1
|
Li J, Liu D, Li X, Wei J, Du W, Zhao A, Xu M. RNA vaccines: The dawn of a new age for tuberculosis? Hum Vaccin Immunother 2025; 21:2469333. [PMID: 40013818 PMCID: PMC11869779 DOI: 10.1080/21645515.2025.2469333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Since 2019, there has been a growing focus on mRNA vaccines for infectious disease prevention, particularly following the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). mRNA vaccines offer advantages such as rapid production and the ability to induce robust cellular and antibody responses, which are essential for combating infections that require cell-mediated immunity, including Tuberculosis (TB). This review explores recent progress in TB mRNA vaccines and addresses several key areas: (1) the urgent need for new TB vaccines; (2) current advancements in TB vaccine development, and the advantages and challenges of mRNA technology; (3) the design and characteristics of TB mRNA vaccines; (4) the immunological mechanisms of TB mRNA vaccines; (5) manufacturing processes for TB mRNA vaccines; and (6) safety and regulatory considerations. This interdisciplinary review aims to provide insights for researchers working to address critical questions in TB mRNA vaccine development.
Collapse
Affiliation(s)
- Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Dong Liu
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Xiaochi Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Jiazheng Wei
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Weixin Du
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| |
Collapse
|
2
|
Krušič A, Mencin N, Leban M, Nett E, Perković M, Sahin U, Megušar P, Štrancar A, Sekirnik R. Reverse-phase chromatography removes double-stranded RNA, fragments, and residual template to decrease immunogenicity and increase cell potency of mRNA and saRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102491. [PMID: 40166612 PMCID: PMC11957593 DOI: 10.1016/j.omtn.2025.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025]
Abstract
mRNA is produced by in vitro transcription reaction, which also leads to formation of immuno-stimulatory impurities, such as double-stranded RNA (dsRNA). dsRNA leads to activation of innate immune response linked to inhibition of protein synthesis. Its removal from mRNA preparations increases efficiency of protein translation. Previous studies identified ion-pair reverse-phase high-performance liquid chromatography as a highly efficient approach for dsRNA removal. Here, we present a comprehensive study of IP-RP LC purification on monolith chromatographic supports for mRNA polishing, demonstrating its ability to remove dsRNA, as well as hybridized RNA fragments and residual DNA template, which are not fully removed by mRNA capture methods. We develop step elution methodology, including at microgram scale with novel spin columns operated by centrifugation. We demonstrate SDVB efficiency across a range of molecular sizes and explore the necessity for temperature control for effective dsRNA removal from self-amplifying RNA. SDVB-purified mRNA and saRNA showed significantly increased transgene expression in cell-based assays and reduced the activation of cell autonomous innate immunity in A549 at early time points. Our findings highlight the importance of IP-RP purification for high-quality mRNA production, while simplifying the technological requirements for its adoption in clinical mRNA and saRNA manufacturing processes.
Collapse
Affiliation(s)
- Andreja Krušič
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Nina Mencin
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Marta Leban
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Evelin Nett
- TRON – Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Mario Perković
- TRON – Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Ugur Sahin
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck street, 55131 Mainz, Germany
| | - Polona Megušar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
3
|
Bahadir Z, Narayan P, Wolters R, Permar SR, Fouda G, Hessell AJ, Haigwood NL. Monoclonal Antibodies for Pediatric Viral Disease Prevention and Treatment. Pediatrics 2025; 155:e2024068690. [PMID: 40174915 DOI: 10.1542/peds.2024-068690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Medical advancements over the last century have improved our ability to treat pediatric infectious diseases, significantly reducing associated morbidity and mortality worldwide. Although vaccines have been pivotal in this progress, many viral pathogens still do not currently have effective vaccines. The COVID-19 pandemic highlighted the need for rapid responses to emerging viral pathogens and introduced new tools to combat them. This review addresses human monoclonal antibodies (mAbs) as a strategy for treating and preventing viral infections in pediatric populations. We discuss previously used and currently available mAbs and advancements in mAb discovery. We address the future of mAb therapy by describing novel approaches in drug production and delivery platforms in addition to alternative antibody classes. Finally, we review the challenges and limitations of mAb therapy development for newborns and children.
Collapse
Affiliation(s)
- Zeynep Bahadir
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Priyanka Narayan
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Rachael Wolters
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Genevieve Fouda
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
4
|
Shen Y, Yang DQ, Liu Y, Lao JE, Liu CQ, Gao XH, He YR, Xia H. A review of advances in in vitro RNA preparation by ssRNAP. Int J Biol Macromol 2025; 304:141002. [PMID: 39952516 DOI: 10.1016/j.ijbiomac.2025.141002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
In vitro transcription (IVT) based on single-subunit RNA polymerase (ssRNAP) has enhanced the widespread application of RNA drugs in the biomedical field, showcasing unprecedented potential for disease prevention and treatment. While the classical enzyme T7 RNA polymerase (T7 RNAP) has driven significant progress in RNA production, several challenges persist. These challenges include the selectivity of the initiation nucleotide, low incorporation efficiency of modified nucleotides, limited processivity on certain templates, heterogeneity at the 3' end of RNA products, and high level of double-stranded RNA (dsRNA) byproducts. No review has systematically addressed the efforts to overcome these challenges. To fill this gap, we reviewed recent advances in engineering T7 RNAP variants and the discovery of novel ssRNAPs aimed at addressing the shortcomings of T7 RNAP. We also discussed the underlying mechanisms of ssRNAP-mediated byproduct formation, strategies to mitigate dsRNA production using modified nucleotides, and for the first time to sorted out the application of artificial intelligence in IVT. Overall, this review summarizes the advances in RNA synthesis via IVT and provides potential strategies for improving RNA products. We believe that ssRNAPs with more excellent performance will be on the stage of RNA synthesis in the near future to meet the growing demands of both scientific research and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuan Shen
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dong-Qi Yang
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yuan Liu
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jia-En Lao
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chun-Qing Liu
- Eesy Time (Shenzhen) Technology Co., LTD., Bao An District, Shenzhen 518101, China
| | - Xing-Hong Gao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi 563006, Guizhou, China.
| | - Yun-Ru He
- Scientific Research Center of The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen 518107, China.
| | - Heng Xia
- Scientific Research Center of The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen 518107, China.
| |
Collapse
|
5
|
Villegas NK, Gaudreault YR, Keller A, Kearns P, Stapleton JA, Plesa C. Optimizing in vitro Transcribed CRISPR-Cas9 Single-Guide RNA Libraries for Improved Uniformity and Affordability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644170. [PMID: 40196484 PMCID: PMC11974757 DOI: 10.1101/2025.03.24.644170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
We describe a scalable and cost-effective sgRNA synthesis workflow that reduces costs by over 70% through the use of large pools of microarray-derived oligos encoding unique sgRNA spacers. These subpool oligos are assembled into full-length dsDNA templates via Golden Gate Assembly before in vitro transcription with T7 RNA polymerase. RNA-seq analysis reveals severe biases in spacer representation, with some spacers being highly overrepresented while others are completely absent. Consistent with previous studies, we identify guanine-rich sequences within the first four nucleotides of the spacer, immediately downstream of the T7 promoter, as the primary driver of this bias. To address this issue, we introduced a guanine tetramer upstream of all spacers, which reduced bias by an average of 19% in sgRNA libraries containing 389 spacers. However, this modification also increased the presence of high-molecular-weight RNA species after transcription. We also tested two alternative bias-reduction strategies: compartmentalizing spacers within emulsions and optimizing DNA input and reaction volumes. Both methods independently reduced bias in 2,626-plex sgRNA libraries, though to a lesser extent than the guanine tetramer approach. These advancements enhance both the affordability and uniformity of sgRNA libraries, with broad implications for improving CRISPR-Cas9 screens and optimizing guide RNA design for other CRISPR and nuclease systems.
