1
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Park K, Shin KO, Kim YI, Nielsen-Scott AL, Mainzer C, Celli A, Bae Y, Chae S, An H, Choi Y, Park JH, Park SH, Hwang JT, Kang SG, Wakefield JS, Arron ST, Holleran WM, Mauro TM, Elias PM, Uchida Y. Sphingosine-1-Phosphate-Cathelicidin Axis Plays a Pivotal Role in the Development of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2025; 145:854-863.e6. [PMID: 39218144 DOI: 10.1016/j.jid.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer caused by mutagenesis resulting from excess UVR or other types of oxidative stress. These stressors also upregulate the production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), through endoplasmic reticulum stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. Although CAMP has beneficial antimicrobial activities, it also can be proinflammatory and procarcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that (i) CAMP expression is increased in cSCC cells and skin from patients with cSCC; (ii) S1P levels are elevated in cSCC cells, whereas inhibition of S1P production attenuates CAMP-stimulated cSCC growth; (iii) exogenous CAMP stimulates cSCC but not normal human keratinocyte growth; (iv) blockade of FPRL1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; (v) FOXP3+ regulatory T-cell (which decreases antitumor immunity) levels increase in cSCC skin; and (vi) CAMP induces endoplasmic reticulum stress in cSCC cells. Together, the endoplasmic reticulum stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, that is, cSCC growth and invasion impede anticancer immunity.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Young-Il Kim
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna L Nielsen-Scott
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Carine Mainzer
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoojin Bae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Seungwoo Chae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Hahyun An
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joan S Wakefield
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sarah T Arron
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Walter M Holleran
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| |
Collapse
|
3
|
Zarei P, Sedeh PA, Vaez A, Keshteli AH. Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review. Res Pharm Sci 2025; 20:1-24. [PMID: 40190827 PMCID: PMC11972020 DOI: 10.4103/rps.rps_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025] Open
Abstract
Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi Sedeh
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
4
|
Haskey N, Ye J, Josephson J, Raman M, Ghosh S, Gibson DL. Metabolomic Signatures Highlight Fiber-Degrading Bacteroides Species in Mediterranean Diet Response Among Ulcerative Colitis. GASTRO HEP ADVANCES 2024; 4:100606. [PMID: 40242173 PMCID: PMC12001123 DOI: 10.1016/j.gastha.2024.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/22/2024] [Indexed: 04/18/2025]
Abstract
Background and Aims The Mediterranean diet pattern (MDP) is associated with health-associated gut microbes and metabolites. However, the impact of the MDP on the fecal metabolome in ulcerative colitis (UC) remains unclear. We characterized the fecal metabolome of patients with UC with high adherence to the MDP compared to the Canadian habitual diet (CHD). Furthermore, we explored potential differences in the fecal metabolome between dietary responders and nonresponders to the MDP. Methods Utilizing untargeted metabolomics on a subset of fecal samples obtained from a randomized controlled trial, adult patients with quiescent UC underwent a 12-week intervention following either the MDP (n = 8) or CHD (n = 8). Liquid chromatography-tandem mass spectrometry was employed to profile endogenous fecal metabolites, while 16S amplicon sequencing was utilized to profile the fecal microbiota. Results A total of 701 human metabolites were detected, with 35 exhibiting significant differential expression between the MDP and CHD groups. Noteworthy, folate biosynthesis, sphingolipid biosynthesis, and steroid biosynthesis were identified as major pathways affected. Moreover, microbial analysis showed that individuals with increased levels of the class Bacteroidia (Bacteroides vulgatus [B. vulgatus], B. uniformis, and B. acidifaciens) in their stool at baseline were more likely to respond to the MDP. Conclusion High adherence to an MDP is associated with beneficial metabolite changes associated with reducing inflammation in UC. In addition, fiber-degrading microbes abundant before dietary intervention played a role in the responsiveness to the MDP. This work lays the groundwork for developing a metabolic signature associated with the MDP to develop personalized nutrition strategies for UC prevention and treatment. ClinicalTrials.gov Number: NCT03053713.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jiayu Ye
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, California
| | - Jessica Josephson
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
- Southern Medical Program, Faculty of Medicine, University of British Columbia–Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
Sharafabad BE, Abdoli A, Jamour P, Dilmaghani A. The ability of clostridium novyi-NT spores to induce apoptosis via the mitochondrial pathway in mice with HPV-positive cervical cancer tumors derived from the TC-1 cell line. BMC Complement Med Ther 2024; 24:427. [PMID: 39732669 DOI: 10.1186/s12906-024-04742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy. Utilizing oncolytic spores of Clostridium novyi-NT to target the hypoxic regions of solid tumors has emerged as a noteworthy treatment strategy. METHODS The transplantation procedure involved injecting TC-1 cells, capable of expressing HPV-16 E6/7 oncoproteins, into the subcutaneous layer of 6-8-week-old female C57/BL6 mice. The TC-1 cell line, was subcutaneously transplanted into 6-8-week-old female C57/BL6 mice. The tumor-bearing mice were randomly divided into 4 groups, and after selecting the control group, they were treated with different methods. Group 1- control without treatment (0.1 ml sterile PBS intratumor) Group 2- received cisplatin intraperitoneally (10 mg/kg) Group 3- received 107Clostridium novyi-NT spores systemically through the tail vein Group 4-tumor mice received 107Clostridium novyi-NT spores intratumorally. 20 days after the start of treatment, the mice were sacrificed and tumor tissues were isolated. In order to clarify the mechanism of the therapeutic effect with spores, the amount of ROS and ceramide was measured by ELISA technique, and the expression level of cytochrome c, cleaved caspase- 3, Bax, Bcl-2, HIF-1α, and VEGF proteins was measured by western blotting. RESULTS Our results clearly showed that the injection of Clostridium novyi-NT spores (either intratumorally or intravenously) causes the regression of mouse cervical tumors. Spore germination induces internal apoptosis in cancer cells by inducing ROS production and increasing total cell ceramide, releasing cytochrome c and damaging mitochondria. Additionally, the results provided clear evidence of a significant decrease in the expression of HIF-1 alpha and VEGF proteins among the tumor groups that received spores, when compared to both the cisplatin-treated group and the control group. CONCLUSIONS The study's outcomes demonstrated that the introduction of Clostridium novyi-NT spores triggered apoptosis in cervical cancer cells (derived from the TC-1 cell line) via the mitochondrial pathway, subsequently resulting in tumor regression in a mouse model.
Collapse
Affiliation(s)
- Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Parisa Jamour
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Azita Dilmaghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Gharagozlou S, Wright NM, Murguia-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguia-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Huang S, Zhang M, Li X, Pei J, Zhou Z, Lei P, Wang M, Zhang P, Yu H, Fan G, Han L, Yu H, Wang Y, Jiang M. Formulation, characterization, and evaluation of curcumin-loaded ginger-derived nanovesicles for anti-colitis activity. J Pharm Anal 2024; 14:101014. [PMID: 39834559 PMCID: PMC11743112 DOI: 10.1016/j.jpha.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 01/05/2025] Open
Abstract
Plant-derived nanovesicles have gained attention given their similarity to mammalian exosomes and advantages such as low cost, sustainability, and tissue targeting. Thus, they hold promise for disease treatment and drug delivery. In this study, we proposed a time-efficient method, PEG 8000 combined with sucrose density gradient centrifugation to prepare ginger-derived nanovesicles (GDNVs). Subsequently, curcumin (CUR) was loaded onto GDNV by ultrasonic incubation. The optimum conditions for ginger-derived nanovesicles loaded with curcumin (CG) were ultrasound time of 3 min, a carrier-to-drug ratio (GDNV:CUR) of 1:1. The study achieved a high loading capacity (94.027% ± 0.094%) and encapsulation efficiency (89.300% ± 0.344%). Finally, the drugs' in vivo distribution and anti-colitis activity were investigated in mice. CG was primarily distributed in the colon after oral administration. Compared to CUR and GDNV, CG was superior in improving disease activity, colon length, liver and spleen coefficients, myeloperoxidase activity, and biochemical factor levels in ulcerative colitis (UC) mice. In addition, CG plays a protective role against UC by modulating serum metabolite levels and gut flora. In summary, our study demonstrated that GDNV can be used for CUR delivery with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Shengjie Huang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoge Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jierong Pei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhirong Zhou
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Lei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meng Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Heshui Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guanwei Fan
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
8
|
Perlmutter A, Bland JS, Chandra A, Malani SS, Smith R, Mendez TL, Dwaraka VB. The impact of a polyphenol-rich supplement on epigenetic and cellular markers of immune age: a pilot clinical study. Front Nutr 2024; 11:1474597. [PMID: 39628466 PMCID: PMC11612904 DOI: 10.3389/fnut.2024.1474597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Age-related alterations in immune function are believed to increase risk for a host of age-related diseases leading to premature death and disability. Programming of the immune system by diet, lifestyle, and environmental factors occurs across the lifespan and influences both makeup and function of the immune system, including immunometabolism. This programming is believed to act in large part through epigenetic modification. Among dietary components that affect this process, polyphenols may play an outsized role. Polyphenols are a widely distributed group of plant nutrients consumed by humans. Certain foods possess distinctive and relatively higher levels of these compounds. One such food is Tartary buckwheat (fagopyrum tataricum), an ancient seed historically prized for its health benefits. It is suggested that the specific composition of polyphenols found in foods like Tartary buckwheat may lead to a unique impact on immunometabolic physiological pathways that could be interrogated through epigenetic analyses. The objective of this study was to investigate the epigenetic effects on peripheral immune cells in healthy individuals of a standardized polyphenol concentrate based on naturally occurring nutrients in Tartary buckwheat. This pilot clinical trial tested the effects of consuming 90 days of this concentrate in 50 healthy male (40%) and female (60%) participants aged 18-85 years using epigenetic age clocks and deconvolution methods. Analysis revealed significant intervention-related changes in multiple epigenetic age clocks and immune markers as well as population-wide alterations in gene ontology (GO) pathways related to longevity and immunity. This study provides previously unidentified insights into the immune, longevity and epigenetic effects of consumption of polyphenol-rich plants and generates additional support for health interventions built around historically consumed plants like Tartary buckwheat while offering compelling opportunities for additional research. Clinical trial registration ClinicalTrials.gov, Identifier: NCT05234203.
