1
|
Nielsen MR, Sondergaard TE, Giese H, Sørensen JL. Advances in linking polyketides and non-ribosomal peptides to their biosynthetic gene clusters in Fusarium. Curr Genet 2019; 65:1263-1280. [DOI: 10.1007/s00294-019-00998-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
|
2
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
3
|
|
4
|
Shen B, Xiao J, Dai L, Huang Y, Mao Z, Lin R, Yao Y, Xie B. Development of a high-efficiency gene knockout system for Pochonia chlamydosporia. Microbiol Res 2015; 170:18-26. [DOI: 10.1016/j.micres.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 11/28/2022]
|
5
|
Pareek M, Sachdev M, Tetorya M, Rajam MV. Glass-Bead and Agrobacterium-Mediated Genetic Transformation of Fusarium oxysporum. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Xue C, Wu D, Condon BJ, Bi Q, Wang W, Turgeon BG. Efficient gene knockout in the maize pathogen Setosphaeria turcica using Agrobacterium tumefaciens-mediated transformation. PHYTOPATHOLOGY 2013; 103:641-647. [PMID: 23384859 DOI: 10.1094/phyto-08-12-0199-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Setosphaeria turcica, a hemibiotrophic pathogenic dothideomycete, is the causal agent of Northern Leaf Blight of maize, which periodically causes significant yield losses worldwide. To explore molecular mechanisms of fungal pathogenicity and virulence to the host, an efficient targeted gene knockout transformation system using Agrobacterium tumefaciens was established with field collected strains. The starting materials, incubation time, induction medium type, Agrobacterium cell density, and method of co-incubation were optimized for deletion of 1,3,8-trihydroxynaphthalene reductase, a gene in the melanin biosynthesis pathway, as a test case. Four additional genes were deleted in two different S. turcica field isolates to confirm robustness of the method. One of these mutant strains was reduced in virulence compared with the wild-type strain when inoculated on susceptible maize. Transformation efficiency was ≈20 ± 3 transformants per 1× 10(6) germlings and homologous recombination efficiency was 33.3 to 100%.
Collapse
Affiliation(s)
- Chunsheng Xue
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
7
|
Balcerzak M, Harris LJ, Subramaniam R, Ouellet T. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts. Fungal Biol 2012; 116:478-88. [DOI: 10.1016/j.funbio.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/10/2012] [Accepted: 01/21/2012] [Indexed: 11/25/2022]
|
8
|
Asunción García-Sánchez M, Martín-Rodrigues N, Ramos B, de Vega-Bartol JJ, Perlin MH, Díaz-Mínguez JM. fost12, the Fusarium oxysporum homolog of the transcription factor Ste12, is upregulated during plant infection and required for virulence. Fungal Genet Biol 2010; 47:216-25. [DOI: 10.1016/j.fgb.2009.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/03/2009] [Accepted: 11/19/2009] [Indexed: 11/27/2022]
|
9
|
Watson RJ, Burchat S, Bosley J. A model for integration of DNA into the genome during transformation of Fusarium graminearum. Fungal Genet Biol 2008; 45:1348-63. [PMID: 18722542 DOI: 10.1016/j.fgb.2008.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 07/08/2008] [Accepted: 07/24/2008] [Indexed: 12/15/2022]
Abstract
Transformants of Fusarium graminearum were derived using linearized DNA of plasmids designed to replace the trichodiene synthase gene, a cutinase gene or a xylanase gene with a hygromycin-resistance marker cassette by homologous recombination between 1-kbp segments of flanking DNA. Most transformants did not exhibit the DNA structure expected of integration by classical double recombination. Instead, they contained linearized plasmid joined end-to-end and variably incorporated into the genome. Transformant types included ectopic integrations and integrations at the target site with or without removal of the targeted gene. We have analyzed a large number of transformants using cloning, PCR and DNA sequencing to determine the structures of their integrated DNA, and describe a model to explain their derivations. The data indicate that 1-3 copies of input DNA are first joined end-to-end to produce either linear or circular structures, probably mediated by the non-homologous end-joining (NHEJ) system. The end-joins typically have 1-5 nucleotides in common and are near or within the original cleavage site of the plasmid. Ectopic integrations occur by attaching linear DNA to two ends of genomic DNA via the same joining mechanism. Integration at the target site is consistent with replication around circularized input DNA, beginning and ending within the flanking homologous DNA, resulting in the integration of multiple copies of the entire structure. This results in deletion or duplication of the target site, or leaves one copy at either end of the integrated multimer. Reiterated DNA in the more complex structures is unstable due to homologous recombination, such that conversion to simpler forms is detected.
