1
|
Valenzuela-Fuenzalida JJ, Núñez-Castro CI, Morán-Durán VB, Nova-Baeza P, Orellana-Donoso M, Suazo-Santibáñez A, Becerra-Farfan A, Oyanedel-Amaro G, Bruna-Mejias A, Granite G, Casanova-Martinez D, Sanchis-Gimeno J. Anatomical Variants in Pancreatic Irrigation and Their Clinical Considerations for the Pancreatic Approach and Surrounding Structures: A Systematic Review with Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:666. [PMID: 40282957 PMCID: PMC12028877 DOI: 10.3390/medicina61040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: The pancreas receives blood through a complex network of multiple branches, primarily originating from the celiac trunk (CeT) and the superior mesenteric artery (SMA). This blood supply is structured into three main arterial groups, each serving different regions of the pancreas to effectively support its endocrine and exocrine functions. Materials and Methods: The databases Medline, Scopus, Web of Science, Google Scholar, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Latin American and the Caribbean Literature in Health Sciences (LILACS) were searched until January 2025. Methodological quality was evaluated using an assurance tool for anatomical studies (AQUA). Pooled prevalence was estimated using a random effects model. Results: A total of sixteen studies met the established selection criteria in this study for meta-analysis. Pancreatic irrigation variants presented a prevalence of 11.2% (CI: 7-14%) and a heterogeneity of 88.2%. The other studies were analyzed by subgroups, showing statistically significant differences in the following subgroups: (1) sample type-a larger sample of images analyzed in the included studies (p = 0.312), which did not show statistically significant differences; (2) geographical region (p = 0.041), which showed a greater presence in the Asian population studied, and this was statistically significant; and (3) sex (male or female) (p = 0.12), where there were no statistically significant differences. Conclusions: The discovery of variations in pancreatic irrigation is common due to the numerous blood vessels involved in supplying this vital organ. Understanding different vascular patterns (such as those from the splenic and mesenteric arteries) is crucial for surgical interventions on the pancreas. For transplant patients, a thorough vascular analysis of both the donor and recipient is essential. Variations can impact blood flow and compatibility, potentially leading to transplant rejection if not addressed. To enhance outcomes, it is recommended to develop more accurate imaging tools for pre-surgical analysis, necessitating ongoing research in this area.
Collapse
Affiliation(s)
- Juan José Valenzuela-Fuenzalida
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (C.I.N.-C.); (V.B.M.-D.); (P.N.-B.); (A.B.-M.)
| | - Camila Ignacia Núñez-Castro
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (C.I.N.-C.); (V.B.M.-D.); (P.N.-B.); (A.B.-M.)
| | - Valeria Belén Morán-Durán
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (C.I.N.-C.); (V.B.M.-D.); (P.N.-B.); (A.B.-M.)
| | - Pablo Nova-Baeza
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (C.I.N.-C.); (V.B.M.-D.); (P.N.-B.); (A.B.-M.)
| | - Mathias Orellana-Donoso
- Escuela de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
- Department of Morphological Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7510157, Chile
| | | | - Alvaro Becerra-Farfan
- Departamento de Ciencias Química y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8370993, Chile;
| | - Gustavo Oyanedel-Amaro
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alejandro Bruna-Mejias
- Departamento de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (J.J.V.-F.); (C.I.N.-C.); (V.B.M.-D.); (P.N.-B.); (A.B.-M.)