Collapse
Affiliation(s)
- Natanya K. Villegas
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
- Institute of Molecular Biology, University of Oregon 1229 University of Oregon, 1318 Franklin Blvd., Room 273, Onyx Bridge, Eugene, OR 97403, USA
- Biology Department, University of Oregon 1210 University of Oregon, 77 Klamath Hall, Eugene, OR 97403, USA
| | - Yukiko R. Gaudreault
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Abigail Keller
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Phillip Kearns
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - James A. Stapleton
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Calin Plesa
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| |
Collapse
|
6
|
Khorshid Sokhangouy S, Behzadi M, Rezaei S, Farjami M, Haghshenas M, Sefidbakht Y, Mozaffari-Jovin S. mRNA Vaccines: Design Principles, Mechanisms, and Manufacturing-Insights From COVID-19 as a Model for Combating Infectious Diseases. Biotechnol J 2025; 20:e202400596. [PMID: 39989260 DOI: 10.1002/biot.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
The full approval of two SARS-CoV-2 mRNA vaccines, Comirnaty and Spikevax, has greatly accelerated the development of numerous mRNA vaccine candidates targeting infectious diseases and cancer. mRNA vaccines provide a rapid, safe, and versatile manufacturing process while eliciting strong humoral and cellular immune responses, making them particularly beneficial for addressing emerging pandemics. Recent advancements in modified nucleotides and lipid nanoparticle delivery systems have further emphasized the potential of this vaccine platform. Despite these transformative opportunities, significant improvements are needed to enhance vaccine efficacy, stability, and immunogenicity. This review outlines the fundamentals of mRNA vaccine design, the manufacturing process, and administration strategies, along with various optimization approaches. It also offers a comprehensive overview of the mRNA vaccine candidates developed since the onset of the COVID-19 pandemic, the challenges posed by emerging SARS-CoV-2 variants, and current strategies to address these variants. Finally, we discuss the potential of broad-spectrum and combined mRNA vaccines and examine the challenges and future prospects of the mRNA vaccine platform.
Collapse
Affiliation(s)
- Saeideh Khorshid Sokhangouy
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matine Behzadi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokuh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Mahsa Farjami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Haghshenas
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Sahoo D, Atochina-Vasserman EN, Lu J, Maurya DS, Ona N, Vasserman JA, Ni H, Berkihiser S, Park WJ, Weissman D, Percec V. Toward a Complete Elucidation of the Primary Structure-Activity in Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers for In Vivo Delivery of Luc-mRNA. Biomacromolecules 2025; 26:726-737. [PMID: 39688403 DOI: 10.1021/acs.biomac.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA. Simplified synthesis and assembly processes allow for rapid IAJD screening for discovery. The role of the primary structure of IAJDs in activity indicated, with preliminary investigations, that ionizable amine (IA), sequence, and architecture of hydrophilic and hydrophobic domains are important for in vivo targeted delivery. Here, we study the role of the interconnecting linker length between the IA and the hydrophobic domain of pentaerythritol-based IAJDs. The linker length determines, through inductive effects, the position of the IA and the pKa of the IAJDs and through flexibility, the stability of the DNPs, highlighting their extraordinarily important role in effective targeted delivery.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sydni Berkihiser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wook-Jin Park
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Siew YY, Zhang W. Removing immunogenic double-stranded RNA impurities post in vitro transcription synthesis for mRNA therapeutics production: A review of chromatography strategies. J Chromatogr A 2025; 1740:465576. [PMID: 39642661 DOI: 10.1016/j.chroma.2024.465576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Messenger RNA (mRNA) vaccines and therapeutics hold immense potential for a wide range of clinical applications. However, the in vitro transcription (IVT) process used to synthesize mRNA also results in the generation of a by-product, double-stranded RNA (dsRNA), which can trigger innate immune activation and reduce translation activity. Although various efforts have been made to optimize IVT synthesis to minimize dsRNA formation, dsRNA impurities still cannot be fully resolved. Therefore, the urgency and significance of a downstream purification strategy to tackle these unresolved dsRNA impurities cannot be overstated. In this review, we discuss in detail the use of non-enzymatic (reversed phase-ion pairing chromatography, hydrophobic interaction chromatography, cellulose, dsRNA-specific scavenger resin, hydroxyapatite chromatography, anion exchange chromatography, hydrogen bonding chromatography, asymmetric flow field-flow fractionation, salt precipitation, low pH denaturation) and RNase III enzymatic purification strategies aimed at dsRNA removal. We summarize key findings on the effectiveness of these approaches in removing dsRNA impurities, as well as their strengths and limitations. In addition, we also compile purification optimization strategies that can be performed after mRNA synthesis to improve the efficiency of dsRNA contaminant removal, enhance the recovery of mRNA products, preserve mRNA integrity, and augment translation activity. Other small-scale purification strategies and future outlooks are also presented. This review is intended to serve as a comprehensive reference guide for all personnel working on the production of mRNA therapeutics.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore.
| | - Wei Zhang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore.
| |
Collapse
|
9
|
Swingle KL, Hamilton AG, Safford HC, Geisler HC, Thatte AS, Palanki R, Murray AM, Han EL, Mukalel AJ, Han X, Joseph RA, Ghalsasi AA, Alameh MG, Weissman D, Mitchell MJ. Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia. Nature 2025; 637:412-421. [PMID: 39663452 DOI: 10.1038/s41586-024-08291-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
Pre-eclampsia is a placental disorder that affects 3-5% of all pregnancies and is a leading cause of maternal and fetal morbidity worldwide1,2. With no drug available to slow disease progression, engineering ionizable lipid nanoparticles (LNPs) for extrahepatic messenger RNA (mRNA) delivery to the placenta is an attractive therapeutic option for pre-eclampsia. Here we use high-throughput screening to evaluate a library of 98 LNP formulations in vivo and identify a placenta-tropic LNP (LNP 55) that mediates more than 100-fold greater mRNA delivery to the placenta in pregnant mice than a formulation based on the Food and Drug Administration-approved Onpattro LNP (DLin-MC3-DMA)3. We propose an endogenous targeting mechanism based on β2-glycoprotein I adsorption that enables LNP delivery to the placenta. In both inflammation- and hypoxia-induced models of pre-eclampsia, a single administration of LNP 55 encapsulating vascular endothelial growth factor (VEGF) mRNA resolves maternal hypertension until the end of gestation. In addition, with our VEGF mRNA LNP 55 therapeutic, we demonstrate improvements in fetal health and partially restore placental vasculature, the local and systemic immune landscape and serum levels of soluble Fms-like tyrosine kinase-1, a clinical biomarker of pre-eclampsia1. Together, these results demonstrate the potential of this mRNA LNP platform for treating placental disorders such as pre-eclampsia.
Collapse
Affiliation(s)
- Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah C Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah C Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajay S Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda M Murray
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi A Ghalsasi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Wadapurkar R, Deo S, Khanzode R, Singh A. Leveraging Next-Generation Sequencing Application from Identity to Purity Profiling of Nucleic Acid-Based Products. Pharmaceutics 2024; 17:30. [PMID: 39861679 PMCID: PMC11769349 DOI: 10.3390/pharmaceutics17010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The nucleic acid-based product (NAP) portfolio is expanding continuously and provides safer curative options for many disease indications. Nucleic acid-based products offer several advantages compared to proteins and virus-based products. They represent an emerging field; thus, their quality control and regulatory landscape is evolving to ensure adequate quality and safety. Next-Generation Sequencing (NGS) is mostly recommended for NAP identity testing, and we are leveraging its application for impurity profiling. Methods: We proposed a workflow for the purity assessment of NAPs through short-read Illumina NGS followed by data analysis of mRNA vaccine and pDNA samples. We determined the sequence identity, DNA and RNA contamination, off-target RNA contamination, and poly-A count with the proposed workflow. Results: Our workflow predicted most of the critical quality controls of mRNA vaccine and plasmid DNA samples, especially focusing on the identity and the nucleotide-based impurities. Additionally, NGS data interpretation also assisted in strategic decisions for NAP manufacturing process optimizations. Conclusions: We recommend the adaptation of incremental NGS data by regulatory agencies to identify nucleotide-based impurities in NAPs. Perhaps NGS adaptation under cGMP compliance needs to be deliberated with the regulatory bodies, especially focusing on the methods qualification and validation part, starting from the sample collection, NGS library preparation, NGS run, and its data analysis pipeline.