Collapse
Affiliation(s)
- R J Watson
- Research Branch, Agriculture and Agri-Food Canada, 960 Carling Avenue, Central Experimental Farm, Ottawa, Ont., Canada K1A 0C6.
| | | | | |
Collapse
|
10
|
Pareja-Jaime Y, Roncero MIG, Ruiz-Roldán MC. Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:728-36. [PMID: 18624637 DOI: 10.1094/mpmi-21-6-0728] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Saponin detoxification enzymes from pathogenic fungi are involved in the infection process of their host plants. Fusarium oxysporum f. sp lycopersici, a tomato pathogen, produces the tomatinase enzyme Tom1, which degrades alpha-tomatine to less toxic derivates. To study the role of the tom1 gene in the virulence of F. oxysporum, we performed targeted disruption and overexpression of the gene. The infection process of tomato plants inoculated with transformants constitutively producing Tom1 resulted in an increase of symptom development. By contrast, tomato plants infected with the knockout mutants showed a delay in the disease process, indicating that Tom1, although not essential for pathogenicity, is required for the full virulence of F. oxysporum. Total tomatinase activity in the disrupted strains was reduced only 25%, leading to beta(2)-tomatine as the main hydrolysis product of the saponin in vitro. In silico analysis of the F. oxysporum genome revealed the existence of four additional putative tomatinase genes with identities to tomatinases from family 3 of glycosyl hydrolases. These might be responsible for the remaining tomatinase activity in the Deltatom1 mutants. Our results indicate that detoxification of alpha-tomatine in F. oxysporum is carried out by several tomatinase activities, suggesting the importance of these enzymes during the infection process.
Collapse
Affiliation(s)
- Yolanda Pareja-Jaime
- Departamento de Genética, Universidad de Córdoba, Edificio Gregor Mendel, Campus de Rabanales, 14071 Córdoba, Spain
| | | | | |
Collapse
|
11
|
Bolwerk A, Lagopodi AL, Lugtenberg BJJ, Bloemberg GV. Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:710-21. [PMID: 16042017 DOI: 10.1094/mpmi-18-0710] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The soilborne fungus Fusarium oxysporum f. sp. radicis-lycopersici causes tomato foot and root rot (TFRR), which can be controlled by the addition of the nonpathogenic fungus F. oxysporum Fo47 to the soil. To improve our understanding of the interactions between the two Fusarium strains on tomato roots during biocontrol, the fungi were labeled using different autofluorescent proteins as markers and subsequently visualized using confocal laser scanning microscopy. The results were as follows. i) An at least 50-fold excess of Fo47over F. oxysporum f. sp. radicis-lycopersici was required to obtain control of TFRR. ii) When seedlings were planted in sand infested with spores of a single fungus, Fo47 hyphae attached to the root earlier than those of F. oxysporum f. sp. radicis-lycopersici. iii) Subsequent root colonization by F. oxysporum f. sp. radicis-lycopersici was faster and to a larger extent than that by Fo47. iv) Under disease-controlling conditions, colonization of tomato roots by the pathogenic fungus was significantly reduced. v) When the inoculum concentration of Fo47 was increased, root colonization by the pathogen was arrested at the stage of initial attachment to the root. vi) The percentage of spores of Fo47 that germinates in tomato root exudate in vitro is higher than that of the pathogen F. oxysporum f. sp. radicis-lycopersici. Based on these results, the mechanisms by which Fo47 controls TFRR are discussed in terms of i) rate of spore germination and competition for nutrients before the two fungi reach the rhizoplane; ii) competition for initial sites of attachment, intercellular junctions, and nutrients on the tomato root surface; and iii) inducing systemic resistance.
