1
|
Hao S, Wang Q, Zhang Y, Miao Y, Shan Y. The effect of different visual feedback interfaces of music training games on speech rehabilitation in hearing-impaired children: An fNIRS study. Neurosci Lett 2024; 843:138010. [PMID: 39395781 DOI: 10.1016/j.neulet.2024.138010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Singing plays a critical role in enhancing musicality, sound discrimination, and attention, and proves advantageous for speech rehabilitation in children with hearing impairments. Computer-based training games are well-suited to the learning behaviors of children, with substantial evidence suggesting that music training augments speech training capabilities in this demographic. Despite this, there is a lack of detailed exploration into the design of interactive online music training interfaces tailored for these needs. This study investigates brain activation changes using two visual feedback singing games, analyzed through functional near-infrared spectroscopy: a serious game (SG) and an entertainment game (EG) with visually enhanced feedback. It also assesses the efficacy of home-based music training software for speech rehabilitation. Methods involved recording oxygenated hemoglobin concentration (Delta [HbO]) signals from the prefrontal cortex, motor cortex, occipital lobe, and temporal lobe in 21 children (average age: 9.3 ± 1.9 years) during two singing interface experiments. Subjects also completed the Intrinsic Motivation Inventory (IMI) questionnaire post-experiment. Main results showed that brain regions, particularly the temporal lobe, exhibited stronger and more pronounced activation signals with the SG interface compared to the EG, suggesting that SG is more effective for speech system rehabilitation. The Intrinsic Motivation Scale results revealed higher acceptability for SG than for EG. This study provides insights into designing online speech rehabilitation products for children with hearing impairment, advocating for better interactive training methods from a neuroscience perspective.
Collapse
Affiliation(s)
- Song Hao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Qiaoran Wang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yuhan Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yibei Miao
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Yuxin Shan
- School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
2
|
Komal W, Fatima S, Minahal Q, Liaqat R, Hussain AS. Assessing the effects of N-acetyl cysteine on growth, antioxidant and immune response in tilapia (Oreochromis niloticus) under different regimes of stocking densities. PLoS One 2024; 19:e0307212. [PMID: 39348347 PMCID: PMC11441679 DOI: 10.1371/journal.pone.0307212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 10/02/2024] Open
Abstract
The study investigated the impact of N-acetyl cysteine on growth, immune response, and antioxidant activity in tilapia (Oreochromis niloticus). Fish were reared at three densities (1.50, 3.00, and 4.50 kg/m3) with four levels of N-acetyl cysteine supplementation (0, 2, 4, and 6 mg/kg) over 60 days. Better growth was observed at low density, but at all densities, fish fed the highest N-acetyl cysteine level (6 mg/kg) showed improved growth. Chemical composition of fish and activity of amylase, lipase and protease in all treatments were noted to be insignificant. The levels of antioxidant enzymes (catalase, superoxide dismutase and glutathione peroxidase) and cortisol in HD treatments were high as compared to LD and MD treatment. However, fish fed with N3 diet in each density treatment showed the lowest level of antioxidant enzymes as well as cortisol. Similarly, the levels of malondialdehyde were noted to be high at HD treatments as compared to that in LD and MD. Its levels were lower in fish fed with N3 diets in all density treatments. Expression of somatostatins-1 did not increase in MD and HD treatments in response to high stocking density when compared with LD treatment. However, pro-opiomelanocortin-α level was reduced after N3 diet in HD treatment and interleukin 1-β expression increased after N3 supplement in HD treatment. In conclusion, N-acetyl cysteine supplementation improved growth and antioxidant response in tilapia. The most optimum dose of N-acetyl cysteine was noted to be 6 mg/kg at high stocking, suggesting the potential role of this nutraceutical in tilapia intensive culture.
Collapse
Affiliation(s)
- Wajeeha Komal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Shafaq Fatima
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Qandeel Minahal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Razia Liaqat
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Aya S Hussain
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|
3
|
Lee J, Song Y, Kim YA, Kim I, Cha J, Lee SW, Ko Y, Kim CS, Kim S, Lee S. Characterization of a new selective glucocorticoid receptor modulator with anorexigenic activity. Sci Rep 2024; 14:7844. [PMID: 38570726 PMCID: PMC10991430 DOI: 10.1038/s41598-024-58546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Obesity, a worldwide epidemic, leads to various metabolic disorders threatening human health. In response to stress or fasting, glucocorticoid (GC) levels are elevated to promote food intake. This involves GC-induced expression of the orexigenic neuropeptides in agouti-related protein (AgRP) neurons of the hypothalamic arcuate nucleus (ARC) via the GC receptor (GR). Here, we report a selective GR modulator (SGRM) that suppresses GR-induced transcription of genes with non-classical glucocorticoid response elements (GREs) such as Agrp-GRE, but not with classical GREs, and via this way may serve as a novel anti-obesity agent. We have identified a novel SGRM, 2-O-trans-p-coumaroylalphitolic acid (Zj7), a triterpenoid extracted from the Ziziphus jujube plant, that selectively suppresses GR transcriptional activity in Agrp-GRE without affecting classical GREs. Zj7 reduces the expression of orexigenic genes in the ARC and exerts a significant anorexigenic effect with weight loss in both high fat diet-induced obese and genetically obese db/db mouse models. Transcriptome analysis showed that Zj7 represses the expression of a group of orexigenic genes including Agrp and Npy induced by the synthetic GR ligand dexamethasone (Dex) in the hypothalamus. Taken together, Zj7, as a selective GR modulator, showed beneficial metabolic activities, in part by suppressing GR activity in non-classical GREs in orexigenic genes. This study demonstrates that a potential anorexigenic molecule may allow GRE-specific inhibition of GR transcriptional activity, which is a promising approach for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Junekyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yeonghun Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Young A Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Intae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jooseon Cha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Su Won Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yoonae Ko
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chong-Su Kim
- Department of Food and Nutrition, College of Natural Information Sciences, Dongduk Women's University, Seoul, 02748, Korea
| | - Sanghee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Romanova IV, Mikhailova EV, Mikhrina AL, Shpakov AO. Type 1 melanocortin receptors in pro-opiomelanocortin-, vasopressin-, and oxytocin-immunopositive neurons in different areas of mouse brain. Anat Rec (Hoboken) 2023; 306:2388-2399. [PMID: 35475324 DOI: 10.1002/ar.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.
Collapse
Affiliation(s)
- Irina V Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiya L Mikhrina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Li S, Liu M, Cao S, Liu B, Li D, Wang Z, Sun H, Cui Y, Shi Y. The Mechanism of the Gut-Brain Axis in Regulating Food Intake. Nutrients 2023; 15:3728. [PMID: 37686760 PMCID: PMC10490484 DOI: 10.3390/nu15173728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
6
|
Le Collen L, Delemer B, Poitou C, Vaxillaire M, Toussaint B, Dechaume A, Badreddine A, Boissel M, Derhourhi M, Clément K, Petit JM, Mau-Them FT, Bruel AL, Thauvin-Robinet C, Saveanu A, Cherifi BG, Le Beyec-Le Bihan J, Froguel P, Bonnefond A. Heterozygous pathogenic variants in POMC are not responsible for monogenic obesity: Implication for MC4R agonist use. Genet Med 2023; 25:100857. [PMID: 37092539 DOI: 10.1016/j.gim.2023.100857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023] Open
Abstract
PURPOSE Recessive deficiency of proopiomelanocortin (POMC) causes childhood-onset severe obesity. Cases can now benefit from the melanocortin 4 receptor agonist setmelanotide. Furthermore, a phase 3 clinical trial is evaluating setmelanotide in heterozygotes for POMC. We performed a large-scale genetic analysis to assess the effect of heterozygous, pathogenic POMC variants on obesity. METHODS A genetic analysis was performed in a family including 2 cousins with childhood-onset obesity. We analyzed the obesity status of heterozygotes for pathogenic POMC variants in the Human Gene Mutation Database. The association between heterozygous pathogenic POMC variants and obesity risk was assessed using 190,000 exome samples from UK Biobank. RESULTS The 2 cousins carried a compound heterozygous pathogenic variant in POMC. Six siblings were heterozygotes; only 1 of them had obesity. In Human Gene Mutation Database, we identified 60 heterozygotes for pathogenic POMC variants, of whom 14 had obesity. In UK Biobank, heterozygous pathogenic POMC variants were not associated with obesity risk, but they modestly increased body mass index levels. CONCLUSION Heterozygous pathogenic POMC variants do not contribute to monogenic obesity, but they slightly increase body mass index. Setmelanotide use in patients with obesity, which would only be based on the presence of a heterozygous POMC variant, can be questioned.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France; Department of Clinical Genetic, University Hospital Center of Reims, Reims, France; University of Lille, Lille, France.
