1
|
Buemi A, Mourad NI, Bouzin C, Devresse A, Hoton D, Daumerie A, Zech F, Darius T, Kanaan N, Gianello P, Mourad M. Exploring Preservation Modalities in a Split Human Pancreas Model to Investigate the Effect on the Islet Isolation Outcomes. Transplant Direct 2024; 10:e1654. [PMID: 38881744 PMCID: PMC11177812 DOI: 10.1097/txd.0000000000001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND In islet transplantation, the use of dynamic hypothermic preservation techniques is a current challenge. This study compares the efficacy of 3 pancreas preservation methods: static cold storage, hypothermic machine perfusion (HMP), and oxygenated HMP. METHODS A standardized human pancreas split model was employed using discarded organs from both donation after brain death (n = 15) and donation after circulatory death (DCD) (n = 9) donors. The pancreas head was preserved using static cold storage (control group), whereas the tail was preserved using the 3 different methods (study group). Data on donor characteristics, pancreas histology, isolation outcomes, and functional tests of isolated islets were collected. RESULTS Insulin secretory function evaluated by calculating stimulation indices and total amount of secreted insulin during high glucose stimulation (area under the curve) through dynamic perifusion experiments was similar across all paired groups from both DCD and donation after brain death donors. In our hands, islet yield (IEQ/g) from the pancreas tails used as study groups was higher than that of the pancreas heads as expected although this difference did not always reach statistical significance because of great variability probably due to suboptimal quality of organs released for research purposes. Moreover, islets from DCD organs had greater purity than controls (P ≤ 0.01) in the HMP study group. Furthermore, our investigation revealed no significant differences in pancreas histology, oxidative stress markers, and apoptosis indicators. CONCLUSIONS For the first time, a comparative analysis was conducted, using a split model, to assess the effects of various preservation methods on islets derived from pancreas donors. Nevertheless, no discernible variances were observed in terms of islet functionality, histological attributes, or isolation efficacy. Further investigations are needed to validate these findings for clinical application.
Collapse
Affiliation(s)
- Antoine Buemi
- Surgery and Abdominal Transplantation Division, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nizar I. Mourad
- Pôle de Chirurgie Expérimentale et Transplantation, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP, RRID:SCR_023378), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Arnaud Devresse
- Nephrology Division, Department of Internal Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Delphine Hoton
- Department of Anatomical Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aurelie Daumerie
- IREC Imaging Platform (2IP, RRID:SCR_023378), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Francis Zech
- Pôle de Chirurgie Expérimentale et Transplantation, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Tom Darius
- Surgery and Abdominal Transplantation Division, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nada Kanaan
- Nephrology Division, Department of Internal Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Gianello
- Pôle de Chirurgie Expérimentale et Transplantation, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Michel Mourad
- Surgery and Abdominal Transplantation Division, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Kin T, O'Gorman D, Zhai W, Moriarty J, Park K, Ganguly A, Rosichuk S, Shapiro AMJ. Contribution of a Single Islet Transplant Program to Basic Researchers in North America, Europe, and Asia through Distributing Human Islets. OBM TRANSPLANTATION 2024; 08:1-15. [DOI: 10.21926/obm.transplant.2402212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2024]
Abstract
There has been a steady expansion in islet isolation and transplantation activity worldwide. In addition to preparing human islets for transplantation, we have been providing human islets to basic researchers. The aim of this study was to review the activity of distribution of human islets to basic researchers in North America, Europe, and Asia, and to investigate if there are any differences in utilization rate of islets among three continents. We reviewed our islet isolation batch files, donor records, and documents related to shipping from 2007 to 2023. We have distributed islets to a total of 49 researchers (11 at the University of Alberta campus, 21 in North America, 7 in Europe, 10 in Asia). The yearly average [±SD] of islets distributed was 6,607,443 [±1,782,547] islet equivalents obtained from 28 [±5] pancreases, resulting in 230 [±88] shipments. Standard delivery to Europe or Asia takes at least 2 days whereas researchers in North America receive islets the next day. On top of this fact, we found that delayed delivery occurred more often in Asia (31.9%, 201/631 shipments) and Europe (30.8%, 134/435) than in North America (6.8%, 114/1682). Interestingly, the utilization rate of islets within delayed deliveries was highest in Asia (91.5%, 184/201) followed by Europe (83.6%, 112/134) and North America (77.2%, 88/114). There were disparities in the frequency of delayed deliveries and in the utilization rate among three continents. Our program with a 17-year track record has been actively distributing human islets to researchers in three continents.
Collapse
|
3
|
Buemi A, Mourad NI, Ambroise J, Hoton D, Devresse A, Darius T, Kanaan N, Gianello P, Mourad M. Donor- and isolation-related predictive factors of in vitro secretory function of cultured human islets. Front Endocrinol (Lausanne) 2024; 15:1345351. [PMID: 38444584 PMCID: PMC10913008 DOI: 10.3389/fendo.2024.1345351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND AND AIMS Human islet preparations designated for research exhibit diverse insulin-secretory profiles. This study aims to assess the impact of donor- and isolation-related factors on in vitro islet secretory function. METHODS A retrospective analysis of 46 isolations from 23 pancreata discarded for clinical transplantation was conducted. In vitro islet secretory function tests were performed on Day 1 and Day 7 of culture. Linear mixed-effects models (LMMs) were employed to investigate the relationships between various predictors characterizing the patient and donor characteristics as well as the isolation effectiveness and two functional outcomes including the islet stimulation index (SI) and area under the insulin curve (AUC). Fixed effects were introduced to represent the main effects of each predictor, and backward elimination was utilized to select the most significant fixed effects for the final model. Interaction effects between the timepoint (Day 7 vs. Day 1) and the predictors were also evaluated to assess whether predictors were associated with the temporal evolution of SI and AUC. Fold-change (Fc) values associated with each predictor were obtained by exponentiating the corresponding coefficients of the models, which were built on log-transformed outcomes. RESULTS Analysis using LMMs revealed that donor body mass index (BMI) (Fc = 0.961, 95% CI = 0.927-0.996, p = 0.05), donor gender (female vs. male, Fc = 0.702, 95% CI = 0.524-0.942, p = 0.04), and donor hypertension (Fc = 0.623, 95% CI = 0.466-0.832, p= <0.01) were significantly and independently associated with SI. Moreover, donor gender (Fc = 0.512, 95% CI = 0.302-0.864, p = 0.02), donor cause of death (cerebrovascular accident vs. cardiac arrest, Fc = 2.129, 95% CI = 0.915-4.946, p = 0.09; trauma vs. cardiac arrest, Fc = 2.129, 95% CI = 1.112-7.106, p = 0.04), pancreas weight (Fc = 1.01, 95% CI = 1.001-1.019, p = 0.03), and islet equivalent (IEQ)/mg (Fc = 1.277, 95% CI = 1.088-1.510, p ≤ 0.01) were significantly and independently associated with AUC. There was no predictor significantly associated with the temporal evolution between Day 1 and Day 7 for both SI and AUC outcomes. CONCLUSION This study identified donor- and isolation-related factors influencing in vitro islet secretory function. Further investigations are essential to validate the applicability of these results in clinical practice.
Collapse
Affiliation(s)
- Antoine Buemi
- Department of Surgery, Surgery and Abdominal Transplantation Division, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nizar I. Mourad
- IREC, Pôle de Chirurgie Expérimentale et Transplantation, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Jérôme Ambroise
- Institute of Experimental and Clinical Research (IREC), Centre de Technologies Moléculaires Appliquées, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Delphine Hoton
- Department of Anatomical Pathology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arnaud Devresse
- Department of Surgery, Surgery and Abdominal Transplantation Division, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Tom Darius
- Department of Surgery, Surgery and Abdominal Transplantation Division, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nada Kanaan
- Department of Internal Medicine, Nephrology Division, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Gianello
- IREC, Pôle de Chirurgie Expérimentale et Transplantation, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Mourad
- Department of Surgery, Surgery and Abdominal Transplantation Division, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
4
|
Wei B, Zhang X, Qian J, Tang Z, Zhang B. Nrf2: Therapeutic target of islet function protection in diabetes and islet transplantation. Biomed Pharmacother 2023; 167:115463. [PMID: 37703659 DOI: 10.1016/j.biopha.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported as a major intracellular regulator of antioxidant stress, notably in islet β cells with low antioxidant enzyme content. Nrf2 is capable of regulating antioxidant function, while it can also regulate insulin secretion, proliferation, and differentiation of β cells, ER stress, as well as mitochondrial function. Thus, Nrf2 pharmacological activators have been employed in the laboratory for the treatment of diabetic mice. Islet cells are exposed to oxidative environment when islet is being transplanted. Accordingly, less than 50% of islet cells are well transplanted, and their normal function is maintained. The pharmacological activation of Nrf2 has been confirmed to protect islet cells at different stages of transplantation stages during experiments for islet transplantation.