Collapse
Affiliation(s)
- Annouschka Bolwerk
- Leiden University, Institute of Biology Leiden, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
12
|
Aboul-Soud MAM, Yun BW, Harrier LA, Loake GJ. Transformation of Fusarium oxysporum by particle bombardment and characterisation of the resulting transformants expressing a GFP transgene. Mycopathologia 2005; 158:475-82. [PMID: 15702267 DOI: 10.1007/s11046-005-5370-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 10/28/2003] [Indexed: 10/25/2022]
Abstract
Fusarium is the causative agent of a variety of economically significant vascular wilt diseases of vegetables, flowers and field crops. The completion of the first Fusarium genome and the availability of an EST database now provides a platform for both forward and reverse genetic approaches to ascribe gene function in this phytopathogen. To underpin these strategies effective gene transfer procedures will be required. Here we describe an efficient and robust procedure for Fusarium oxysporum transformation based on particle bombardment. We utilised this procedure to introduce a chimeric gene comprised of the Aspergillus nidulans Pgdp promoter fused to a GFP reporter gene. A transformation efficiency of 45 transformants per mug of plasmid DNA was routinely achieved. The Pgdp promoter directed strong cytoplasmic expression of the GFP marker in transformed F. oxysporum monitored via fluorescence and confocal microscopy. A pathogenicity assay undertaken on Arabidopsis seedlings with selected transformants revealed that virulence was retained following transformation. Moreover, in a similar fashion to wild-type F. oxysporum, these transformants activated three distinct Arabidopsis defence gene promoter::luciferase fusions, which defined specific defence gene subsets.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, Scotland, UK
| | | | | | | |
Collapse
|
13
|
de Weert S, Kuiper I, Lagendijk EL, Lamers GEM, Lugtenberg BJJ. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1185-91. [PMID: 15553244 DOI: 10.1094/mpmi.2004.17.11.1185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pseudomonas fluorescens WCS365 is an excellent competitive colonizer of tomato root tips after bacterization of seed or seedlings. The strain controls tomato foot and root rot (TFRR) caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Under biocontrol conditions, fungal hyphae were shown to be colonized by WCS365 bacteria. Because chemotaxis is required for root colonization by WCS365 cells, we studied whether chemotaxis also is required for hyphae colonization. To that end, an in vitro assay was developed to study hyphae colonization by bacteria. The results indicated that cells of the cheA mutant FAJ2060 colonize hyphae less efficiently than cells of wild-type strain WCS365, when single strains were analyzed as well as when both strains were applied together. Cells of WCS365 show a chemotactic response toward the spent growth medium of F. oxysporum f. sp. radicis-lycopersici, but those of its cheA mutant, FAJ2060, did not. Fusaric acid, a secondary metabolite secreted by Fusarium strains, appeared to be an excellent chemo-attractant. Supernatant fluids of a number of Fusarium strains secreting different levels of fusaric acid were tested as chemo-attractants. A positive correlation was found between chemo-attractant activity and fusaric acid level. No chemotactic response was observed toward the low fusaric acid-producer FO242. Nevertheless, the hyphae of FO242 still were colonized by WCS365, suggesting that other metabolites also play a role in this process. The possible function of hyphae colonization for the bacterium is discussed.
Collapse
Affiliation(s)
- Sandra de Weert
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Pietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. MOLECULAR PLANT PATHOLOGY 2003; 4:315-25. [PMID: 20569392 DOI: 10.1046/j.1364-3703.2003.00180.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
UNLABELLED SUMMARY Taxonomy: Vascular wilt fungus; Ascomycete although sexual stage is yet to be found. The most closely related teleomorphic group, Gibberella, is classified within the Pyrenomycetes. HOST RANGE Very broad at the species level. More than 120 different formae speciales have been identified based on specificity to host species belonging to a wide range of plant families. Disease symptoms: Initial symptoms of vascular wilt include vein clearing and leaf epinasty, followed by stunting, yellowing of the lower leafs, progressive wilting of leaves and stem, defoliation and finally death of the plant. In cross-sections of the stem, a brown ring is evident in the area of the vascular bundles. Some formae speciales are not primarily vascular pathogens but cause foot- and rootrot or bulbrot. Economic importance: Causes severe losses on most vegetables and flowers, several field crops such as cotton and tobacco, plantation crops such as banana, plantain, coffee and sugarcane, and a few shade trees. CONTROL Use of resistant varieties is the only practical measure for controlling the disease in the field. Under greenhouse conditions, soil sterilization can be performed. Alternative control methods with potential for the future include soil solarization and biological control with antagonistic bacteria or fungi. USEFUL WEBSITES http://www.fgsc.net/fus.htm, http://www-genome.wi.mit.edu/annotation/fungi/fusarium/, http://www.cbs.knaw.nl/fusarium/database.html.
