotubes including the activation of p38 MAPK and transcription factor C/EBPβ, upregulation of E3 ligases UBR2 and MAFbx, and increase of autophagy marker LC3-II, resulting in the loss of the myosin heavy chain (MHC ~50%) and myotube diameter (~60%). Importantly, the catabolic response was attenuated by Hsp70- and Hsp90-neutralizing antibodies in a dose-dependent manner. These data suggest that human PC cells release high levels of Hsp70 and Hsp90 that induce muscle atrophy through a direct action on muscle cells.
Collapse
Affiliation(s)
- Hong-Yu Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bing-Liang Fang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea N. Riner
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guo-Hua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-500-6498; Fax: +1-(713)-500-0689
| |
Collapse
|
33
|
Majood M, Rawat S, Mohanty S. Delineating the role of extracellular vesicles in cancer metastasis: A comprehensive review. Front Immunol 2022; 13:966661. [PMID: 36059497 PMCID: PMC9439583 DOI: 10.3389/fimmu.2022.966661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are subcellular messengers that aid in the formation and spread of cancer by enabling tumor-stroma communication. EVs develop from the very porous structure of late endosomes and hold information on both the intrinsic “status” of the cell and the extracellular signals absorbed by the cells from their surroundings. These EVs contain physiologically useful components, including as nucleic acids, lipids, and proteins, which have been found to activate important signaling pathways in tumor and tumor microenvironment (TME) cells, aggravating tumor growth. We highlight critical cell biology mechanisms that link EVS formation to cargo sorting in cancer cells in this review.Sorting out the signals that control EVs creation, cargo, and delivery will aid our understanding of carcinogenesis. Furthermore, we reviewed how cancer development and spreading behaviors are affected by coordinated communication between malignant and non-malignant cells. Herein, we studied the reciprocal exchanges via EVs in various cancer types. Further research into the pathophysiological functions of various EVs in tumor growth is likely to lead to the discovery of new biomarkers in liquid biopsy and the development of tumor-specific therapies.
Collapse
|
34
|
He N, Thippabhotla S, Zhong C, Greenberg Z, Xu L, Pessetto Z, Godwin AK, Zeng Y, He M. Nano pom-poms prepared exosomes enable highly specific cancer biomarker detection. Commun Biol 2022; 5:660. [PMID: 35787656 PMCID: PMC9253007 DOI: 10.1038/s42003-022-03598-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs), particularly nano-sized small EV exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping exosome multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinarily challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemistry for specific marker-defined capture and release of intact exosome. This specific exosome isolation approach leads to the expanded identification of targetable cancer biomarkers with enhanced specificity and sensitivity, as demonstrated by multi-omic exosome analysis of bladder cancer patient tissue fluids using the next generation sequencing of somatic DNA mutations, miRNAs, and the global proteome (Data are available via ProteomeXchange with identifier PXD034454). The NanoPoms prepared exosomes also exhibit distinctive in vivo biodistribution patterns, highlighting the highly viable and integral quality. The developed method is simple and straightforward, which is applicable to nearly all types of biological fluids and amenable for enrichment, scale up, and high-throughput exosome isolation.
Collapse
Affiliation(s)
- Nan He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS, 66045, USA
- Clara Biotech Inc., Lawrence, KS, 66047, USA
| | - Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Ziyan Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, 32603, USA
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS, 66045, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
35
|
Salomon C, Das S, Erdbrügger U, Kalluri R, Kiang Lim S, Olefsky JM, Rice GE, Sahoo S, Andy Tao W, Vader P, Wang Q, Weaver AM. Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocr Rev 2022; 43:441-468. [PMID: 35552682 PMCID: PMC10686249 DOI: 10.1210/endrev/bnac009] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/15/2022]
Abstract
During the last decade, there has been great interest in elucidating the biological role of extracellular vesicles (EVs), particularly, their hormone-like role in cell-to-cell communication. The field of endocrinology is uniquely placed to provide insight into the functions of EVs, which are secreted from all cells into biological fluids and carry endocrine signals to engage in paracellular and distal interactions. EVs are a heterogeneous population of membrane-bound vesicles of varying size, content, and bioactivity. EVs are specifically packaged with signaling molecules, including lipids, proteins, and nucleic acids, and are released via exocytosis into biofluid compartments. EVs regulate the activity of both proximal and distal target cells, including translational activity, metabolism, growth, and development. As such, EVs signaling represents an integral pathway mediating intercellular communication. Moreover, as the content of EVs is cell-type specific, it is a "fingerprint" of the releasing cell and its metabolic status. Recently, changes in the profile of EV and bioactivity have been described in several endocrine-related conditions including diabetes, obesity, cardiovascular diseases, and cancer. The goal of this statement is to highlight relevant aspects of EV research and their potential role in the field of endocrinology.