Collapse
Affiliation(s)
- Butian Wei
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Jiwei Qian
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- Department of general Surgery, The Second affiliated Hospital, Zhejiang university School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
5
|
Brandhorst H, Krishtul S, Brandhorst D, Baruch L, Machluf M, Johnson PRV. Solubilized Pancreatic Extracellular Matrix from Juvenile Pigs Protects Isolated Human Islets from Hypoxia-Induced Damage: A Viable Option for Clinical Islet Transplantation. J Tissue Eng Regen Med 2023; 2023:7452682. [PMID: 40226393 PMCID: PMC11918917 DOI: 10.1155/2023/7452682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 04/15/2025]
Abstract
The pancreatic extracellular matrix (ECM) is an enormously complex construct. Previous studies underline the challenges to identify the optimal combinations and ratios of individual ECM proteins for promoting survival and function of isolated and transplanted islets. This study aimed on assessing the efficiency of solubilized natural ECM extracted from juvenile pigs, an unlimited donor source. Isolated human islets were cultured under a hypoxic atmosphere (2% oxygen) in media supplemented with either solubilized porcine pancreatic ECM (ppECM) or a mixture of human ECM proteins composed of collagen-IV, laminin-521, and nidogen-1 (hEPM). Control islets were cultured under identical conditions without ECM-compounds. Reactive oxygen species production increased three-fold in controls but was reduced by hEPM or ppECM. Early apoptosis remained on preculture levels when islets were treated with hEPM or ppECM. Preculture viability was preserved when hEPM or ppECM was administered. Whilst controls failed to respond to glucose challenge, treatment with hEPM or ppECM preserved the physiological insulin response. In summary, overall survival was significantly highest in ppECM-treated islets. This study presents a new approach to protect human islets from hypoxia-induced damage by supplementing media with ppECM extracted from an unlimited donor source. The findings may also serve as starting point for a novel encapsulation technique to protect isolated human islets.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford No. 3 9DU, UK
| | - Stasia Krishtul
- Laboratory for Cancer Drug Delivery and Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford No. 3 9DU, UK
| | - Limor Baruch
- Laboratory for Cancer Drug Delivery and Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Marcelle Machluf
- Laboratory for Cancer Drug Delivery and Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Paul R. V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford No. 3 9DU, UK
- Oxford Biomedical Research Centre (OxBRC), Oxford No. 3 9DU, UK
| |
Collapse
|
6
|
Buemi A, Mouard NI, Darius T, Devresse A, Kanaan N, Gianello P, Mourad M. Continuous vs. discontinuous purification of isolated human islets: functional and morphological comparison. Front Endocrinol (Lausanne) 2023; 14:1195545. [PMID: 37455917 PMCID: PMC10348810 DOI: 10.3389/fendo.2023.1195545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The COBE 2991 cell processor, commonly used for pancreatic islet isolation, is no longer distributed in Europe, leading to a search for alternative purification procedures with equivalent efficacy. The aim of this study was to evaluate the efficacy of an alternative method based on the discontinuous purification of islets. METHODS The conventional isolation procedure using a standard continuous islet purification with COBE 2991 of n = 4 human pancreas was compared to n = 8 procedures using a discontinuous purification with a "bottle" method from donors of similar characteristics. Islet equivalents, purity, and dynamic glucose-stimulated insulin secretion were evaluated. RESULTS A similar islet yield was obtained using continuous vs. discontinuous purification methods (76,292.5 ± 40,550.44 vs. 79,625 ± 41,484.46 islet equivalents, p = 0.89). Islets from both groups had similar purity (78.75% ± 19.73% vs. 55% ± 18.16%, p = 0.08) and functionality both in terms of stimulation index (3.31 ± 0.83 vs. 5.58 ± 3.38, p = 0.22) and insulin secretion (1.26 ± 0.83 vs. 1.53 ± 1.40 mean AUC, p = 0.73). Moreover, the size of the islets was significantly larger in the discontinuous vs. continuous purification group (19.2% ± 10.3% vs. 45.4% ± 18.8% of islets less than 100 µm, p = 0.0097 and 23.7% ± 5.3% vs. 15.6% ± 5.8% of 200-250 µm islet size, p = 0.03). CONCLUSION Compared to the conventional purification procedure, discontinuous purification with a bottle method shows similar results with regard to isolation yield and islet secretory function. Furthermore, this alternative technique allows for obtaining larger islets.
Collapse
Affiliation(s)
- Antoine Buemi
- Department of Surgery, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Surgery and Abdominal Transplantation Unit, Brussels, Belgium
| | - Nizar I. Mouard
- Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, Brussels, Belgium
| | - Tom Darius
- Department of Surgery, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Surgery and Abdominal Transplantation Unit, Brussels, Belgium
| | - Arnaud Devresse
- Department of Surgery, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Surgery and Abdominal Transplantation Unit, Brussels, Belgium
- Department of Internal Medicine, Nephrology Division, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nada Kanaan
- Department of Internal Medicine, Nephrology Division, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Gianello
- Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, Brussels, Belgium
| | - Michel Mourad
- Department of Surgery, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Surgery and Abdominal Transplantation Unit, Brussels, Belgium
| |
Collapse
|
7
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. The ischaemic preconditioning paradox and its implications for islet isolation from heart-beating and non heart-beating donors. Sci Rep 2022; 12:19321. [PMID: 36369239 PMCID: PMC9652462 DOI: 10.1038/s41598-022-23862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of ischaemia can severely damage procured donor organs for transplantation. The pancreas, and pancreatic islets in particular, is one of the most sensitive tissues towards hypoxia. The present study was aimed to assess the effect of hypoxic preconditioning (HP) performed ex-vivo in islets isolated from heart-beating donor (HBD) and non heart-beating donor (NHBD) rats. After HP purified islets were cultured for 24 h in hypoxia followed by islet characterisation. Post-culture islet yields were significantly lower in sham-treated NHBD than in HBD. This difference was reduced when NHBD islets were preconditioned. Similar results were observed regarding viability, apoptosis and in vitro function. Reactive oxygen species generation after hypoxic culture was significantly enhanced in sham-treated NHBD than in HBD islets. Again, this difference could be diminished through HP. qRT-PCR revealed that HP decreases pro-apoptotic genes but increases HIF-1 and VEGF. However, the extent of reduction and augmentation was always substantially higher in preconditioned NHBD than in HBD islets. Our findings indicate a lower benefit of HBD islets from HP than NHBD islets. The ischaemic preconditioning paradox suggests that HP should be primarily applied to islets from marginal donors. This observation needs evaluation in human islets.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Heide Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Samuel Acreman
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Paul R V Johnson
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
8
|
Doppenberg JB, Engelse MA, de Koning EJP. PRISM: A Novel Human Islet Isolation Technique. Transplantation 2022; 106:1271-1278. [PMID: 34342959 DOI: 10.1097/tp.0000000000003897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Successful pancreatic islet isolations are a key requirement for islet transplantation in selected patients with type 1 diabetes. However, islet isolation is a technically complex, time-consuming, and manual process. Optimization and simplification of the islet isolation procedure could increase islet yield and quality, require fewer operators, and thus reduce cost. METHODS We developed a new, closed system of tissue collection, washing, buffer change, and islet purification termed PancReatic Islet Separation Method (PRISM). In the developmental phase, pump and centrifuge speed was tested using microspheres with a similar size, shape, and density as digested pancreatic tissue. After optimization, PRISM was used to isolate islets from 10 human pancreases. RESULTS Islet equivalents viability (fluorescein diacetate/propidium iodide), morphology, and dynamic glucose-stimulated insulin secretion were evaluated. PRISM could be performed by 1 operator in 1 flow cabinet. A similar islet yield was obtained using PRISM compared to the traditional islet isolation method (431 234 ± 292 833 versus 285 276 ± 197 392 islet equivalents, P = 0.105). PRISM islets had similar morphology and functionality. CONCLUSIONS PRISM is a novel islet isolation technique that can significantly improve islet isolation efficiency using fewer operators.
Collapse
Affiliation(s)
- Jason B Doppenberg
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Transplantation Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Liang R, Liu N, Cao J, Liu T, Sun P, Cai X, Zhang L, Liu Y, Zou J, Wang L, Ding X, Zhang B, Shen Z, Yoshida S, Dou J, Wang S. HIF-1α/FOXO1 axis regulated autophagy is protective for β cell survival under hypoxia in human islets. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166356. [PMID: 35124169 DOI: 10.1016/j.bbadis.2022.166356] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/18/2023]
Abstract
β cells suffer from hypoxia due to the rapid metabolic rate to supply insulin production. Mechanistic study of β cell survival under hypoxia may shed light on the β cell mass loss in type 2 diabetes mellitus (T2DM). Here, we found that the expressions of LC3 and p62/SQSTM1, two key autophagy regulators, were significantly higher in β cells than that in non-β endocrine cells in both non-diabetic and T2DM pancreases, and the autophagy process was accelerated upon Cobalt Chloride (CoCl2) treatment in ex vivo cultured primary human islets. Meanwhile, CoCl2 induced the upregulation of FOXO1 in human islets, where HIF-1α played a key role. CoCl2 treatment caused the increase of β cell apoptosis, yet inhibiting autophagy by Chloroquine or by FOXO1 knockdown further aggravated apoptosis, suggesting that FOXO1-regulated autophagy is protective for β cell survival under hypoxia. Immunofluorescence staining showed that LC3 and p62/SQSTM1 expressions were significantly decreased in T2DM patients and negatively correlated with HbA1c, indicating that the autophagy capacity of β cells is impaired along with the progression of the disease. Our study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM. BRIEF SUMMARY: Our study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM.
Collapse
Affiliation(s)
- Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Tengli Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Peng Sun
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Xiangheng Cai
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, PR China
| | - Yaojuan Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Jiaqi Zou
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Le Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Xuejie Ding
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Boya Zhang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Zhongyang Shen
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, PR China.
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China; School of Medicine, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
10
|
Development and Application of a Semi quantitative Scoring Method for Ultrastructural Assessment of Acute Stress in Pancreatic Islets. Transplant Direct 2021; 8:e1271. [PMID: 34934809 PMCID: PMC8683222 DOI: 10.1097/txd.0000000000001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background. Pancreas and islet transplantation outcomes are negatively impacted by injury to the endocrine cells from acute stress during donor death, organ procurement, processing, and transplant procedures. Here, we report a novel electron microscopy scoring system, the Newcastle Pancreas Endocrine Stress Score (NPESS). Methods. NPESS was adapted and expanded from our previously validated method for scoring pancreatic exocrine acinar cells, yielding a 4-point scale (0–3) classifying ultrastructural pathology in endocrine cell nuclei, mitochondria, endoplasmic reticulum, cytoplasmic vacuolization, and secretory granule depletion, with a maximum additive score of 15. We applied NPESS in a cohort of deceased organ donors after brainstem (DBD) and circulatory (DCD) death with a wide range of cold ischemic times (3.6–35.9 h) including 3 donors with type 1 and 3 with type 2 diabetes to assess islets in situ (n = 30) in addition to pancreata (n = 3) pre- and postislet isolation. Results. In DBD pancreata, NPESS correlated with cold ischemic time (head: r = 0.55; P = 0.02) and mirrored exocrine score (r = 0.48; P = 0.01). When stratified by endocrine phenotype, cells with granules of heterogeneous morphology had higher scores than α, β, and δ cells (P < 0.0001). Cells of mixed endocrine-exocrine morphology were observed in association with increased NPESS (P = 0.02). Islet isolation was associated with improved NPESS (in situ: 8.39 ± 0.77 [Mean ± SD]; postisolation: 5.44 ± 0.31; P = 0.04). Conclusions. NPESS provides a robust method for semiquantitative scoring of subcellular ultrastructural changes in human pancreatic endocrine cells in situ and following islet isolation with utility for unbiased evaluation of acute stress in organ transplantation research.