Collapse
Affiliation(s)
- Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, Campus de Rabanales C5, 14071 Córdoba, Spain
| | | | | | | | | |
Collapse
|
15
|
Nahalkova J, Fatehi J. Red fluorescent protein (DsRed2) as a novel reporter in Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 2003; 225:305-9. [PMID: 12951257 DOI: 10.1016/s0378-1097(03)00534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
pAn-DsRed2 vector was constructed for constitutive cytoplasmic expression of the red fluorescent protein (DsRed2) under control of the glyceraldehyde-3-phosphate dehydrogenase gene promoter from Aspergillus nidulans. DsRed2-transformation of two Fusarium oxysporum f. sp. lycopersici strains pathogenic against tomato host resulted in bright red cytoplamic fluorescence of the fungus. The transformants were screened based on the hygromycin B resistance, brightness, stability and rate of appearance of the DsRed2 fluorescence. The transormed fungi were growing normally and their pathogenicity did not change after transformation procedure. The function of novel DsRed2 marker was verified by fluorescence microscopy of the infected tomato seedlings. The results indicate that DsRed2 can be used as a efficient novel reporter gene for monitoring of the F. oxysporum within the host tissues.
Collapse
Affiliation(s)
- Jarmila Nahalkova
- Department of Molecular Evolution, Uppsala University, Norbyvägen 18C, S-75236 Uppsala, Sweden.
| | | |
Collapse
|
16
|
Jain S, Akiyama K, Kan T, Ohguchi T, Takata R. The G protein beta subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum. Curr Genet 2003; 43:79-86. [PMID: 12695847 DOI: 10.1007/s00294-003-0372-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Revised: 12/14/2002] [Accepted: 12/14/2002] [Indexed: 11/25/2022]
Abstract
The cloning of fgb1, the gene encoding a heterotrimeric G protein beta subunit FGB1 in Fusarium oxysporum, was performed by standard PCR techniques to evaluate the role of G protein signaling in this fungus. The full-length open reading frame spanned 1,077 nucleotides and the deduced primary structure of the protein (359 amino acid residues) showed high identity with G beta subunits from other organisms. Disruption of fgb1 led to decreased intracellular cAMP levels, reduced pathogenicity, and alterations in physiological characteristics, including heat resistance, colony morphology, conidia formation and germination frequency. We previously showed that most of these alterations (except germination frequency) were also observed in the disruptants of fga1, the gene for G alpha subunit FGA1 in F. oxysporum. These results suggest that FGA1 and FGB1 have partially overlapping functions in the regulation of development and pathogenicity in F. oxysporum.
Collapse
Affiliation(s)
- Sona Jain
- Department of Applied Life Science, Faculty of Agriculture, Ehime University, 790-8566 Matsuyama, Japan
| | | | | | | | | |
Collapse
|
17
|
Bailey BA, Apel-Birkhold PC, Luster DG. Expression of NEP1 by Fusarium oxysporum f. sp. erythroxyli After Gene Replacement and Overexpression Using Polyethylene Glycol-Mediated Transformation. PHYTOPATHOLOGY 2002; 92:833-41. [PMID: 18942961 DOI: 10.1094/phyto.2002.92.8.833] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
ABSTRACT The necrosis inducing extracellular protein Nep1 is produced by Fusarium oxysporum f. sp. erythroxyli in liquid culture. NEP1, the Nep1 protein structural gene, was disrupted in F. oxysporum f. sp. erythroxyli isolate EN-4 by gene replacement using polyethylene glycol (PEG)-mediated transformation. NEP1 disruption was verified by polymerase chain reaction (PCR), Southern blot, and northern blot analysis. NEP1-disrupted transformants failed to produce Nep1 in liquid culture. NEP1 disruption did not affect the pathogenicity of isolate EN-4 toward Erythroxylum coca. Transformation of isolate EN-4 with construct pPB-FO11-45 carrying NEP1 between the trpC promoter and terminator resulted in increased production of Nep1 in potato dextrose broth plus 1% casamino acids or Czapek-Dox broth plus 1% casamino acids but not in potato dextrose broth alone. Transformation of EN-4 with construct pPB-FO11-45 was verified by PCR and Southern blot analysis. Overexpression of NEP1 was confirmed by northern blot and Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. NEP1-overexpressing transformant 15 produced 64 to 128 times as much Nep1 as EN-4 wild type when grown in shake cultures. Transformants overexpressing Nep1 in liquid culture were no more or less pathogenic toward E. coca than wild-type isolates. Nep1 was not detected in E. coca seedlings infected with NEP1-overexpressing transformants or with EN-4 wild type. In large-scale fermentations of NEP1-overexpressing transformant 15, the amount of secreted protein including Nep1 was 15.1 times that of the wild-type EN-4, providing a ready source of Nep1 for future study.