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
| | - Christine Poitou
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches Research Unit (NutriOmics), Paris, France
| | - Martine Vaxillaire
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France
| | - Bénédicte Toussaint
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France
| | - Aurélie Dechaume
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France
| | - Alaa Badreddine
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France
| | - Mathilde Boissel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France
| | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches Research Unit (NutriOmics), Paris, France
| | - Jean M Petit
- Department of Endocrinology Diabetology, University Hospital Central of F. Mitterrand Dijon-Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France; INSERM UMR1231 GAD, Dijon, France
| | - Ange-Line Bruel
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France; INSERM UMR1231 GAD, Dijon, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France; INSERM UMR1231 GAD, Dijon, France; Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs," Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Alexandru Saveanu
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance Publique Hôpitaux de Marseille, Reference Center for Rare Pituitary Diseases HYPO, Marseille, France; Assistance-Publique des Hôpitaux de Marseille, Laboratory of Molecular Biology, Conception Hospital, Marseille, France
| | - Blandine Gatta Cherifi
- CHU Bordeaux, Endocrinology, Diabetology & Nutrition, Bordeaux, France; University of Bordeaux, Bordeaux, France; INSERMU1215 Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Johanne Le Beyec-Le Bihan
- Assistance Publique Hôpitaux de Paris, Endocrine and Oncological Biochemistry Department, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; INSERM U1149, Centre de recherche sur l'inflammation, Paris, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, London, United Kingdom
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Luo N, Guo Y, Peng L, Deng F. High-fiber-diet-related metabolites improve neurodegenerative symptoms in patients with obesity with diabetes mellitus by modulating the hippocampal-hypothalamic endocrine axis. Front Neurol 2023; 13:1026904. [PMID: 36733447 PMCID: PMC9888315 DOI: 10.3389/fneur.2022.1026904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Objective Through transcriptomic and metabolomic analyses, this study examined the role of high-fiber diet in obesity complicated by diabetes and neurodegenerative symptoms. Method The expression matrix of high-fiber-diet-related metabolites, blood methylation profile associated with pre-symptomatic dementia in elderly patients with type 2 diabetes mellitus (T2DM), and high-throughput single-cell sequencing data of hippocampal samples from patients with Alzheimer's disease (AD) were retrieved from the Gene Expression Omnibus (GEO) database and through a literature search. Data were analyzed using principal component analysis (PCA) after quality control and data filtering to identify different cell clusters and candidate markers. A protein-protein interaction network was mapped using the STRING database. To further investigate the interaction among high-fiber-diet-related metabolites, methylation-related DEGs related to T2DM, and single-cell marker genes related to AD, AutoDock was used for semi-flexible molecular docking. Result Based on GEO database data and previous studies, 24 marker genes associated with high-fiber diet, T2DM, and AD were identified. Top 10 core genes include SYNE1, ANK2, SPEG, PDZD2, KALRN, PTPRM, PTPRK, BIN1, DOCK9, and NPNT, and their functions are primarily related to autophagy. According to molecular docking analysis, acetamidobenzoic acid, the most substantially altered metabolic marker associated with a high-fiber diet, had the strongest binding affinity for SPEG. Conclusion By targeting the SPEG protein in the hippocampus, acetamidobenzoic acid, a metabolite associated with high-fiber diet, may improve diabetic and neurodegenerative diseases in obese people.
Collapse
Affiliation(s)
- Ning Luo
- Department of Endocrinology, Chenzhou No. 1 People's Hospital, Chenzhou, China,*Correspondence: Ning Luo ✉
| | - Yuejie Guo
- Department of Geriatrics, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Lihua Peng
- Department of Clinical Laboratory, Chenzhou No. 4 People's Hospital, Chenzhou, China
| | - Fangli Deng
- Breast Health Care Center, Chenzhou No. 1 People's Hospital, Chenzhou, China
| |
Collapse
|
8
|
Martins FF, Santos-Reis T, Marinho TS, Aguila MB, Mandarim-de-Lacerda CA. Hypothalamic anorexigenic signaling pathways (leptin, amylin, and proopiomelanocortin) are semaglutide (GLP-1 analog) targets in obesity control in mice. Life Sci 2023; 313:121268. [PMID: 36493878 DOI: 10.1016/j.lfs.2022.121268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Santos-Reis
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Kühnen P, Biebermann H, Wiegand S. Pharmacotherapy in Childhood Obesity. Horm Res Paediatr 2022; 95:177-192. [PMID: 34351307 DOI: 10.1159/000518432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The increasing number of obese children and adolescence is a major problem in health-care systems. Currently, the gold standard for the treatment of these patients with obesity is a multicomponent lifestyle intervention. Unfortunately, this strategy is not leading to a substantial and long-lasting weight loss in the majority of patients. This is the reason why there is an urgent need to establish new treatment strategies for children and adolescents with obesity to reduce the risk for the development of any comorbidities like cardiovascular diseases or diabetes mellitus type 2. SUMMARY In this review, we outline available pharmacological therapeutic options for children and compare the available study data with the outcome of conservative treatment approaches. KEY MESSAGES We discussed, in detail, how knowledge about underlying molecular mechanisms might support the identification of effective antiobesity drugs in the future and in which way this might modulate current treatment strategies to support children and adolescence with obesity to lose body weight.
Collapse
Affiliation(s)
- Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Susanna Wiegand
- Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Ghanemi A, Yoshioka M, St-Amand J. Diet Impact on Obesity beyond Calories and Trefoil Factor Family 2 (TFF2) as an Illustration: Metabolic Implications and Potential Applications. Biomolecules 2021; 11:1830. [PMID: 34944474 PMCID: PMC8698828 DOI: 10.3390/biom11121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a health problem with increasing impacts on public health, economy and even social life. In order to reestablish the energy balance, obesity management focuses mainly on two pillars; exercise and diet. Beyond the contribution to the caloric intake, the diet nutrients and composition govern a variety of properties. This includes the energy balance-independent properties and the indirect metabolic effects. Whereas the energy balance-independent properties are close to "pharmacological" effects and include effects such as antioxidant and anti-inflammatory, the indirect metabolic effects represent the contribution a diet can have on energy metabolism beyond the caloric contribution itself, which include the food intake control and metabolic changes. As an illustration, we also described the metabolic implication and hypothetical pathways of the high-fat diet-induced gene Trefoil Factor Family 2. The properties the diet has can have a variety of applications mainly in pharmacology and nutrition and further explore the "pharmacologically" active food towards potential therapeutic applications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| |
Collapse
|
11
|
Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Res 2021; 31:1176-1189. [PMID: 34561620 PMCID: PMC8563958 DOI: 10.1038/s41422-021-00569-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.
Collapse
|
12
|
Li Y, Wang X, Lu L, Wang M, Zhai Y, Tai X, Dilimulati D, Lei X, Xu J, Zhang C, Fu Y, Qu S, Li Q, Zhang C. Identification of novel GPCR partners of the central melanocortin signaling. Mol Metab 2021; 53:101317. [PMID: 34400348 PMCID: PMC8458986 DOI: 10.1016/j.molmet.2021.101317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Homo- or heterodimerization of G protein-coupled receptors (GPCRs) generally affects the normal functioning of these receptors and mediates the responses to a variety of physiological stimuli in vivo. It is well known that melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) are key regulators of appetite and energy homeostasis in the central nervous system. However, the GPCR partners of MC3R and MC4R are not well understood. Our objective is to analyze single cell RNA-seq datasets of the hypothalamus to explore and identify novel GPCR partners of MC3R and MC4R and examine the pharmacological effect on the downstream signal transduction and membrane translocation of melanocortin receptors. METHODS We conducted an integrative analysis of multiple single cell RNA-seq datasets to reveal the expression pattern and correlation of GPCR families in the mouse hypothalamus. The emerging GPCRs with important metabolic functions were selected for cloning and co-immunoprecipitation validation. The positive GPCR partners were then tested for the pharmacological activation, competitive binding assay and surface translocation ELISA experiments. RESULTS Based on the expression pattern of GPCRs and their function enrichment results, we narrowed down the range of potential GPCR interaction with MC3R and MC4R for further confirmation. Co-immunoprecipitation assay verified 23 and 32 novel GPCR partners that interacted with MC3R and MC4R in vitro. The presence of these GPCR partners exhibited different effects in the physiological regulation and signal transduction of MC3R and MC4R. CONCLUSIONS This work represented the first large-scale screen for the functional GPCR complex of central melanocortin receptors and defined a composite metabolic regulatory GPCR network of the hypothalamic nucleuses.