Collapse
Affiliation(s)
| | | | | | - Ajay Singh
- Gennova Biopharmaceuticals Ltd., ITBT Park, Hinjawadi Phase 2 Rd, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411057, India; (R.W.); (S.D.); (R.K.)
| |
Collapse
|
11
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
12
|
Argueta S, Wang Y, Zhao H, Diwanji N, Gorgievski M, Cochran E, Grudzien-Nogalska E, D’Alessandro J, McCreedy B, Prod’homme T, Hofmeister R, Ding J, Getts D. In vivo programmed myeloid cells expressing novel chimeric antigen receptors show potent anti-tumor activity in preclinical solid tumor models. Front Immunol 2024; 15:1501365. [PMID: 39735543 PMCID: PMC11671302 DOI: 10.3389/fimmu.2024.1501365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous ex vivo cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells in vivo by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs). Methods The CAR comprises a TROP2 specific single-chain variable fragment (scFv) fused to a truncated CD89 which requires association with the FcRγ signal adapter to trigger myeloid-specific cell activation. The mRNA encoding the TROP2 CAR was encapsulated in LNPs. Co-immunoprecipitation, flow cytometry and enzyme-linked immunosorbent assay (ELISA) were used to measure CAR expression and functional activity in vitro. Anti-tumor efficacy of the TROP2 CAR mRNA/LNP was evaluated after intravenous administration in various murine tumor models. Results In vitro, transient expression of the TROP2 CAR on monocytes triggers antigen-dependent cytotoxicity and cytokine release. In tumor bearing mice and cynomolgus monkeys, the TROP2 CAR mRNA/LNP are primarily expressed by myeloid cells. In a mouse xenograft model, intravenous administration of TROP2 CAR mRNA/LNP results in tumor growth inhibition and in a B16/F10-OVA immunocompetent melanoma mouse model, anti-tumor efficacy of a gp75-specific CAR correlates with increased number of activated T cells, activation of dendritic cells and a humoral response against B16/F10-OVA melanoma tumors. Discussions These findings demonstrate that myeloid cells can be directly engineered in vivo to kill tumor cells and orchestrate an adaptive immune response and guide clinical studies for the treatment of solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Daniel Getts
- Myeloid Therapeutics, Inc., Cambridge, MA, United States
| |
Collapse
|
13
|
Camperi J, Roper B, Freund E, Leylek R, Nissenbaum A, Galan C, Caothien R, Hu Z, Ko P, Lee A, Chatla K, Ayalew L, Yang F, Lippold S, Guilbaud A. Exploring the Impact of In Vitro-Transcribed mRNA Impurities on Cellular Responses. Anal Chem 2024; 96:17789-17799. [PMID: 39445393 PMCID: PMC11542617 DOI: 10.1021/acs.analchem.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Advances in mRNA technology have enabled mRNA-based therapies to enter a new era of medicine. Such therapies benefit from a single, standardized in vitro transcription (IVT) manufacturing process applicable to a wide range of targets. This process includes several downstream purification steps, which aim to eliminate impurities that potentially affect safety and efficacy. However, it is not fully understood which impurities are the most critical; hence, some efforts are still needed to establish the correlation between RNA impurities and their role in limiting therapeutic efficacy. To study this relationship, we produced in vitro-transcribed mRNAs using several bacteriophage T7 RNA polymerases, including one wild-type and four engineered variants. Important attributes of the mRNA such as integrity, purity, and functional activity were then measured using advanced physicochemical and cellular assays. For impurities including abortive transcripts, mRNAs containing partial poly(A) tails, and double-stranded (ds)RNA byproducts, structure-function relationships have been established by tracking cellular responses (i.e., protein expression, reactogenicity) in multiple cell models. By varying the T7 RNA polymerase, different levels of sense-antisense dsRNA byproducts were measured by mass photometry, contributing directly to immunological reactogenicity in bone marrow-derived dendritic cells. T7 RNA polymerase differences with regard to short (<20 nucleotides) 3'-loopback dsRNA byproducts were also further investigated using native mass spectrometry by precisely resolving these impurities at the nucleotide level. Overall, this study highlights the importance of developing sensitive and advanced analytical methods to characterize IVT mRNA impurities and understand their interaction with cellular machinery in order to ensure quality control of RNA-based therapies.
Collapse
Affiliation(s)
- Julien Camperi
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Roper
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Emily Freund
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca Leylek
- Department
of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ariane Nissenbaum
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Carolina Galan
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Roger Caothien
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhilan Hu
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Peggy Ko
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Allison Lee
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kamalakar Chatla
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Luladey Ayalew
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Feng Yang
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Steffen Lippold
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Axel Guilbaud
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
14
|
MalagodaPathiranage K, Banerjee R, Martin C. A new approach to RNA synthesis: immobilization of stably and functionally co-tethered promoter DNA and T7 RNA polymerase. Nucleic Acids Res 2024; 52:10607-10618. [PMID: 39011885 PMCID: PMC11417385 DOI: 10.1093/nar/gkae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Current approaches to RNA synthesis/manufacturing require substantial (and incomplete) purification post-synthesis. We have previously demonstrated the synthesis of RNA from a complex in which T7 RNA polymerase is tethered to promoter DNA. In the current work, we extend this approach to demonstrate an extremely stable system of functional co-tethered complex to a solid support. Using the system attached to magnetic beads, we carry out more than 20 rounds of synthesis using the initial polymerase-DNA construct. We further demonstrate the wide utility of this system in the synthesis of short RNA, a CRISPR guide RNA, and a protein-coding mRNA. In all cases, the generation of self-templated double stranded RNA (dsRNA) impurities are greatly reduced, by both the tethering itself and by the salt-tolerance that local co-tethering provides. Transfection of the mRNA into HEK293T cells shows a correlation between added salt in the transcription reaction (which inhibits RNA rebinding that generates RNA-templated extensions) and significantly increased expression and reduced innate immune stimulation by the mRNA reaction product. These results point in the direction of streamlined processes for synthesis/manufacturing of high-quality RNA of any length, and at greatly reduced costs.
Collapse
Affiliation(s)
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Miller M, Alvizo O, Baskerville S, Chintala A, Chng C, Dassie J, Dorigatti J, Huisman G, Jenne S, Kadam S, Leatherbury N, Lutz S, Mayo M, Mukherjee A, Sero A, Sundseth S, Penfield J, Riggins J, Zhang X. An engineered T7 RNA polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis. Faraday Discuss 2024; 252:431-449. [PMID: 38832894 DOI: 10.1039/d4fd00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Messenger RNA (mRNA) therapies have recently gained tremendous traction with the approval of mRNA vaccines for the prevention of SARS-CoV-2 infection. However, manufacturing challenges have complicated large scale mRNA production, which is necessary for the clinical viability of these therapies. Not only can the incorporation of the required 5' 7-methylguanosine cap analog be inefficient and costly, in vitro transcription (IVT) using wild-type T7 RNA polymerase generates undesirable double-stranded RNA (dsRNA) byproducts that elicit adverse host immune responses and are difficult to remove at large scale. To overcome these challenges, we have engineered a novel RNA polymerase, T7-68, that co-transcriptionally incorporates both di- and tri-nucleotide cap analogs with high efficiency, even at reduced cap analog concentrations. We also demonstrate that IVT products generated with T7-68 have reduced dsRNA content.
Collapse
Affiliation(s)
- Mathew Miller
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | | | - Avinash Chintala
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Chinping Chng
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Justin Dassie
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | | | - Gjalt Huisman
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Stephan Jenne
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Supriya Kadam
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Neil Leatherbury
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Stefan Lutz
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Melissa Mayo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Arpan Mukherjee
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | - Antoinette Sero
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Stuart Sundseth
- Precision Biosciences, 302 East Pettigrew St, Durham, NC 27701, USA
| | | | - James Riggins
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| | - Xiyun Zhang
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA.
| |
Collapse
|
16
|
Guimaraes GJ, Kim J, Bartlett MG. Characterization of mRNA therapeutics. MASS SPECTROMETRY REVIEWS 2024; 43:1066-1090. [PMID: 37401740 DOI: 10.1002/mas.21856] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
Therapeutic messenger RNAs (mRNAs) have emerged as powerful tools in the treatment of complex diseases, especially for conditions that lack efficacious treatment. The successful application of this modality can be attributed to its ability to encode entire proteins. While the large nature of these molecules has supported their success as therapeutics, its extended size creates several analytical challenges. To further support therapeutic mRNA development and its deployment in clinical trials, appropriate methods to support their characterization must be developed. In this review, we describe current analytical methods that have been used in the characterization of RNA quality, identity, and integrity. Advantages and limitations from several analytical techniques ranging from gel electrophoresis to liquid chromatography-mass spectrometry and from shotgun sequencing to intact mass measurements are discussed. We comprehensively describe the application of analytical methods in the measurements of capping efficiency, poly A tail analysis, as well as their applicability in stability studies.
Collapse
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
17
|
Rosa SS, Zhang S, Sari Y, Marques MPC. A (RP)UHPLC/UV analytical method to quantify dsRNA during the mRNA vaccine manufacturing process. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5146-5153. [PMID: 39011770 PMCID: PMC11293613 DOI: 10.1039/d4ay00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
dsRNA is a product related impurity produced during the mRNA manufacturing process. The established immuno-based detection methods lack the flexibility and speed required to be applied throughout the manufacturing process. The RP-HPLC method developed outperforms these in terms of precision, broader detection range, LOD and LOQ, as well as in output variance. Using this method, dsRNA can be quantified in under 30 min for a single sample.