Collapse
Affiliation(s)
| | | | - Arti Chandra
- Big Bold Health PBC, Bainbridge Island, WA, United States
| | | | - Ryan Smith
- TruDiagnostic Inc., Lexington, KY, United States
| | | | | |
Collapse
|
9
|
Monte MG, Tonon CR, Fujimori AS, Ribeiro APD, Zanati SG, Okoshi K, Camacho CRC, Moretto MR, de Paiva SAR, Zornoff LAM, Azevedo PS, Minicucci MF, Polegato BF. Omega-3 supplementation attenuates doxorubicin-induced cardiotoxicity but is not related to the ceramide pathway. Food Sci Nutr 2024; 12:9198-9211. [PMID: 39620015 PMCID: PMC11606900 DOI: 10.1002/fsn3.4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 01/06/2025] Open
Abstract
Cardiotoxicity is the serious side effect of doxorubicin treatment. Ceramides are formed from the degradation of sphingolipids in cell membranes and play an important role in signaling and modulating biological processes. There is evidence that omega-3 fatty acid administration can act on this pathway. To evaluate the role of the ceramide pathway in the pathophysiology of doxorubicin-induced cardiotoxicity and the effect of omega-3 fatty acid supplementation in the attenuation of chronic doxorubicin-induced cardiotoxicity in rats. Sixty male Wistar rats were divided into four groups: Control (C), Doxorubicin (D), Omega-3 fatty acids (W), and Doxorubicin + Omega-3 fatty acids (DW). The groups received omega-3 fatty acids (400 mg/kg/day, via gavage) or water for 6 weeks and doxorubicin (3.5 mg/kg, intraperitoneal) or saline once a week for 4 weeks. Doxorubicin-treated animals showed increases in left atrium and left ventricle diameters, serum triglycerides and cholesterol, malondialdehyde, and protein carbonylation. We also observed a decrease in left ventricular shortening fraction and nSMase1 expression in the heart. Omega-3 fatty acid supplementation attenuated the structural and functional alterations caused by doxorubicin and decreased protein carbonylation. In contrast to doxorubicin, omega-3 fatty acids increased neutral nSMase activity in animals that both received and did not receive doxorubicin but with no effect on nSMase1 protein expression. Omega-3 fatty acid supplementation attenuated the cardiotoxicity caused by doxorubicin. The ceramide pathway may be involved in the pathophysiology of cardiotoxicity, but it is not the mechanism by which omega-3 fatty acids attenuated cardiac dysfunction.
Collapse
Affiliation(s)
- Marina Gaiato Monte
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | - Carolina Rodrigues Tonon
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | - Anderson Seiji Fujimori
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | - Ana Paula Dantas Ribeiro
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | - Silmeia Garcia Zanati
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | - Katashi Okoshi
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | | | - Maria Regina Moretto
- Experimental Research UnitBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | | | | | - Paula Schmidt Azevedo
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | - Marcos Ferreira Minicucci
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| | - Bertha Furlan Polegato
- Department of Internal MedicineBotucatu Medical School, São Paulo State University‐UNESPBotucatuBrazil
| |
Collapse
|
10
|
Busnelli M, Manzini S, Colombo A, Franchi E, Lääperi M, Laaksonen R, Chiesa G. Effect of diet and genotype on the lipidome of mice with altered lipoprotein metabolism. iScience 2024; 27:111051. [PMID: 39568621 PMCID: PMC11577568 DOI: 10.1016/j.isci.2024.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
The present study describes and compares the impact of PCSK9 and LDLR, two pivotal players in cholesterol metabolism, on the whole lipidome of plasma, liver and aorta in different dietary conditions. This issue is relevant, since several lipid species, circulating at very low concentrations, have the ability to impair lipid metabolism and promote atherosclerosis development. To this aim, wild-type, hypercholesterolemic Ldlr-KO, and hypocholesterolemic Pcsk9-KO mice were fed a standard chow or a Western-type diet up to 30 and 16 weeks of age, respectively. 42 lipids including cholesterol, cholesteryl esters, several sphingolipids, phospholipids, and lysophospholipids, accumulated uniquely in the atherosclerotic aorta of Western-type diet-fed Ldlr-KO mice. In addition, multiple organ/tissue comparisons allowed us to identify 16 lipids whose plasma and hepatic patterns mirrored the lipidome of the atherosclerotic aorta. These lipid species, belonging to cholesteryl esters, glucosyl/galactosylceramide, lactosylceramide, globotriaosylceramide, sphingomyelin, and phosphatidylcholine could be further investigated as circulating biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| | | | - Reijo Laaksonen
- Zora Biosciences Oy, 02150 Espoo, Finland
- Finnish Cardiovascular Research Center, University of Tampere, 33520 Tampere, Finland
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti, 9, Milan, Italy
| |
Collapse
|
11
|
Zhang Z, Fang Q, Xie T, Gong X. Mechanism of ceramide synthase inhibition by fumonisin B 1. Structure 2024; 32:1419-1428.e4. [PMID: 38964337 DOI: 10.1016/j.str.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Ceramide synthases (CerSs) play crucial roles in sphingolipid metabolism and have emerged as promising drug targets for metabolic diseases, cancers, and antifungal therapy. However, the therapeutic targeting of CerSs has been hindered by a limited understanding of their inhibition mechanisms by small molecules. Fumonisin B1 (FB1) has been extensively studied as a potent inhibitor of eukaryotic CerSs. In this study, we characterize the inhibition mechanism of FB1 on yeast CerS (yCerS) and determine the structures of both FB1-bound and N-acyl-FB1-bound yCerS. Through our structural analysis and the observation of N-acylation of FB1 by yCerS, we propose a potential ping-pong catalytic mechanism for FB1 N-acylation by yCerS. Lastly, we demonstrate that FB1 exhibits lower binding affinity for yCerS compared to the C26- coenzyme A (CoA) substrate, suggesting that the potent inhibitory effect of FB1 on yCerS may primarily result from the N-acyl-FB1 catalyzed by yCerS, rather than through direct binding of FB1.
Collapse
Affiliation(s)
- Zike Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qi Fang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xin Gong
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
13
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
14
|
Churchill RA, Gochanour BR, Scott CG, Vasile VC, Rodeheffer RJ, Meeusen JW, Jaffe AS. Association of cardiac biomarkers with long-term cardiovascular events in a community cohort. Biomarkers 2024; 29:161-170. [PMID: 38666319 DOI: 10.1080/1354750x.2024.2335245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/21/2024] [Indexed: 05/15/2024]
Abstract
MATERIALS AND METHODS The study assessed major adverse cardiac events (MACE) (myocardial infarction, coronary artery bypass graft, percutaneous intervention, stroke, and death. Cox proportional hazards models assessed apolipoprotein AI (ApoA1), apolipoprotein B (ApoB), ceramide score, cystatin C, galectin-3 (Gal3), LDL-C, Non-HDL-C, total cholesterol (TC), N-terminal B-type natriuretic peptide (NT proBNP), high-sensitivity cardiac troponin (HscTnI) and soluble interleukin 1 receptor-like 1. In adjusted models, Ceramide score was defined by from N-palmitoyl-sphingosine [Cer(16:0)], N-stearoyl-sphingosine [Cer(18:0)], N-nervonoyl-sphingosine [Cer(24:1)] and N-lignoceroyl-sphingosine [Cer(24:0)]. Multi-biomarker models were compared with C-statistics and Integrated Discrimination Index (IDI). RESULTS A total of 1131 patients were included. Adjusted NT proBNP per 1 SD resulted in a 31% increased risk of MACE/death (HR = 1.31) and a 31% increased risk for stroke/MI (HR = 1.31). Adjusted Ceramide per 1 SD showed a 13% increased risk of MACE/death (HR = 1.13) and a 29% increased risk for stroke/MI (HR = 1.29). These markers added to clinical factors for both MACE/death (p = 0.003) and stroke/MI (p = 0.034). HscTnI was not a predictor of outcomes when added to the models. DISCUSSION Ceramide score and NT proBNP improve the prediction of MACE and stroke/MI in a community primary prevention cohort.