Collapse
Affiliation(s)
- Yunpeng Li
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaozhu Wang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Liumei Lu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhai
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaolu Tai
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Diliqingna Dilimulati
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaowei Lei
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Xu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Huisman C, Kim YA, Jeon S, Shin B, Choi J, Lim SJ, Youn SM, Park Y, K C M, Kim S, Lee SK, Lee S, Lee JW. The histone H3-lysine 4-methyltransferase Mll4 regulates the development of growth hormone-releasing hormone-producing neurons in the mouse hypothalamus. Nat Commun 2021; 12:256. [PMID: 33431871 PMCID: PMC7801453 DOI: 10.1038/s41467-020-20511-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
In humans, inactivating mutations in MLL4, which encodes a histone H3-lysine 4-methyltransferase, lead to Kabuki syndrome (KS). While dwarfism is a cardinal feature of KS, the underlying etiology remains unclear. Here we report that Mll4 regulates the development of growth hormone-releasing hormone (GHRH)-producing neurons in the mouse hypothalamus. Our two Mll4 mutant mouse models exhibit dwarfism phenotype and impairment of the developmental programs for GHRH-neurons. Our ChIP-seq analysis reveals that, in the developing mouse hypothalamus, Mll4 interacts with the transcription factor Nrf1 to trigger the expression of GHRH-neuronal genes. Interestingly, the deficiency of Mll4 results in a marked reduction of histone marks of active transcription, while treatment with the histone deacetylase inhibitor AR-42 rescues the histone mark signature and restores GHRH-neuronal production in Mll4 mutant mice. Our results suggest that the developmental dysregulation of Mll4-directed epigenetic control of transcription plays a role in the development of GHRH-neurons and dwarfism phenotype in mice.
Collapse
Affiliation(s)
- Christian Huisman
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Young A Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Shin Jeon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Bongjin Shin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Jeonghoon Choi
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Su Jeong Lim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sung Min Youn
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Younjung Park
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Medha K C
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Soo-Kyung Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA.
| |
Collapse
|
14
|
Gregoric N, Groselj U, Bratina N, Debeljak M, Zerjav Tansek M, Suput Omladic J, Kovac J, Battelino T, Kotnik P, Avbelj Stefanija M. Two Cases With an Early Presented Proopiomelanocortin Deficiency-A Long-Term Follow-Up and Systematic Literature Review. Front Endocrinol (Lausanne) 2021; 12:689387. [PMID: 34177811 PMCID: PMC8220084 DOI: 10.3389/fendo.2021.689387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
Proopiomelanocortin (POMC) deficiency is an extremely rare inherited autosomal recessive disorder characterized by severe obesity, adrenal insufficiency, skin hypopigmentation, and red hair. It is caused by pathogenic variants in the POMC gene that codes the proopiomelanocortin polypeptide which is cleaved to several peptides; the most notable ones are adrenocorticotropic hormone (ACTH), alpha- and beta-melanocyte-stimulating hormones (α-MSH and β-MSH); the latter two are crucial in melanogenesis and the energy balance by regulating feeding behavior and energy homeostasis through melanocortin receptor 4 (MC4R). The lack of its regulation leads to polyphagia and early onset severe obesity. A novel MC4R agonist, setmelanotide, has shown promising results regarding weight loss in patients with POMC deficiency. A systematic review on previously published clinical and genetic characteristics of patients with POMC deficiency and additional data obtained from two unrelated patients in our care was performed. A 25-year-old male patient, partly previously reported, was remarkable for childhood developed type 1 diabetes (T1D), transient growth hormone deficiency, and delayed puberty. The second case is a girl with an unusual presentation with central hypothyroidism and normal pigmentation of skin and hair. Of all evaluated cases, only 50% of patients had characteristic red hair, fair skin, and eye phenotype. Central hypothyroidism was reported in 36% of patients; furthermore, scarce adolescent data indicate possible growth axis dysbalance and central hypogonadism. T1D was unexpectedly prevalent in POMC deficiency, reported in 14% of patients, which could be an underestimation. POMC deficiency reveals to be a syndrome with several endocrinological abnormalities, some of which may become apparent with time. Apart from timely diagnosis, careful clinical follow-up of patients through childhood and adolescence for possible additional disease manifestations is warranted.
Collapse
Affiliation(s)
- Nadan Gregoric
- Department for Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Natasa Bratina
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marusa Debeljak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zerjav Tansek
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jasna Suput Omladic
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovac
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Primoz Kotnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Magdalena Avbelj Stefanija
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: Magdalena Avbelj Stefanija,
| |
Collapse
|
15
|
Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. Int J Mol Sci 2020; 21:ijms21041224. [PMID: 32059383 PMCID: PMC7072973 DOI: 10.3390/ijms21041224] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin–melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and β-arrestin2 recruitment, using the two endogenous agonists, α- and β-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.
Collapse
|
16
|
Pituitary Adenylate Cyclase-Activating Polypeptide in the Ventromedial Hypothalamus Is Responsible for Food Intake Behavior by Modulating the Expression of Agouti-Related Peptide in Mice. Mol Neurobiol 2020; 57:2101-2114. [DOI: 10.1007/s12035-019-01864-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
|
17
|
Kuenzel WJ, Kang SW, Jurkevich A. The vasotocinergic system and its role in the regulation of stress in birds. VITAMINS AND HORMONES 2019; 113:183-216. [PMID: 32138948 DOI: 10.1016/bs.vh.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulation of stress in birds includes a complex interaction of neural systems affecting the hypothalamic-pituitary-adrenal (HPA) axis. In addition to the hypothalamic paraventricular nucleus, a structure called the nucleus of the hippocampal commissure likewise affects the output of pituitary stress hormones and appears to be unique to avian species. Within the anterior pituitary, the avian V1a and V1b receptors were found in corticotropes. Based on our studies with central administration of hormones in the chicken, corticotropic releasing hormone (CRH) is a more potent ACTH secretagogue than arginine vasotocin (AVT). In contrast, when applied peripherally, AVT is more efficacious. Co-administration of AVT and CRH peripherally, resulted in a synergistic stimulation of corticosterone release. Data suggest receptor oligomerization as one possible mechanism. In birds, vasotocin receptors associated with stress responses include the V1a and V1b receptors. Three-dimensional, homology-based structural models of the avian V1aR were built to test agonists and antagonists for each receptor that were screened by molecular docking to map their binding sites on each receptor. Additionally, binding affinity values for each available peptide antagonist to the V1aR and V1bR were determined. An anterior pituitary primary culture system was developed to determine how effective each antagonist blocked the function of each receptor in culture when stimulated by a combination of AVT/CRH administration. Use of an antagonist in subsequent in vivo studies identified the V1aR in regulating food intake in birds. The V1aR was likewise found in circumventricular organs of the brain, suggesting a possible function in stress.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Poultry Science Center, University of Arkansas, Fayetteville, AR, United States.
| | - Seong W Kang
- Poultry Science Center, University of Arkansas, Fayetteville, AR, United States
| | - Alexander Jurkevich
- Molecular Cytology Research Core Facility, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Huisman C, Cho H, Brock O, Lim SJ, Youn SM, Park Y, Kim S, Lee SK, Delogu A, Lee JW. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat Commun 2019; 10:3696. [PMID: 31420539 PMCID: PMC6697706 DOI: 10.1038/s41467-019-11667-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
Despite the crucial physiological processes governed by neurons in the hypothalamic arcuate nucleus (ARC), such as growth, reproduction and energy homeostasis, the developmental pathways and regulators for ARC neurons remain understudied. Our single cell RNA-seq analyses of mouse embryonic ARC revealed many cell type-specific markers for developing ARC neurons. These markers include transcription factors whose expression is enriched in specific neuronal types and often depleted in other closely-related neuronal types, raising the possibility that these transcription factors play important roles in the fate commitment or differentiation of specific ARC neuronal types. We validated this idea with the two transcription factors, Foxp2 enriched for Ghrh-neurons and Sox14 enriched for Kisspeptin-neurons, using Foxp2- and Sox14-deficient mouse models. Taken together, our single cell transcriptome analyses for the developing ARC uncovered a panel of transcription factors that are likely to form a gene regulatory network to orchestrate fate specification and differentiation of ARC neurons.