Collapse
Affiliation(s)
- Sara Sousa Rosa
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK.
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Shuran Zhang
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK.
| | - Yustika Sari
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK.
| | - Marco P C Marques
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Nong J, Glassman PM, Shuvaev VV, Reyes-Esteves S, Descamps HC, Kiseleva RY, Papp TE, Alameh MG, Tam YK, Mui BL, Omo-Lamai S, Zamora ME, Shuvaeva T, Arguiri E, Gong X, Brysgel TV, Tan AW, Woolfork AG, Weljie A, Thaiss CA, Myerson JW, Weissman D, Kasner SE, Parhiz H, Muzykantov VR, Brenner JS, Marcos-Contreras OA. Targeting lipid nanoparticles to the blood-brain barrier to ameliorate acute ischemic stroke. Mol Ther 2024; 32:1344-1358. [PMID: 38454606 PMCID: PMC11081939 DOI: 10.1016/j.ymthe.2024.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.
Collapse
Affiliation(s)
- Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sahily Reyes-Esteves
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Helene C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Barbara L Mui
- Acuitas Therapeutics, Vancouver, British Columbia V6T 1Z3, Canada
| | - Serena Omo-Lamai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco E Zamora
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tea Shuvaeva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evguenia Arguiri
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xijing Gong
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor V Brysgel
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ai Wen Tan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley G Woolfork
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Kasner
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Oscar A Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Sharabrin SV, Bondar AA, Starostina EV, Kisakov DN, Kisakova LA, Zadorozhny AM, Rudometov AP, Ilyichev AA, Karpenko LI. Removal of Double-Stranded RNA Contaminants During Template-Directed Synthesis of mRNA. Bull Exp Biol Med 2024; 176:751-755. [PMID: 38896322 DOI: 10.1007/s10517-024-06102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 06/21/2024]
Abstract
The removal of double-stranded RNA (dsRNA) contaminants during in vitro mRNA synthesis is one of the technological problems to be solved. Apparently, these contaminants are the result of the T7 RNA polymerase side activity. In this study, we used a modified method of mRNA purification based on the selective binding of dsRNA to cellulose in ethanol-containing buffer. It was shown both in vivo and in vitro that the cellulose-purified mRNA preparation leads neither to activation of the lymphocyte inflammatory marker CD69 nor to increased release of IFNα in mice, and does not contain impurities detectable by antibodies to dsRNA.
Collapse
MESH Headings
- Animals
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- Mice
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- DNA-Directed RNA Polymerases/metabolism
- DNA-Directed RNA Polymerases/genetics
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interferon-alpha/biosynthesis
- Viral Proteins/metabolism
- Viral Proteins/genetics
Collapse
Affiliation(s)
- S V Sharabrin
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - A A Bondar
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Starostina
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - D N Kisakov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - L A Kisakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A M Zadorozhny
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Ilyichev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
20
|
Warminski M, Trepkowska E, Smietanski M, Sikorski PJ, Baranowski MR, Bednarczyk M, Kedzierska H, Majewski B, Mamot A, Papiernik D, Popielec A, Serwa RA, Shimanski BA, Sklepkiewicz P, Sklucka M, Sokolowska O, Spiewla T, Toczydlowska-Socha D, Warminska Z, Wolosewicz K, Zuberek J, Mugridge JS, Nowis D, Golab J, Jemielity J, Kowalska J. Trinucleotide mRNA Cap Analogue N6-Benzylated at the Site of Posttranscriptional m6A m Mark Facilitates mRNA Purification and Confers Superior Translational Properties In Vitro and In Vivo. J Am Chem Soc 2024; 146:8149-8163. [PMID: 38442005 PMCID: PMC10979456 DOI: 10.1021/jacs.3c12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.
Collapse
Affiliation(s)
- Marcin Warminski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edyta Trepkowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Pawel J. Sikorski
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Laboratory
of Epitranscriptomics, Department of Environmental Microbiology and
Biotechnology, Institute of Microbiology, Faculty of Biology, Biological
and Chemical Research Centre, University
of Warsaw, 02-089 Warsaw, Poland
| | | | - Marcelina Bednarczyk
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Hanna Kedzierska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Bartosz Majewski
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Adam Mamot
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Diana Papiernik
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Agnieszka Popielec
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Remigiusz A. Serwa
- Proteomics
Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Brittany A. Shimanski
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Piotr Sklepkiewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Marta Sklucka
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Olga Sokolowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Tomasz Spiewla
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Zofia Warminska
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Karol Wolosewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey S. Mugridge
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Dominika Nowis
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
21
|
Wang HY, Li L, Nelson CS, Barfield R, Valencia S, Chan C, Muramatsu H, Lin PJC, Pardi N, An Z, Weissman D, Permar SR. Multivalent cytomegalovirus glycoprotein B nucleoside modified mRNA vaccines did not demonstrate a greater antibody breadth. NPJ Vaccines 2024; 9:38. [PMID: 38378950 PMCID: PMC10879498 DOI: 10.1038/s41541-024-00821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Human cytomegalovirus (HCMV) remains the most common congenital infection and infectious complication in immunocompromised patients. The most successful HCMV vaccine to date, an HCMV glycoprotein B (gB) subunit vaccine adjuvanted with MF59, achieved 50% efficacy against primary HCMV infection. A previous study demonstrated that gB/MF59 vaccinees were less frequently infected with HCMV gB genotype strains most similar to the vaccine strain than strains encoding genetically distinct gB genotypes, suggesting strain-specific immunity accounted for the limited efficacy. To determine whether vaccination with multiple HCMV gB genotypes could increase the breadth of anti-HCMV gB humoral and cellular responses, we immunized 18 female rabbits with monovalent (gB-1), bivalent (gB-1+gB-3), or pentavalent (gB-1+gB-2+gB-3+gB-4+gB-5) gB lipid nanoparticle-encapsulated nucleoside-modified RNA (mRNA-LNP) vaccines. The multivalent vaccine groups did not demonstrate a higher magnitude or breadth of the IgG response to the gB ectodomain or cell-associated gB compared to that of the monovalent vaccine. Also, the multivalent vaccines did not show an increase in the breadth of neutralization activity and antibody-dependent cellular phagocytosis against HCMV strains encoding distinct gB genotypes. Interestingly, peripheral blood mononuclear cell-derived gB-2-specific T-cell responses elicited by multivalent vaccines were of a higher magnitude compared to that of monovalent vaccinated animals against a vaccine-mismatched gB genotype at peak immunogenicity. Yet, no statistical differences were observed in T cell response against gB-3 and gB-5 variable regions among the three vaccine groups. Our data suggests that the inclusion of multivalent gB antigens is not an effective strategy to increase the breadth of anti-HCMV gB antibody and T cell responses. Understanding how to increase the HCMV vaccine protection breadth will be essential to improve the vaccine efficacy.
Collapse
Affiliation(s)
- Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Takeda Pharmaceutical, San Diego, CA, 92121, USA
| | - Cody S Nelson
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sarah Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Rauch S, Lutz J, Mühe J, Kowalczyk A, Schlake T, Heidenreich R. Sequence-Optimized mRNA Vaccines Against Infectious Disease. Methods Mol Biol 2024; 2786:183-203. [PMID: 38814395 DOI: 10.1007/978-1-0716-3770-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Developing effective mRNA vaccines poses certain challenges concerning mRNA stability and ability to induce sufficient immune stimulation and requires a specific panel of techniques for production and testing. Here, we describe the production of stabilized mRNA vaccines (RNActive® technology) with enhanced immunogenicity, generated using conventional nucleotides only, by introducing changes to the mRNA sequence and by formulation into lipid nanoparticles. Methods described here include the synthesis, purification, and formulation of mRNA vaccines as well as a comprehensive panel of in vitro and in vivo methods for evaluation of vaccine quality and immunogenicity.
Collapse
|
24
|
Francis C, Frida J P, Thanh-Huong B, Alicja M, Artem K, Jérémie P, Sven Even B. Urea supplementation improves mRNA in vitro transcription by decreasing both shorter and longer RNA byproducts. RNA Biol 2024; 21:1-6. [PMID: 38411163 PMCID: PMC10900265 DOI: 10.1080/15476286.2024.2321764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
The current letter to the editor describes the presence of RNA byproducts in small-scale in vitro transcription (IVT) reactions as evaluated by capillary gel electrophoresis, asymmetric flow field flow fractionation, immunoblotting, cell-free translation assays, and in IFN reporter cells. We compare standard T7 RNA polymerase (RNAP) based IVT reactions to two recently described protocols employing either urea supplementation or using the VSW3 RNAP. Our results indicate that urea supplementation yields considerably less RNA byproducts and positively affects the overall number of full-length transcripts. In contrast, VSW3 IVT reactions demonstrated a low yield and generated a higher fraction of truncated transcripts. Lastly, both urea mRNA and VSW3 mRNA elicited considerably less IFN responses after transfection in mouse macrophages.