Collapse
Affiliation(s)
| | | | | | - Vlad C Vasile
- Department of Cardiovascular Medicine, Wayne and Kathryn Preisel Professor of Cardiovascular Disease Research, Rochester, MN, USA
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Richard J Rodeheffer
- Department of Cardiovascular Medicine, Wayne and Kathryn Preisel Professor of Cardiovascular Disease Research, Rochester, MN, USA
| | | | - Allan S Jaffe
- Department of Cardiovascular Medicine, Wayne and Kathryn Preisel Professor of Cardiovascular Disease Research, Rochester, MN, USA
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Maines LW, Keller SN, Smith RA, Schrecengost RS, Smith CD. Opaganib Downregulates N-Myc Expression and Suppresses In Vitro and In Vivo Growth of Neuroblastoma Cells. Cancers (Basel) 2024; 16:1779. [PMID: 38730731 PMCID: PMC11082966 DOI: 10.3390/cancers16091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroblastoma (NB), the most common cancer in infants and the most common solid tumor outside the brain in children, grows aggressively and responds poorly to current therapies. We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB. Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.
Collapse
Affiliation(s)
| | | | | | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA
| |
Collapse
|
16
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Abimannan T, Parthibane V, Le SH, Vijaykrishna N, Fox SD, Karim B, Kunduri G, Blankenberg D, Andresson T, Bamba T, Acharya U, Acharya JK. Sphingolipid biosynthesis is essential for metabolic rewiring during T H17 cell differentiation. SCIENCE ADVANCES 2024; 10:eadk1045. [PMID: 38657065 PMCID: PMC11042737 DOI: 10.1126/sciadv.adk1045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.
Collapse
Affiliation(s)
| | - Velayoudame Parthibane
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Si-Hung Le
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Nagampalli Vijaykrishna
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen D. Fox
- Mass Spectrometry Group, National Cancer Institute, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Usha Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jairaj K. Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
18
|
Wang S, Yang J, Huang W, Yu Z, Mao Y, Feng Y, Chen J. Identification of CERS5 as a molecular biomarker in pan-cancer through multiple omics integrative analysis. Cell Signal 2024; 116:111054. [PMID: 38244710 DOI: 10.1016/j.cellsig.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Cancer is a devastating disease that presents a major threat to human health. The protein CERS5 is responsible for synthesizing C16-ceramide, but its role in cancer is poorly understood. In this study, we examined the connection between CERS5 expression and pan-cancer prognosis, diagnosis, and the molecular mechanism involved. Kaplan-Meier survival analysis revealed variations among different cancer types. Functional enrichment analysis was conducted using gene set enrichment analysis (GSEA), and a network of protein-protein interaction (PPI) was constructed. The relationship between CERS5 and 22 immune infiltrating cell categories was detected using CIBERSORT. Single-cell analysis revealed elevated CERS5 levels in fibroblasts, which are vital in tumor immunity. The relationship between the expression of CERS5 and the immune-related genes, microsatellite instability, tumor mutational burden, and RNA modification genes in cancer were examined using the pan-cancer database. The role of CERS5 in immune regulation might be crucial to the tumor microenvironment. Pathway enrichment analysis indicated associations between CERS5 and extracellular matrix-receptor interaction, the WNT signaling pathway, and cell-cell junctions. Specifically, CERS5 was positively correlated with Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), Programmed Cell Death 1 (PDCD1), and Lymphocyte Activating 3 (LAG3) in stomach adenocarcinoma. In vitro, knockdown of CERS5 significantly hindered gastric cancer cells' ability to proliferate, migrate invade and increased apoptotic rate. We believe that CERS5 could be a promising target for future cancer research, contributing to the development of effective therapies.
Collapse
Affiliation(s)
- Shengyu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Jian Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Weijia Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Zhu Yu
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Yuantian Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Yue Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Research Center for Enhanced Recovery After Surgery, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, China.
| |
Collapse
|
19
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
20
|
Mandal N, Stentz F, Asuzu PC, Nyenwe E, Wan J, Dagogo-Jack S. Plasma Sphingolipid Profile of Healthy Black and White Adults Differs Based on Their Parental History of Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:740-749. [PMID: 37804534 PMCID: PMC10876402 DOI: 10.1210/clinem/dgad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
CONTEXT Ceramides and sphingolipids have been linked to type 2 diabetes (T2D). The Ceramides and Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study is designed to determine the association of plasma sphingolipids with the pathophysiology of human T2D. OBJECTIVE A comparison of plasma sphingolipids profiles in Black and White adults with (FH+) and without (FH-) family history of T2D. DESIGN We recruited 100 Black and White FH- (54 Black, 46 White) and 140 FH+ (75 Black, 65 White) adults. Fasting plasma levels of 58 sphingolipid species, including 18 each from 3 major classes (ceramides, monohexosylceramides, and sphingomyelins, all with 18:1 sphingoid base) and 4 long-chain sphingoid base-containing species, were measured by liquid chromatography/mass spectrometry. RESULTS Sphingomyelin was the most abundant sphingolipid in plasma (89% in FH-), and was significantly elevated in FH+ subjects (93%). Ceramides and monohexosylceramides comprised 5% and 6% of total sphingolipids in the plasma of FH- subjects, and were reduced significantly in FH+ subjects (3% and 4%, respectively). In FH+ subjects, most ceramide and monohexosylceramide species were decreased but sphingomyelin species were increased. The level of C18:1 species of all 3 classes was elevated in FH+ subjects. CONCLUSION Elevated levels of sphingomyelin, the major sphingolipids of plasma, and oleic acid-containing sphingolipids in healthy FH+ subjects compared with healthy FH- subjects may reflect heritable elements linking sphingolipids and the development of T2D.
Collapse
Affiliation(s)
- Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Research, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Chiamaka Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer Nyenwe
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Basu SK, Prislovsky A, Lenchik N, Stephenson DJ, Agarwal R, Chalfant CE, Mandal N. Mouse Model of Nitrogen Mustard Ocular Surface Injury Characterization and Sphingolipid Signaling. Int J Mol Sci 2024; 25:742. [PMID: 38255815 PMCID: PMC10815872 DOI: 10.3390/ijms25020742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Vesicating chemicals like sulfur mustard (SM) or nitrogen mustard (NM) can cause devastating damage to the eyes, skin, and lungs. Eyes, being the most sensitive, have complicated pathologies that can manifest immediately after exposure (acute) and last for years (chronic). No FDA-approved drug is available to be used as medical counter measures (MCMs) against such injuries. Understanding the pathological mechanisms in acute and chronic response of the eye is essential for developing effective MCMs. Here, we report the clinical and histopathological characterization of a mouse model of NM-induced ocular surface injury (entire surface) developed by treating the eye with 2% (w/v) NM solution for 5 min. Unlike the existing models of specific injury, our model showed severe ocular inflammation, including the eyelids, structural deformity of the corneal epithelium and stroma, and diminished visual and retinal functions. We also observed alterations of the inflammatory markers and their expression at different phases of the injury, along with an activation of acidic sphingomyelinase (aSMase), causing an increase in bioactive sphingolipid ceramide and a reduction in sphingomyelin levels. This novel ocular surface mouse model recapitulated the injuries reported in human, rabbit, and murine SM or NM injury models. NM exposure of the entire ocular surface in mice, which is similar to accidental or deliberate exposure in humans, showed severe ocular inflammation and caused irreversible alterations to the corneal structure and significant vision loss. It also showed an intricate interplay between inflammatory markers over the injury period and alteration in sphingolipid homeostasis in the early acute phase.