Collapse
Affiliation(s)
- Christian Huisman
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hyeyoung Cho
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RS, UK
| | - Su Jeong Lim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sung Min Youn
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Younjung Park
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Pediatrics, Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RS, UK.
| | - Jae W Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
19
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
20
|
Wang B, Cheng KKY. Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. Int J Mol Sci 2018; 19:ijms19113552. [PMID: 30423881 PMCID: PMC6274700 DOI: 10.3390/ijms19113552] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
As a cellular energy sensor and regulator, adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a pivotal role in the regulation of energy homeostasis in both the central nervous system (CNS) and peripheral organs. Activation of hypothalamic AMPK maintains energy balance by inducing appetite to increase food intake and diminishing adaptive thermogenesis in adipose tissues to reduce energy expenditure in response to food deprivation. Numerous metabolic hormones, such as leptin, adiponectin, ghrelin and insulin, exert their energy regulatory effects through hypothalamic AMPK via integration with the neural circuits. Although activation of AMPK in peripheral tissues is able to promote fatty acid oxidation and insulin sensitivity, its chronic activation in the hypothalamus causes obesity by inducing hyperphagia in both humans and rodents. In this review, we discuss the role of hypothalamic AMPK in mediating hormonal regulation of feeding and adaptive thermogenesis, and summarize the diverse underlying mechanisms by which central AMPK maintains energy homeostasis.
Collapse
Affiliation(s)
- Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
21
|
Heparin Increases Food Intake through AgRP Neurons. Cell Rep 2018; 20:2455-2467. [PMID: 28877477 PMCID: PMC6310124 DOI: 10.1016/j.celrep.2017.08.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022] Open
Abstract
Although the widely used anticoagulant drug heparin has been shown to have many other biological functions independent of its anticoagulant role, its effects on energy homeostasis are unknown. Here, we demonstrate that heparin level is negatively associated with nutritional states and that heparin treatment increases food intake and body weight gain. By using electrophysiological, pharmacological, molecular biological, and chemogenetic approaches, we provide evidence that heparin increases food intake by stimulating AgRP neurons and increasing AgRP release. Our results support a model whereby heparin competes with insulin for insulin receptor binding on AgRP neurons, and by doing so it inhibits FoxO1 activity to promote AgRP release and feeding. Heparin may be a potential drug target for food intake regulation and body weight control. Zhu et al. demonstrate that heparin competes with insulin for insulin receptor binding on AgRP neurons, and by doing so it inhibits FoxO1 activity to promote AgRP release and feeding. Heparin is identified as a potential drug target for food intake regulation and body weight control.
Collapse
|
22
|
Çetinkaya S, Güran T, Kurnaz E, Keskin M, Sağsak E, Savaş Erdeve S, Suntharalingham JP, Buonocore F, Achermann JC, Aycan Z. A Patient with Proopiomelanocortin Deficiency: An Increasingly Important Diagnosis to Make. J Clin Res Pediatr Endocrinol 2018; 10:68-73. [PMID: 28739551 PMCID: PMC5838375 DOI: 10.4274/jcrpe.4638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Proopiomelanocortin (POMC) deficiency is a rare monogenic disorder with early-onset obesity. Investigation of this entity have increased our insight into the important role of the leptin-melanocortin pathway in energy balance. Here, we present a patient with POMC deficiency due to a homozygous c.206delC mutation in the POMC gene. We discuss the pathogenesis of this condition with emphasis on the crosstalk between hypothalamic and peripheral signals in the development of obesity and the POMC-melanocortin 4 receptors system as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Semra Çetinkaya
- University of Health Sciences, Dr. Sami Ulus Training and Research Hospital, Clinic of Children’s Health and Disease, Health Implementation and Research Center, Ankara, Turkey,* Address for Correspondence: University of Health Sciences, Dr. Sami Ulus Training and Research Hospital, Clinic of Children’s Health and Disease, Health Implementation and Research Center, Ankara, Turkey GSM: +90 312 305 65 08 E-mail:
| | - Tülay Güran
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Erdal Kurnaz
- University of Health Sciences, Dr. Sami Ulus Training and Research Hospital, Clinic of Children’s Health and Disease, Health Implementation and Research Center, Ankara, Turkey
| | - Melikşah Keskin
- University of Health Sciences, Dr. Sami Ulus Training and Research Hospital, Clinic of Children’s Health and Disease, Health Implementation and Research Center, Ankara, Turkey
| | - Elif Sağsak
- University of Health Sciences, Dr. Sami Ulus Training and Research Hospital, Clinic of Children’s Health and Disease, Health Implementation and Research Center, Ankara, Turkey
| | - Senay Savaş Erdeve
- University of Health Sciences, Dr. Sami Ulus Training and Research Hospital, Clinic of Children’s Health and Disease, Health Implementation and Research Center, Ankara, Turkey
| | | | - Federica Buonocore
- University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - John C. Achermann
- University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Zehra Aycan
- University of Health Sciences, Dr. Sami Ulus Training and Research Hospital, Clinic of Children’s Health and Disease, Health Implementation and Research Center, Ankara, Turkey,Yıldırım Beyazıt University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| |
Collapse
|
23
|
Leeners B, Geary N, Tobler PN, Asarian L. Ovarian hormones and obesity. Hum Reprod Update 2017; 23:300-321. [PMID: 28333235 DOI: 10.1093/humupd/dmw045] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. OBJECTIVE AND RATIONALE We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. SEARCH METHODS Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. OUTCOMES We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a central action of estrogens to increase the satiating potency of the gastrointestinal hormone cholecystokinin. Another mechanism involves a decrease in the preference for sweet foods during the follicular phase. Genetic defects in brain α-melanocycte-stimulating hormone-melanocortin receptor (melanocortin 4 receptor, MC4R) signaling lead to a syndrome of overeating and obesity that is particularly pronounced in women and in female animals. The syndrome appears around puberty in mice with genetic deletions of MC4R, suggesting a role of ovarian hormones. Emerging functional brain-imaging data indicates that fluctuations in ovarian hormones affect eating by influencing striatal dopaminergic processing of flavor hedonics and lateral prefrontal cortex processing of cognitive inhibitory controls of eating. There is a dearth of research on the neuroendocrine control of eating after menopause. There is also comparatively little research on the effects of ovarian hormones on EE, although changes in ovarian hormone levels during the menstrual cycle do affect resting EE. WIDER IMPLICATIONS The markedly greater obesity burden in women makes understanding the diverse effects of ovarian hormones on eating, EE and body adiposity urgent research challenges. A variety of research modalities can be used to investigate these effects in women, and most of the mechanisms reviewed are accessible in animal models. Therefore, human and translational research on the roles of ovarian hormones in women's obesity and its causes should be intensified to gain further mechanistic insights that may ultimately be translated into novel anti-obesity therapies and thereby improve women's health.