Collapse
Affiliation(s)
- Combes Francis
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | | | - Bui Thanh-Huong
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Molska Alicja
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Komissarov Artem
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Parot Jérémie
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Borgos Sven Even
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| |
Collapse
|
25
|
Combes F, Bui TH, Pettersson FJ, Hak S. Rapid and scalable detection of synthetic mRNA byproducts using polynucleotide phosphorylase and polythymidine oligonucleotides. RNA Biol 2024; 21:1-8. [PMID: 38836544 PMCID: PMC11155706 DOI: 10.1080/15476286.2024.2363029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA. By first hybridizing oligo-T to the poly(A) tail of intact mRNA and subsequently digesting the unhybridized RNA fragments with a 3'-5' exoribonuclease, individual nucleotides can be selectively released from RNA fragments. The adenosine-based fraction of these nucleotides can then be converted into ATP and detected by luminescence as a sensitive indicator of mRNA byproducts. We developed a polynucleotide phosphorylase (PNPase)-based assay that offers fast and sensitive evaluation of mRNA integrity, regardless of its length, thus presenting a novel and fully scalable alternative to chromatographic-, electrophoresis-, or sequencing-based techniques.
Collapse
Affiliation(s)
- Francis Combes
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Thanh-Huong Bui
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | | | - Sjoerd Hak
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| |
Collapse
|
26
|
Metkar M, Pepin CS, Moore MJ. Tailor made: the art of therapeutic mRNA design. Nat Rev Drug Discov 2024; 23:67-83. [PMID: 38030688 DOI: 10.1038/s41573-023-00827-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
mRNA medicine is a new and rapidly developing field in which the delivery of genetic information in the form of mRNA is used to direct therapeutic protein production in humans. This approach, which allows for the quick and efficient identification and optimization of drug candidates for both large populations and individual patients, has the potential to revolutionize the way we prevent and treat disease. A key feature of mRNA medicines is their high degree of designability, although the design choices involved are complex. Maximizing the production of therapeutic proteins from mRNA medicines requires a thorough understanding of how nucleotide sequence, nucleotide modification and RNA structure interplay to affect translational efficiency and mRNA stability. In this Review, we describe the principles that underlie the physical stability and biological activity of mRNA and emphasize their relevance to the myriad considerations that factor into therapeutic mRNA design.
Collapse
|
27
|
Vadovics M, Muramatsu H, Sárközy A, Pardi N. Production and Evaluation of Nucleoside-Modified mRNA Vaccines for Infectious Diseases. Methods Mol Biol 2024; 2786:167-181. [PMID: 38814394 DOI: 10.1007/978-1-0716-3770-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have demonstrated potency in multiple preclinical models against various pathogens and have recently received considerable attention due to the success of the two safe and effective COVID-19 mRNA vaccines developed by Moderna and Pfizer-BioNTech. The use of nucleoside modification in mRNA vaccines seems to be critical to achieve a sufficient level of safety and immunogenicity in humans, as illustrated by the results of clinical trials using either nucleoside-modified or unmodified mRNA-based vaccine platforms. It is well documented that the incorporation of modified nucleosides in the mRNA and stringent mRNA purification after in vitro transcription render it less inflammatory and highly translatable; these two features are likely key for mRNA vaccine safety and potency. Formulation of the mRNA into LNPs is important because LNPs protect mRNA from rapid degradation, enabling efficient delivery and high levels of protein production for extended periods of time. Additionally, recent studies have provided evidence that certain LNPs with ionizable cationic lipids (iLNPs) possess adjuvant activity that fosters the induction of strong humoral and cellular immune responses by mRNA-iLNP vaccines.In this chapter we describe the production of iLNP-encapsulated, nucleoside-modified, and purified mRNA and the evaluation of antigen-specific T cell and antibody responses elicited by this vaccine form.
Collapse
Affiliation(s)
- Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - András Sárközy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Rizvi F, Lee YR, Diaz-Aragon R, Bawa PS, So J, Florentino RM, Wu S, Sarjoo A, Truong E, Smith AR, Wang F, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. Cell Stem Cell 2023; 30:1640-1657.e8. [PMID: 38029740 PMCID: PMC10843608 DOI: 10.1016/j.stem.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.
Collapse
Affiliation(s)
- Fatima Rizvi
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yu-Ri Lee
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ricardo Diaz-Aragon
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Juhoon So
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Rodrigo M Florentino
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susan Wu
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Arianna Sarjoo
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Emily Truong
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anna R Smith
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Elissa Everton
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alina Ostrowska
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyounghwa Jung
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, Infectious Diseases Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, Center for Transcriptional Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Valerie Gouon-Evans
- Center for Regenerative Medicine, Department of Medicine, Section of Gastroenterology, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
29
|
Granata S, Stallone G, Zaza G. mRNA as a medicine in nephrology: the future is now. Clin Kidney J 2023; 16:2349-2356. [PMID: 38046026 PMCID: PMC10689145 DOI: 10.1093/ckj/sfad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 12/05/2023] Open
Abstract
The successful employment of messenger RNA (mRNA) as vaccine therapy for the prevention of COVID-19 infection has spotlighted the attention of scientific community onto the potential clinical application of these molecules as innovative and alternative therapeutic approaches in different fields of medicine. As therapy, mRNAs may be advantageous due to their unique biological properties of targeting almost any genetic component within the cell, many of which may be unreachable using other pharmacological/therapeutic approaches, and encoding any proteins and peptides without the need for their transport into the nuclei of the target cells. Additionally, these molecules may be rapidly designed/produced and clinically tested. Once the chemistry of the RNA and its delivery system are optimized, the cost of developing novel variants of these medications for new selected clinical disorders is significantly reduced. However, although potentially useful as new therapeutic weapons against several kidney diseases, the complex architecture of kidney and the inability of nanoparticles that accommodate oligonucleotides to cross the integral glomerular filtration barrier have largely decreased their potential employment in nephrology. However, in the next few years, the technical improvements in mRNA that increase translational efficiency, modulate innate and adaptive immunogenicity, and increase their delivery at the site of action will overcome these limitations. Therefore, this review has the scope of summarizing the key strengths of these RNA-based therapies and illustrating potential future directions and challenges of this promising technology for widespread therapeutic use in nephrology.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
30
|
Chen Z, Kelly K, Cheng H, Dong X, Hedger AK, Li L, Sontheimer EJ, Watts JK. In Vivo Prime Editing by Lipid Nanoparticle Co-delivery of Chemically Modified pegRNA and Prime Editor mRNA. GEN BIOTECHNOLOGY 2023; 2:490-502. [PMID: 39850578 PMCID: PMC11756591 DOI: 10.1089/genbio.2023.0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Prime editing has gained significant attention as a next-generation gene editing technology, owing to its unique advantages. However, realizing its potential in vivo requires effective delivery strategies. While adeno-associated virus (AAV) has been employed for in vivo delivery of prime editors in research settings, it presents inherent limitations related to vector size, ongoing expression, and inability to re-dose patients. Conversely, lipid nanoparticles (LNPs) do not face these limitations and are emerging as a leading non-viral approach for the delivery of gene editors. In this study, we demonstrate successful co-delivery of chemically modified pegRNA and prime editor mRNA using LNPs for in vivo prime editing. We investigate the impact of pegRNA chemical modifications on editing efficiency and explore different re-dosing regimens. In a daily-repeat dose regimen, we saw striking liver toxicity and no increase in editing; by contrast, weekly-repeat dosing was well tolerated and enabled 1.8-fold increase in editing efficacy. Furthermore, in the NSG immunodeficient mouse model, the efficacy of LNP-delivered prime editing was enhanced by 2.8-fold. In addition, the nature of the ionizable lipids and phospholipids strongly influenced prime editing efficiency in vivo. Overall, these findings will greatly contribute to the future development of LNPs as a robust platform for delivering prime editors in vivo, fostering progress in prime editing research and therapeutic applications.