Collapse
|
11
|
Olack BJ, Alexander M, Swanson CJ, Kilburn J, Corrales N, Flores A, Heng J, Arulmoli J, Omori K, Chlebeck PJ, Zitur L, Salgado M, Lakey JRT, Niland JC. Optimal Time to Ship Human Islets Post Tissue Culture to Maximize Islet. Cell Transplant 2021; 29:963689720974582. [PMID: 33231091 PMCID: PMC7885128 DOI: 10.1177/0963689720974582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Access to functional high-quality pancreatic human islets is critical to advance diabetes research. The Integrated Islet Distribution Program (IIDP), a major source for human islet distribution for over 15 years, conducted a study to evaluate the most advantageous times to ship islets postisolation to maximize islet recovery. For the evaluation, three experienced IIDP Islet Isolation Centers each provided samples from five human islet isolations, shipping 10,000 islet equivalents (IEQ) at four different time periods postislet isolation (no 37°C culture and shipped within 0 to 18 hours; or held in 37°C culture for 18 to 42, 48 to 96, or 144 to 192 hours). A central evaluation center compared samples for islet quantity, quality, and viability for each experimental condition preshipment and postshipment, as well as post 37°C culture 18 to 24 hours after shipment receipt. Additional evaluations included measures of functional potency by static glucose-stimulated insulin release (GSIR), represented as a stimulation index. Comparing the results of the four preshipment holding periods, the greatest IEQ loss postshipment occurred with the shortest preshipment times. Similar patterns emerged when comparing preshipment to postculture losses. In vitro islet function (GSIR) was not adversely impacted by increased tissue culture time. These data indicate that allowing time for islet recovery postisolation, prior to shipping, yields less islet loss during shipment without decreasing islet function.
Collapse
Affiliation(s)
- Barbara J Olack
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Carol J Swanson
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Julie Kilburn
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Antonio Flores
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | - Keiko Omori
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Peter J Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Zitur
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joyce C Niland
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| |
Collapse
|
12
|
Marfil-Garza BA, Shapiro AMJ, Kin T. Clinical islet transplantation: Current progress and new frontiers. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 28:243-254. [PMID: 33417749 DOI: 10.1002/jhbp.891] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
Islet transplantation (IT) is now a robust treatment for selected patients with type 1 diabetes suffering from recurrent hypoglycemia and impaired awareness of hypoglycemia. A global soar of clinical islet transplant programs attests to the commitment of many institutions and researchers to advance IT as a potential cure for this devastating disease. However, many challenges limiting the widespread applicability of clinical IT remain. In this review, we will touch on the milestones in the history of IT and its path to clinical success, discuss the current challenges around IT, propose some possible solutions, and elaborate on the frontiers envisioned in the future of clinical IT.
Collapse
Affiliation(s)
| | - Andrew Mark James Shapiro
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Marfil-Garza BA, Kim R, Shapiro AMJ, Kin T. Frequency of Obliteration of the Dorsal and Ventral Ducts of the Pancreas in Islet Transplantation. Dig Dis Sci 2021; 66:218-223. [PMID: 32086688 DOI: 10.1007/s10620-020-06145-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Islet isolation is an essential process in every human islet transplantation protocol. Intraductal enzyme delivery followed by adequate distention of the pancreas is the most critical step in islet isolation. Anomalies of the pancreatic duct system can significantly affect this process. Thus, identification and characterization of ductal patency is of paramount importance to achieve optimal islet isolation. AIMS To investigate the frequency of duct obliteration in the human pancreas and explore donor/patient characteristics associated with specific ductal variations. METHODS We examined ductal patency of pancreata allocated for islet allotransplantation (n = 597) and autotransplantation (n = 21) after removal of the duodenum during islet isolation procedure. Donor/patient factors were reviewed from the batch files. RESULTS Among 559 deceased donor pancreata without pancreas divisum (n = 38, 6.4%), both ducts were patent in 50.1%, only ventral duct was patent in 46.7%, and only dorsal duct was patent in 3.2%. Donor age was not associated with the frequency of obliterated dorsal duct. Black race tended to have the higher frequency of patent dorsal duct. As expected, pancreas divisum was more frequent in chronic pancreatitis cases (n = 6, 28.6%). Within 7 cases of chronic pancreatitis with unknown etiology, we encountered one case of ventral duct obliteration. CONCLUSIONS The minor duodenal papilla and aging do not likely play an important role in the occurrence of dorsal duct obliteration. Although frequency of obliterated ventral duct was low in our population, physicians, including gastroenterologists and endoscopists, as well as islet transplantation researchers should be aware of this possibility.
Collapse
Affiliation(s)
- Braulio A Marfil-Garza
- Clinical Islet Transplant Program, University of Alberta, 210 College Plaza 8215-112 St, Edmonton, AB, T6G2C8, Canada
| | - Ryekjang Kim
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, 210 College Plaza 8215-112 St, Edmonton, AB, T6G2C8, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, 210 College Plaza 8215-112 St, Edmonton, AB, T6G2C8, Canada.
| |
Collapse
|
14
|
Pepper AR, Bruni A, Pawlick R, O'Gorman D, Kin T, Thiesen A, Shapiro AMJ. Posttransplant Characterization of Long-term Functional hESC-Derived Pancreatic Endoderm Grafts. Diabetes 2019; 68:953-962. [PMID: 30455375 DOI: 10.2337/db18-0788] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/06/2018] [Indexed: 02/05/2023]
Abstract
The paucity of human donors limits broadened application of β-cell replacement therapy. Insulin-producing cells derived from human embryonic stem cells (hESCs) have recently been investigated clinically as a feasible surrogate to primary tissue. Herein, we examine the long-term efficacy of hESC-derived pancreatic endoderm cells (PECs) to maintain normoglycemia posttransplant and characterize the phenotype of the PEC grafts. Mice with chemically induced diabetes were transplanted with PECs into the subcutaneous device-less site. Transplant function was assessed through nonfasting blood glucose measurements, intraperitoneal glucose tolerance testing (IPGTT), and human C-peptide secretion for 517 days. Explanted grafts were assessed for ex vivo function and immunohistochemically. All PEC recipients (n = 8) maintained normoglycemia until graft retrieval. IPGTTs at 365 and 517 days posttransplant did not differ (P > 0.05), however, both demonstrated superior glucose clearance compared with nondiabetic and transplant controls (P < 0.001). Serum C-peptide levels demonstrated significant glucose responsiveness (fasted vs. stimulated) (P < 0.01). Small intragraft cysts were palpable in all mice, which resolved but recurred after aspiration. Cysts showed monomorphic neuroendocrine proliferation and lined by ductal epithelium. Explanted grafts demonstrated similar insulin secretory capacity as human islets and stained positively for endocrine cells. Our results demonstrate the ability of PECs to differentiate in vivo and restore glycemic control while confirming minimal proliferation and absence of neoplastic change within the grafts during the time evaluated.
Collapse
Affiliation(s)
- Andrew R Pepper
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Antonio Bruni
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Rena Pawlick
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Gołębiewska JE, Bachul PJ, Wang LJ, Matosz S, Basto L, Kijek MR, Fillman N, Gołąb K, Tibudan M, Dębska-Ślizień A, Millis JM, Fung J, Witkowski P. Validation of a New North American Islet Donor Score for Donor Pancreas Selection and Successful Islet Isolation in a Medium-Volume Islet Transplant Center. Cell Transplant 2018; 28:185-194. [PMID: 30520321 PMCID: PMC6362524 DOI: 10.1177/0963689718816989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The selection of optimal pancreas donors is one of the key factors in determining the ultimate outcome of clinical islet isolation. North American Islet Donor Score (NAIDS) allows for estimating the chance of the success of islet isolation. It was developed based on the data from over 1000 donors from 11 islet isolation centers and validated in the University of Alberta, Edmonton, on the cohort from the most active islet transplant center. Now we aimed to also validate it in our much less active program. Areas under the receiver operating characteristic curves (AUROCs) and logistic regression analyses were obtained to test if NAIDS would better predict successful islet isolation (defined as post-purification islet yield >400,000 islet equivalents (IEQ)) than previously described Edmonton islet donor score (IDS) and our modified version of IDS. We analyzed the donor scores with reference to 82 of our islet isolation outcomes. The success rate increased proportionally as NAIDS increased, from 0% success in NAIDS < 50 points to 40% success in NAIDS ≥ 80 points. AUROCs were 0.67 (95% confidence interval (CI) 0.55–0.79) for NAIDS, 0.58 (95% CI 0.44–0.71) for modified IDS, and 0.51 (95% CI 0.37–0.65) for IDS and did not differ significantly. However, based on logistic regression analyses, NAIDS was the only statistically significant predictor of successful isolation (p = 0.01). The main advantage of NAIDS is an enhanced ability to discriminate poor-quality donors than previously used scoring systems at University of Chicago, with 0% chance for success when NAIDS was <50 as compared with 40% success rate for IDS <50. NAIDS was found to be the most useful available tool for donor pancreas selection in clinical and research practice in our center, allowing for identification and rejection of poor-quality donors, saving time and resources.
Collapse
Affiliation(s)
- Justyna E Gołębiewska
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA.,2 Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr J Bachul
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA.,3 Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Ling-Jia Wang
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Sabrina Matosz
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Lindsay Basto
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Mark R Kijek
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Natalie Fillman
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Karolina Gołąb
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Martin Tibudan
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Alicja Dębska-Ślizień
- 2 Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - J Michael Millis
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - John Fung
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Piotr Witkowski
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW While there has been a growing utilization of total pancreatectomy with islet autotransplantation (TPIAT) for patients with medically refractory chronic pancreatitis over the past few decades, there remains a lack of consensus clinical guidelines to inform the counseling and management of patients undergoing TPIAT. In this article, we review the current clinical practice and published experience of several TPIAT centers, outline key aspects in managing patients undergoing TPIAT, and discuss the glycemic outcomes of this procedure. RECENT FINDINGS Aiming for lower inpatient glucose targets immediately after surgery (usually 100-120 mg/dl), maintaining all patients on subcutaneous insulin for at least 3 months to "rest" islets before an attempt is made to wean insulin, and close outpatient endocrinology follow-up after TPIAT particularly in the first year is common and related to better outcomes. Although TPIAT procedures and glycemic outcomes may differ across surgical centers, overall, approximately one third of patients are insulin independent at 1 year after TPIAT. Higher islet yield and lower preoperative glucose levels are among the strongest predictors of short-term post-operative insulin independence. Beyond 1 year post-operatively, the clinical management and long-term glycemic outcomes of patients after TPIAT are more variable. A multidisciplinary approach is essential in optimizing the preoperative, inpatient, and post-operative management and counseling of patients about the expected glycemic outcomes after surgery. Consensus guidelines for the clinical management of diabetes after TPIAT and harmonization of data collection protocols among TPIAT centers are needed to address the current knowledge gaps in clinical care and research and to optimize glycemic outcomes after TPIAT.