Collapse
Affiliation(s)
- Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Uta Erdbrügger
- Department of Medicine, Nephrology Division, University of Virginia, Charlottesville, VA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Jerrold M Olefsky
- Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Pieter Vader
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands; Laboratory of Experimental Cardiology, UMC Utrecht, Utrecht, The Netherlands
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Janouskova O, Herma R, Semeradtova A, Poustka D, Liegertova M, Malinska HA, Maly J. Conventional and Nonconventional Sources of Exosomes-Isolation Methods and Influence on Their Downstream Biomedical Application. Front Mol Biosci 2022; 9:846650. [PMID: 35586196 PMCID: PMC9110031 DOI: 10.3389/fmolb.2022.846650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive study of extracellular vesicles (EVs), specifically exosomes (EXs) as biomarkers, important modulators of physiological or pathological processes, or therapeutic agents, relatively little is known about nonconventional sources of EXs, such as invertebrate or plant EXs, and their uses. Likewise, there is no clear information on the overview of storage conditions and currently used isolation methods, including new ones, such as microfluidics, which fundamentally affect the characterization of EXs and their other biomedical applications. The purpose of this review is to briefly summarize conventional and nonconventional sources of EXs, storage conditions and typical isolation methods, widely used kits and new "smart" technologies with emphasis on the influence of isolation techniques on EX content, protein detection, RNA, mRNA and others. At the same time, attention is paid to a brief overview of the direction of biomedical application of EXs, especially in diagnostics, therapy, senescence and aging and, with regard to the current situation, in issues related to Covid-19.
Collapse
Affiliation(s)
- Olga Janouskova
- Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista University in Ústí Nad Labem, Ústí Nad Labem, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
37
|
Gao M, Cai J, Zitkovsky HS, Chen B, Guo L. Comparison of Yield, Purity, and Functional Properties of Large-Volume Exosome Isolation Using Ultrafiltration and Polymer-Based Precipitation. Plast Reconstr Surg 2022; 149:638-649. [PMID: 35196679 DOI: 10.1097/prs.0000000000008830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stem cell-derived exosomes are known to produce effects similar to those of source cells and therefore represent a new approach in cell-free regenerative medicine. Their potential clinical application demands efficient isolation of stable and functional exosomes from a large volume of biological fluid. METHODS Exosomes from adipose-tissue conditioned medium of the same volume were isolated using either (1) ultrafiltration with size exclusion or (2) ExoQuick-TC. The isolated exosomes were characterized by protein concentration, particle size, exosomal marker expression, RNA expression profiles, and roles in dermal fibroblast proliferation and migration. RESULTS Both isolation methods produced exosomes within the size range defined for exosomes (50 to 200 nm) and common markers were enriched. Compared to the ExoQuick-TC precipitation method, the ultrafiltration method produced a significantly higher protein yield (p < 0.001) but a lower particle-to-protein ratio (p < 0.05); it also yielded higher RNA contents from the same fat tissue indicated by housekeeping genes, but with overall lower purity. The expression of several mRNAs and miRNAs related to tissue regeneration showed that there was no statistical difference between both methods, except miR-155 and miR-223 (p < 0.05). However, there was no difference in overall fibroblast proliferation and migration between exosomes isolated by these two methods. CONCLUSIONS Ultrafiltration with size exclusion demonstrated higher yields, acceptable purity, and comparable biophysical properties and biological functions to the more expensive commercial precipitation method. Therefore, it may conceivably be translated into yield-efficient and cost-effective modalities for therapeutic purposes. CLINICAL RELEVANCE STATEMENT Ultrafiltration with size exclusion may be amenable for exosome isolation from large-volume complex fluids such as tissue conditioned media for clinical application in future regenerative medicine.