Collapse
Affiliation(s)
- Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Present address: Tessera Therapeutics, Somerville, MA, USA
| | - Adam K Hedger
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Li Li
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
31
|
Okuyama R. mRNA and Adenoviral Vector Vaccine Platforms Utilized in COVID-19 Vaccines: Technologies, Ecosystem, and Future Directions. Vaccines (Basel) 2023; 11:1737. [PMID: 38140142 PMCID: PMC10748114 DOI: 10.3390/vaccines11121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
New technological platforms, such as mRNA and adenoviral vector vaccines, have been utilized to develop coronavirus disease 2019 (COVID-19) vaccines. These new modalities enable rapid and flexible vaccine design and cost-effective and swift manufacturing, effectively combating pandemics caused by mutating viruses. Innovation ecosystems, including universities, startups, investors, and governments are crucial for developing these cutting-edge technologies. This review summarizes the research and development trajectory of these vaccine technologies, their investments, and the support surrounding them, in addition to the technological details of each technology. In addition, this study examines the importance of an innovation ecosystem in developing novel technologies, comparing it with the case of Japan, which has lagged behind in COVID-19 vaccine development. It also explores the direction of vaccine development in the post-COVID-19 era.
Collapse
Affiliation(s)
- Ryo Okuyama
- College of International Management, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan
| |
Collapse
|
32
|
Casmil IC, Huang C, Blakney AK. A duplex droplet digital PCR assay for absolute quantification and characterization of long self-amplifying RNA. Sci Rep 2023; 13:19050. [PMID: 37923834 PMCID: PMC10624827 DOI: 10.1038/s41598-023-46314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Self-amplifying messenger ribonucleic acid (saRNA) provides extended expression of genes of interest by encoding an alphavirus-derived RNA replicase and thus is 2-3 times larger than conventional messenger RNA. However, quality assessment of long RNA transcripts is challenging using standard techniques. Here, we utilized a multiplex droplet digital polymerase chain reaction (ddPCR) assay to assess the quality of saRNA produced from an in vitro transcription reaction and the replication kinetics in human cell lines. Using the one-step reverse transcription ddPCR, we show that an in vitro transcription generates 50-60% full-length saRNA transcripts. However, we note that the two-step reverse transcription ddPCR assay results in a 20% decrease from results obtained using the one-step and confirmed using capillary gel electrophoresis. Additionally, we provided three formulas that differ in the level of stringency and assumptions made to calculate the fraction of intact saRNA. Using ddPCR, we also showed that subgenomic transcripts of saRNA were 19-to-108-fold higher than genomic transcripts at different hours post-transfection of mammalian cells in copies. Therefore, we demonstrate that multiplex ddPCR is well suited for quality assessment of long RNA and replication kinetics of saRNA based on absolute quantification.
Collapse
Affiliation(s)
- Irafasha C Casmil
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cynthia Huang
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
33
|
Warminski M, Mamot A, Depaix A, Kowalska J, Jemielity J. Chemical Modifications of mRNA Ends for Therapeutic Applications. Acc Chem Res 2023; 56:2814-2826. [PMID: 37782471 PMCID: PMC10586375 DOI: 10.1021/acs.accounts.3c00442] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 10/03/2023]
Abstract
Messenger ribonucleic acid (mRNA) is the universal cellular instruction for ribosomes to produce proteins. Proteins are responsible for most of the functions of living organisms, and their abnormal structure or activity is the cause of many diseases. mRNA, which is expressed in the cytoplasm and, unlike DNA, does not need to be delivered into the nucleus, appears to be an ideal vehicle for pursuing the idea of gene therapy in which genetic information about proteins is introduced into an organism to exert a therapeutic effect. mRNA molecules of any sequence can be synthesized using the same set of reagents in a cell-free system via a process called in vitro transcription (IVT), which is very convenient for therapeutic applications. However, this does not mean that the path from the idea to the first mRNA-based therapeutic was short and easy. It took 30 years of trial and error in the search for solutions that eventually led to the first mRNA vaccines created in record time during the SARS-CoV-2 pandemic. One of the fundamental problems in the development of RNA-based therapeutics is the legendary instability of mRNA, due to the transient nature of this macromolecule. From the chemical point of view, mRNA is a linear biopolymer composed of four types of ribonucleic subunits ranging in length from a few hundred to hundreds of thousands of nucleotides, with unique structures at its ends: a 5'-cap at the 5'-end and a poly(A) tail at the 3'-end. Both are extremely important for the regulation of translation and mRNA durability. These elements are also convenient sites for sequence-independent labeling of mRNA to create probes for enzymatic assays and tracking of the fate of mRNA in cells and living organisms. Synthetic 5'-cap analogs have played an important role in the studies of mRNA metabolism, and some of them have also been shown to significantly improve the translational properties of mRNA or affect mRNA stability and reactogenicity. The most effective of these is used in clinical trials of mRNA-based anticancer vaccines. Interestingly, thanks to the knowledge gained from the biophysical studies of cap-related processes, even relatively large modifications such as fluorescent tags can be attached to the cap structure without significant effects on the biological properties of the mRNA, if properly designed cap analogs are used. This has been exploited in the development of molecular tools (fluorescently labeled mRNAs) to track these macromolecules in complex biological systems, including organisms. These tools are extremely valuable for better understanding of the cellular mechanisms involved in mRNA metabolism but also for designing therapeutic mRNAs with superior properties. Much less is known about the usefulness/utility of poly(A) tail modifications in the therapeutic context, but it is clear that chemical modifications of poly(A) can also affect biochemical properties of mRNA. This Account is devoted to chemical modifications of both the 5'- and 3'-ends of mRNA aimed at improving the biological properties of mRNA, without interfering with its translational function, and is based on the authors' more than 20 years of experience in this field.
Collapse
Affiliation(s)
- Marcin Warminski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Adam Mamot
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anaïs Depaix
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
34
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
35
|
Zhao Y, Gan L, Ke D, Chen Q, Fu Y. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med 2023; 21:693. [PMID: 37794448 PMCID: PMC10552228 DOI: 10.1186/s12967-023-04553-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Antibody technology is widely used in the fields of biomedical and clinical therapies. Nonetheless, the complex in vitro expression of recombinant proteins, long production cycles, and harsh storage conditions have limited their applications in medicine, especially in clinical therapies. Recently, this dilemma has been overcome to a certain extent by the development of mRNA delivery systems, in which antibody-encoding mRNAs are enclosed in nanomaterials and delivered to the body. On entering the cytoplasm, the mRNAs immediately bind to ribosomes and undergo translation and post-translational modifications. This process produces monoclonal or bispecific antibodies that act directly on the patient. Additionally, it eliminates the cumbersome process of in vitro protein expression and extends the half-life of short-lived proteins, which significantly reduces the cost and duration of antibody production. This review focuses on the benefits and drawbacks of mRNA antibodies compared with the traditional in vitro expressed antibodies. In addition, it elucidates the progress of mRNA antibodies in the prevention of infectious diseases and oncology therapy.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Linchuan Gan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Dangjin Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| |
Collapse
|
36
|
Martínez J, Lampaya V, Larraga A, Magallón H, Casabona D. Purification of linearized template plasmid DNA decreases double-stranded RNA formation during IVT reaction. Front Mol Biosci 2023; 10:1248511. [PMID: 37842641 PMCID: PMC10570549 DOI: 10.3389/fmolb.2023.1248511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
After the COVID-19 pandemic, messenger RNA (mRNA) has revolutionized traditional vaccine manufacturing. With the increasing number of RNA-based therapeutics, valuable new scientific insights into these molecules have emerged. One fascinating area of study is the formation of double-stranded RNA (dsRNA) during in vitro transcription (IVT) which is considered a significant impurity, as it has been identified as a major trigger in the cellular immune response pathway. Therefore, there is a growing importance placed to develop and optimize purification processes for the removal of this by-product. Traditionally, efforts have primarily focused on mRNA purification after IVT through chromatographic separations, with anion exchange and reverse phase chromatography emerging as effective tools for this purpose. However, to the best of our knowledge, the influence and significance of the quality of the linearized plasmid have not been thoroughly investigated. Plasmids production involves the growth of bacterial cultures, bacterial harvesting and lysis, and multiple filtration steps for plasmid DNA purification. The inherent complexity of these molecules, along with the multitude of purification steps involved in their processing, including the subsequent linearization and the less-developed purification techniques for linearized plasmids, often result in inconsistent batches with limited control over by-products such as dsRNA. This study aims to demonstrate how the purification process employed for linearized plasmids can impact the formation of dsRNA. Several techniques for the purification of linearized plasmids based on both, resin filtration and chromatographic separations, have been studied. As a result of that, we have optimized a chromatographic method for purifying linearized plasmids using monolithic columns with C4 chemistry (butyl chains located in the surface of the particles), which has proven successful for mRNAs of various sizes. This chromatographic separation facilitates the generation of homogeneous linearized plasmids, leading to mRNA batches with lower levels of dsRNA during subsequent IVT processes. This finding reveals that dsRNA formation is influenced not only by RNA polymerase and IVT conditions but also by the quality of the linearized template. The results suggest that plasmid impurities may contribute to the production of dsRNA by providing additional templates that can be transcribed into sequences that anneal with the mRNA molecules. This highlights the importance of considering the quality of plasmid purification in relation to dsRNA generation during transcription. Further investigation is needed to fully understand the mechanisms and implications of plasmid-derived dsRNA. This discovery could shift the focus in mRNA vaccine production, placing more emphasis on the purification of linearized plasmids and potentially saving, in some instances, a purification step for mRNA following IVT.