Collapse
Affiliation(s)
- Sandip K. Basu
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
| | - Amanda Prislovsky
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
- Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Nataliya Lenchik
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
| | - Daniel J. Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Charles E. Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
- Memphis VA Medical Center, Memphis, TN 38104, USA
- Department of Anatomy and Neurobiology, The University of Health Science Centre, Memphis, TN 38163, USA
| |
Collapse
|
22
|
Sancho-Alonso M, Arenas YM, Izquierdo-Altarejos P, Martinez-Garcia M, Llansola M, Felipo V. Enhanced Activation of the S1PR2-IL-1β-Src-BDNF-TrkB Pathway Mediates Neuroinflammation in the Hippocampus and Cognitive Impairment in Hyperammonemic Rats. Int J Mol Sci 2023; 24:17251. [PMID: 38139078 PMCID: PMC10744193 DOI: 10.3390/ijms242417251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperammonemia contributes to hepatic encephalopathy. In hyperammonemic rats, cognitive function is impaired by altered glutamatergic neurotransmission induced by neuroinflammation. The underlying mechanisms remain unclear. Enhanced sphingosine-1-phosphate receptor 2 (S1PR2) activation in the cerebellum of hyperammonemic rats contributes to neuroinflammation. in In hyperammonemic rats, we assessed if blocking S1PR2 reduced hippocampal neuroinflammation and reversed cognitive impairment and if the signaling pathways were involved. S1PR2 was blocked with intracerebral JTE-013, and cognitive function was evaluated. The signaling pathways inducing neuroinflammation and altered glutamate receptors were analyzed in hippocampal slices. JTE-013 improved cognitive function in the hyperammonemic rats, and hyperammonemia increased S1P. This increased IL-1β, which enhanced Src activity, increased CCL2, activated microglia and increased the membrane expression of the NMDA receptor subunit GLUN2B. This increased p38-MAPK activity, which altered the membrane expression of AMPA receptor subunits and increased BDNF, which activated the TrkB → PI3K → Akt → CREB pathway, inducing sustained neuroinflammation. This report unveils key pathways involved in the induction and maintenance of neuroinflammation in the hippocampus of hyperammonemic rats and supports S1PR2 as a therapeutic target for cognitive impairment.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Paula Izquierdo-Altarejos
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Mar Martinez-Garcia
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| |
Collapse
|
23
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
24
|
Boyd RA, Majumder S, Stiban J, Mavodza G, Straus AJ, Kempelingaiah SK, Reddy V, Hannun YA, Obeid LM, Senkal CE. The heat shock protein Hsp27 controls mitochondrial function by modulating ceramide generation. Cell Rep 2023; 42:113081. [PMID: 37689067 PMCID: PMC10591768 DOI: 10.1016/j.celrep.2023.113081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Sphingolipids have key functions in membrane structure and cellular signaling. Ceramide is the central molecule of the sphingolipid metabolism and is generated by ceramide synthases (CerS) in the de novo pathway. Despite their critical function, mechanisms regulating CerS remain largely unknown. Using an unbiased proteomics approach, we find that the small heat shock protein 27 (Hsp27) interacts specifically with CerS1 but not other CerS. Functionally, our data show that Hsp27 acts as an endogenous inhibitor of CerS1. Wild-type Hsp27, but not a mutant deficient in CerS1 binding, inhibits CerS1 activity. Additionally, silencing of Hsp27 enhances CerS1-generated ceramide accumulation in cells. Moreover, phosphorylation of Hsp27 modulates Hsp27-CerS1 interaction and CerS1 activity in acute stress-response conditions. Biologically, we show that Hsp27 knockdown impedes mitochondrial function and induces lethal mitophagy in a CerS1-dependent manner. Overall, we identify an important mode of CerS1 regulation and CerS1-mediated mitophagy through protein-protein interaction with Hsp27.
Collapse
Affiliation(s)
- Rowan A Boyd
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Saurav Majumder
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Johnny Stiban
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA; Department of Biology and Biochemistry, Birzeit University, Ramallah, Palestine
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Alexandra J Straus
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Sachin K Kempelingaiah
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA
| | - Varun Reddy
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23398, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23398, USA.
| |
Collapse
|
25
|
Albóniga OE, Moreno E, Martínez-Sanz J, Vizcarra P, Ron R, Díaz-Álvarez J, Rosas Cancio-Suarez M, Sánchez-Conde M, Galán JC, Angulo S, Moreno S, Barbas C, Serrano-Villar S. Differential abundance of lipids and metabolites related to SARS-CoV-2 infection and susceptibility. Sci Rep 2023; 13:15124. [PMID: 37704651 PMCID: PMC10500013 DOI: 10.1038/s41598-023-40999-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
The mechanisms driving SARS-CoV-2 susceptibility remain poorly understood, especially the factors determining why unvaccinated individuals remain uninfected despite high-risk exposures. To understand lipid and metabolite profiles related with COVID-19 susceptibility and disease progression. We collected samples from an exceptional group of unvaccinated healthcare workers heavily exposed to SARS-CoV-2 but not infected ('non-susceptible') and subjects who became infected during the follow-up ('susceptible'), including non-hospitalized and hospitalized patients with different disease severity providing samples at early disease stages. Then, we analyzed their plasma metabolomic profiles using mass spectrometry coupled with liquid and gas chromatography. We show specific lipids profiles and metabolites that could explain SARS-CoV-2 susceptibility and COVID-19 severity. More importantly, non-susceptible individuals show a unique lipidomic pattern characterized by the upregulation of most lipids, especially ceramides and sphingomyelin, which could be interpreted as markers of low susceptibility to SARS-CoV-2 infection. This study strengthens the findings of other researchers about the importance of studying lipid profiles as relevant markers of SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Oihane E Albóniga
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Díaz-Álvarez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Rosas Cancio-Suarez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Galán
- Department of Microbiology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Angulo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS), Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
| |
Collapse
|
26
|
Worley G, Byeon SK, Smith PB, Hart SJ, Young SP, Pandey A, Kishnani PS. An exploratory study of plasma ceramides in comorbidities in Down syndrome. Am J Med Genet A 2023; 191:2300-2311. [PMID: 37340831 DOI: 10.1002/ajmg.a.63325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
Plasma ceramide levels (henceforth, "ceramides") are biomarkers of some diseases that are comorbidities of Down syndrome (DS). We sought to determine if comorbidities in DS were associated with ceramides, studying a convenience cohort of 35 study participants, all ≥12 months old. To identify comorbidities, we reviewed the problem lists in electronic health records that were concurrent with sample collection. We placed clinically related comorbidities into one of five categories of comorbidities, henceforth, categories: obesity/overweight; autoimmune disease; congenital heart disease; bacterial infection; and central nervous system (CNS) condition. We measured the eight ceramides most frequently associated with disease using liquid chromatography-tandem mass spectrometry. We calculated a ceramide composite outcome score (CCOS) for each participant by normalizing each ceramide level to the mean for that level in the study population and then summing the normalized levels, to be proxy variable for all eight ceramides in aggregate. We used multivariable linear regression models adjusted for age and sex to test associations of categories with ceramides and with CCOSs. Post hoc, we realized that co-occurring comorbidities might interfere with establishing associations between predictor categories and ceramides and that stratified analyses might eliminate their influence on associations. We posited that CCOSs could be used to screen for associations of categories with multiple ceramides, since most diseases have been associated with more than one ceramide. We chose to omit in the stratified analyses the two categories that were the most different from one another in their associations with their CCOSs, having the most divergent regression coefficients (the highest positive and lowest negative coefficients). We first omitted one of these two divergent categories in a stratified analysis and tested in the remaining participants (those without a comorbidity in the interfering category) for associations of the other four categories with their CCOSs and then did the same for the other divergent category. In each of these two screening stratified analyses, we found one category was significantly associated with its CCOS. In the two identified categories, we then tested for associations with each of the eight ceramides, using the appropriate stratified analysis. Next, we sought to determine if the associations of the two categories with ceramides we found by omitting participants in the interfering categories held in our small sample for participants in the omitted categories as well. For each of the two categories, we therefore omitted participants without the interfering category and determined associations between the predictor category and individual ceramides in the remaining participants (those with a comorbidity in the interfering category). In the a priori analyses, autoimmune disease was inversely associated with C16 and CNS condition was inversely associated with C23. Obesity/overweight and CNS condition were the two categories with the most divergent regression coefficients (0.037 vs. -0.048). In post hoc stratified analyses, after omitting participants with obesity/overweight, thereby leaving participants without obesity/overweight, bacterial infection was associated with its CCOS and then with C14, C20, and C22. However, in the companion stratified analyses, omitting participants without obesity/overweight, thereby leaving participants with obesity/overweight, bacterial infection was not associated with any of the eight ceramides. Similarly, in post hoc stratified analyses after omitting participants with a CNS condition, thereby leaving participants without a CNS condition, obesity/overweight was associated with its CCOS and then with C14, C23, and C24. In the companion analyses, omitting participants without a CNS condition, thereby leaving participants with a CNS condition, obesity/overweight was inversely associated with C24.1. In conclusion, CNS and autoimmune disease were inversely associated with one ceramide each in a priori analyses. In post hoc analyses, we serendipitously omitted categories that interfered with associations of other categories with ceramides in stratified analyses. We found that bacterial infection was associated with three ceramides in participants without obesity/overweight and that obesity/overweight was associated with three ceramides in participants without a CNS condition. We therefore identified obesity/overweight and CNS conditions as potential confounders or effect modifiers for these associations. This is the first report of ceramides in DS and in human bacterial infection. Further study of ceramides in comorbidities of DS is justified.