Collapse
Affiliation(s)
- Mohammed E Al-Sofiani
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD, 21287, USA
- Endocrinology Division, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Michael Quartuccio
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD, 21287, USA
| | - Erica Hall
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD, 21287, USA
| | - Rita Rastogi Kalyani
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD, 21287, USA.
| |
Collapse
|
17
|
Hypothermic Oxygenated Machine Perfusion of the Human Donor Pancreas. Transplant Direct 2018; 4:e388. [PMID: 30498765 PMCID: PMC6233671 DOI: 10.1097/txd.0000000000000829] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Supplemental digital content is available in the text. Background Transplantation of beta cells by pancreas or islet transplantation is the treatment of choice for a selected group of patients suffering from type 1 diabetes mellitus. Pancreata are frequently not accepted for transplantation, because of the relatively high vulnerability of these organs to ischemic injury. In this study, we evaluated the effects of hypothermic machine perfusion (HMP) on the quality of human pancreas grafts. Methods Five pancreata derived from donation after circulatory death (DCD) and 5 from donation after brain death (DBD) donors were preserved by oxygenated HMP. Hypothermic machine perfusion was performed for 6 hours at 25 mm Hg by separate perfusion of the mesenteric superior artery and the splenic artery. Results were compared with those of 10 pancreata preserved by static cold storage. Results During HMP, homogeneous perfusion of the pancreas could be achieved. Adenosine 5′-triphosphate concentration increased 6,8-fold in DCD and 2,6-fold in DBD pancreata. No signs of cellular injury, edema or formation of reactive oxygen species were observed. Islets of Langerhans with good viability and in vitro function could be isolated after HMP. Conclusions Oxygenated HMP is a feasible and safe preservation method for the human pancreas that increases tissue viability.
Collapse
|
18
|
Bruni A, Pepper AR, Pawlick RL, Gala-Lopez B, Gamble A, Kin T, Malcolm AJ, Jones C, Piganelli JD, Crapo JD, Shapiro AMJ. BMX-001, a novel redox-active metalloporphyrin, improves islet function and engraftment in a murine transplant model. Am J Transplant 2018; 18:1879-1889. [PMID: 29464912 DOI: 10.1111/ajt.14705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
Islet transplantation has become a well-established therapy for select patients with type 1 diabetes. Viability and engraftment can be compromised by the generation of oxidative stress encountered during isolation and culture. We evaluated whether the administration of BMX-001 (MnTnBuOE-2-PyP5+ [Mn(III) meso-tetrakis-(N-b-butoxyethylpyridinium-2-yl)porphyrin]) and its earlier derivative, BMX-010 (MnTE-2-PyP [Mn(III) meso-tetrakis-(N-methylpyridinium-2-yl)porphyrin]) could improve islet function and engraftment outcomes. Long-term culture of human islets with BMX-001, but not BMX-010, exhibited preserved in vitro viability. Murine islets isolated and cultured for 24 hours with 34 μmol/L BMX-001 exhibited improved insulin secretion (n = 3 isolations, P < .05) in response to glucose relative to control islets. In addition, 34 μmol/L BMX-001-supplemented murine islets exhibited significantly reduced apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling, compared with nontreated control islets (P < .05). Murine syngeneic islets transplanted under the kidney capsule at a marginal dose of 150 islets revealed 58% of 34 μmol/L BMX-001-treated islet recipients became euglycemic (n = 11 of 19) compared with 19% of nontreated control islet recipients (n = 3 of 19, P < .05). Of murine recipients receiving a marginal dose of human islets cultured with 34 μmol/L BMX-001, 92% (n = 12 of 13) achieved euglycemia compared with 57% of control recipients (n = 8 of 14, P = .11). These results demonstrate that the administration of BMX-001 enhances in vitro viability and augments murine marginal islet mass engraftment.
Collapse
Affiliation(s)
- Antonio Bruni
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Andrew R Pepper
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Rena L Pawlick
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Anissa Gamble
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Malcolm
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | | | - Jon D Piganelli
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- BioMimetix JV, LLC, Englewood, CO, USA
| | - James D Crapo
- Department of Medicine, National Jewish Health, Denver, CO, USA
- BioMimetix JV, LLC, Englewood, CO, USA
| | - A M James Shapiro
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| |
Collapse
|
19
|
Huang HH, Harrington S, Stehno-Bittel L. The Flaws and Future of Islet Volume Measurements. Cell Transplant 2018; 27:1017-1026. [PMID: 29954219 PMCID: PMC6158542 DOI: 10.1177/0963689718779898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022] Open
Abstract
When working with isolated islet preparations, measuring the volume of tissue is not a trivial matter. Islets come in a large range of sizes and are often contaminated with exocrine tissue. Many factors complicate the procedure, and yet knowledge of the islet volume is essential for predicting the success of an islet transplant or comparing experimental groups in the laboratory. In 1990, Ricordi presented the islet equivalency (IEQ), defined as one IEQ equaling a single spherical islet of 150 μm in diameter. The method for estimating IEQ was developed by visualizing islets in a microscope, estimating their diameter in 50 μm categories and calculating a total volume for the preparation. Shortly after its introduction, the IEQ was adopted as the standard method for islet volume measurements. It has helped to advance research in the field by providing a useful tool improving the reproducibility of islet research and eventually the success of clinical islet transplants. However, the accuracy of the IEQ method has been questioned for years and many alternatives have been proposed, but none have been able to replace the widespread use of the IEQ. This article reviews the history of the IEQ, and discusses the benefits and failings of the measurement. A thorough evaluation of alternatives for estimating islet volume is provided along with the steps needed to uniformly move to an improved method of islet volume estimation. The lessons learned from islet researchers may serve as a guide for other fields of regenerative medicine as cell clusters become a more attractive therapeutic option.
Collapse
Affiliation(s)
- Han-Hung Huang
- Angelo State University, Texas Tech University System, San Angelo, TX, USA
| | | | - Lisa Stehno-Bittel
- Likarda, LLC, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Gala-Lopez BL, Neiman D, Kin T, O'Gorman D, Pepper AR, Malcolm AJ, Pianzin S, Senior PA, Campbell P, Glaser B, Dor Y, Shemer R, Shapiro AMJ. Beta Cell Death by Cell-free DNA and Outcome After Clinical Islet Transplantation. Transplantation 2018; 102:978-985. [PMID: 29329189 DOI: 10.1097/tp.0000000000002083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Optimizing engraftment and early survival after clinical islet transplantation is critical to long-term function, but there are no reliable, quantifiable measures to assess beta cell death. Circulating cell-free DNA (cfDNA) derived from beta cells has been identified as a novel biomarker to detect cell loss and was recently validated in new-onset type 1 diabetes and in islet transplant patients. METHODS Herein we report beta cell cfDNA measurements after allotransplantation in 37 subjects and the correlation with clinical outcomes. RESULTS A distinctive peak of cfDNA was observed 1 hour after transplantation in 31 (83.8%) of 37 subjects. The presence and magnitude of this signal did not correlate with transplant outcome. The 1-hour signal represents dead beta cells carried over into the recipient after islet isolation and culture, combined with acute cell death post infusion. Beta cell cfDNA was also detected 24 hours posttransplant (8/37 subjects, 21.6%). This signal was associated with higher 1-month insulin requirements (P = 0.04), lower 1-month stimulated C-peptide levels (P = 0.01), and overall worse 3-month engraftment, by insulin independence (receiver operating characteristic-area under the curve = 0.70, P = 0.03) and beta 2 score (receiver operating characteristic-area under the curve = 0.77, P = 0.006). CONCLUSIONS cfDNA-based estimation of beta cell death 24 hours after islet allotransplantation correlates with clinical outcome and could predict early engraftment.
Collapse
Affiliation(s)
- Boris L Gala-Lopez
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program (CNTRP)
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tatsuya Kin
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Doug O'Gorman
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Pepper
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Malcolm
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Pianzin
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Peter A Senior
- Department of Medicine and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Patricia Campbell
- Department of Medicine and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - A M James Shapiro
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program (CNTRP)
| |
Collapse
|
21
|
Abstract
Pancreatic islet transplantation is being extensively researched as an alternative treatment for type 1 diabetic patients. This treatment is currently limited by temporal mismatch, between the availability of pancreas and isolated islets from deceased organ donor, and the recipient's need for freshly isolated islets. To solve this issue, cryopreservation of islets may offer the potential to bank islets for transplant on demand. Cryopreservation, however, introduces an overwhelmingly harsh environment to the ever-so-fragile islets. After exposure to the freezing and thawing, islets are usually either apoptotic, non-functional, or non-viable. Several studies have proposed various techniques that could lead to increased cell survival and function following a deep freeze. The purpose of this article is to critically review the techniques of islet cryopreservation, with the goal of highlighting optimization parameters that can lead to the most viable and functional islet upon recovery and/or transplant.