Collapse
|
18
|
Gómez-Gómez E, Ruíz-Roldán MC, Di Pietro A, Roncero MIG, Hera C. Role in pathogenesis of two endo-beta-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet Biol 2002; 35:213-22. [PMID: 11929211 DOI: 10.1006/fgbi.2001.1318] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A gene, xyl4, whose predicted amino acid sequence shows significant homology with family 11 xylanases, was identified from the tomato vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Expression of xyl4 is induced on oat spelt xylan as the carbon source, subject to carbon catabolite repression and preferentially expressed at alkaline ambient pH. Transcript levels of xyl4 on an inducing carbon source are differentially regulated by the nature and concentration of the nitrogen source. As shown by RT-PCR, xyl4 is expressed by F. oxysporum during the entire cycle of infection on tomato plants. Targeted inactivation of xyl4 and of xyl3, a previously identified gene of F. oxysporum f. sp. lycopersici encoding a family 10 xylanase, had no detectable effect on virulence on tomato plants, demonstrating that both genes are not essential for pathogenicity.
Collapse
Affiliation(s)
- E Gómez-Gómez
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | | | | | | | | |
Collapse
|
19
|
Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:172-9. [PMID: 11878320 DOI: 10.1094/mpmi.2002.15.2.172] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The fungus Fusarium oxysporum f. sp. radicis-lycopersici is the causal agent of tomato foot and root rot disease. The green fluorescent protein (GFP) was used to mark this fungus in order to visualize and analyze the colonization and infection processes in vivo. Transformation of F oxysporum f. sp. radicis-lycopersici was very efficient and gfp expression was stable for at least nine subcultures. Microscopic analysis of the transformants revealed homogeneity of the fluorescent signal, which was clearly visible in the hyphae as well as in the chlamydospores and conidia. To our knowledge, this is the first report in which this is shown. The transformation did not affect the pathogenicity. Using confocal laser scanning microscopy, colonization, infection, and disease development on tomato roots were visualized in detail and several new aspects of these processes were observed, such as (i) the complete colonization pattern of the tomato root system; (ii) the very first steps of contact between the fungus and the host, which takes place at the root hair zone by mingling and by the attachment of hyphae to the root hairs; (iii) the preferential colonization sites on the root surface, which are the grooves along the junctions of the epidermal cells; and (iv) the absence of specific infection sites, such as sites of emergence of secondary roots, root tips, or wounded tissue, and the absence of specific infection structures, such as appressoria. The results of this work prove that the use of GFP as a marker for F. oxysporum f. sp. radicis-lycopersici is a convenient, fast, and effective approach for studying plant-fungus interactions.