Collapse
Affiliation(s)
- Brigitte Leeners
- Division of Reproductive Endocrinology, University Hospital Zurich, Frauenklinikstr. 10, CH 8091 Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Nori Geary
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Philippe N Tobler
- Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.,Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Lori Asarian
- Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.,Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
24
|
Melanocortin 4 receptor ligands modulate energy homeostasis through urocortin 1 neurons of the centrally projecting Edinger-Westphal nucleus. Neuropharmacology 2017; 118:26-37. [DOI: 10.1016/j.neuropharm.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 11/24/2022]
|
25
|
Müller A, Berkmann JC, Scheerer P, Biebermann H, Kleinau G. Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83. PLoS One 2016; 11:e0168260. [PMID: 27936173 PMCID: PMC5148169 DOI: 10.1371/journal.pone.0168260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
The murine G-protein coupled receptor 83 (mGPR83) is expressed in the hypothalamus and was previously suggested to be involved in the regulation of metabolism. The neuropeptide PEN has been recently identified as a potent GPR83 ligand. Moreover, GPR83 constitutes functionally relevant hetero-oligomers with other G-protein coupled receptors (GPCR) such as the ghrelin receptor (GHSR) or GPR171. Previous deletion studies also revealed that the long N-terminal extracellular receptor domain (eNDo) of mGPR83 may act as an intra-molecular ligand, which participates in the regulation of basal signaling activity, which is a key feature of GPCR function. Here, we investigated particular amino acids at the eNDo of human GPR83 (hGPR83) by side-directed mutagenesis to identify determinants of the internal ligand. These studies were accompanied by structure homology modeling to combine functional insights with structural information. The capacity for hetero-oligomer formation of hGPR83 with diverse family A GPCRs such as the melanocortin-4 receptor (MC4R) was also investigated, with a specific emphasis on the impact of the eNDo on oligomerization and basal signaling properties. Finally, we demonstrate that hGPR83 exhibits an unusual basal signaling for different effectors, which also supports signaling promiscuity. hGPR83 interacts with a variety of hypothalamic GPCRs such as the MC4R or GHSR. These interactions are not dependent on the ectodomain and most likely occur at interfaces constituted in the transmembrane regions. Moreover, several amino acids at the transition between the eNDo and transmembrane helix 1 were identified, where mutations lead also to biased basal signaling modulation.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Julia Catherine Berkmann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- * E-mail:
| |
Collapse
|
26
|
Almundarij TI, Smyers ME, Spriggs A, Heemstra LA, Beltz L, Dyne E, Ridenour C, Novak CM. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats. Sci Rep 2016; 6:37435. [PMID: 27886210 PMCID: PMC5122857 DOI: 10.1038/srep37435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/28/2016] [Indexed: 01/28/2023] Open
Abstract
Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction.
Collapse
Affiliation(s)
- Tariq I Almundarij
- College of Agriculture and Veterinary Medicine, Al-Qassim University, Buraydah, Al-Qassim Province, Saudi Arabia.,Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Mark E Smyers
- School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US
| | - Addison Spriggs
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US
| | - Lisa Beltz
- Department of Natural Sciences, Malone University, Canton, OH, 44709, US
| | - Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, US
| | - Caitlyn Ridenour
- Department of Natural Sciences, Malone University, Canton, OH, 44709, US
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, US.,School of Biomedical Sciences, Kent State University, Kent, OH, 44242, US
| |
Collapse
|
27
|
Kahl KG, Hillemacher T. The metabolic syndrome in patients with alcohol dependency: Current research and clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:49-56. [PMID: 27174541 DOI: 10.1016/j.pnpbp.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
The relationship between alcohol dependency and disorders such as liver disease and cancer has been thoroughly researched. However, the effects of alcohol on cardiometabolic health remain controversial. Several reports found low to moderate alcohol consumption to be associated with a lower risk for cardiometabolic disorders. In contrast, excessive alcohol consumption has been related to an increased risk. Most of these studies were performed in non-clinical populations, therefore limiting the explanatory power to non-dependent patients. Only a few studies examined cardiovascular disorders and cardiovascular risk factors, in particular the metabolic syndrome (MetS), in alcohol dependent patients. We here present a narrative review of studies performed so far on the MetS in alcohol dependency, and provide current hypotheses on the association of alcohol dependency, appetite regulation and the development of the MetS.
Collapse
Affiliation(s)
- Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany.
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| |
Collapse
|
28
|
Lee B, Lee S, Lee SK, Lee JW. The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 2016; 143:3763-3773. [PMID: 27578785 DOI: 10.1242/dev.133967] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/22/2016] [Indexed: 12/24/2022]
Abstract
Neurons in the hypothalamic arcuate nucleus relay and translate important cues from the periphery into the central nervous system. However, the gene regulatory program directing their development remains poorly understood. Here, we report that the LIM-homeodomain transcription factor Isl1 is expressed in several subpopulations of developing arcuate neurons and plays crucial roles in their fate specification. Mice with conditional deletion of the Isl1 gene in developing hypothalamus display severe deficits in both feeding and linear growth. Consistent with these results, their arcuate nucleus fails to express key fate markers of Isl1-expressing neurons that regulate feeding and growth. These include the orexigenic neuropeptides AgRP and NPY for specifying AgRP-neurons, the anorexigenic neuropeptide αMSH for POMC-neurons, and two growth-stimulatory peptides, growth hormone-releasing hormone (GHRH) for GHRH-neurons and somatostatin (Sst) for Sst-neurons. Finally, we show that Isl1 directly enhances the expression of AgRP by cooperating with the key orexigenic transcription factors glucocorticoid receptor and brain-specific homeobox factor. Our results identify Isl1 as a crucial transcription factor that plays essential roles in the gene regulatory program directing development of multiple arcuate neuronal subpopulations.
Collapse
Affiliation(s)
- Bora Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jae W Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA .,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
29
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
30
|
Raskin P, Cincotta AH. Bromocriptine-QR therapy for the management of type 2 diabetes mellitus: developmental basis and therapeutic profile summary. Expert Rev Endocrinol Metab 2016; 11:113-148. [PMID: 30058874 DOI: 10.1586/17446651.2016.1131119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An extended series of studies indicate that endogenous phase shifts in circadian neuronal input signaling to the biological clock system centered within the hypothalamic suprachiasmatic nucleus (SCN) facilitates shifts in metabolic status. In particular, a diminution of the circadian peak in dopaminergic input to the peri-SCN facilitates the onset of fattening, insulin resistance and glucose intolerance while reversal of low circadian peak dopaminergic activity to the peri-SCN via direct timed dopamine administration to this area normalizes the obese, insulin resistant, glucose intolerant state in high fat fed animals. Systemic circadian-timed daily administration of a potent dopamine D2 receptor agonist, bromocriptine, to increase diminished circadian peak dopaminergic hypothalamic activity across a wide variety of animal models of metabolic syndrome and type 2 diabetes mellitus (T2DM) results in improvements in the obese, insulin resistant, glucose intolerant condition by improving hypothalamic fuel sensing and reducing insulin resistance, elevated sympathetic tone, and leptin resistance. A circadian-timed (within 2 hours of waking in the morning) once daily administration of a quick release formulation of bromocriptine (bromocriptine-QR) has been approved for the treatment of T2DM by the U.S. Food and Drug Administration. Clinical studies with such bromocriptine-QR therapy (1.6 to 4.8 mg/day) indicate that it improves glycemic control by reducing postprandial glucose levels without raising plasma insulin. Across studies of various T2DM populations, bromocriptine-QR has been demonstrated to reduce HbA1c by -0.5 to -1.7. The drug has a good safety profile with transient mild to moderate nausea, headache and dizziness as the most frequent adverse events noted with the medication. In a large randomized clinical study of T2DM subjects, bromocriptine-QR exposure was associated with a 42% hazard ratio reduction of a pre-specified adverse cardiovascular endpoint including myocardial infarction, stroke, hospitalization for congestive heart failure, revascularization surgery, or unstable angina. Bromocriptine-QR represents a novel method of treating T2DM that may have benefits for cardiovascular disease as well.
Collapse
Affiliation(s)
- Philip Raskin
- a Southwestern Medical Center , University of Texas , Dallas , TX , USA
| | | |
Collapse
|
31
|
Vehapoğlu A, Türkmen S, Terzioğlu Ş. Alpha-Melanocyte-Stimulating Hormone and Agouti-Related Protein: Do They Play a Role in Appetite Regulation in Childhood Obesity? J Clin Res Pediatr Endocrinol 2016; 8:40-7. [PMID: 26758700 PMCID: PMC4805047 DOI: 10.4274/jcrpe.2136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The hypothalamus plays a crucial role in the regulation of feeding behavior. The anorexigenic neuropeptide alpha-melanocyte-stimulating hormone (α-MSH) and the orexigenic neuropeptide agouti-related protein (AgRP) are among the major peptides produced in the hypothalamus. This study investigated the plasma concentrations of α-MSH and AgRP in underweight and obese children and their healthy peers. The associations between α-MSH and AgRP levels and anthropometric and nutritional markers of malnutrition and obesity were also assessed. METHODS Healthy sex-matched subjects aged 2 to 12 years were divided into 3 groups, as underweight (n=57), obese (n=61), and of normal weight (n=57). Plasma fasting concentrations of α-MSH and AgRP were measured by enzyme-linked immunosorbent assay. The differences between the three groups as to the relationships between plasma concentrations of α-MSH and AgRP and anthropometric data, serum biochemical parameters and homeostatic model assessment of insulin resistance were evaluated. RESULTS Obese children had significantly lower α-MSH levels than underweight (1194±865 vs. 1904±1312 ng/mL, p=0.006) and normal weight (1194±865 vs. 1762±1463 ng/mL, p=0.036) children; there were no significant differences in the α-MSH levels between the underweight and normal weight children (p=0.811). Also, no significant differences were observed between the underweight and obese children regarding the AgRP levels (742±352 vs. 828±417 ng/mL, p=0.125). We found a significant positive correlation between plasma α-MSH and AgRP levels across the entire sample. CONCLUSION This study is the first to demonstrate body weight-related differences in α-MSH and AgRP levels in children. Circulating plasma α-MSH levels in obese children were markedly lower than those of underweight and normal-weight children. This suggests that α-MSH could play a role in appetite regulation.