Collapse
Affiliation(s)
- Gordon Worley
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, Minnesota, USA
| | - P Brian Smith
- Divisions of Neonatology and Quantitative Sciences, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah J Hart
- Division of Genetics and Metabolism, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah P Young
- Division of Genetics and Metabolism, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Akhilesh Pandey
- Division of Clinical Biochemistry and Immunology and Center for Individualized Medicine, Department of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, Minnesota, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Priya S Kishnani
- Division of Genetics and Metabolism, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
28
|
Couto-Rodriguez A, Villaseñor A, Pablo-Torres C, Obeso D, Rey-Stolle MF, Peinado H, Bueno JL, Reaño-Martos M, Iglesias Cadarso A, Gomez-Casado C, Barbas C, Barber D, Escribese MM, Izquierdo E. Platelet-Derived Extracellular Vesicles as Lipid Carriers in Severe Allergic Inflammation. Int J Mol Sci 2023; 24:12714. [PMID: 37628895 PMCID: PMC10454366 DOI: 10.3390/ijms241612714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The resolution of inflammation is a complex process that is critical for removing inflammatory cells and restoring tissue function. The dysregulation of these mechanisms leads to chronic inflammatory disorders. Platelets, essential cells for preserving homeostasis, are thought to play a role in inflammation as they are a source of immunomodulatory factors. Our aim was to identify key metabolites carried by platelet-derived extracellular vesicles (PL-EVs) in a model of allergic inflammation. PL-EVs were isolated by serial ultracentrifugation using platelet-rich plasma samples obtained from platelet apheresis from severely (n = 6) and mildly (n = 6) allergic patients and non-allergic individuals used as controls (n = 8). PL-EVs were analysed by a multiplatform approach using liquid and gas chromatography coupled to mass spectrometry (LC-MS and GC-MS, respectively). PL-EVs obtained from severely and mildly allergic patients and control individuals presented comparable particle concentrations and sizes with similar protein concentrations. Strikingly, PL-EVs differed in their lipid and metabolic content according to the severity of inflammation. L-carnitine, ceramide (Cer (d18:0/24:0)), and several triglycerides, all of which seem to be involved in apoptosis and regulatory T functions, were higher in PL-EVs from patients with mild allergic inflammation than in those with severe inflammation. In contrast, PL-EVs obtained from patients with severe allergic inflammation showed an alteration in the arachidonic acid pathway. This study demonstrates that PL-EVs carry specific lipids and metabolites according to the degree of inflammation in allergic patients and propose novel perspectives for characterising the progression of allergic inflammation.
Collapse
Affiliation(s)
- Alba Couto-Rodriguez
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - Alma Villaseñor
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmela Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - David Obeso
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - María Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Héctor Peinado
- Spanish National Cancer Research Center (CNIO), Molecular Oncology Programme, Microenvironment and Metastasis Laboratory, 28029 Madrid, Spain
| | - José Luis Bueno
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Mar Reaño-Martos
- Department of Allergy and Immunology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Alfredo Iglesias Cadarso
- Department of Allergy and Immunology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Cristina Gomez-Casado
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - María M. Escribese
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| | - Elena Izquierdo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-R.)
| |
Collapse
|
29
|
Rigamonti AE, Dei Cas M, Caroli D, Bondesan A, Cella SG, Paroni R, Sartorio A. Ceramide Risk Score in the Evaluation of Metabolic Syndrome: An Additional or Substitutive Biochemical Marker in the Clinical Practice? Int J Mol Sci 2023; 24:12452. [PMID: 37569827 PMCID: PMC10420317 DOI: 10.3390/ijms241512452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Ceramide risk score (CERT1, ceramide test 1), based on specific ceramides (Cers) and their corresponding ratios in the plasma, has been reported as a promising biochemical marker for primary and secondary prediction of cardiovascular disease (CVD) risk in different populations of patients. Thus far, limited attention has been paid to metabolic syndrome, a condition considered at high CVD risk. The aim of the present study was to evaluate CERT1 in a group of obese subjects without (OB-MetS-) and with (OB-MetS+) metabolic syndrome (according to the International Diabetes Federation (IDF) diagnostic criteria), compared to an age- and sex-matched normal-weight (NW) group. In all participants, plasma levels of Cer 16:0, Cer 18:0, Cer 24:1, and Cer 24:0 were measured, and the corresponding ratios Cer 16:0/24:0, Cer 18:0/24:0, and Cer 24:1/24:0 were calculated together with CERT1. Subjects with obesity showed higher CERT1 values than the NW group (p < 0.05), with no difference between OB-MetS- and OB-MetS+ groups. Waist circumference (WC), homeostatic model assessment of insulin-resistance (HOMA-IR) (surrogates of IDF diagnostic criteria for metabolic syndrome), and C reactive protein (CRP) (a marker of inflammation) were predictors of CERT1 (p < 0.05), with the contribution of the other IDF criteria such as arterial hypertension and dyslipidemia being negligible. Adjustment for WC resulted in a loss of the difference in CERT1 between OB-MetS- and NW subjects, with the combination of WC and HOMA-IR or CRP as covariates being necessary to yield the same effect for the difference in CERT1 between OB-MetS+ and NW subjects. Importantly, an association was found between CERT1 and vascular age (VA) (p < 0.05). Proportions of NW, OB-MetS- and OB-MetS+ subjects appeared to be distributed according to the CERT1-based risk groups (i.e., low, moderate, increased, and high risk; p < 0.05), with some OB-MetS- subjects included in the increased/high-risk group and some OB-MetS+ in the low/moderate-risk one. In conclusion, the clinical diagnosis of metabolic syndrome seems to be inaccurate to assess CVD risk in the obese population; however, further studies are needed before considering CERT1 as an additional or substitutive biochemical marker in clinical practice.
Collapse
Affiliation(s)
- Antonello E. Rigamonti
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20129 Milan, Italy;
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (D.C.); (A.B.); (A.S.)
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (D.C.); (A.B.); (A.S.)
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20129 Milan, Italy;
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (D.C.); (A.B.); (A.S.)
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| |
Collapse
|
30
|
Pierucci F, Chirco A, Meacci E. Irisin Is Target of Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor-Mediated Signaling in Skeletal Muscle Cells. Int J Mol Sci 2023; 24:10548. [PMID: 37445724 DOI: 10.3390/ijms241310548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Irisin is a hormone-like myokine produced in abundance by skeletal muscle (SkM) in response to exercise. This myokine, identical in humans and mice, is involved in many signaling pathways related to metabolic processes. Despite much evidence on the regulators of irisin and the relevance of sphingolipids for SkM cell biology, the contribution of these latter bioactive lipids to the modulation of the myokine in SkM is missing. In particular, we have examined the potential involvement in irisin formation/release of sphingosine-1-phosphate (S1P), an interesting bioactive molecule able to act as an intracellular lipid mediator as well as a ligand of specific G-protein-coupled receptors (S1PR). We demonstrate the existence of distinct intracellular pools of S1P able to affect the expression of the irisin precursor FNDC. In addition, we establish the crucial role of the S1P/S1PR axis in irisin formation/release as well as the autocrine/paracrine effects of irisin on myoblast proliferation and myogenic differentiation. Altogether, these findings provide the first evidence for a functional crosstalk between the S1P/S1PR axis and irisin signaling, which may open new windows for potential therapeutic treatment of SkM dysfunctions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| |
Collapse
|
31
|
Horváth P, Büdi L, Hammer D, Varga R, Losonczy G, Tárnoki ÁD, Tárnoki DL, Mészáros M, Bikov A. The link between the sphingolipid rheostat and obstructive sleep apnea. Sci Rep 2023; 13:7675. [PMID: 37169814 PMCID: PMC10175248 DOI: 10.1038/s41598-023-34717-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic inflammation induced by hypoxia during sleep is an important mechanism of microvascular damage in OSA patients. In this study, we investigated the role of the sphingosine rheostat, which has diverse inflammatory effects. Thirty-seven healthy subjects and 31 patients with OSA were recruited. We collected data on demographics and comorbidities. Plasma sphingosine-1-phosphate and ceramide antibody concentrations were measured by ELISA. The results were compared between the OSA and control groups, and the correlations between these measurements and markers of disease severity and comorbidities were explored. Ceramide antibody levels were significantly elevated in OSA patients (892.17 ng/ml) vs. controls (209.55 ng/ml). S1P levels were also significantly higher in patients with OSA (1760.0 pg/ml) than in controls (290.35 pg/ml, p < 0.001). The ceramide antibody concentration showed correlations with BMI (ρ = 0.25, p = 0.04), CRP (ρ = 0.36, p = 0.005), AHI (ρ = 0.43, p < 0.001), ODI (ρ = 0.43, p < 0.001), TST90% (ρ = 0.35, p = 0.004) and the lowest oxygen saturation (ρ = 0.37, p = 0.001) in the whole study population but not when patients with OSA were analyzed separately. The elevated ceramide antibody and sphingosine-1-phosphate concentrations in patients suffering from OSA suggests their involvement in the pathomechanism of OSA and its comorbidities.