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360072, Chile
| | - Guinevere Granite
- Department of Surgery, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, ML 20814, USA;
| | - Daniel Casanova-Martinez
- Facultad de Medicina, Universidad de Valparaíso, Campus San Felipe, Valparaíso 2170000, Chile;
- Laboratorio de Neuroanatomía Microquirúrgica (LaNeMic), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan Sanchis-Gimeno
- GIAVAL Research Group, Department of Anatomy and Human Embryology, Faculty of Medicine, University of Valencia, 46001 Valencia, Spain
| |
Collapse
|
2
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2025; 77:315-332. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mima A, Kimura A, Ito R, Hatano Y, Tsujimoto H, Mae SI, Yamane J, Fujibuchi W, Uza N, Toyoda T, Seno H, Osafune K. Mechanistic elucidation of human pancreatic acinar development using single-cell transcriptome analysis on a human iPSC differentiation model. Sci Rep 2025; 15:4668. [PMID: 39920294 PMCID: PMC11806057 DOI: 10.1038/s41598-025-88690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Few effective treatments have been developed for intractable pancreatic exocrine disorders due to the lack of suitable disease models using human cells. Pancreatic acinar cells differentiated from human induced pluripotent stem cells (hiPSCs) have the potential to solve this issue. In this study, we aimed to elucidate the developmental mechanisms of pancreatic exocrine acinar lineages to establish a directed differentiation method for pancreatic acinar cells from hiPSCs. hiPSC-derived pancreatic endoderm cells were spontaneously differentiated into both pancreatic exocrine and endocrine tissues by implantation into the renal subcapsular space of NOD/SCID mice. Single-cell RNA-seq analysis of the retrieved grafts confirmed the differentiation of pancreatic acinar lineage cells and identified REG4 as a candidate marker for pancreatic acinar progenitor cells. Furthermore, differential gene expression analysis revealed upregulated pathways, including cAMP-related signals, involved in the differentiation of hiPSC-derived pancreatic acinar lineage cells in vivo, and we found that a cAMP activator, forskolin, facilitates the differentiation from hiPSC-derived pancreatic endoderm into pancreatic acinar progenitor cells in our in vitro differentiation culture. Therefore, this platform contributes to our understanding of the developmental mechanisms of pancreatic acinar lineage cells and the establishment of differentiation methods for acinar cells from hiPSCs.
Collapse
Affiliation(s)
- Atsushi Mima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Hatano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Yamane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
4
|
Abhale K, Addepalli V, Desai S, Sanap A, Bhonde R. Effects of Mesenchymal Stem Cell-conditioned Media with Natural Immunomodulatory Agent Resveratrol on Type 1 Diabetes. Curr Drug Discov Technol 2025; 22:e080324227818. [PMID: 38468534 DOI: 10.2174/0115701638276524240305054259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is a condition marked by elevated blood sugar levels and primarily recognized by the destruction of beta cells caused by an autoimmune attack, which is a significant characteristic of T1DM. Recent studies have demonstrated the regenerative potential of conditioned medium therapy. In light of this, the current research sought to assess the impact of Mesenchymal Stem Cell conditioned media (CM) and CM with resveratrol (CM+ Resveratrol) on the management of T1DM in Swiss albino mice. By leveraging and modifying existing conditioned medium therapy, this study aims to evaluate its effectiveness in treating T1DM. MATERIALS & METHODS Diabetes was induced in animals using the diabetes-inducing agent streptozotocin (STZ). The animals were then divided into five groups: Normal control, Disease Control, Resveratrol, Condition Media, and CM + Resveratrol. Treatments were given to the animals accordingly. The study period was 28 days. During this time, the animals were monitored for foodwater intake twice a week, blood glucose levels, and body weight. At the conclusion of the 28-day study period, biochemical estimations were performed for serum insulin levels, C-peptide levels, anti-inflammatory cytokines levels and pro-inflammatory cytokines levels. Additionally, histopathology of the pancreas was performed. RESULTS The test groups showed a significant decrease in blood glucose levels, an increase in Cpeptide levels, and a decrease in pro-inflammatory cytokine levels compared to the disease group. However, no statistically significant change within groups was observed in terms of serum insulin and anti-inflammatory cytokine levels. The improvement in diabetic symptoms, such as polyphagia, polydipsia, and weight loss, was observed in the treatment group, along with pancreatic regeneration, which indicated improved insulin secretion. CONCLUSION In the current investigation, we concluded that CM and CM+ Resveratrol, as natural immunomodulators, have the capacity to regenerate injured pancreatic beta cells and have antidiabetic action, together with immunomodulating impact. Nonetheless, future studies on this therapy appear to be promising.