Collapse
Affiliation(s)
- Greg G. Kojayan
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - David K. Imagawa
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- CONTACT Jonathan R. T. Lakey, PhD, MSM. Professor, Department of Surgery, and Biomedical Engineering, Director, Clinical Islet Program, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA 92868, USA
| |
Collapse
|
22
|
Li C, Yang B, Xu Z, Boivin E, Black M, Huang W, Xu B, Wu P, Zhang B, Li X, Chen K, Wu Y, Rayat GR. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. J Endocrinol 2017; 235:237-249. [PMID: 28931557 DOI: 10.1530/joe-17-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
Oxidative stress is a major cause of islet injury and dysfunction during isolation and transplantation procedures. Cyanidin-3-O-glucoside (C3G), which is present in various fruits and vegetables especially in Chinese bayberry, shows a potent antioxidant property. In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (H2O2)-induced injury in vitro and promote the function of NPI in diabetic mice. We found that C3G had no deleterious effect on NPI and that C3G protected NPI from damage induced by H2O2 Significantly higher hemeoxygenase-1 (HO1) gene expression was detected in C3G-treated NPI compared to untreated islets before and after transplantation (P < 0.05). Western blot analysis showed a significant increase in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K/Akt) proteins in C3G-treated NPI compared to untreated islets. C3G induced the nuclear translocation of nuclear erythroid 2-related factor 2 (NRF2) and the significant elevation of HO1 protein. Recipients of C3G-treated NPI with or without C3G-supplemented drinking water achieved normoglycemia earlier compared to recipients of untreated islets. Mice that received C3G-treated islets with or without C3G-supplemented water displayed significantly lower blood glucose levels at 5-10 weeks post-transplantation compared to mice that received untreated islets. Mice that received C3G-treated NPI and C3G-supplemented drinking water had significantly (P < 0.05) lower blood glucose levels at 7 and 8 weeks post-transplantation compared to mice that received C3G-treated islets. These findings suggest that C3G has a beneficial effect on NPI through the activation of ERK1/2- and PI3K/AKT-induced NRF2-mediated HO1 signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Bin Yang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Zhihao Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Boivin
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mazzen Black
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wenlong Huang
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Baoyou Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ping Wu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Xian Li
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kunsong Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulian Wu
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Gina R Rayat
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Pepper AR, Bruni A, Pawlick R, Wink J, Rafiei Y, Gala-Lopez B, Bral M, Abualhassan N, Kin T, Shapiro AMJ. Engraftment Site and Effectiveness of the Pan-Caspase Inhibitor F573 to Improve Engraftment in Mouse and Human Islet Transplantation in Mice. Transplantation 2017; 101:2321-2329. [PMID: 28072753 DOI: 10.1097/tp.0000000000001638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Islet transplantation is an effective therapy in type 1 diabetes and recalcitrant hypoglycemia. However, there is an ongoing need to circumvent islet loss posttransplant. We explore herein the potential of the pan-caspase inhibitor F573 to mitigate early apoptosis-mediated islet death within portal and extrahepatic portal sites in mice. METHODS Mouse or human islets were cultured in standard media ±100 μM F573 and subsequently assessed for viability and apoptosis via terminal deoxynucleotidyl transferase dUTP nick end labeling staining and caspase-3 activation. Diabetic mice were transplanted with syngeneic islets placed under the kidney capsule (KC) or into the subcutaneous deviceless (DL) site at a marginal islet dose (150 islets), or into the portal vein (PV) at a full dose (500 islets). Human islets were transplanted under the KC of diabetic immunodeficient mice at a marginal dose (500 islet equivalents). Islets were cultured in the presence of F573, and F573 was administered subcutaneously on days 0 to 5 posttransplant. Control mice were transplanted with nontreated islets and were injected with saline. Graft function was measured by nonfasting blood glucose and glucose tolerance testing. RESULTS F573 markedly reduced human and mouse islet apoptosis after in vitro culture (P < 0.05 and P < 0.05, respectively). Furthermore, F573 improved human islet function when transplanted under the KC (P < 0.05); whereas F573 did not enhance murine islet marginal KC transplants. Conversely, F573 significantly improved mouse islet engraftment in the PV and DL site (P < 0.05 and P < 0.05, respectively). CONCLUSIONS The pan-caspase inhibitor F573 markedly reduces human and mouse islet apoptosis and improves engraftment most effectively in the portal and DL subcutaneous sites.
Collapse
Affiliation(s)
- Andrew R Pepper
- 1 Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada. 2 Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pepper AR, Pawlick R, Bruni A, Wink J, Rafiei Y, O'Gorman D, Yan-Do R, Gala-Lopez B, Kin T, MacDonald PE, Shapiro AMJ. Transplantation of Human Pancreatic Endoderm Cells Reverses Diabetes Post Transplantation in a Prevascularized Subcutaneous Site. Stem Cell Reports 2017; 8:1689-1700. [PMID: 28591651 PMCID: PMC5470173 DOI: 10.1016/j.stemcr.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Beta-cell replacement therapy is an effective means to restore glucose homeostasis in select humans with autoimmune diabetes. The scarcity of "healthy" human donor pancreata restricts the broader application of this effective curative therapy. "β-Like" cells derived from human embryonic stem cells (hESC), with the capacity to secrete insulin in a glucose-regulated manner, have been developed in vitro, with limitless capacity for expansion. Here we report long-term diabetes correction in mice transplanted with hESC-derived pancreatic endoderm cells (PECs) in a prevascularized subcutaneous site. This advancement mitigates chronic foreign-body response, utilizes a device- and growth factor-free approach, facilitates in vivo differentiation of PECs into glucose-responsive insulin-producing cells, and reliably restores glycemic control. Basal and stimulated human C-peptide secretion was detected throughout the study, which was abolished upon graft removal. Recipient mice demonstrated physiological clearance of glucose in response to metabolic challenge and safely retrieved grafts contained viable glucose regulatory cells.
Collapse
Affiliation(s)
- Andrew R Pepper
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada; Department of Surgery, University of Alberta, 8440 Walter C Mackenzie Health Centre 112 Street, Edmonton, AB T5G 2B7, Canada
| | - Rena Pawlick
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Antonio Bruni
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada; Department of Surgery, University of Alberta, 8440 Walter C Mackenzie Health Centre 112 Street, Edmonton, AB T5G 2B7, Canada
| | - John Wink
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Yasmin Rafiei
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Richard Yan-Do
- Department of Pharmacology, University of Alberta, 9-70 Medical Science Building, Edmonton, AB T6G 2H7, Canada
| | - Boris Gala-Lopez
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada; Department of Surgery, University of Alberta, 8440 Walter C Mackenzie Health Centre 112 Street, Edmonton, AB T5G 2B7, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, 9-70 Medical Science Building, Edmonton, AB T6G 2H7, Canada
| | - A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, 112 Street & 87 Avenue, Edmonton, AB T6G 2E1, Canada; Department of Surgery, University of Alberta, 8440 Walter C Mackenzie Health Centre 112 Street, Edmonton, AB T5G 2B7, Canada.
| |
Collapse
|
25
|
Pepper AR, Bruni A, Pawlick RL, Gala-Lopez B, Rafiei Y, Wink J, Kin T, Shapiro AMJ. Long-term function and optimization of mouse and human islet transplantation in the subcutaneous device-less site. Islets 2016; 8:186-194. [PMID: 27820660 PMCID: PMC5161146 DOI: 10.1080/19382014.2016.1253652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clinical islet transplantation has routinely been demonstrated to be an efficacious means of restoring glycemic control in select patients with autoimmune diabetes. Notwithstanding marked progress and improvements, the broad-spectrum application of this treatment option is restricted by the complications associated with intrahepatic portal cellular infusion and the scarcity of human donor pancreata. Recent progress in stem cell biology has demonstrated that the potential to expand new β cells for clinical transplantation is now a reality. As such, research focus is being directed toward optimizing safe extrahepatic transplant sites to house future alternative β cell sources for clinical use. The present study expands on our previous development of a prevascularized subcutaneous device-less (DL) technique for cellular transplantation, by demonstrating long-term (>365 d) durable syngeneic murine islet graft function. Furthermore, histological analysis of tissue specimens collected immediately post-DL site creation and acutely post-human islet transplantation demonstrates that this technique results in close apposition of the neovascularized collagen to the transplanted cells without dead space, thereby avoiding hypoxic luminal dead-space. Murine islets transplanted into the DL site created by a larger luminal diameter (6-Fr.) (n = 11), reversed diabetes to the similar capacity as our standard DL method (5-Fr.)(n = 9). Furthermore, glucose tolerance testing did not differ between these 2 transplant groups (p > 0 .05). Taken together, this further refinement of the DL transplant approach facilitates a simplistic means of islet infusion, increases the transplant volume capacity and may provide an effective microenvironment to house future alternative β cell sources.
Collapse
Affiliation(s)
- Andrew R. Pepper
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Rena L. Pawlick
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yasmin Rafiei
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - John Wink
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - A. M. James Shapiro
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- CONTACT A.M. James Shapiro Professor Canada Research Chair in Transplantation Surgery and Regenerative Medicine, Professor Director of Clinical Islet and Living Donor Liver Transplant Programs, Clinical Islet Transplant Program, University of Alberta. 2000 College Plaza, 8215-112th St, Edmonton T6G 2C8, Alberta, Canada
| |
Collapse
|
26
|
Ricordi C, Goldstein JS, Balamurugan AN, Szot GL, Kin T, Liu C, Czarniecki CW, Barbaro B, Bridges ND, Cano J, Clarke WR, Eggerman TL, Hunsicker LG, Kaufman DB, Khan A, Lafontant DE, Linetsky E, Luo X, Markmann JF, Naji A, Korsgren O, Oberholzer J, Turgeon NA, Brandhorst D, Chen X, Friberg AS, Lei J, Wang LJ, Wilhelm JJ, Willits J, Zhang X, Hering BJ, Posselt AM, Stock PG, Shapiro AMJ, Chen X. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities. Diabetes 2016; 65:3418-3428. [PMID: 27465220 PMCID: PMC5079635 DOI: 10.2337/db16-0234] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023]
Abstract
Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed.