Collapse
Affiliation(s)
| | | | | | | | - Diego Casabona
- RNA Synthesis and Development Department, Certest Pharma, Certest Biotec, Zaragoza, Spain
| |
Collapse
|
37
|
Miklavčič R, Megušar P, Kodermac ŠM, Bakalar B, Dolenc D, Sekirnik R, Štrancar A, Černigoj U. High Recovery Chromatographic Purification of mRNA at Room Temperature and Neutral pH. Int J Mol Sci 2023; 24:14267. [PMID: 37762568 PMCID: PMC10532270 DOI: 10.3390/ijms241814267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) is becoming an increasingly important therapeutic modality due to its potential for fast development and platform production. New emerging RNA modalities, such as circular RNA, drive the need for the development of non-affinity purification approaches. Recently, the highly efficient chromatographic purification of mRNA was demonstrated with multimodal monolithic chromatography media (CIM® PrimaS), where efficient mRNA elution was achieved with an ascending pH gradient approach at pH 10.5. Here, we report that a newly developed chromatographic material enables the elution of mRNA at neutral pH and room temperature. This material demonstrates weak anion-exchanging properties and an isoelectric point of 5.3. It enables the baseline separation of mRNA (at least up to 10,000 nucleotides (nt) in size) from parental plasmid DNA (regardless of isoform composition) with both a NaCl gradient and ascending pH gradient approach, while mRNA elution is achieved in a pH range of 5-7. In addition, the basic structure of the novel material is a chromatographic monolith, enabling convection-assisted mass transfer of large RNA molecules to and from the active surface. This facilitates the elution of mRNA in 3-7 column volumes with more than 80% elution recovery and uncompromised integrity. This is demonstrated by the purification of a model mRNA (size 995 nt) from an in vitro transcription reaction mixture. The purified mRNA is stable for at least 34 days, stored in purified H2O at room temperature.
Collapse
Affiliation(s)
- Rok Miklavčič
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Polona Megušar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | | | - Blaž Bakalar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Darko Dolenc
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
38
|
Mbatha LS, Akinyelu J, Maiyo F, Kudanga T. Future prospects in mRNA vaccine development. Biomed Mater 2023; 18:052006. [PMID: 37589309 DOI: 10.1088/1748-605x/aceceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development. Future perspectives on this technology are also discussed.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti state, Nigeria
| | - Fiona Maiyo
- Department of Medical Sciences, Kabarak University, Nairobi, Kenya
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| |
Collapse
|
39
|
Yihunie W, Nibret G, Aschale Y. Recent Advances in Messenger Ribonucleic Acid (mRNA) Vaccines and Their Delivery Systems: A Review. Clin Pharmacol 2023; 15:77-98. [PMID: 37554660 PMCID: PMC10405914 DOI: 10.2147/cpaa.s418314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Messenger ribonucleic acid (mRNA) was found as the intermediary that transfers genetic information from DNA to ribosomes for protein synthesis in 1961. The emergency use authorization of the two covid-19 mRNA vaccines, BNT162b2 and mRNA-1273, is a significant achievement in the history of vaccine development. Because they are generated in a cell-free environment using the in vitro transcription (IVT) process, mRNA vaccines are risk-free. Moreover, chemical modifications to the mRNA molecule, such as cap structures and changed nucleosides, have proved critical in overcoming immunogenicity concerns, achieving sustained stability, and achieving effective, accurate protein production in vivo. Several vaccine delivery strategies (including protamine, lipid nanoparticles (LNPs), polymers, nanoemulsions, and cell-based administration) were also optimized to load and transport RNA into the cytosol. LNPs, which are composed of a cationic or a pH-dependent ionizable lipid layer, a polyethylene glycol (PEG) component, phospholipids, and cholesterol, are the most advanced systems for delivering mRNA vaccines. Moreover, modifications of the four components that make up the LNPs showed to increase vaccine effectiveness and reduce side effects. Furthermore, the introduction of biodegradable lipids improved LNP biocompatibility. Furthermore, mRNA-based therapies are expected to be effective treatments for a variety of refractory conditions, including infectious diseases, metabolic genetic diseases, cancer, cardiovascular and cerebrovascular diseases. Therefore, the present review aims to provide the scientific community with up-to-date information on mRNA vaccines and their delivery systems.
Collapse
Affiliation(s)
- Wubetu Yihunie
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getinet Nibret
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
40
|
Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, She Q, Tan J, Lou C, Liao Z, Li X. mRNA vaccine in cancer therapy: Current advance and future outlook. Clin Transl Med 2023; 13:e1384. [PMID: 37612832 PMCID: PMC10447885 DOI: 10.1002/ctm2.1384] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines are a relatively new class of vaccines that have shown great promise in the immunotherapy of a wide variety of infectious diseases and cancer. In the past 2 years, SARS-CoV-2 mRNA vaccines have contributed tremendously against SARS-CoV2, which has prompted the arrival of the mRNA vaccine research boom, especially in the research of cancer vaccines. Compared with conventional cancer vaccines, mRNA vaccines have significant advantages, including efficient production of protective immune responses, relatively low side effects and lower cost of acquisition. In this review, we elaborated on the development of cancer vaccines and mRNA cancer vaccines, as well as the potential biological mechanisms of mRNA cancer vaccines and the latest progress in various tumour treatments, and discussed the challenges and future directions for the field.
Collapse
Affiliation(s)
- Youhuai Li
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Mina Wang
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
- Department of Acupuncture and MoxibustionBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing Key Laboratory of Acupuncture NeuromodulationBeijingChina
| | - Xueqiang Peng
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Yingying Yang
- Clinical Research CenterShanghai Key Laboratory of Maternal Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qishuang Chen
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
| | - Jiaxing Liu
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Qing She
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Jichao Tan
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Chuyuan Lou
- Department of OphthalmologyXi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Zehuan Liao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetSweden
| | - Xuexin Li
- Department of Medical Biochemistry and Biophysics (MBB)Karolinska InstitutetBiomedicumStockholmSweden
| |
Collapse
|
41
|
Kong B, Kim Y, Kim EH, Suk JS, Yang Y. mRNA: A promising platform for cancer immunotherapy. Adv Drug Deliv Rev 2023; 199:114993. [PMID: 37414361 PMCID: PMC11797636 DOI: 10.1016/j.addr.2023.114993] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Messenger RNA (mRNA) is now in the limelight as a powerful tool for treating various human diseases, especially malignant tumors, thanks to the remarkable clinical outcomes of mRNA vaccines using lipid nanoparticle technology during the COVID-19 pandemic. Recent promising preclinical and clinical results that epitomize the advancement in mRNA and nanoformulation-based delivery technologies have highlighted the tremendous potential of mRNA in cancer immunotherapy. mRNAs can be harnessed for cancer immunotherapy in forms of various therapeutic modalities, including cancer vaccines, adoptive T-cell therapies, therapeutic antibodies, and immunomodulatory proteins. This review provides a comprehensive overview of the current state and prospects of mRNA-based therapeutics, including numerous delivery and therapeutic strategies.
Collapse
Affiliation(s)
- Byoungjae Kong
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yelee Kim
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Eun Hye Kim
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jung Soo Suk
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Yoosoo Yang
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| |
Collapse
|
42
|
Malagoda Pathiranage K, Martin CT. A simple approach to improving RNA synthesis: Salt inhibition of RNA rebinding coupled with strengthening promoter binding by a targeted gap in the DNA. Methods Enzymol 2023; 691:209-222. [PMID: 37914447 DOI: 10.1016/bs.mie.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
T7 RNA polymerase is widely used to synthesize RNA of any length, and long-standing protocols exist to efficiently generate large amounts of RNA. Such synthesis, however, is often plagued by so-called "nontemplated additions" at the 3' end, which are in fact templated by the RNA itself and give rise to double-stranded RNA impurities in RNA therapeutics. These additions are generated by RNA polymerase rebinding to the product RNA (independent of DNA) and this rebinding is in competition with promoter binding. This chapter reports on a general approach that simultaneously weakens RNA rebinding by increasing salt, while at the same time increases promoter binding through manipulating the promoter DNA structure, shifting the balance away from self-primed extension. We present two approaches for use in different regimes. For (short) RNAs using synthetic oligonucleotides as DNA, promoter binding is strengthened by using a partially single stranded promoter construct already in wide use in the field. For the synthesis of RNA (of any length), one can replicate the behavior of the first approach by introducing a targeted gap in the promoter, using a PCR primer containing an engineered deoxyuracil that is then excised by a commercially available enzyme system, to leave a promoter-strengthening gap. Both approaches are simple to implement, with only slight variations on standard synthesis approaches, making them valuable tools for a wide range of applications, from basic science to mRNA, CRISPR, lncRNA, and other therapeutics.