Collapse
Affiliation(s)
- Aysel Vehapoğlu
- Bezmialem Vakıf University Faculty of Medicine, Department of Pediatrics, İstanbul, Turkey, Phone: +90 212 453 17 00 E-mail:
| | - Serdar Türkmen
- Gaziosmanpaşa Taksim Training and Research Hospital, Clinic of Biochemistry, İstanbul, Turkey
| | - Şule Terzioğlu
- Bezmialem Vakıf University Faculty of Medicine, Department of Medicinal Biology, İstanbul, Turkey
| |
Collapse
|
32
|
Melanocortin-4 receptor modulators for the treatment of obesity: a patent analysis (2008–2014). Pharm Pat Anal 2015; 4:95-107. [DOI: 10.4155/ppa.15.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central melanocortin system and particularly the melanocortin-4 receptor (MC4R) subtype, plays an important role in the regulation of body weight. The discovery of orally active MC4R agonists suitable for evaluation in human clinical trials as weight loss agents has attracted considerable interest over the past decade, but has proved challenging, in part because of cardiovascular and behavioral side effects. Currently, the only MC4R agonist in clinical trials is a peptide identified as RM-493. To avoid some of the undesirable side effects associated with MC4R activation, new pharmacological approaches for modulating the MC system have been investigated. In this article, we provide a review of the MC4R patent landscape from 2008 to 2014 and analyze the physicochemical properties of compounds described herein.
Collapse
|
33
|
The extracellular N-terminal domain of G-protein coupled receptor 83 regulates signaling properties and is an intramolecular inverse agonist. BMC Res Notes 2014; 7:913. [PMID: 25516095 PMCID: PMC4300838 DOI: 10.1186/1756-0500-7-913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/11/2014] [Indexed: 11/27/2022] Open
Abstract
Background Recently, the orphan G-protein coupled receptor 83 (GPR83) was identified as a new participant in body weight regulation. This receptor is highly expressed in the hypothalamic arcuate nucleus and is regulated in response to nutrient availability. Gpr83 knock-out mice are protected from diet-induced obesity. Moreover, in a previous study, we designed and characterized several artificial constitutively activating mutations (CAMs) in GPR83. A particular CAM was located in the extracellular N-terminal domain (eNDo) that is highly conserved among GPR83 orthologs. This suggests the contribution of this receptor part into regulation of signaling, which needed a more detailed investigation. Findings In this present study, therefore, we further explored the role of the eNDo in regulating GPR83-signaling and demonstrate a proof-of-principle approach in that deletion mutants are characterized by a strong increase in basal Gq/11-mediated signaling, whilst none of the additionally characterized signaling pathways (Gs, Gi, G12/13) were activated by the N-terminal deletion variants. Of note, we detected basal GPR83 MAPK-activity of the wild type receptor, which was not increased in the deletion variants. Conclusions Finally, the extracellular portion of GPR83 has a strong regulatory function on this receptor. A suppressive - inverse agonistic - effect of the eNDo on GPR83 signaling activity is demonstrated here, which also suggests a putative link between extracellular receptor activation and proteolytic cleavage. These new insights highlight important aspects of GPR83-regulation and might open options in the development of tools to modulate GPR83-signaling.
Collapse
|
34
|
Abstract
Heritability of obesity and body weight variation is high. Molecular genetic studies have led to the identification of mutations in a few genes, with a major effect on obesity (major genes and monogenic forms). Analyses of these genes have helped to unravel important pathways and have created a more profound understanding of body weight regulation. For most individuals, a polygenic basis is relevant for the genetic predisposition to obesity. Small effect sizes are conveyed by the polygenic variants. Hence, only if a number of these variants is harboured, a sizeable phenotypic effect is detectable. Most, if not all, of the genes relevant to weight regulation are expressed in the hypothalamus. This underscores the major role of this region of the brain in body weight regulation.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| |
Collapse
|
35
|
Hsieh YS, Chen PN, Yu CH, Kuo DY. Central dopamine action modulates neuropeptide-controlled appetite via the hypothalamic PI3K/NF-κB-dependent mechanism. GENES BRAIN AND BEHAVIOR 2014; 13:784-93. [DOI: 10.1111/gbb.12174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/20/2014] [Accepted: 08/24/2014] [Indexed: 12/11/2022]
Affiliation(s)
| | - P.-N. Chen
- Institute of Biochemistry and Biotechnology
| | - C.-H. Yu
- Department of Physiology; Chung Shan Medical University and Chung Shan Medical University Hospital; Taichung City Taiwan
| | - D.-Y. Kuo
- Department of Physiology; Chung Shan Medical University and Chung Shan Medical University Hospital; Taichung City Taiwan
| |
Collapse
|
36
|
Kang SW, Kuenzel WJ. Regulation of gene expression of vasotocin and corticotropin-releasing hormone receptors in the avian anterior pituitary by corticosterone. Gen Comp Endocrinol 2014; 204:25-32. [PMID: 24815884 DOI: 10.1016/j.ygcen.2014.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 11/26/2022]
Abstract
The effect of chronic stress (CS) on gene expression of the chicken arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH) receptors [VT2R, VT4R, CRH-R1, and CRH-R2] was examined by measuring receptor mRNA levels in the anterior pituitary gland of the chicken after chronic immobilization stress compared to acute stress (AS). Radioimmunoassay results showed that blood circulating corticosterone (CORT) levels in the CS group were significantly decreased compared to that of birds in the AS group (P<0.05). The VT2R and CRH-R2 mRNA in CS birds were significantly decreased to that of controls. The VT4R mRNA was significantly decreased compared to controls in AC birds and was further decreased in the CS group compared to controls (P<0.05). The CRH-R1 mRNA was significantly decreased in the AS birds compared to controls. However, there was no significant difference of CRH-R1 mRNA between acute stress and chronic stress birds. Using primary anterior pituitary cell cultures, the effect of exogenous CORT on VT/CRH receptor gene expression was examined. Receptor mRNA levels were measured after treatment of CORT followed by AVT/CRH administration. The CORT pretreatment resulted in a dose-dependent decrease of proopiomelanocortin heteronuclear RNA, a molecular marker of a stress-induced anterior pituitary. Without CORT pretreatment of anterior pituitary cell cultures, the VT2R, VT4R and CRH-R1mRNA levels were significantly increased within 15 min and then decreased at 1 h and 6 h by AVT/CRH administration (P<0.05). Pretreatment of CORT in anterior pituitary cells induced a dose-dependent increase of VT2R, VT4R and CRH-R2 mRNA levels, and a significant decrease of CRH-R1 mRNA levels at only the high dose (10 ng/ml) of CORT (P<0.05).Taken together, results suggest a modulatory role of CORT on the regulation of VT/CRH receptor gene expression in the avian anterior pituitary gland dependent upon CORT levels.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| | - Wayne J Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
37
|
Torres-Andrade R, Moldenhauer R, Gutierrez-Bertín N, Soto-Covasich J, Mancilla-Medina C, Ehrenfeld C, Kerr B. The increase in body weight induced by lack of methyl CpG binding protein-2 is associated with altered leptin signalling in the hypothalamus. Exp Physiol 2014; 99:1229-40. [PMID: 24996410 DOI: 10.1113/expphysiol.2014.079798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methyl CpG binding protein-2 (MECP2) is a chromatin-remodelling factor with a dual role in gene expression. Evidence from patients carrying MECP2 mutations and from transgenic mouse models demonstrates that this protein is involved in the control of body weight. However, the mechanism for this has not been fully elucidated. To address this, we used a previously characterized Mecp2-null mouse model and found that the increase in body weight is associated with an increased amount of adipose tissue and high leptin levels. Appropriate body weight control requires the proper expression of pro-opiomelanocortin (Pomc) and agouti-related peptide (Agrp), two neuropeptides essential for satiety and appetite signals, respectively. Our results show that in the absence of Mecp2, Pomc and Agrp mRNA expression are altered, and the mice are leptin resistant. To determine the mechanism underlying the defective leptin sensing, we evaluated the expression of genes and the post-translational modifications associated with leptin signalling, which are fundamental to Pomc and Agrp transcriptional control and proper leptin response. We found a decrease in the phosphorylation level of Akt and its target protein Foxo1, which indicate an alteration in leptin-induced signal transduction. Our results demonstrate that the absence of Mecp2 disrupted body weight balance by altering post-translational modifications in leptin-signalling components that regulate Pomc and Agrp expression.