Collapse
Affiliation(s)
- Péter Horváth
- Department of Pulmonology, Semmelweis University, Tömő utca 25-29, 1083, Budapest, Hungary.
| | - Lilla Büdi
- Department of Pulmonology, Semmelweis University, Tömő utca 25-29, 1083, Budapest, Hungary
| | - Dániel Hammer
- Department of Pulmonology, Semmelweis University, Tömő utca 25-29, 1083, Budapest, Hungary
| | - Rita Varga
- Department of Pulmonology, Semmelweis University, Tömő utca 25-29, 1083, Budapest, Hungary
| | - György Losonczy
- Department of Pulmonology, Semmelweis University, Tömő utca 25-29, 1083, Budapest, Hungary
| | | | | | | | - András Bikov
- Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
32
|
Cao Y, Liu B, Li W, Geng F, Gao X, Yue L, Liu H, Liu C, Su Z, Lü J, Pan X. Protopanaxadiol manipulates gut microbiota to promote bone marrow hematopoiesis and enhance immunity in cyclophosphamide-induced immunosuppression mice. MedComm (Beijing) 2023; 4:e222. [PMID: 36845073 PMCID: PMC9950037 DOI: 10.1002/mco2.222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Protopanaxadiol (PPD) has potential immunomodulatory effects, but the underlying mechanism remains unclear. Here, we explored the potential roles of gut microbiota in the immunity regulation mechanisms of PPD using a cyclophosphamide (CTX)-induced immunosuppression mouse model. Our results showed that a medium dose of PPD (PPD-M, 50 mg/kg) effectively ameliorated the immunosuppression induced by CTX treatment by promoting bone marrow hematopoiesis, increasing the number of splenic T lymphocytes and regulating the secretion of serum immunoglobulins and cytokines. Meanwhile, PPD-M protected against CTX-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus, Oscillospirales, Turicibacter, Coldextribacter, Lachnospiraceae, Dubosiella, and Alloprevotella and reducing the relative abundance of Escherichia-Shigella. Importantly, PPD-M lost the ability to promote bone marrow hematopoiesis and enhance immunity when the gut microbiota was depleted by broad-spectrum antibiotics. Moreover, PPD-M promoted the production of microbiota-derived immune-enhancing metabolites including cucurbitacin C, l-gulonolactone, ceramide, DG, prostaglandin E2 ethanolamide, palmitoyl glucuronide, 9R,10S-epoxy-stearic acid, and 9'-carboxy-gamma-chromanol. KEGG topology analysis showed that the PPD-M treatment significantly enriched the sphingolipid metabolic pathway with ceramide as a main metabolite. Our findings reveal that PPD enhances immunity by manipulating gut microbiota and has the potential to be used as an immunomodulator in cancer chemotherapy.
Collapse
Affiliation(s)
- Yuru Cao
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Wenzhen Li
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Huiping Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Congying Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Zhenguo Su
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Junhong Lü
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
33
|
Reikvam H, Bruserud Ø, Hatfield KJ. Pretransplant systemic metabolic profiles in allogeneic hematopoietic stem cell transplant recipients - identification of patient subsets with increased transplant-related mortality. Transplant Cell Ther 2023:S2666-6367(23)01196-X. [PMID: 36966869 DOI: 10.1016/j.jtct.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS); however, the treatment has high risk of severe transplantation-related mortality (TRM). In this study, we examined pretransplantation serum samples derived from 92 consecutive allotransplant recipients with AML or MDS. Using nontargeted metabolomics, we identified 1274 metabolites including 968 of known identity (named biochemicals). We further investigated metabolites that differed significantly when comparing patients with and without early extensive fluid retention, pretransplantation inflammation (both being associated with increased risk of acute graft-versus-host disease [GVHD]/nonrelapse mortality) and development of systemic steroid-requiring acute GVHD (aGVHD). All three factors are associated with TRM and were also associated with significantly altered amino acid metabolism, although there was only a minor overlap between these three factors with regard to significantly altered individual metabolites. Furthermore, steroid-requiring aGVHD was especially associated with altered taurine/hypotaurine, tryptophan, biotin, and phenylacetate metabolism together with altered malate-aspartate shuttle and urea cycle regulation. In contrast, pretransplantation inflammation was associated with a weaker modulation of many different metabolic pathways, whereas extensive fluid retention was associated with a weaker modulation of taurine/hypotaurine metabolism. An unsupervised hierarchical cluster analysis based on the 13 most significantly identified metabolites associated with aGVHD identified a patient subset with high metabolite levels and increased frequencies of MDS/MDS-AML, steroid-requiring aGVHD and early TRM. On the other hand, a clustering analysis based on metabolites that were significantly altered for aGVHD, inflammation, and fluid retention comparison groups identified a patient subset with a highly significant association with TRM. Our study suggests that the systemic pretransplantation metabolic profiles can be used to identify patient subsets with an increased frequency of TRM.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Kimberley J Hatfield
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009, Bergen, Norway.
| |
Collapse
|
34
|
Jeong M, Kim SJ, Koo K, Lee AR, Pyo MJ, Shim HJ, Moon KA, Lee JH, Hong CH, Kim JH, Cho H, Koh EH, Lee KU, Kim S, Yoon SY, Cho YS. Blockade of sphingosine-1-phosphate receptor 4 pathway has anti-inflammatory effects in a murine model of allergic airway inflammation. Allergy 2023. [PMID: 36802060 DOI: 10.1111/all.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Affiliation(s)
- Mini Jeong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sin-Jeong Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyomoon Koo
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - A Ryang Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ju Pyo
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Jae Shim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun-Ai Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hyang Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chung Hwan Hong
- Department of Medical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hyun Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hyunkyung Cho
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Up Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sun-Young Yoon
- Department of Allergy and Pulmonology in Internal Medicine, Chungnam National University, Chungnam National University Sejong Hospital, Sejong, Korea
| | - You-Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
36
|
Zhou Z, Li T, Du R, Liu C, Huang S, Han L, Zhang P, Wang Y, Jiang M. Lamiophlomis rotata attenuates rheumatoid arthritis by regulating sphingolipid and steroid hormone metabolism. Mol Omics 2023; 19:72-83. [PMID: 36416788 DOI: 10.1039/d2mo00247g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. Lamiophlomis rotata (L. rotata) (Benth.) Kudo, an essential medicinal plant in traditional Tibetan medicine, is useful in treating RA. The purpose of this study was to evaluate L. rotata's anti-RA effect and to analyze its serum metabolites and lipids to predict the possible action pathways. Female and male rats were immunized with CFA to induce arthritis. Paw volumes were measured, and arthritis index analysis and histological analysis were performed to check the effects of L. rotata. ELISA was used to measure the levels of inflammatory cytokines (IL-1β, TNF-α, IL-6, and IL-10) and oxidative stress (MDA, SOD, GSH, and CAT). UPLC/Q-Orbitrap-MS was used to identify untargeted metabolites and lipids in serum. Metabolite validation was performed using UPLC/QQQ-MS. L. rotata application significantly reduced arthritis indices and paw swelling in AIA rats, and diminished inflammation and bone fractures in joint tissues. Sphingolipid (SP) and steroid hormone biosynthesis was found to be closely related to L. rotata's intervention in RA. In addition, our experiments also confirmed that females were more likely than males to develop RA. These findings provide clues and a scientific basis for the mechanism of L. rotata in treating RA.
Collapse
Affiliation(s)
- Zhirong Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Tong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Ruijiao Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Chengjuan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Shengjie Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Lifeng Han
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Peng Zhang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China. .,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
37
|
Avraham R, Melamed S, Achdout H, Erez N, Israeli O, Barlev-Gross M, Pasmanik-Chor M, Paran N, Israely T, Vitner EB. Antiviral activity of glucosylceramide synthase inhibitors in alphavirus infection of the central nervous system. Brain Commun 2023; 5:fcad086. [PMID: 37168733 PMCID: PMC10165247 DOI: 10.1093/braincomms/fcad086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.