Collapse
Affiliation(s)
- Krushna Abhale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | | | - Shivani Desai
- Clinical Research and Pharmacovigilance, Serum Institute of India Pvt. Ltd., Hadapsar, Pune
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune, India
| |
Collapse
|
5
|
Kupnicka P, Król M, Żychowska J, Łagowski R, Prajwos E, Surówka A, Chlubek D. GLP-1 Receptor Agonists: A Promising Therapy for Modern Lifestyle Diseases with Unforeseen Challenges. Pharmaceuticals (Basel) 2024; 17:1470. [PMID: 39598383 PMCID: PMC11597758 DOI: 10.3390/ph17111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Modern lifestyle diseases remain a persistent challenge in healthcare. Currently, about 422 million people worldwide are affected by diabetes, while 1 in 8 people are living with obesity. The development of glucagon-like peptide 1 receptor agonists (GLP-1RAs) has marked a significant milestone in treating these conditions. Interest in GLP-1RAs has grown due to evidence that, beyond their established role in diabetes management, these drugs influence other metabolic disorders. This is attributed to the fact that GLP-1 receptors are found in various healthy human tissues. However, a potential cause for concern is the expression of GLP-1 receptors in certain cancers. This review focuses on the most recent findings concerning the actions of GLP-1RAs, detailing their documented impact on the thyroid gland and pancreas. It addresses concerns about the long-term use of GLP-1RAs in relation to the development of pancreatitis, pancreatic cancer, and thyroid neoplasms by exploring the mechanisms and long-term effects in different patient subgroups and including data not discussed previously. This review was conducted through an examination of the literature available in the MedLine (PubMed) database, covering publications from 1978 to 10 May 2024. The collected articles were selected based on their relevance to studies of GLP-1 agonists and their effects on the pancreas and thyroid and assessed to meet the established inclusion criteria. The revised papers suggest that prolonged use of GLP-1RA could contribute to the formation of thyroid tumors and may increase the risk of acute inflammatory conditions such as pancreatitis, particularly in high-risk patients. Therefore, physicians should advise patients on the need for more frequent and detailed follow-ups.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryszard Łagowski
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Eryk Prajwos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Englisch CN, Kirstein E, Diebolt CM, Wagner M, Tschernig T. Distribution of TRPC3 and TRPC6 in the human exocrine and endocrine pancreas. Pathol Res Pract 2024; 260:155403. [PMID: 38870712 DOI: 10.1016/j.prp.2024.155403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Expression and function of TRPC3 and TRPC6 in the pancreas is a controversial topic. Investigation in human tissue is seldom. We aimed to provide here a detailed description of the distribution of TRPC3 and TRPC6 in the human exocrine and endocrine pancreas. METHODS We collected healthy samples from cadavers (n = 4) and visceral surgery (n = 4) to investigate the respective expression profiles using immunohistochemical tracing with knockout-validated antibodies. RESULTS TRPC3- and TRPC6-proteins were detected in different pancreatic structures including acinar cells, as well as epithelial ductal cells from intercalate, intralobular, and interlobular ducts. Respective connective tissue layers appeared unstained. Endocrine islets of Langerhans were clearly and homogenously immunolabeled by the anti-TRPC3 and anti-TRPC6 antibodies. Insular α, β, γ, and δ cells were conclusively stained, although no secure differentiation of cell types was performed. CONCLUSIONS Due to aforementioned antibody specificity verification, protein expression in the immunolabeled localizations can be accepted. Our study in human tissue supports previous investigations especially with respect to acinar and insular α and β cells, while other localizations are here reported for the first time to express TRPC3 and TRPC6, ultimately warranting further research.