Collapse
Affiliation(s)
- Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Julia S Goldstein
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - A N Balamurugan
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Gregory L Szot
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Tatsuya Kin
- Clinical Islet Transplant Program and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chengyang Liu
- Institute for Diabetes, Obesity and Metabolism and Departments of Surgery and Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christine W Czarniecki
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Barbara Barbaro
- Division of Transplantation, University of Illinois Hospital and Health Sciences System, Chicago, IL
| | - Nancy D Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jose Cano
- Division of Transplantation, Department of Surgery, Emory Transplant Center, Emory University, Atlanta, GA
| | | | - Thomas L Eggerman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | | - Dixon B Kaufman
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Aisha Khan
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | | | - Elina Linetsky
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Xunrong Luo
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ali Naji
- Institute for Diabetes, Obesity and Metabolism and Departments of Surgery and Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jose Oberholzer
- Division of Transplantation, University of Illinois Hospital and Health Sciences System, Chicago, IL
| | - Nicole A Turgeon
- Division of Transplantation, Department of Surgery, Emory Transplant Center, Emory University, Atlanta, GA
| | - Daniel Brandhorst
- Department of Clinical Immunology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Xiaojuan Chen
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Andrew S Friberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ji Lei
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ling-Jia Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Joshua J Wilhelm
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Xiaomin Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bernhard J Hering
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Andrew M Posselt
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Peter G Stock
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - A M James Shapiro
- Clinical Islet Transplant Program and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
27
|
Merani S, Razzak R, Kin T, Haqq A, Huynh H, Shapiro AJ. Total pancreatectomy and autoislet transplant for chronic recurrent pancreatitis in a 5-year-old boy. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2016. [DOI: 10.1016/j.epsc.2016.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Yan-Do R, Duong E, Manning Fox JE, Dai X, Suzuki K, Khan S, Bautista A, Ferdaoussi M, Lyon J, Wu X, Cheley S, MacDonald PE, Braun M. A Glycine-Insulin Autocrine Feedback Loop Enhances Insulin Secretion From Human β-Cells and Is Impaired in Type 2 Diabetes. Diabetes 2016; 65:2311-21. [PMID: 27207556 DOI: 10.2337/db15-1272] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/26/2016] [Indexed: 11/13/2022]
Abstract
The secretion of insulin from pancreatic islet β-cells is critical for glucose homeostasis. Disrupted insulin secretion underlies almost all forms of diabetes, including the most common form, type 2 diabetes (T2D). The control of insulin secretion is complex and affected by circulating nutrients, neuronal inputs, and local signaling. In the current study, we examined the contribution of glycine, an amino acid and neurotransmitter that activates ligand-gated Cl(-) currents, to insulin secretion from islets of human donors with and without T2D. We find that human islet β-cells express glycine receptors (GlyR), notably the GlyRα1 subunit, and the glycine transporter (GlyT) isoforms GlyT1 and GlyT2. β-Cells exhibit significant glycine-induced Cl(-) currents that promote membrane depolarization, Ca(2+) entry, and insulin secretion from β-cells from donors without T2D. However, GlyRα1 expression and glycine-induced currents are reduced in β-cells from donors with T2D. Glycine is actively cleared by the GlyT expressed within β-cells, which store and release glycine that acts in an autocrine manner. Finally, a significant positive relationship exists between insulin and GlyR, because insulin enhances the glycine-activated current in a phosphoinositide 3-kinase-dependent manner, a positive feedback loop that we find is completely lost in β-cells from donors with T2D.
Collapse
Affiliation(s)
- Richard Yan-Do
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Duong
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoqing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Shara Khan
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - James Lyon
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xichen Wu
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen Cheley
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matthias Braun
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Gala-Lopez BL, Pepper AR, Pawlick RL, O'Gorman D, Kin T, Bruni A, Abualhassan N, Bral M, Bautista A, Manning Fox JE, Young LG, MacDonald PE, Shapiro AMJ. Antiaging Glycopeptide Protects Human Islets Against Tacrolimus-Related Injury and Facilitates Engraftment in Mice. Diabetes 2016; 65:451-62. [PMID: 26581595 DOI: 10.2337/db15-0764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/10/2015] [Indexed: 02/05/2023]
Abstract
Clinical islet transplantation has become an established treatment modality for selected patients with type 1 diabetes. However, a large proportion of transplanted islets is lost through multiple factors, including immunosuppressant-related toxicity, often requiring more than one donor to achieve insulin independence. On the basis of the cytoprotective capabilities of antifreeze proteins (AFPs), we hypothesized that supplementation of islets with synthetic AFP analog antiaging glycopeptide (AAGP) would enhance posttransplant engraftment and function and protect against tacrolimus (Tac) toxicity. In vitro and in vivo islet Tac exposure elicited significant but reversible reduction in insulin secretion in both mouse and human islets. Supplementation with AAGP resulted in improvement of islet survival (Tac(+) vs. Tac+AAGP, 31.5% vs. 67.6%, P < 0.01) coupled with better insulin secretion (area under the curve: Tac(+) vs. Tac+AAGP, 7.3 vs. 129.2 mmol/L/60 min, P < 0.001). The addition of AAGP reduced oxidative stress, enhanced insulin exocytosis, improved apoptosis, and improved engraftment in mice by decreasing expression of interleukin (IL)-1β, IL-6, keratinocyte chemokine, and tumor necrosis factor-α. Finally, transplant efficacy was superior in the Tac+AAGP group and was similar to islets not exposed to Tac, despite receiving continuous treatment for a limited time. Thus, supplementation with AAGP during culture improves islet potency and attenuates long-term Tac-induced graft dysfunction.
Collapse
Affiliation(s)
- Boris L Gala-Lopez
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Rena L Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Nasser Abualhassan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Mariusz Bral
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Lachlan G Young
- ProtoKinetix Inc., Vancouver, Vancouver, British Columbia, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Lyon J, Manning Fox JE, Spigelman AF, Kim R, Smith N, O'Gorman D, Kin T, Shapiro AMJ, Rajotte RV, MacDonald PE. Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore. Endocrinology 2016; 157:560-9. [PMID: 26653569 DOI: 10.1210/en.2015-1562] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and β-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.
Collapse
Affiliation(s)
- James Lyon
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Aliya F Spigelman
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Ryekjang Kim
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Nancy Smith
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Doug O'Gorman
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Tatsuya Kin
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - A M James Shapiro
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Raymond V Rajotte
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Patrick E MacDonald
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| |
Collapse
|
31
|
Wang LJ, Kin T, O’Gorman D, Shapiro AJ, Naziruddin B, Takita M, Levy MF, Posselt AM, Szot GL, Savari O, Barbaro B, McGarrigle J, Yeh CC, Oberholzer J, Lei J, Chen T, Lian M, Markmann JF, Alvarez A, Linetsky E, Ricordi C, Balamurugan AN, Loganathan G, Wilhelm JJ, Hering BJ, Bottino R, Trucco M, Liu C, Min Z, Li Y, Naji A, Fernandez LA, Ziemelis M, Danobeitia JS, Millis JM, Witkowski P. A Multicenter Study: North American Islet Donor Score in Donor Pancreas Selection for Human Islet Isolation for Transplantation. Cell Transplant 2016; 25:1515-1523. [PMID: 26922947 PMCID: PMC5167495 DOI: 10.3727/096368916x691141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selection of an optimal donor pancreas is the first key task for successful islet isolation. We conducted a retrospective multicenter study in 11 centers in North America to develop an islet donor scoring system using donor variables. The data set consisting of 1,056 deceased donors was used for development of a scoring system to predict islet isolation success (defined as postpurification islet yield >400,000 islet equivalents). With the aid of univariate logistic regression analyses, we developed the North American Islet Donor Score (NAIDS) ranging from 0 to 100 points. The c index in the development cohort was 0.73 (95% confidence interval 0.70-0.76). The success rate increased proportionally as the NAIDS increased, from 6.8% success in the NAIDS < 50 points to 53.7% success in the NAIDS ≥ 80 points. We further validated the NAIDS using a separate set of data consisting of 179 islet isolations. A comparable outcome of the NAIDS was observed in the validation cohort. The NAIDS may be a useful tool for donor pancreas selection in clinical practice. Apart from its utility in clinical decision making, the NAIDS may also be used in a research setting as a standardized measurement of pancreas quality.
Collapse
Affiliation(s)
- Ling-jia Wang
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, IL
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | - Doug O’Gorman
- Clinical Islet Transplant Program, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | - A.M. James Shapiro
- Clinical Islet Transplant Program, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | | | | | | | - Andrew M. Posselt
- UCSF Transplantation Surgery, University of California-San Francisco, CA
| | - Gregory L. Szot
- UCSF Transplantation Surgery, University of California-San Francisco, CA
| | - Omid Savari
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, IL
| | - Barbara Barbaro
- UIC Cell Isolation Program, University of Illinois at Chicago, Chicago, IL
| | - James McGarrigle
- UIC Cell Isolation Program, University of Illinois at Chicago, Chicago, IL
| | - Chun Chieh Yeh
- UIC Cell Isolation Program, University of Illinois at Chicago, Chicago, IL
| | - Jose Oberholzer
- UIC Cell Isolation Program, University of Illinois at Chicago, Chicago, IL
| | - Ji Lei
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Tao Chen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Moh Lian
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - James F. Markmann
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Alejandro Alvarez
- Diabetes Research Institute, cGMP Cell Processing Facility, University of Miami Miller School of Medicine, Miami, FL
| | - Elina Linetsky
- Diabetes Research Institute, cGMP Cell Processing Facility, University of Miami Miller School of Medicine, Miami, FL
| | - Camillo Ricordi
- Diabetes Research Institute, cGMP Cell Processing Facility, University of Miami Miller School of Medicine, Miami, FL
| | - A. N. Balamurugan
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN
| | | | - Joshua J. Wilhelm
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN
| | | | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA
| | - Chengyang Liu
- Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zaw Min
- Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yanjing Li
- Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ali Naji
- Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luis A. Fernandez
- Division of Organ Transplantation, University of Wisconsin, Madison, WI
| | - Martynas Ziemelis
- Division of Organ Transplantation, University of Wisconsin, Madison, WI
| | | | - J. Michael Millis
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, IL
| | - Piotr Witkowski
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, IL
- Corresponding author: Piotr Witkowski, The University of Chicago Medical Center, Department of Surgery, Division of Abdominal Organ Transplantation, 5841 S. Maryland Ave. MC5027, Room J-517, Chicago, IL 60637
| |
Collapse
|
32
|
Schaschkow A, Mura C, Bietiger W, Peronet C, Langlois A, Bodin F, Dissaux C, Bruant-Rodier C, Pinget M, Jeandidier N, Juszczak MT, Sigrist S, Maillard E. Impact of an autologous oxygenating matrix culture system on rat islet transplantation outcome. Biomaterials 2015; 52:180-8. [PMID: 25818424 DOI: 10.1016/j.biomaterials.2015.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
Disruption of the pancreatic islet environment combined with the decrease in oxygen supply that occurs during isolation leads to poor islet survival. The aim of this study was to validate the benefit of using a plasma-based scaffold supplemented with perfluorodecalin to improve islet transplantation outcome. Rat islets were cultured in three conditions: i) control group, ii) plasma based-matrix (P-matrix), and iii) P-matrix supplemented with emulsified perfluorodecalin. After 24 h culture, matrix/cell contacts (Integrinβ1, p-FAK/FAK, p-Akt/Akt), survival (caspase 3, TUNEL, FDA/PI), function, and HIF-1α translocation were assessed. Afterwards, P-matrices were dissolved and the islets were intraportally transplanted. Graft function was monitored for 31 days with glycaemia and C-peptide follow up. Inflammation was assessed by histology (macrophage and granulocyte staining) and thrombin/anti-thrombin complex measurement. Islet survival correlated with an increase in integrin, FAK, and Akt activation in P-matrices and function was maintained. Perfluorodecalin supplementation decreased translocation of HIF-1α in the nucleus and post-transplantation islet structure was better preserved in P-matrices, but a quicker activation of IBMIR resulted in early loss of graft function. "Oxygenating" P-matrices provided a real benefit to islet survival and resistance in vivo. However, intraportal transplantation is not suitable for this kind of culture due to IBMIR; thus, alternative sites must be explored.