Collapse
Affiliation(s)
- Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Einat B Vitner
- Correspondence to: Einat B. Vitner Department of Infectious Diseases Israel Institute for Biological Research P.O.B 19, 7410001 Ness-Ziona, Israel E-mail:
| |
Collapse
|
38
|
Huo T, Zhang W, Yang J, Li J, Zhang Y, Guo H, Wu X, Li A, Feng C, Jiang H. Effects of chronic realgar exposure on liver lipidome in mice and identification sensitive lipid biomarker model for realgar-induced liver damage. Toxicol Lett 2023; 372:1-13. [DOI: 10.1016/j.toxlet.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022]
|
39
|
Acid Sphingomyelinase Inhibitor, Imipramine, Reduces Hippocampal Neuronal Death after Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232314749. [PMID: 36499076 PMCID: PMC9740309 DOI: 10.3390/ijms232314749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Traumatic brain injury (TBI) broadly degrades the normal function of the brain after a bump, blow, or jolt to the head. TBI leads to the aggravation of pre-existing brain dysfunction and promotes neurotoxic cascades that involve processes such as oxidative stress, loss of dendritic arborization, and zinc accumulation. Acid sphingomyelinase (ASMase) is an enzyme that hydrolyzes sphingomyelin to ceramide in cells. Under normal conditions, ceramide plays an important role in various physiological functions, such as differentiation and apoptosis. However, under pathological conditions, excessive ceramide production is toxic and activates the neuronal-death pathway. Therefore, we hypothesized that the inhibition of ASMase activity by imipramine would reduce ceramide formation and thus prevent TBI-induced neuronal death. To test our hypothesis, an ASMase inhibitor, imipramine (10 mg/kg, i.p.), was administrated to rats immediately after TBI. Based on the results of this study, we confirmed that imipramine significantly reduced ceramide formation, dendritic loss, oxidative stress, and neuronal death in the TBI-imipramine group compared with the TBI-vehicle group. Additionally, we validated that imipramine prevented TBI-induced cognitive dysfunction and the modified neurological severity score. Consequently, we suggest that ASMase inhibition may be a promising therapeutic strategy to reduce hippocampal neuronal death after TBI.
Collapse
|
40
|
Lung Lipidomic Alterations in Beagle Dogs Infected with Toxocara canis. Animals (Basel) 2022; 12:ani12223080. [PMID: 36428308 PMCID: PMC9686702 DOI: 10.3390/ani12223080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Toxocariasis, mainly caused by Toxocara canis, and to a lesser extent, Toxocara cati, is a neglected parasitic zoonosis. The mechanisms that underlie the changes in lipid metabolism of T. canis infection in Beagle dogs' lungs remain unclear. Lipidomics is a rapidly emerging approach that enables the global profiling of lipid composition by mass spectrometry. In this study, we performed a non-targeted lipidomic analysis of the lungs of Beagle dogs infected with the roundworm T. canis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1197 lipid species were identified, of which 63, 88, and 157 lipid species were significantly altered at 24 h post-infection (hpi), 96 hpi, and 36 days post-infection (dpi), respectively. This global lipidomic profiling identified infection-specific lipid signatures for lung toxocariasis, and represented a comprehensive comparison between the lipid composition of dogs' lungs in the presence and absence of T. canis infection. The potential roles of the identified lipid species in the pathogenesis of T. canis are discussed, which has important implications for better understanding the interaction mechanism between T. canis and the host lung.
Collapse
|
41
|
Azarcoya-Barrera J, Lewis ED, Field CJ, Goruk S, Makarowski A, Pouliot Y, Jacobs RL, Richard C. The Lipid-Soluble Forms of Choline Enhance Ex Vivo Responses from the Gut-Associated Immune System in Young Female Rat Offspring. J Nutr 2022; 152:2604-2614. [PMID: 36774126 DOI: 10.1093/jn/nxac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In humans, the development of gut-associated lymphoid tissue (GALT) occurs in the first years of life and can be influenced by diet. OBJECTIVES The objective of this study was to determine the effect of dietary choline on the development of gut-associated lymphoid tissue (GALT). METHODS Three feeding trials were conducted in female Sprague-Dawley rats. Beginning 3 d before parturition (studies 1 and 3) or at day 10 of gestation (study 2), control dams consumed a 100% free choline (FC) diet until the end of the lactation period. In studies 1 and 3, test dams consumed a high-glycerophosphocholine (HGPC) diet [75% glycerophosphocholine (GPC), 12.5% phosphatidylcholine (PC), 12.5% FC] and a 100% PC diet, respectively (both 1 g of choline/kg diet). In study 2, test dams consumed a high-sphingomyelin (SM) and PC (SMPC) diet (34% SM, 37% PC, 17% GPC, 7% FC, 5% phosphocholine) or a 50% PC diet (50% PC, 25% FC, 25% GPC), both 1.7 g of choline/kg diet. Immune cell phenotypes and ex vivo cytokine production by mitogen-stimulated immune cells were measured. RESULTS Feeding of the HGPC diet lowered T-cell IL-2 (44%), IFN-γ (34%), and TNF-α (55%) production in mesenteric lymph nodes (MLNs) compared with control. Feeding both SMPC and 50% PC diets during the lactation and weaning periods increased IL-2 (54%) and TNF-α (46%) production after T-cell stimulation compared with control. There was a lower production of IL-2 (46%), IL-6 (66%), and TNF-α (45%), and a higher production of IL-10 (44%) in both SMPC and 50% PC groups following ovalbumin stimulation compared with control in MLNs. Feeding a diet containing 100% PC increased the production of IFN-γ by 52% after T-cell stimulation compared with control. CONCLUSION Feeding a diet containing a mixture of choline forms with a high content of lipid-soluble forms during both the lactation and weaning periods enhances ex vivo immune responses from the GALT in female Sprague-Dawley offspring.
Collapse
Affiliation(s)
- Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Erin D Lewis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Maines LW, Schrecengost RS, Zhuang Y, Keller SN, Smith RA, Green CL, Smith CD. Opaganib Protects against Radiation Toxicity: Implications for Homeland Security and Antitumor Radiotherapy. Int J Mol Sci 2022; 23:13191. [PMID: 36361977 PMCID: PMC9655569 DOI: 10.3390/ijms232113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/25/2023] Open
Abstract
Exposure to ionizing radiation (IR) is a lingering threat from accidental or terroristic nuclear events, but is also widely used in cancer therapy. In both cases, host inflammatory responses to IR damage normal tissue causing morbidity and possibly mortality to the victim/patient. Opaganib, a first-in-class inhibitor of sphingolipid metabolism, has broad anti-inflammatory and anticancer activity. Opaganib elevates ceramide and reduces sphingosine 1-phosphate (S1P) in cells, conditions that increase the antitumor efficacy of radiation while concomitantly suppressing inflammatory damage to normal tissue. Therefore, opaganib may suppress toxicity from unintended IR exposure and improve patient response to chemoradiation. To test these hypotheses, we first examined the effects of opaganib on the toxicity and antitumor activity of radiation in mice exposed to total body irradiation (TBI) or IR with partial bone marrow shielding. Oral treatment with opaganib 2 h before TBI shifted the LD75 from 9.5 Gy to 11.5 Gy, and provided substantial protection against gastrointestinal damage associated with suppression of radiation-induced elevations of S1P and TNFα in the small intestines. In the partially shielded model, opaganib provided dose-dependent survival advantages when administered 4 h before or 24 h after radiation exposure, and was particularly effective when given both prior to and following radiation. Relevant to cancer radiotherapy, opaganib decreased the sensitivity of IEC6 (non-transformed mouse intestinal epithelial) cells to radiation, while sensitizing PAN02 cells to in vitro radiation. Next, the in vivo effects of opaganib in combination with radiation were examined in a syngeneic tumor model consisting of C57BL/6 mice bearing xenografts of PAN02 pancreatic cancer cells and a cross-species xenograft model consisting of nude mice bearing xenografts of human FaDu cells. Mice were treated with opaganib and/or IR (plus cisplatin in the case of FaDu tumors). In both tumor models, the optimal suppression of tumor growth was attained by the combination of opaganib with IR (± cisplatin). Overall, opaganib substantially protects normal tissue from radiation damage that may occur through unintended exposure or cancer radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA
| |
Collapse
|
43
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
44
|
Paranjpe V, Galor A, Grambergs R, Mandal N. The role of sphingolipids in meibomian gland dysfunction and ocular surface inflammation. Ocul Surf 2022; 26:100-110. [PMID: 35973562 PMCID: PMC10259413 DOI: 10.1016/j.jtos.2022.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
45
|
Tian L, Ogretmen B, Chung BY, Yu XZ. Sphingolipid metabolism in T cell responses after allogeneic hematopoietic cell transplantation. Front Immunol 2022; 13:904823. [PMID: 36052066 PMCID: PMC9425084 DOI: 10.3389/fimmu.2022.904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy against hematopoietic malignancies. The infused donor lymphocytes attack malignant cells and normal tissues, termed a graft-verse-leukemia (GVL) effect and graft-verse-host (GVH) response or disease (GVHD), respectively. Although engineering techniques toward donor graft selection have made HCT more specific and effective, primary tumor relapse and GVHD are still major concerns post allo-HCT. High-dose systemic steroids remain to be the first line of GVHD treatment, which may lead to steroid-refractory GVHD with a dismal outcome. Therefore, identifying novel therapeutic strategies that prevent GVHD while preserving GVL activity is highly warranted. Sphingolipid metabolism and metabolites play pivotal roles in regulating T-cell homeostasis and biological functions. In this review, we summarized the recent research progress in this evolving field of sphingolipids with a focus on alloreactive T-cell responses in the context of allo-HCT. We discussed how sphingolipid metabolism regulates T-cell mediated GVH and GVL responses in allo-HCT and presented the rationale and means to target sphingolipid metabolism for the control of GVHD and leukemia relapse.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Brian Y. Chung
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Xue-Zhong Yu,