Collapse
Affiliation(s)
| | - Rodrigo Moldenhauer
- Centro de Estudios Científicos, Valdivia, Chile Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | - Carolina Ehrenfeld
- Centro de Estudios Científicos, Valdivia, Chile Universidad Austral de Chile, Valdivia, Chile
| | | |
Collapse
|
38
|
Eerola K, Rinne P, Penttinen AM, Vähätalo L, Savontaus M, Savontaus E. α-MSH overexpression in the nucleus tractus solitarius decreases fat mass and elevates heart rate. J Endocrinol 2014; 222:123-36. [PMID: 24829220 DOI: 10.1530/joe-14-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The POMC pathway is involved in the regulation of energy and cardiovascular homeostasis in the hypothalamus and the brain stem. Although the acute effects of POMC-derived peptides in different brain locations have been elucidated, the chronic site-specific effects of distinct peptides remain to be studied. To this end, we used a lentiviral gene delivery vector to study the long-term effects of α-MSH in the nucleus tractus solitarius (NTS) of the brain stem. The α-MSH vector (LVi-α-MSH-EGFP) based on the N-terminal POMC sequence and a control vector (LVi-EGFP) were delivered into the NTS of C57BL/6N male mice fed on a western diet. Effects on body weight and composition, feeding, glucose metabolism, and hemodynamics by telemetric analyses were studied during the 12-week follow-up. The LVi-α-MSH-EGFP-treated mice had a significantly smaller gain in the fat mass compared with LVi-EGFP-injected mice. There was a small initial decrease in food intake and no differences in the physical activity. Glucose metabolism was not changed compared with the control. LVi-α-MSH-EGFP increased the heart rate (HR), which was attenuated by adrenergic blockade suggesting an increased sympathetic activity. Reduced response to muscarinic blockade suggested a decreased parasympathetic activity. Fitting with sympathetic activation, LVi-α-MSH-EGFP treatment reduced urine secretion. Thus, the results demonstrate that long-term α-MSH overexpression in the NTS attenuates diet-induced obesity. Modulation of autonomic nervous system tone increased the HR and most probably contributed to an anti-obesity effect. The results underline the key role of NTS in the α-MSH-induced long-term effects on adiposity and in regulation of sympathetic and parasympathetic activities.
Collapse
Affiliation(s)
- K Eerola
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - P Rinne
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - A M Penttinen
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - L Vähätalo
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - M Savontaus
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - E Savontaus
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| |
Collapse
|
39
|
Tortorella A, Brambilla F, Fabrazzo M, Volpe U, Monteleone AM, Mastromo D, Monteleone P. Central and peripheral peptides regulating eating behaviour and energy homeostasis in anorexia nervosa and bulimia nervosa: a literature review. EUROPEAN EATING DISORDERS REVIEW 2014; 22:307-20. [PMID: 24942507 DOI: 10.1002/erv.2303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 02/03/2023]
Abstract
A large body of literature suggests the occurrence of a dysregulation in both central and peripheral modulators of appetite in patients with anorexia nervosa (AN) and bulimia nervosa (BN), but at the moment, the state or trait-dependent nature of those changes is far from being clear. It has been proposed, although not definitively proved, that peptide alterations, even when secondary to malnutrition and/or to aberrant eating behaviours, might contribute to the genesis and the maintenance of some symptomatic aspects of AN and BN, thus affecting the course and the prognosis of these disorders. This review focuses on the most significant literature studies that explored the physiology of those central and peripheral peptides, which have prominent effects on eating behaviour, body weight and energy homeostasis in patients with AN and BN. The relevance of peptide dysfunctions for the pathophysiology of eating disorders is critically discussed.
Collapse
|
40
|
Lizcano F, Guzmán G. Estrogen Deficiency and the Origin of Obesity during Menopause. BIOMED RESEARCH INTERNATIONAL 2014; 2014:757461. [PMID: 24734243 PMCID: PMC3964739 DOI: 10.1155/2014/757461] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
Sex hormones strongly influence body fat distribution and adipocyte differentiation. Estrogens and testosterone differentially affect adipocyte physiology, but the importance of estrogens in the development of metabolic diseases during menopause is disputed. Estrogens and estrogen receptors regulate various aspects of glucose and lipid metabolism. Disturbances of this metabolic signal lead to the development of metabolic syndrome and a higher cardiovascular risk in women. The absence of estrogens is a clue factor in the onset of cardiovascular disease during the menopausal period, which is characterized by lipid profile variations and predominant abdominal fat accumulation. However, influence of the absence of these hormones and its relationship to higher obesity in women during menopause are not clear. This systematic review discusses of the role of estrogens and estrogen receptors in adipocyte differentiation, and its control by the central nervous systemn and the possible role of estrogen-like compounds and endocrine disruptors chemicals are discussed. Finally, the interaction between the decrease in estrogen secretion and the prevalence of obesity in menopausal women is examined. We will consider if the absence of estrogens have a significant effect of obesity in menopausal women.
Collapse
Affiliation(s)
- Fernando Lizcano
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia ; Fundacion Cardio-Infantil Instituto de Cardiologia, Bogota, Colombia
| | - Guillermo Guzmán
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia
| |
Collapse
|
41
|
Acosta A, Camilleri M, Shin A, Carlson P, Burton D, O'Neill J, Eckert D, Zinsmeister AR. Association of melanocortin 4 receptor gene variation with satiation and gastric emptying in overweight and obese adults. GENES AND NUTRITION 2014; 9:384. [PMID: 24458996 DOI: 10.1007/s12263-014-0384-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/11/2014] [Indexed: 12/14/2022]
Abstract
Melanocortin 4 receptor (MC4R) has a major role in energy homeostasis. The rs17782313 polymorphism, mapped 188 kb downstream from MC4R, has been associated with satiety, higher body mass index (BMI) and total calorie intake in adults. To assess the association of rs17782313 with gastric functions, satiation, or satiety, we studied 178 predominantly Caucasian overweight and obese people: 120 females, 58 males; mean BMI 33.4 ± 5.3 kg/m(2) (SD); age 37.7 ± 11.2 years. Quantitative traits assessed were gastric emptying (GE) of solids and liquids; fasting and postprandial gastric volume; satiation by maximum tolerated volume and 4 symptoms by 100-mm visual analog scales (VAS); and satiety by ad libitum buffet meal. Associations of genotype and quantitative traits were assessed by analysis of covariance (using gender and BMI as covariates), based on a dominant [TC (n = 72) - CC (n = 12) vs. TT (n = 94)] genetic model. rs17782313(C) was associated with postprandial satiation symptoms (median Δ total VAS 26.5 mm, p = 0.036), reduced proportion of solid GE at 2 h (median Δ 6.7 %, p = 0.008) and 4 h (median Δ 3.2 %, p = 0.006), and longer t ½ (median Δ 6 min, p = 0.034). Associations of rs17782313 with obesity may be explained by reduced satiation and GE. The role of MC4R mechanisms in satiation and gastric function deserves further study.