Collapse
Affiliation(s)
- A Schaschkow
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France
| | - C Mura
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France
| | - W Bietiger
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France
| | - C Peronet
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France
| | - A Langlois
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France
| | - F Bodin
- Service de chirurgie Plastique et maxillo faciale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - C Dissaux
- Service de chirurgie Plastique et maxillo faciale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - C Bruant-Rodier
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France; Service de chirurgie Plastique et maxillo faciale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M Pinget
- Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - N Jeandidier
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France; Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M T Juszczak
- Department of Vascular Surgery, John Radcliffe Hospital, Oxford, United Kingdom
| | - S Sigrist
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France
| | - E Maillard
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, Strasbourg, France.
| |
Collapse
|
33
|
Li S, Vaziri ND, Masuda Y, Hajighasemi-Ossareh M, Robles L, Le A, Vo K, Chan JY, Foster CE, Stamos MJ, Ichii H. Pharmacological activation of Nrf2 pathway improves pancreatic islet isolation and transplantation. Cell Transplant 2015; 24:2273-83. [PMID: 25581574 DOI: 10.3727/096368915x686210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress is a major cause of islet damage and loss during the islet isolation process. The Nrf2 pathway plays a critical role in protecting the cells against oxidative stress. The aim of this study was to investigate the effect of an Nrf2 activator (dh404) on islet isolation and transplantation in a rodent model. Islet isolation was conducted using Nrf2-deficient and wild-type mice and vehicle-treated and Nrf2 activator (dh404)-treated rats. Islet yield, viability, and Nrf2 pathway activity were determined. An in vivo islet potency test was done. Islet yield and viability in Nrf2-deficient mice was significantly lower compared to wild-type (p < 0.05) mice. Furthermore, administration of dh404 to normal Sprague-Dawley rats enhanced nuclear translocation of Nrf2 and elevated HO-1 expression in the pancreas. Islet yield and viability in dh404-treated rats was significantly higher compared to the vehicle-treated group (p < 0.05). The diabetes cure rate in nude mice with chemically induced diabetes was significantly greater in those transplanted with islets from the dh404-treated group (6/9) than vehicle-treated rats (2/9, p < 0.05). The Nrf2 pathway plays a significant role in protecting islets against stress caused by the isolation process. Pharmacological activation of the Nrf2 pathway significantly increased HO-1 expression, improved islet yield, viability, and function after transplantation.
Collapse
Affiliation(s)
- Shiri Li
- Department of Surgery, University of California, Irvine, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Total pancreatectomy with islet cell auto-transplantation: update and outcomes from major centers. ACTA ACUST UNITED AC 2014; 12:350-8. [PMID: 25053231 DOI: 10.1007/s11938-014-0026-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT Chronic pancreatitis is the result of irreversible damage to pancreatic acinar cells, and can result in debilitating chronic pain for patients. Treatment centers on pain relief, often with chronic narcotic use. Surgical therapy consists of both resection procedures to remove affected pancreatic parenchyma and drainage procedures to facilitate drainage of the main pancreatic duct. Total pancreatectomy historically was utilized in extreme cases due to the brittle glucose control that followed from the total loss of islet cells. Total pancreatectomy with islet cell auto-transplantation (TP-AIT) is gaining in popularity due to the maintenance of beta cell mass and the ability of patients to potentially be insulin independent post-operatively. TP-AIT is very helpful in the treatment of pain for patients with chronic pancreatitis. The overall majority of patients have an improvement in pain and quality-of-life scores. AIT also allows the majority of patients to have minimal insulin requirements post-operatively. With proper patient selection, these outcomes can be achieved.
Collapse
|
35
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Miranda PM, Mohan V, Ganthimathy S, Anjana RM, Gunasekaran S, Thiagarajan V, Churchill TA, Kin T, Shapiro AMJ, Lakey JRT. Human islet mass, morphology, and survival after cryopreservation using the Edmonton protocol. Islets 2013; 5:188-95. [PMID: 24759005 PMCID: PMC4010570 DOI: 10.4161/isl.26304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to assess recovery, cell death, and cell composition of post-thaw cultured human islets. Cryopreserved islets were provided by the Clinical Islet Transplant Program, Edmonton, Canada. Islets were processed using media prepared in accordance with Pre-Edmonton and Edmonton protocols. Cryopreserved islets were rapidly thawed and cultured for 24 h, 3 d, 5 d, and 7 d, following which they were processed for histology. Islet quantification, integrity, morphology and tissue turnover were studied via hematoxylin and eosin stained sections. Ultrastructure was studied by electron microscopy and endocrine cell composition by immunohistochemistry. Using the Pre-Edmonton protocol, islet recovery was 50.1% and islet survival was 50% at 24 h while for the Edmonton protocol, the islet recovery was 69.4% (p<0.001) and islet survival, 50% at ≈2.5 d. With an increasing culture duration although the physical integrity was retained there was an increasing loss of cohesivity both at light microscopic and at ultrastructure level regardless of the protocols used. Percentage islet survival and tissue turnover correlated negatively with culture duration in both protocols. The Edmonton protocol appears to preserve the islets better. However, culture duration adversely affects islet survival and quality, indicating the need for more optimal cryopreservation and culture techniques.
Collapse
Affiliation(s)
- Priya M Miranda
- Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialties Centre; WHO Collaborating Centre for Noncommunicable Diseases-Prevention and Control; Chennai, Tamilnadu, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialties Centre; WHO Collaborating Centre for Noncommunicable Diseases-Prevention and Control; Chennai, Tamilnadu, India
- Correspondence to: Viswanathan Mohan,
| | | | - Ranjit M Anjana
- Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialties Centre; WHO Collaborating Centre for Noncommunicable Diseases-Prevention and Control; Chennai, Tamilnadu, India
| | - S Gunasekaran
- Christian Medical College; Vellore, Tamil Nadu, India
| | | | | | - Tatsuya Kin
- University of Alberta; Edmonton, Alberta, Canada
| | | | | |
Collapse
|
37
|
O'Connell PJ, Holmes-Walker DJ, Goodman D, Hawthorne WJ, Loudovaris T, Gunton JE, Thomas HE, Grey ST, Drogemuller CJ, Ward GM, Torpy DJ, Coates PT, Kay TW. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. Am J Transplant 2013; 13:1850-8. [PMID: 23668890 DOI: 10.1111/ajt.12250] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 01/25/2023]
Abstract
Whilst initial rates of insulin independence following islet transplantation are encouraging, long-term function using the Edmonton Protocol remains a concern. The aim of this single-arm, multicenter study was to evaluate an immunosuppressive protocol of initial antithymocyte globulin (ATG), tacrolimus and mycophenolate mofetil (MMF) followed by switching to sirolimus and MMF. Islets were cultured for 24 h prior to transplantation. The primary end-point was an HbA1c of <7% and cessation of severe hypoglycemia. Seventeen recipients were followed for ≥ 12 months. Nine islet preparations were transported interstate for transplantation. Similar outcomes were achieved at all three centers. Fourteen of the 17 (82%) recipients achieved the primary end-point. Nine (53%) recipients achieved insulin independence for a median of 26 months (range 7-39 months) and 6 (35%) remain insulin independent. All recipients were C-peptide positive for at least 3 months. All subjects with unstimulated C-peptide >0.2 nmol/L had cessation of severe hypoglycemia. Nine of the 17 recipients tolerated switching from tacrolimus to sirolimus with similar graft outcomes. There was a small but significant reduction in renal function in the first 12 months. The combination of islet culture, ATG, tacrolimus and MMF is a viable alternative for islet transplantation.
Collapse
Affiliation(s)
- P J O'Connell
- National Pancreas Transplant Unit, University of Sydney at Westmead Hospital, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
O'Gorman D, Kin T, Pawlick R, Imes S, Senior PA, Shapiro AMJ. Clinical islet isolation outcomes with a highly purified neutral protease for pancreas dissociation. Islets 2013; 5:111-5. [PMID: 23756701 PMCID: PMC4049837 DOI: 10.4161/isl.25222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreas dissociation is a critical initial component of the islet isolation procedure and introduces high variability based on factors including the enzyme type, specificity and potency. Product refinement and alterations to the application strategies have improved isolation outcomes over time; however, islet utilization from donor organs remains low. In this study we evaluate a low endotoxin-high activity grade neutral protease in clinical islet isolation. MATERIALS AND METHODS The use of a non-collagenolytic enzyme, either thermolysin or high active neutral protease, was randomized in clinical islet isolations to evaluate efficacy. Additionally a retrospective comparison to neutral protease NB was conducted. RESULTS The thermolysin group had lower trapped islet population and increased purity and post-culture islet mass in comparison to high active grade neutral protease. Comparison of neutral protease NB GMP grade to high active neutral protease displayed no measurable difference in islet mass or viability and transplantation outcomes at 1 mo post-transplant were favorable for both groups. CONCLUSIONS High activity neutral protease can generate clinical grade islets and may prove beneficial to islet function and viability based on a reduced endotoxin load but dosing of neutral protease requires ongoing optimization.