Collapse
Affiliation(s)
- Min Gao
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Junrong Cai
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Helen S Zitkovsky
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Bin Chen
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Lifei Guo
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
38
|
Araujo-Abad S, Saceda M, de Juan Romero C. Biomedical application of small extracellular vesicles in cancer treatment. Adv Drug Deliv Rev 2022; 182:114117. [PMID: 35065142 DOI: 10.1016/j.addr.2022.114117] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are produced by almost all cell types in vivo or in vitro. Among them, exosomes are small nanovesicles with a lipid bilayer, proteins and RNAs actively involved in cellular communication, suggesting that they may be used both as biomarkers and for therapeutic purposes in diseases such as cancer. Moreover, the idea of using them as drug delivery vehicle arises as a promising field of study. Here, we reviewed recent findings showing the importance of EVs, with special focus in exosomes as biomarkers including the most relevant proteins found in different cancer types and it is discussed the FDA approved tests which use exosomes in clinical practice. Finally, we present an overview of the different chimeric EVs developed in the last few years, demonstrating that they can be conjugate to nanoparticles, biomolecules, cancer drugs, etc., and can be developed for a specific cancer treatment. Additionally, we summarized the clinical trials where EVs are used in the treatment of several cancer types aiming to improve the prognosis of these deadly diseases.
Collapse
Affiliation(s)
- Salome Araujo-Abad
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pio Jaramillo Alvarado s/n, Loja, 110111 Loja, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203 Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203 Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain
| |
Collapse
|
39
|
Liu Z, Xiong J, Gao S, Zhu MX, Sun K, Li M, Zhang G, Li YP. Ameliorating cancer cachexia by inhibiting cancer cell release of Hsp70 and Hsp90 with omeprazole. J Cachexia Sarcopenia Muscle 2022; 13:636-647. [PMID: 34729960 PMCID: PMC8818607 DOI: 10.1002/jcsm.12851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer cachexia, characterized by muscle and fat tissue wasting, is a major determinant of cancer-related mortality without established treatment. Recent animal data revealed that cancer cells induce muscle wasting by releasing Hsp70 and Hsp90 as surface proteins on extracellular vesicles (EVs). Here, we test a therapeutic strategy for ameliorating cancer cachexia by inhibiting the release of Hsp70 and Hsp90 using proton pump inhibitor omeprazole. METHODS Omeprazole effect on Hsp70/90 release through EVs by Lewis lung carcinoma (LLC) cells in vitro, serum levels of Hsp70/90 and Hsp70/90-carrying EVs in LLC tumour-bearing mice, and LLC-induced muscle protein degradation pathways in C2C12 myotubes and mice were determined. Omeprazole effect on endolysosomal pH and Rab27b expression in LLC cells were analysed. RESULTS Omeprazole treatment of LLC cells inhibited Hsp70/90 and Hsp70/90-carrying EV release in a dose-dependent manner (1 to 10 μM) and attenuated the catabolic activity of LLC cell-conditioned medium on C2C12 myotubes. Systemic omeprazole administration to LLC tumour-bearing mice (5 mg/kg/day subcutaneously) for 2 weeks blocked elevation of serum Hsp70, Hsp90, and Hsp70/90-carrying EVs, abrogated skeletal muscle catabolism, and prevented loss of muscle function as well as muscle and epididymal fat mass without altering tumour growth. Consequently, median survival increased by 23.3%. Mechanistically, omeprazole increased cancer cell endolysosomal pH level dose-dependently (0.1 to 1 μM) by inhibiting vacuolar H+ -ATPase. Further, omeprazole suppressed the highly elevated expression of Rab27b, a key regulator of EV release, in LLC cells. CONCLUSIONS Omeprazole ameliorates cancer cachexia by inhibiting cancer cell release of Hsp70 and Hsp90.