Collapse
|
20
|
Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. PHYTOPATHOLOGY 2001; 91:173-80. [PMID: 18944391 DOI: 10.1094/phyto.2001.91.2.173] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT Agrobacterium tumefaciens-mediated transformation (ATMT) has long been used to transfer genes to a wide variety of plants and has also served as an efficient tool for insertional mutagenesis. In this paper, we report the construction of four novel binary vectors for fungal transformation and the optimization of an ATMT protocol for insertional mutagenesis, which permits an efficient genetic manipulation of Fusarium oxysporum and other phytopathogenic fungi to be achieved. Employing the binary vectors, carrying the bacterial hygromycin B phosphotrans-ferase gene (hph) under the control of the Aspergillus nidulans trpC promoter as a selectable marker, led to the production of 300 to 500 hygromycin B resistant transformants per 1 x 10(6) conidia of F. oxysporum, which is at least an order of magnitude higher than that previously accomplished. Transformation efficiency correlated strongly with the duration of cocultivation of fungal spores with Agrobacterium tumefaciens cells and significantly with the number of Agrobacteruium tumefaciens cells present during the cocultivation period (r = 0.996; n = 3; P < 0.01). All transformants tested remained mitotically stable, maintaining their hygromycin B resistance. Growing Agrobacterium tumefaciens cells in the presence of acetosyringone (AS) prior to cocultivation shortened the time required for the formation of transformants but decreased to 53% the percentage of transformants containing a single T-DNA insert per genome. This increased to over 80% when Agrobacterium tumefaciens cells grown in the absence of AS were used. There was no correlation between the average copy number of T-DNA per genome and the colony diameter of the transformants, the period of cocultivation or the quantity of Agrobacterium tumefaciens cells present during cocultivation. To isolate the host sequences flanking the inserted T-DNA, we employed a modified thermal asymmetric interlaced PCR (TAIL-PCR) technique. Utilizing just one arbitrary primer resulted in the successful amplification of desired products in 90% of those transformants analyzed. The insertion event appeared to be a random process with truncation of the inserted T-DNA, ranging from 1 to 14 bp in size, occurring on both the right and left border sequences. Considering the size and design of the vectors described here, coupled with the efficiency and flexibility of this ATMT protocol, it is suggested that ATMT should be regarded as a highly efficient alternative to other DNA transfer procedures in characterizing those genes important for the pathogenicity of F. oxysporum and potentially those of other fungal pathogens.
Collapse
|
21
|
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
García-Maceira FI, Di Pietro A, Roncero MI. Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:359-365. [PMID: 10755298 DOI: 10.1094/mpmi.2000.13.4.359] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt, produces an array of pectinolytic enzymes, including at least two exo-alpha1,4-polygalacturonases (exoPGs). A gene encoding an exoPG, pgx4, was isolated with degenerate polymerase chain reaction primers derived from amino acid sequences conserved in two fungal exoPGs. pgx4 encodes a 454 amino acid polypeptide with nine potential N-glycosylation sites and a putative 21 amino acid N-terminal signal peptide. The deduced mature protein has a calculated molecular mass of 47.9 kDa, a pI of 8.0, and 51 and 49% identity with the exoPGs of Cochliobolus carbonum and Aspergillus tubingensis, respectively. The gene is present in a single copy in different formae speciales of F. oxysporum. Expression of pgx4 was detected during in vitro growth on pectin, polygalacturonic acid, and tomato vascular tissue and in roots and stems of tomato plants infected by F. oxysporum f. sp. lycopersici. Two mutants of F. oxysporum f. sp. lycopersici with a copy of pgx4 inactivated by gene replacement were as virulent on tomato plants as the wild-type strain.
Collapse
Affiliation(s)
- F I García-Maceira
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | |
Collapse
|
23
|
Mes JJ, Wit R, Testerink CS, de Groot F, Haring MA, Cornelissen BJ. Loss of Avirulence and Reduced Pathogenicity of a Gamma-Irradiated Mutant of Fusarium oxysporum f. sp. lycopersici. PHYTOPATHOLOGY 1999; 89:1131-1137. [PMID: 18944636 DOI: 10.1094/phyto.1999.89.12.1131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The tomato Fusarium resistance gene I-2 confers resistance to F. oxy-sporum f. sp. lycopersici race 2, which expresses the corresponding aviru-lence gene avrI-2. To elucidate the molecular basis of this gene-for-gene interaction, we initiated a search for the avrI-2 gene. Gamma irradiation mutagenesis, using (137)Cs, was performed to generate an avrI-2 mutant of F. oxysporum f. sp. lycopersici. To this end, a race 2 isolate was first transformed with a phleomycine resistance gene and a GUS marker gene in order to distinguish mutants from contaminating isolates. A total of 21,712 mutagenized colonies was tested for loss of avirulence on I-2-containing tomato seedlings. One mutant was selected that showed the expected loss of avirulence but, surprisingly, also showed reduced pathogenicity toward susceptible tomato plants. DNA analysis was subsequently used to visualize genomic changes in the mutant. Southern analysis on contour-clamped homogeneous electrophoretic field blots demonstrated a translocation of a 3.75-Mb chromosome in the mutant. Random amplified polymorphic DNA and amplified fragment length polymorphism analysis identified at least nine polymorphisms between the wild-type and mutant isolates. Most of these polymorphisms appeared as extra fragments in the mutant and contained repetitive DNA sequences.