Collapse
Affiliation(s)
- Doug O'Gorman
- Clinical Islet Transplant Program; Department of Transplant Services; Alberta Health Services; Edmonton, AB Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program; Department of Transplant Services; Alberta Health Services; Edmonton, AB Canada
| | - Rena Pawlick
- Department of Surgery; Alberta Diabetes Institute; University of Alberta; Edmonton, AB Canada
| | - Sharleen Imes
- Clinical Islet Transplant Program; Department of Transplant Services; Alberta Health Services; Edmonton, AB Canada
| | - Peter A Senior
- Clinical Islet Transplant Program; Department of Transplant Services; Alberta Health Services; Edmonton, AB Canada
| | - AM James Shapiro
- Clinical Islet Transplant Program; Department of Transplant Services; Alberta Health Services; Edmonton, AB Canada
- Correspondence to: AM James Shapiro,
| |
Collapse
|
39
|
Raposo do Amaral AS, Pawlick RL, Rodrigues E, Costal F, Pepper A, Ferreira Galvão FH, Correa-Giannella ML, Shapiro AM. Glutathione ethyl ester supplementation during pancreatic islet isolation improves viability and transplant outcomes in a murine marginal islet mass model. PLoS One 2013; 8:e55288. [PMID: 23424628 PMCID: PMC3570543 DOI: 10.1371/journal.pone.0055288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/19/2012] [Indexed: 12/28/2022] Open
Abstract
Background The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage. Methodology/Principal Findings In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets. Conclusions/Significance GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation.
Collapse
Affiliation(s)
- Alexandre S. Raposo do Amaral
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rena L. Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
| | - Erika Rodrigues
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Costal
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andrew Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
| | - Flávio H. Ferreira Galvão
- Unidade de Transplante e Cirurgia de Fígado (LIM37), Departamento de Gastroenterologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - A. M.James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
- * E-mail:
| |
Collapse
|
40
|
Shapiro AMJ. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev Diabet Stud 2012; 9:385-406. [PMID: 23804275 DOI: 10.1900/rds.2012.9.385] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, 2000 College Plaza, 8215 112th Street, Edmonton AB Canada T6G 2C8.
| |
Collapse
|
41
|
Kawahara T, Kin T, Shapiro AMJ. A comparison of islet autotransplantation with allotransplantation and factors elevating acute portal pressure in clinical islet transplantation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2012; 19:281-8. [PMID: 21879320 DOI: 10.1007/s00534-011-0441-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute portal pressure rise is occasionally observed during intraportal islet infusion, especially in islet autotransplantation (IAT) where tissue purification is rarely applied. In this paper we investigate factors associated with acute portal pressure rise, a known risk factor for portal vein thrombosis. METHODS Retrospective data was collected on 15 islet autotransplant and 122 allogeneic islet transplant subjects. Non-purified pancreatic cells were transplanted in islet autotransplants, and purified islet cells were transplanted in allogeneic transplants. Portal pressure was documented throughout the islet infusion. RESULTS The total numbers of transplanted islets were significantly smaller in autotransplants than allografts, although the packed cell volume in autotransplants was larger. Autoislet infusion, with a larger packed cell volume, caused higher transient portal venous pressures than allogeneic islet transplant. Univariate analysis and multivariate linear regression revealed that packed cell volume and the number of transplanted cells were significant risk factors for acute portal pressure rise in both autotransplants and allogeneic transplants. CONCLUSIONS Non-purified IAT has a higher risk for acute portal pressure rise than allogeneic islet transplantation, and the rise is associated with the packed cell volume and the number of transplanted cells. Minimization of packed cell volume and cautious monitoring of portal pressure are important to avoid potential complications of portal hypertension.
Collapse
Affiliation(s)
- Toshiyasu Kawahara
- Department of Surgery, University of Alberta, 2D4.44 Walter C. Mackenzie Centre, Edmonton, AB, T6G 2B7, Canada.
| | | | | |
Collapse
|
42
|
Sutherland DER, Radosevich DM, Bellin MD, Hering BJ, Beilman GJ, Dunn TB, Chinnakotla S, Vickers SM, Bland B, Balamurugan AN, Freeman ML, Pruett TL. Total pancreatectomy and islet autotransplantation for chronic pancreatitis. J Am Coll Surg 2012. [PMID: 22397977 DOI: 10.1016/j.jamcollsurg.2011.12.040s1072-7515(12)00014-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Total pancreatectomy (TP) with intraportal islet autotransplantation (IAT) can relieve pain and preserve β-cell mass in patients with chronic pancreatitis (CP) when other therapies fail. We report on a >30-year single-center series. STUDY DESIGN Four hundred and nine patients (including 53 children, 5 to 18 years) with CP underwent TP-IAT from February 1977 to September 2011 (etiology: idiopathic, 41%; Sphincter of Oddi dysfunction/biliary, 9%; genetic, 14%; divisum, 17%; alcohol, 7%; and other, 12%; mean age was 35.3 years, 74% were female; 21% has earlier operations, including 9% Puestow procedure, 6% Whipple, 7% distal pancreatectomy, and 2% other). Islet function was classified as insulin independent for those on no insulin; partial, if known C-peptide positive or euglycemic on once-daily insulin; and insulin dependent if on standard basal-bolus diabetic regimen. A 36-item Short Form (SF-36) survey for quality of life was completed by patients before and in serial follow-up since 2007, with an integrated survey that was added in 2008. RESULTS Actuarial patient survival post TP-IAT was 96% in adults and 98% in children (1 year) and 89% and 98% (5 years). Complications requiring relaparotomy occurred in 15.9% and bleeding (9.5%) was the most common complication. IAT function was achieved in 90% (C-peptide >0.6 ng/mL). At 3 years, 30% were insulin independent (25% in adults, 55% in children) and 33% had partial function. Mean hemoglobin A1c was <7.0% in 82%. Earlier pancreas surgery lowered islet yield (2,712 vs 4,077/kg; p = 0.003). Islet yield (<2,500/kg [36%]; 2,501 to 5,000/kg [39%]; >5,000/kg [24%]) correlated with degree of function with insulin-independent rates at 3 years of 12%, 22%, and 72%, and rates of partial function 33%, 62%, and 24%. All patients had pain before TP-IAT and nearly all were on daily narcotics. After TP-IAT, 85% had pain improvement. By 2 years, 59% had ceased narcotics. All children were on narcotics before, 39% at follow-up; pain improved in 94%; and 67% became pain-free. In the SF-36 survey, there was significant improvement from baseline in all dimensions, including the Physical and Mental Component Summaries (p < 0.01), whether on narcotics or not. CONCLUSIONS TP can ameliorate pain and improve quality of life in otherwise refractory CP patients, even if narcotic withdrawal is delayed or incomplete because of earlier long-term use. IAT preserves meaningful islet function in most patients and substantial islet function in more than two thirds of patients, with insulin independence occurring in one quarter of adults and half the children.
Collapse
Affiliation(s)
- David E R Sutherland
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sutherland DER, Radosevich DM, Bellin MD, Hering BJ, Beilman GJ, Dunn TB, Chinnakotla S, Vickers SM, Bland B, Balamurugan AN, Freeman ML, Pruett TL. Total pancreatectomy and islet autotransplantation for chronic pancreatitis. J Am Coll Surg 2012; 214:409-24; discussion 424-6. [PMID: 22397977 DOI: 10.1016/j.jamcollsurg.2011.12.040] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Total pancreatectomy (TP) with intraportal islet autotransplantation (IAT) can relieve pain and preserve β-cell mass in patients with chronic pancreatitis (CP) when other therapies fail. We report on a >30-year single-center series. STUDY DESIGN Four hundred and nine patients (including 53 children, 5 to 18 years) with CP underwent TP-IAT from February 1977 to September 2011 (etiology: idiopathic, 41%; Sphincter of Oddi dysfunction/biliary, 9%; genetic, 14%; divisum, 17%; alcohol, 7%; and other, 12%; mean age was 35.3 years, 74% were female; 21% has earlier operations, including 9% Puestow procedure, 6% Whipple, 7% distal pancreatectomy, and 2% other). Islet function was classified as insulin independent for those on no insulin; partial, if known C-peptide positive or euglycemic on once-daily insulin; and insulin dependent if on standard basal-bolus diabetic regimen. A 36-item Short Form (SF-36) survey for quality of life was completed by patients before and in serial follow-up since 2007, with an integrated survey that was added in 2008. RESULTS Actuarial patient survival post TP-IAT was 96% in adults and 98% in children (1 year) and 89% and 98% (5 years). Complications requiring relaparotomy occurred in 15.9% and bleeding (9.5%) was the most common complication. IAT function was achieved in 90% (C-peptide >0.6 ng/mL). At 3 years, 30% were insulin independent (25% in adults, 55% in children) and 33% had partial function. Mean hemoglobin A1c was <7.0% in 82%. Earlier pancreas surgery lowered islet yield (2,712 vs 4,077/kg; p = 0.003). Islet yield (<2,500/kg [36%]; 2,501 to 5,000/kg [39%]; >5,000/kg [24%]) correlated with degree of function with insulin-independent rates at 3 years of 12%, 22%, and 72%, and rates of partial function 33%, 62%, and 24%. All patients had pain before TP-IAT and nearly all were on daily narcotics. After TP-IAT, 85% had pain improvement. By 2 years, 59% had ceased narcotics. All children were on narcotics before, 39% at follow-up; pain improved in 94%; and 67% became pain-free. In the SF-36 survey, there was significant improvement from baseline in all dimensions, including the Physical and Mental Component Summaries (p < 0.01), whether on narcotics or not. CONCLUSIONS TP can ameliorate pain and improve quality of life in otherwise refractory CP patients, even if narcotic withdrawal is delayed or incomplete because of earlier long-term use. IAT preserves meaningful islet function in most patients and substantial islet function in more than two thirds of patients, with insulin independence occurring in one quarter of adults and half the children.
Collapse
Affiliation(s)
- David E R Sutherland
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVES The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS). METHODS Male mongrel dogs were used in the study. M2 (n = 7) included higher collagenase concentration, shorter digestion time, faster shaking speed, colder purification temperature, and higher differential density gradient than M1 (n = 7). RESULTS Islet yield was similar between methods (3111.0 ± 309.1 and 3155.8 ± 644.5 islets/g, M1 and M2, respectively; P = 0.951). Pancreas weight and purity together were directly associated with the yield (adjusted R(2) = 0.61; P = 0.002). Purity was considerably improved with M2 (96.7% ± 1.2% vs 75.0% ± 6.3%; P = 0.006). M2 improved GSIS (P = 0.021). Independently, digestion time was inversely associated with GSIS. CONCLUSIONS We describe an isolation method (M2) to obtain a highly pure yield of dog islets with adequate β-cell glucose responsiveness. The isolation variables associated with the outcomes in our canine model confirm previous reports in other species, including humans.
Collapse
|
45
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|