Collapse
Affiliation(s)
- Zhelong Liu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jian Xiong
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kai Sun
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX, USA
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
40
|
Bao Q, Huang Q, Chen Y, Wang Q, Sang R, Wang L, Xie Y, Chen W. Tumor-Derived Extracellular Vesicles Regulate Cancer Progression in the Tumor Microenvironment. Front Mol Biosci 2022; 8:796385. [PMID: 35059436 PMCID: PMC8764126 DOI: 10.3389/fmolb.2021.796385] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles released by numerous kinds of cells, which are now increasingly considered as essential vehicles of cell-to-cell communication and biomarkers in disease diagnosis and treatment. They contain a variety of biomolecular components, including lipids, proteins and nucleic acids. These functional molecules can be transmitted between tumor cells and other stromal cells such as endothelial cells, fibroblasts and immune cells utilizing EVs. As a result, tumor-derived EVs can deliver molecules to remodel the tumor microenvironment, thereby influencing cancer progression. On the one hand, tumor-derived EVs reprogram functions of endothelial cells, promote cancer-associated fibroblasts transformation, induce resistance to therapy and inhibit the immune response to form a pro-tumorigenic environment. On the other hand, tumor-derived EVs stimulate the immune response to create an anti-tumoral environment. This article focuses on presenting a comprehensive and critical overview of the potential role of tumor-derived EVs-mediated communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Qianqian Bao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qianqian Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yunna Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qiang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Sang
- Bengbu Medical College, Bengbu, China.,The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
41
|
Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. MICROMACHINES 2022; 13:139. [PMID: 35056304 PMCID: PMC8778688 DOI: 10.3390/mi13010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Aarti Patel
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Anastasia Kaffenes
- Department of Neuroscience, College of Arts and Sciences and College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Catherine Hord
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Delaney Kesterson
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Mattingly J, Li Y, Bihl JC, Wang J. The promise of exosome applications in treating central nervous system diseases. CNS Neurosci Ther 2021; 27:1437-1445. [PMID: 34636491 PMCID: PMC8611778 DOI: 10.1111/cns.13743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes (EXs), a type of extracellular vesicles, are secreted from virtually all types of cells. EXs serve as cell-to-cell communicators by conveying proteins and nucleic acids with regulatory functions. Increasing evidence shows that EXs are implicated in the pathogenesis of central nervous system (CNS) diseases. Moreover, EXs have recently been highlighted as a new promising therapeutic strategy for in vivo delivery of nucleotides and drugs. Studies have revealed that infusion of EXs elicits beneficial effects on the CNS injury animal models. As compared to cell-based therapy, EXs-based therapy for CNS diseases has unique advantages, opening a new path for neurological medicine. In this review, we summarized the current state of knowledge of EXs, the roles and applications of EXs as a viable pathological biomarker, and EX-based therapy for CNS diseases.
Collapse
Affiliation(s)
- Jared Mattingly
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Yuchen Li
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Ji C. Bihl
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Jinju Wang
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| |
Collapse
|
43
|
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021; 13:5450. [PMID: 34771614 PMCID: PMC8582403 DOI: 10.3390/cancers13215450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.