Collapse
Affiliation(s)
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
43
|
Chung C, Kudchodkar SB, Chung CN, Park YK, Xu Z, Pardi N, Abdel-Mohsen M, Muthumani K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies (Basel) 2023; 12:46. [PMID: 37489368 PMCID: PMC10366852 DOI: 10.3390/antib12030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Harnessing the immune system to combat disease has revolutionized medical treatment. Monoclonal antibodies (mAbs), in particular, have emerged as important immunotherapeutic agents with clinical relevance in treating a wide range of diseases, including allergies, autoimmune diseases, neurodegenerative disorders, cancer, and infectious diseases. These mAbs are developed from naturally occurring antibodies and target specific epitopes of single molecules, minimizing off-target effects. Antibodies can also be designed to target particular pathogens or modulate immune function by activating or suppressing certain pathways. Despite their benefit for patients, the production and administration of monoclonal antibody therapeutics are laborious, costly, and time-consuming. Administration often requires inpatient stays and repeated dosing to maintain therapeutic levels, limiting their use in underserved populations and developing countries. Researchers are developing alternate methods to deliver monoclonal antibodies, including synthetic nucleic acid-based delivery, to overcome these limitations. These methods allow for in vivo production of monoclonal antibodies, which would significantly reduce costs and simplify administration logistics. This review explores new methods for monoclonal antibody delivery, including synthetic nucleic acids, and their potential to increase the accessibility and utility of life-saving treatments for several diseases.
Collapse
Affiliation(s)
| | | | - Curtis N Chung
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Ziyang Xu
- Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| |
Collapse
|
44
|
Rizvi F, Lee YR, Diaz-Aragon R, So J, Florentino RM, Smith AR, Everton E, Ostrowska A, Jung K, Tam Y, Muramatsu H, Pardi N, Weissman D, Soto-Gutierrez A, Shin D, Gouon-Evans V. VEGFA mRNA-LNP promotes biliary epithelial cell-to-hepatocyte conversion in acute and chronic liver diseases and reverses steatosis and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537186. [PMID: 37131823 PMCID: PMC10153196 DOI: 10.1101/2023.04.17.537186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.
Collapse
|
45
|
Guo X, Liu D, Huang Y, Deng Y, Wang Y, Mao J, Zhou Y, Xiong Y, Gao X. Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines. Virol J 2023; 20:64. [PMID: 37029389 PMCID: PMC10081822 DOI: 10.1186/s12985-023-02023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
The mRNA vaccine technology was developed rapidly during the global pandemic of COVID-19. The crucial role of the COVID-19 mRNA vaccine in preventing viral infection also have been beneficial to the exploration and application of other viral mRNA vaccines, especially for non-replication structure mRNA vaccines of viral disease with outstanding research results. Therefore, this review pays attention to the existing mRNA vaccines, which are of great value for candidates for clinical applications in viral diseases. We provide an overview of the optimization of the mRNA vaccine development process as well as the good immune efficacy and safety shown in clinical studies. In addition, we also provide a brief description of the important role of mRNA immunomodulators in the treatment of viral diseases. After that, it will provide a good reference or strategy for research on mRNA vaccines used in clinical medicine with more stable structures, higher translation efficiency, better immune efficacy and safety, shorter production time, and lower production costs than conditional vaccines to be used as preventive or therapeutic strategy for the control of viral diseases in the future.
Collapse
Affiliation(s)
- Xiao Guo
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Dongying Liu
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yukai Huang
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, People’s Republic of China
| | - Ying Wang
- Modern Medical Teaching and Research Section, Department of Tibetan Medicine, University of Tibetan Medicine, No. 10 Dangre Middle Rd, Chengguan District, Lhasa, 850000 Tibet Autonomous Region People’s Republic of China
| | - Jingrui Mao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy. No, 6 Niusha Road, Jinjiang District, Chengdu, 610299 People’s Republic of China
| | - Yongai Xiong
- School of Pharmacy, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Xinghong Gao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| |
Collapse
|
46
|
Fekete S, Doneanu C, Addepalli B, Gaye M, Nguyen J, Alden B, Birdsall R, Han D, Isaac G, Lauber M. Challenges and emerging trends in liquid chromatography-based analyses of mRNA pharmaceuticals. J Pharm Biomed Anal 2023; 224:115174. [PMID: 36446261 PMCID: PMC9678211 DOI: 10.1016/j.jpba.2022.115174] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Lipid encapsulated messenger RNA (LNP mRNA) has garnered a significant amount of interest from the pharmaceutical industry and general public alike. This attention has been catalyzed by the clinical success of LNP mRNA for SARS-CoV-2 vaccination as well as future promises that might be fulfilled by the biotechnology pipeline, such as the in vivo delivery of a CRISPR/Cas9 complex that can edit patient cells to reduce levels of low-density lipoprotein. LNP mRNAs are comprised of various chemically diverse molecules brought together in a sophisticated intermolecular complex. This can make it challenging to achieve thorough analytical characterization. Nevertheless, liquid chromatography is becoming an increasingly relied upon technique for LNP mRNA analyses. Although there have been significant advances in all types of LNP mRNA analyses, this review focuses on recent developments and the possibilities of applying anion exchange (AEX) and ion pairing reversed phase (IP-RP) liquid chromatography for intact mRNAs as well as techniques for oligo mapping analysis, 5' endcap testing and lipid compositional assays.
Collapse
|
47
|
A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023; 24:ijms24032700. [PMID: 36769023 PMCID: PMC9917162 DOI: 10.3390/ijms24032700] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.
Collapse
|
48
|
Parsons MF, Allan MF, Li S, Shepherd TR, Ratanalert S, Zhang K, Pullen KM, Chiu W, Rouskin S, Bathe M. 3D RNA-scaffolded wireframe origami. Nat Commun 2023; 14:382. [PMID: 36693871 PMCID: PMC9872083 DOI: 10.1038/s41467-023-36156-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid RNA:DNA origami, in which a long RNA scaffold strand folds into a target nanostructure via thermal annealing with complementary DNA oligos, has only been explored to a limited extent despite its unique potential for biomedical delivery of mRNA, tertiary structure characterization of long RNAs, and fabrication of artificial ribozymes. Here, we investigate design principles of three-dimensional wireframe RNA-scaffolded origami rendered as polyhedra composed of dual-duplex edges. We computationally design, fabricate, and characterize tetrahedra folded from an EGFP-encoding messenger RNA and de Bruijn sequences, an octahedron folded with M13 transcript RNA, and an octahedron and pentagonal bipyramids folded with 23S ribosomal RNA, demonstrating the ability to make diverse polyhedral shapes with distinct structural and functional RNA scaffolds. We characterize secondary and tertiary structures using dimethyl sulfate mutational profiling and cryo-electron microscopy, revealing insight into both global and local, base-level structures of origami. Our top-down sequence design strategy enables the use of long RNAs as functional scaffolds for complex wireframe origami.
Collapse
Affiliation(s)
- Molly F Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthew F Allan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shanshan Li
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tyson R Shepherd
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Inscripta, Inc., Boulder, CO, 80027, USA
| | - Sakul Ratanalert
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kaiming Zhang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
49
|
mRNA-From COVID-19 Treatment to Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11020308. [PMID: 36830845 PMCID: PMC9953480 DOI: 10.3390/biomedicines11020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
This review provides an overview covering mRNA from its use in the COVID-19 pandemic to cancer immunotherapy, starting from the selection of appropriate antigens, tumor-associated and tumor-specific antigens, neoantigens, the basics of optimizing the mRNA molecule in terms of stability, efficacy, and tolerability, choosing the best formulation and the optimal route of administration, to summarizing current clinical trials of mRNA vaccines in tumor therapy.
Collapse
|
50
|
Messenger RNA Nanovaccine in Cancer Immunotherapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|