Collapse
Affiliation(s)
- Colya N Englisch
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saarland, Germany.
| | - Emilie Kirstein
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saarland, Germany
| | - Coline M Diebolt
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saarland, Germany
| | - Mathias Wagner
- Department of General and Special Pathology, Saarland University Medical Center, 66421 Homburg, Saarland, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saarland, Germany
| |
Collapse
|
7
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
8
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
De la Cruz-Concepción B, Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, Espinoza-Rojo M. Insulin: A connection between pancreatic β cells and the hypothalamus. World J Diabetes 2023; 14:76-91. [PMID: 36926659 PMCID: PMC10011898 DOI: 10.4239/wjd.v14.i2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
Insulin is a hormone secreted by pancreatic β cells. The concentration of glucose in circulation is proportional to the secretion of insulin by these cells. In target cells, insulin binds to its receptors and activates phosphatidylinositol-3-kinase/protein kinase B, inducing different mechanisms depending on the cell type. In the liver it activates the synthesis of glycogen, in adipose tissue and muscle it allows the capture of glucose, and in the hypothalamus, it regulates thermogenesis and appetite. Defects in insulin function [insulin resistance (IR)] are related to the development of neurodegenerative diseases in obese people. Furthermore, in obesity and diabetes, its role as an anorexigenic hormone in the hypothalamus is diminished during IR. Therefore, hyperphagia prevails, which aggravates hyper-glycemia and IR further, becoming a vicious circle in which the patient cannot regulate their need to eat. Uncontrolled calorie intake induces an increase in reactive oxygen species, overcoming cellular antioxidant defenses (oxidative stress). Reactive oxygen species activate stress-sensitive kinases, such as c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, that induce phos-phorylation in serine residues in the insulin receptor, which blocks the insulin signaling pathway, continuing the mechanism of IR. The brain and pancreas are organs mainly affected by oxidative stress. The use of drugs that regulate food intake and improve glucose metabolism is the conventional therapy to improve the quality of life of these patients. Currently, the use of antioxidants that regulate oxidative stress has given good results because they reduce oxidative stress and inflammatory processes, and they also have fewer side effects than synthetic drugs.
Collapse
Affiliation(s)
- Brenda De la Cruz-Concepción
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Yaccil Adilene Flores-Cortez
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Martha Isela Barragán-Bonilla
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Juan Miguel Mendoza-Bello
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Monica Espinoza-Rojo
- Molecular and Genomic Biology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39070, Guerrero, Mexico
| |
Collapse
|
10
|
Abstract
The basic pancreatic lesions include location, size, shape, number, capsule, calcification/calculi, hemorrhage, cystic degeneration, fibrosis, pancreatic duct alterations, and microvessel. One or more basic lesions form a kind of pancreatic disease. As recognizing the characteristic imaging features of pancreatic basic lesions and their relationships with pathology aids in differentiating the variety of pancreatic diseases. The purpose of this study is to review the pathological and imaging features of the basic pancreatic lesions.
Collapse
|
11
|
Li J, Liao G, Sun W, Sun J, Sheng T, Zhu K, von Deneen KM, Zhang Y. A 2.5D semantic segmentation of the pancreas using attention guided dual context embedded U-Net. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Zhu M, Liu X, Liu W, Lu Y, Cheng J, Chen Y. β cell aging and age-related diabetes. Aging (Albany NY) 2021; 13:7691-7706. [PMID: 33686020 PMCID: PMC7993693 DOI: 10.18632/aging.202593] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes is characterized by insulin resistance and loss of β cell mass and function. Aging is considered as a major risk factor for development of type 2 diabetes. However, the roles of pancreatic β cell senescence and systemic aging in the pathogenesis of type 2 diabetes in elderly people remain poorly understood. In this review, we aimed to discuss the current findings and viewpoints focusing on β cell aging and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaohong Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Wen Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
13
|
L’îlot pancréatique : ce que nous savons 150 ans après Langerhans. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2019. [DOI: 10.1016/j.banm.2019.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|