Collapse
|
24
|
Comparison of different karyotyping methods in filamentous ascomycetes – a case study of Nectria haematococca. ACTA ACUST UNITED AC 1998. [DOI: 10.1017/s0953756298006455] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
|
26
|
Vazquez F, Heluane H, Spencer J, Spencer D, de Figueroa L. Fusion between protoplasts of Pichia stipitis and isolated filamentous fungi nuclei. Enzyme Microb Technol 1997. [DOI: 10.1016/s0141-0229(96)00228-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Protoplast production and transformation of morphological mutants of the Quorn® myco-protein fungus, Fusarium graminearum A3/5, using the hygromycin B resistance plasmid pAN7–1. ACTA ACUST UNITED AC 1997. [DOI: 10.1017/s0953756296003425] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
MIGHELI Q, FRIARD O, TEDESCO DDEL, MUSSO MR, GULLINO ML. Stability of transformed antagonistic Fusarium oxysporum strains in vitro and in soil microcosms. Mol Ecol 1996. [DOI: 10.1111/j.1365-294x.1996.tb00359.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Garcia-Pedrajas MD, Roncero MI. A homologous and self-replicating system for efficient transformation of Fusarium oxysporum. Curr Genet 1996; 29:191-8. [PMID: 8821667 DOI: 10.1007/bf02221584] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A highly efficient transformation system has been developed for Fusarium oxysporum f. sp. lycopersici based on the complementation of a nitrate-reductase mutant with the homologous nit1 gene and on the presence of ARS and telomeric sequences in the vector. Preliminary transformation experiments with the niaD gene from Aspergillus niger generated self-replicating plasmids within the transformed entity that contained extra-fungal DNA. A fragment of the extra DNA was inserted into pUC19 together with the F. oxysporum nit1 gene, resulting in plasmid pFNit-Lam. This allowed the isolation of a new linear plasmid within self-replicative F. oxysporum transformants (pFNit-Lam-TLam, linear). The circular form of this vector yielded 5600 fungal transformants per microgram of DNA. All of the transformants contained autonomous linear plasmids harboring direct repeats of fungal DNA at both ends. The sequence of the 1.2-kb fragment from F. oxysporum responsible for autonomous replication, and maintenance as linear plasmid molecules, has been determined. Comparison analysis with the ARS from different organisms has shown that this fragment contained the commonly identified ARS consensus sequence, 5'A/TTTTATA/GTTTA/T3' and, in addition to this core, ten copies of the ARS-box, 5'TNTA/GAA3'. Adjacent to this presumed ARS, the telomeric hexanucleotide sequence (TTAGGG)n was present in six tandem copies followed by 18 copies of its complementary sequence.
Collapse
|
30
|
Huang KX, Iwakami N, Fujii I, Ebizuka Y, Sankawa U. Transformations of Penicillium islandicum and Penicillium frequentans that produce anthraquinone-related compounds. Curr Genet 1995; 28:580-4. [PMID: 8593690 DOI: 10.1007/bf00518172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Wild-type strains of Penicillium islandicum and Penicillium frequentans, which produce anthraquinone and related compounds, were transformed to benomyl and hygromycin B resistance. Plasmids pSV50 and pBT6, with benomyl-resistant beta-tublin genes, and plasmids pAN7-1 and pDH25, with a bacterial hygromycin phosphotransferase gene under the control of Aspergillus nidulans sequences, were used respectively. Transformation frequencies with these plasmids were 10-20 transformants per micrograms of DNA per 4-8 x 10(7) viable protoplasts. Integration of plasmid DNAs into chromosomal DNAs was confirmed by Southern-blot analysis. Copy numbers and sites of integration varied among transformants. The integrated plasmid DNAs conferring a drug-resistant phenotype were mitotically stable with or without selection. The demonstration of such transformation systems in the essential first step in the application of recombinant DNA technology to study the biosynthetic genes of anthraquinone and related compounds in P. islandicum and P. frequentans.