Collapse
Affiliation(s)
- Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Veera Kainulainen
- Human Microbiome Research Program Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00290 Helsinki, Finland;
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| |
Collapse
|
44
|
Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev 2021; 177:113940. [PMID: 34419502 DOI: 10.1016/j.addr.2021.113940] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) especially of mesenchymal stem/stomal cells (MSCs) are increasingly considered as biotherapeutic agents for a variety of different diseases. For translating them effectively into the clinics, scalable production processes fulfilling good manufacturing practice (GMP) are needed. Like for other biotherapeutic agents, the manufacturing of EV products can be subdivided in the upstream and downstream processing and the subsequent quality control, each of them containing several unit operations. During upstream processing (USP), cells are isolated, stored (cell banking) and expanded; furthermore, EV-containing conditioned media are produced. During downstream processing (DSP), conditioned media (CM) are processed to obtain concentrated and purified EV products. CM are either stored until DSP or are directly processed. As first unit operation in DSP, clarification removes remaining cells, debris and other larger impurities. The key operations of each EV DSP is volume-reduction combined with purification of the concentrated EVs. Most of the EV preparation methods used in conventional research labs including differential centrifugation procedures are limited in their scalability. Consequently, it is a major challenge in the therapeutic EV field to identify appropriate EV concentration and purification methods allowing scale up. As EVs share several features with enveloped viruses, that are used for more than two decades in the clinics now, several principles can be adopted to EV manufacturing. Here, we introduce and discuss volume reducing and purification methods frequently used for viruses and analyze their value for the manufacturing of EV-based therapeutics.
Collapse
|
45
|
Wijenayake S, Eisha S, Tawhidi Z, Pitino MA, Steele MA, Fleming AS, McGowan PO. Comparison of methods for pre-processing, exosome isolation, and RNA extraction in unpasteurized bovine and human milk. PLoS One 2021; 16:e0257633. [PMID: 34591894 PMCID: PMC8483318 DOI: 10.1371/journal.pone.0257633] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is a highly complex, heterogeneous biological fluid that contains non-nutritive, bioactive extracellular vesicles called exosomes. Characterization of milk-derived exosomes (MDEs) is challenging due to the lack of standardized methods that are currently being used for milk pre-processing, storage, and exosome isolation. In this study, we tested: 1) three pre-processing methods to remove cream, fat, cellular debris, and casein proteins from bovine milk to determine whether pre-processing of whole milk prior to long-term storage improves MDE isolations, 2) the suitability of two standard exosome isolation methods for MDE fractionation, and 3) four extraction protocols for obtaining high quality RNA from bovine and human MDEs. MDEs were characterized via Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and western immunoblotting for CD9, CD63, and Calnexin protein markers. We also present an optimized method of TEM sample preparation for MDEs. Our results indicate that: 1) Removal of cream and fat globules from unpasteurized bovine milk, prior to long-term storage, improves the MDE yield but not purity, 2) Differential ultracentrifugation (DUC) combined with serial filtration is better suited for bovine MDE isolation compared to ExoQuick (EQ) combined with serial filtration, however both methods were comparable for human milk, and 3) TRIzol LS is better suited for RNA extraction from bovine MDEs isolated by EQ and DUC methods. 4) TRIzol LS, TRIzol+RNA Clean and Concentrator, and TRIzol LS+RNA Clean and Concentrator methods can be used for RNA extractions from human MDEs isolated by EQ, yet the TRIzol LS method is better suited for human MDEs isolated by DUC. The QIAzol + miRNeasy Mini Kit produced the lowest RNA yield for bovine and human MDEs.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Shafinaz Eisha
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zoya Tawhidi
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Michael A. Pitino
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael A. Steele
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Alison S. Fleming
- Department of Psychology, University of Toronto, Mississauga, Mississauga, Ontario, Canada
| | - Patrick O. McGowan
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Diffusion-Based Separation of Extracellular Vesicles by Nanoporous Membrane Chip. BIOSENSORS-BASEL 2021; 11:bios11090347. [PMID: 34562937 PMCID: PMC8472239 DOI: 10.3390/bios11090347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) have emerged as novel biomarkers and therapeutic material. However, the small size (~200 nm) of EVs makes efficient separation challenging. Here, a physical/chemical stress-free separation of EVs based on diffusion through a nanoporous membrane chip is presented. A polycarbonate membrane with 200 nm pores, positioned between two chambers, functions as the size-selective filter. Using the chip, EVs from cell culture media and human serum were separated. The separated EVs were analyzed by nanoparticle tracking analysis (NTA), scanning electron microscopy, and immunoblotting. The experimental results proved the selective separation of EVs in cell culture media and human serum. Moreover, the diffusion-based separation showed a high yield of EVs in human serum compared to ultracentrifuge-based separation. The EV recovery rate analyzed from NTA data was 42% for cell culture media samples. We expect the developed method to be a potential tool for EV separation for diagnosis and therapy because it does not require complicated processes such as immune, chemical reaction, and external force and is scalable by increasing the nanoporous membrane size.