| |
Collapse
|
46
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
47
|
Pretransplant Systemic Lipidomic Profiles in Allogeneic Stem Cell Transplant Recipients. Cancers (Basel) 2022; 14:cancers14122910. [PMID: 35740576 PMCID: PMC9220974 DOI: 10.3390/cancers14122910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Stem cell transplantation is used in the treatment of aggressive hematological malignancies and consists of initial high-dose and potentially lethal chemotherapy, followed by rescue with the transplantation of hematopoietic stem cells. Transplantation with stem cells from a healthy donor (i.e., allogeneic stem cells) has the strongest anti-cancer effect, but also the highest risk of severe toxicity. Furthermore, the clinical status at the time of transplantation (inflammation, fluid overload) is associated with posttransplant mortality, and immune-mediated acute graft-versus-host disease (GVHD) is a potential lethal complication. Finally, lipid metabolism regulates the proliferation and survival of both malignant hematological cells and immunocompetent cells that cause GVHD. Our study shows that the pretransplant lipid profiles differ between allotransplant recipients and can be used for the subclassification of patients and possibly to identify patients with an increased risk of death due to disease relapse or treatment toxicity. The therapeutic targeting of lipid metabolism should therefore be further explored in these transplant recipients. Abstract Allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies. However, this treatment is associated with severe treatment-related morbidity and mortality. The metabolic status of the recipient may be associated with the risk of development of transplant-associated complications such as graft-versus-host disease (GVHD). To better understand the impact of the lipidomic profile of transplant recipients on posttransplant complications, we evaluated the lipid signatures of patients with hematological disease using non-targeted lipidomics. In the present study, we studied pretransplant serum samples derived from 92 consecutive patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). A total of 960 lipid biochemicals were identified, and the pretransplant lipidomic profiles differed significantly when comparing patients with and without the risk factors: (i) pretransplant inflammation, (ii) early fluid overload, and (iii) patients with and without later steroid-requiring acute GVHD. All three factors, but especially patients with pretransplant inflammation, were associated with decreased levels of several lipid metabolites. Based on the overall concentrations of various lipid subclasses, we identified a patient subset characterized by low lipid levels, increased frequency of MDS patients, signs of inflammation, decreased body mass index, and an increased risk of early non-relapse mortality. Metabolic targeting has been proposed as a possible therapeutic strategy in allotransplant recipients, and our present results suggest that the clinical consequences of therapeutic intervention (e.g., nutritional support) will also differ between patients and depend on the metabolic context.
Collapse
|
48
|
Tanaka T, Talegawkar SA, Jin Y, Candia J, Tian Q, Moaddel R, Simonsick EM, Ferrucci L. Metabolomic Profile of Different Dietary Patterns and Their Association with Frailty Index in Community-Dwelling Older Men and Women. Nutrients 2022; 14:2237. [PMID: 35684039 PMCID: PMC9182888 DOI: 10.3390/nu14112237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
Diet quality has been associated with slower rates of aging; however, the mechanisms underlying the role of a healthy diet in aging are not fully understood. To address this question, we aimed to identify plasma metabolomic biomarkers of dietary patterns and explored whether these metabolites mediate the relationship between diet and healthy aging, as assessed by the frailty index (FI) in 806 participants of the Baltimore Longitudinal Study of Aging. Adherence to different dietary patterns was evaluated using the Mediterranean diet score (MDS), Mediterranean-DASH Diet Intervention for Neurodegenerative Delay (MIND) score, and Alternate Healthy Eating Index-2010 (AHEI). Associations between diet, FI, and metabolites were assessed using linear regression models. Higher adherence to these dietary patterns was associated with lower FI. We found 236, 218, and 278 metabolites associated with the MDS, MIND, and AHEI, respectively, with 127 common metabolites, which included lipids, tri/di-glycerides, lyso/phosphatidylcholine, amino acids, bile acids, ceramides, cholesterol esters, fatty acids and acylcarnitines, indoles, and sphingomyelins. Metabolomic signatures of diet explained 28%, 37%, and 38% of the variance of the MDS, MIND, and AHEI, respectively. Signatures of MIND and AHEI mediated 55% and 61% of the association between each dietary pattern with FI, while the mediating effect of MDS signature was not statistically significant. The high number of metabolites associated with the different dietary patterns supports the notion of common mechanisms that underly the relationship between diet and frailty. The identification of multiple metabolite classes suggests that the effect of diet is complex and not mediated by any specific biomarkers. Furthermore, these metabolites may serve as biomarkers for poor diet quality to identify individuals for targeted dietary interventions.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Sameera A. Talegawkar
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (S.A.T.); (Y.J.)
| | - Yichen Jin
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (S.A.T.); (Y.J.)
| | - Julián Candia
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Qu Tian
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Eleanor M. Simonsick
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| |
Collapse
|
49
|
Jackson KG, Way GW, Zhou H. Bile acids and sphingolipids in non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1163-1171. [PMID: 35788089 PMCID: PMC9337250 DOI: 10.1097/cm9.0000000000002156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is one of the fastest-growing diseases, and its global prevalence is estimated to increase >50% by 2030. NAFLD is comorbid with metabolic syndrome, obesity, type 2 diabetes, and insulin resistance. Despite extensive research efforts, there are no pharmacologic or biological therapeutics for the treatment of NAFLD. Bile acids and sphingolipids are well-characterized signaling molecules. Over the last few decades, researchers have uncovered potential mechanisms by which bile acids and sphingolipids regulate hepatic lipid metabolism. Dysregulation of bile acid and sphingolipid metabolism has been linked to steatosis, inflammation, and fibrosis in patients with NAFLD. This clinical observation has been recapitulated in animal models, which are well-accepted by experts in the hepatology field. Recent transcriptomic and lipidomic studies also show that sphingolipids are important players in the pathogenesis of NAFLD. Moreover, the identification of bile acids as activators of sphingolipid-mediated signaling pathways established a novel theory for bile acid and sphingolipid biology. In this review, we summarize the recent advances in the understanding of bile acid and sphingolipid-mediated signaling pathways as potential contributors to NAFLD. A better understanding of the pathologic effects mediated by bile acids and sphingolipids will facilitate the development of new diagnostic and therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Kaitlyn G. Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Grayson W. Way
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
50
|
Qin LL, Yu M, Zhang HX, Jia HM, Ye XC, Zou ZM. Quality markers of Baizhu dispensing granules based on multi-component qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114968. [PMID: 35007681 DOI: 10.1016/j.jep.2022.114968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dispensing granules of traditional Chinese medicines (TCMs) is an innovative form of medicinal material for TCMs decoction, which is gradually recognized in the clinic due to being suitable for production on a large scale and convenient to take for patients. However, the quality control of TCMs dispensing granules is being challenged, because they contain too many unrevealed hydrophilic components. AIM OF THE STUDY Here, the dispensing granules produced from the rhizome of Atractylodes macrocephala (Baizhu dispensing granules), were explored as a case to explore the quality markers correlated to the clinical efficacy of TCMs dispensing granules by a comprehensive strategy of integrating chemical profiling, network pharmacology, and chemometric analysis. MATERIALS AND METHODS First, the chemical profiling of Baizhu dispensing granules was characterized by using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Subsequently, the potential active components responsible for the efficacy of Baizhu dispensing granules were screened via network pharmacology, and the ultra-performance liquid chromatography coupled with photodiode array detector (UPLC-PDA) method was developed for quantitative analysis of the potential active components in 26 batches of Baizhu dispensing granules. Finally, the quality markers of Baizhu dispensing granules were deciphered based on content variations of potential active components and chemometric analysis. RESULTS A total of 69 components were identified from Baizhu dispensing granules. Network pharmacology analysis further revealed that eight of them including five caffeoylquinic acids (31, 32, 36, 42, 44) and three sesquiterpenoids (63, 67, 76) were intimately connected to the core targets of dyspepsia, enteritis, gastritis and immunity. The contents of eight components differed greatly among 26 batches of Baizhu dispensing granules. Chlorogenic acid (31), cryptochlorogenic acid (32) and atractylenolide III (63) have higher concentrations and make great contributions to distinguish different batches of the Baizhu dispensing granules based on principal component analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA), and could be used as the quality markers of Baizhu dispensing granules. CONCLUSIONS Our study defined the quality markers of Baizhu dispensing granules, which will benefit further investigation on the quality evaluation of TCMs dispensing granules containing Baizhu. The strategy used in this study will be helpful for discovering the quality markers of other TCMs dispensing granules.
Collapse
Affiliation(s)
- Ling-Ling Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Hai-Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|