Collapse
Affiliation(s)
- Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-110, 200 First St. S.W., Rochester, MN, 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Barkey NM, Preihs C, Cornnell HH, Martinez G, Carie A, Vagner J, Xu L, Lloyd MC, Lynch VM, Hruby VJ, Sessler JL, Sill KN, Gillies RJ, Morse DL. Development and in vivo quantitative magnetic resonance imaging of polymer micelles targeted to the melanocortin 1 receptor. J Med Chem 2013; 56:6330-8. [PMID: 23863078 DOI: 10.1021/jm4005576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent emphasis has focused on the development of rationally designed polymer-based micelle carriers for drug delivery. The current work tests the hypothesis that target specificity can be enhanced by micelles with cancer-specific ligands. In particular, we describe the synthesis and characterization of a new gadolinium texaphyrin (Gd-Tx) complex encapsulated in an IVECT micellar system, stabilized through Fe(III) cross-linking and targeted with multiple copies of a specific ligand for the melanocortin 1 receptor (MC1R), which has been evaluated as a cell-surface marker for melanoma. On the basis of comparative MRI experiments, we have been able to demonstrate that these Gd-Tx micelles are able to target MC1R-expressing xenograft tumors in vitro and in vivo more effectively than various control systems, including untargeted or un-cross-linked Gd-Tx micelles. Taken in concert, the findings reported herein support the conclusion that appropriately designed micelles are able to deliver contrast agent payloads to tumors expressing the MC1R.
Collapse
Affiliation(s)
- Natalie M Barkey
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tafreshi NK, Silva A, Estrella VC, McCardle TW, Chen T, Jeune-Smith Y, Lloyd MC, Enkemann SA, Smalley KSM, Sondak VK, Vagner J, Morse DL. In vivo and in silico pharmacokinetics and biodistribution of a melanocortin receptor 1 targeted agent in preclinical models of melanoma. Mol Pharm 2013; 10:3175-85. [PMID: 23763620 DOI: 10.1021/mp400222j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The melanocortin 1 receptor (MC1R) is overexpressed in most melanoma metastases, making it a promising target for imaging of melanomas. In this study, the expression of MC1R in a large fraction of patients with melanoma was confirmed using mRNA and tissue microarray. Here, we have characterized the in vivo tumor and tissue distribution and pharmacokinetics (PK) of uptake and clearance of a MC1R specific peptidomimetic ligand conjugated to a near-infrared fluorescent dye. We propose an interdisciplinary framework to bridge the different time and space scales of ligand-tumor-host interactions: intravital fluorescence microscopy to quantify probe internalization at the cellular level, a xenograft tumor model for whole body pharmacokinetics, and a computational pharmacokinetic model for integration and interpretation of experimental data. Administration of the probe into mice bearing tumors with high and low MC1R expression demonstrated normalized image intensities that correlated with expression levels (p < 0.05). The biodistribution study showed high kidney uptake as early as 30 min postinjection. The PK computational model predicted the presence of receptors in the kidneys with a lower affinity, but at higher numbers than in the tumors. As the mouse kidney is known to express the MC5R, this hypothesis was confirmed by both coinjection of a ligand with higher MC5R affinity compared to MC1R and by injection of lower probe concentrations (e.g., 1 nmol/kg), both leading to decreased kidney accumulation of the MC1R ligand. In addition, through this interdisciplinary approach we could predict the rates of ligand accumulation and clearance into and from organs and tumors, and the amount of injected ligand required to have maximum specific retention in tumors. These predictions have potential to aid in the translation of a targeted agent from lab to the clinic. In conclusion, the characterized MC1R-specific probe has excellent potential for in vivo detection of melanoma metastases. The process of cell-surface marker validation, targeted imaging probe development, and in vitro, in vivo, and in silico characterization described in this study can be generally applied to preclinical development of targeted agents.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhao J, Pei G. Arrestins in metabolic regulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:413-27. [PMID: 23764063 DOI: 10.1016/b978-0-12-394440-5.00016-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the regulatory roles of β-arrestins in whole-body energy balance, body weight control, and carbohydrate and lipid homeostasis. Much research has pointed in the direction of the functions of β-arrestins in mediating desensitization and endocytosis of G protein-coupled receptors as well as in activating the receptor/β-arrestin/ERK signaling pathway being crucial for metabolic regulation. Furthermore, β-arrestins form diverse signal complexes for the activation of the downstream cassettes for the body's metabolic reactions. However, further studies are required to fully address the emerging roles of β-arrestins in metabolic regulation and related diseases.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | |
Collapse
|
45
|
Piechowski CL, Rediger A, Lagemann C, Mühlhaus J, Müller A, Pratzka J, Tarnow P, Grüters A, Krude H, Kleinau G, Biebermann H. Inhibition of melanocortin-4 receptor dimerization by substitutions in intracellular loop 2. J Mol Endocrinol 2013; 51:109-18. [PMID: 23674133 DOI: 10.1530/jme-13-0061] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is one of the most challenging global health problems. One key player in energy homeostasis is the melanocortin-4 receptor (MC4R), which is a family A G-protein-coupled receptor (GPCR). It has recently been shown that MC4R has the capacity to form homo- or heterodimers. Dimerization of GPCRs is of great importance for signaling regulation, with major pharmacological implications. Unfortunately, not enough is yet known about the detailed structural properties of MC4R dimers or the functional consequences of receptor dimerization. Our goal, therefore, was to explore specific properties related to MC4R dimerization. First, we aimed to induce the dissociation of dimers to monomers and to compare the functional parameters of wild-type and MC4R variants. To inhibit homodimerization, we designed MC4R chimeras with the cannabinoid-1 receptor, a receptor that does not interact with MC4R. Indeed, we identified several substitutions in the intracellular loop 2 (ICL2) and adjacent regions of transmembrane helix 3 (TMH3) and TMH4 that lead to partial dimer dissociation. Interestingly, the capacity for signaling activity was generally increased in these MC4R variants, although receptor expression remained unchanged. This increase in activity for dissociated receptors might indicate a link between receptor dimerization and signaling capacity. Moreover, dimer dissociation was also observed in a naturally occurring activating MC4R mutation in ICL2. Taken together, this study provides new information on the structural prerequisites for MC4R dimerization and identifies an approach to induce the dissociation of MC4R dimers. This might be useful for further investigation of pharmacological properties.
Collapse
Affiliation(s)
- Carolin L Piechowski
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Melanocortin-4 Receptor in Energy Homeostasis and Obesity Pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:147-91. [DOI: 10.1016/b978-0-12-386933-3.00005-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus in the rat: role of the hypothalamic paraventricular nucleus. PLoS One 2012; 7:e45180. [PMID: 23028831 PMCID: PMC3444474 DOI: 10.1371/journal.pone.0045180] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023] Open
Abstract
The mechanism of cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus (ARCN) was studied in urethane-anesthetized adult male Wistar rats. At the baseline mean arterial pressure (BLMAP) close to normal, ARCN stimulation elicited decreases in MAP and sympathetic nerve activity (SNA). The decreases in MAP elicited by ARCN stimulation were attenuated by either gamma-aminobutyric acid (GABA), neuropeptide Y (NPY), or beta-endorphin receptor blockade in the ipsilateral hypothalamic paraventricular nucleus (PVN). Combined blockade of GABA-A, NPY1 and opioid receptors in the ipsilateral PVN converted the decreases in MAP and SNA to increases in these variables. Conversion of inhibitory effects on the MAP and SNA to excitatory effects following ARCN stimulation was also observed when the BLMAP was decreased to below normal levels by an infusion of sodium nitroprusside. The pressor and tachycardic responses to ARCN stimulation at below normal BLMAP were attenuated by blockade of melanocortin 3/4 (MC3/4) receptors in the ipsilateral PVN. Unilateral blockade of GABA-A receptors in the ARCN increased the BLMAP and heart rate (HR) revealing tonic inhibition of the excitatory neurons in the ARCN. ARCN stimulation elicited tachycardia regardless of the level of BLMAP. ARCN neurons projecting to the PVN were immunoreactive for glutamic acid decarboxylase 67 (GAD67), NPY, and beta-endorphin. These results indicated that: 1) at normal BLMAP, decreases in MAP and SNA induced by ARCN stimulation were mediated via GABA-A, NPY1 and opioid receptors in the PVN, 2) lowering of BLMAP converted decreases in MAP following ARCN stimulation to increases in MAP, and 3) at below normal BLMAP, increases in MAP and HR induced by ARCN stimulation were mediated via MC3/4 receptors in the PVN. These results provide a base for future studies to explore the role of ARCN in cardiovascular diseases.
Collapse
|