Collapse
|
47
|
Zhao Y, Liu P, Tan H, Chen X, Wang Q, Chen T. Exosomes as Smart Nanoplatforms for Diagnosis and Therapy of Cancer. Front Oncol 2021; 11:743189. [PMID: 34513718 PMCID: PMC8427309 DOI: 10.3389/fonc.2021.743189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are composed of a lipid bilayer membrane, containing proteins, nucleic acids, DNA, RNA, etc., derived from donor cells. They have a size range of approximately 30-150 nm. The intrinsic characteristics of exosomes, including efficient cellular uptake, low immunogenicity, low toxicity, intrinsic ability to traverse biological barriers, and inherent targeting ability, facilitate their application to the drug delivery system. Here, we review the generation, uptake, separation, and purification methods of exosomes, focusing on their application as carriers in tumor diagnosis and treatment, especially in brain tumors, as well as the patent applications of exosomes in recent years.
Collapse
Affiliation(s)
- Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv 2021; 54:107814. [PMID: 34389465 DOI: 10.1016/j.biotechadv.2021.107814] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are a subset of extracellular vesicles released from various cells, and they can be found in different bodily fluids. Exosomes are used as biomarkers to diagnose many diseases and to monitor therapy efficiency as they represent the status and origin of the cell, which they are released from. Considering that they co-exist in bodily fluids with other types of particles, their isolation still remains challenging since conventional separation methods are time-consuming, user-dependent, and result in low isolation yield. This review summarizes the conventional strategies and microfluidic-based methods for exosome isolation along with their strengths and limitations. Microfluidic devices emerge as a promising approach to overcome the limitations of the conventional methods due to their inherent characteristics, such as the need for minute sample volume and rapid operation, in order to isolate exosomes with a high yield and a high purity in a short amount of time, which make them unprecedented tools for molecular biology and clinical applications. This review elaborates on the existing microfluidic-based exosome isolation methods and denotes their benefits and drawbacks. Herein, we also introduce various commercially available platforms and kits for exosome isolation along with their working principles.
Collapse
Affiliation(s)
- Saeedreza Zeibi Shirejini
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
49
|
Campos CDM, Childers K, Gamage SST, Wijerathne H, Zhao Z, Soper SA. Analytical Technologies for Liquid Biopsy of Subcellular Materials. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:207-229. [PMID: 33974805 PMCID: PMC8601690 DOI: 10.1146/annurev-anchem-091520-093931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid biopsy markers, which can be secured from a simple blood draw or other biological samples, are used to manage a variety of diseases and even monitor for bacterial or viral infections. Although there are several different types of liquid biopsy markers, the subcellular ones, including cell-free DNA, microRNA, extracellular vesicles, and viral particles, are evolving in terms of their utility. A challenge with liquid biopsy markers is that they must be enriched from the biological sample prior to analysis because they are a vast minority in a mixed population, and potential interferences may be present in the sample matrix that can inhibit profiling the molecular cargo from the subcellular marker. In this article, we discuss existing and developing analytical enrichment platforms used to isolate subcellular liquid biopsy markers, and discuss their figures of merit such as recovery, throughput, and purity.
Collapse
Affiliation(s)
- Camila D M Campos
- Life Science Department, Imec, 3001 Leuven, Belgium
- Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katie Childers
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Sachindra S T Gamage
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Harshani Wijerathne
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Zheng Zhao
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Steven A Soper
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
50
|
Heydari R, Abdollahpour-Alitappeh M, Shekari F, Meyfour A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21:939-962. [PMID: 34308738 DOI: 10.1080/14737159.2021.1954909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|