Collapse
Affiliation(s)
- K X Huang
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Hamada W, Reignault P, Bompeix G, Boccara M. Transformation of Botrytis cinerea with the hygromycin B resistance gene, hph. Curr Genet 1994; 26:251-5. [PMID: 7859308 DOI: 10.1007/bf00309556] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A transformation method has been developed for the phytopathogenic fungus Botrytis cinerea. Protoplasts were transformed with pAN7-1 plasmid carrying the Escherichia coli hygromycin phosphotransferase gene (hph), conferring hygromycin B resistance, downstream from an Aspergillus nidulans promoter. Molecular analysis, showed that transformation resulted in an integration of the plasmid into different regions of the B. cinerea genome and occurred through non-homologous recombination. The frequency was 2-10 transformants per micrograms of DNA. Transformants expressed phosphotransferase activity confirming that the hph gene conferred the hygromycin-resistance phenotype. All transformants analysed so far proved to be stable after several subcultures without any selective pressure.
Collapse
Affiliation(s)
- W Hamada
- Laboratoire de biochimie et de pathologie végétales, UPMC, Paris, France
| | | | | | | |
Collapse
|
32
|
Kimura M, Kamakura T, Tao QZ, Kaneko I, Yamaguchi I. Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker for Schizosaccharomyces pombe and Pyricularia oryzae. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:121-9. [PMID: 8159161 DOI: 10.1007/bf00391004] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aspergillus terreus produces a unique enzyme, blasticidin S deaminase, which catalyzes the deamination of blasticidin S (BS), and in consequence confers high resistance to the antibiotic. A cDNA clone derived from the structural gene for BS deaminase (BSD) was isolated by transforming Escherichia coli with an Aspergillus cDNA expression library and directly selecting for the ability to grow in the presence of the antibiotic. The complete nucleotide sequence of BSD was determined and proved to contain an open reading frame of 393 bp, encoding a polypeptide of 130 amino acids. Comparison of its nucleotide sequence with that of bsr, the BS deaminase gene isolated from Bacillus cereus, indicated no homology and a large difference in codon usage. The activity of BSD expressed in E. coli was easily quantified by an assay based on spectrophotometric recording. The BSD gene was placed in a shuttle vector for Schizosaccharomyces pombe, downstream of the SV40 early region promoter, and this allowed direct selection with BS at high frequency, following transformation into the yeast. The BSD gene was also employed as a selectable marker for Pyricularia oryzae, which could not be transformed to BS resistance by bsr. These result promise that the BSD gene will be useful as a new dominant selectable marker for eukaryotes.
Collapse
Affiliation(s)
- M Kimura
- Microbial Toxicology Laboratory, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | |
Collapse
|
33
|
Perpetua NS, Kubo Y, Okuno T, Furusawa I. Restoration of pathogenicity of a penetration-deficient mutant of Collectotrichum lagenarium by DNA complementation. Curr Genet 1994; 25:41-6. [PMID: 8082164 DOI: 10.1007/bf00712965] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Infection by Colletotrichum lagenarium requires formation of an appressorium and of a penetration peg. A mutant, 83,348, defective in morphogenesis of the penetration peg was unable to penetrate into cellulose membranes or infect cucumber leaves. DNA transformation using a wild-type genomic library constructed in pKVB resulted in two transformants, Ppr1 and Ppr2, with restored penetration peg formation, from 2,000 benomyl-resistant transformants. However, penetration into cellulose membranes by these transformants ranged from 30 to 40% compared to greater than 90% by wild-type. Southern-blot hybridization showed that a single copy of a cosmid clone had integrated into the genome of the transformants. A 12.0-kbp fragment of the cosmid vector with the flanking region of wild-type genomic DNA was recovered by plasmid rescue from Ppr1. Using the flanking DNA sequences as a probe for colony blot hybridization, a genomic clone was identified and designated pRP46. Transformants obtained following transformation with pRP46 were able to penetrate cellulose membranes. The penetration frequency of pRP46 transformants ranged from 25 to 65%. Transformants were also pathogenic on cucumber.
Collapse
Affiliation(s)
- N S Perpetua
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
34
|
Bhattiprolu G, Challen M, Elliott T. Transformation of the homobasidiomycete Coprinus bilanatus to 5-fluoroindole resistance using a mutant trp3 gene from Coprinus cinereus. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0953-7562(09)80159-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Diolez A, Langin T, Gerlinger C, Brygoo Y, Daboussi MJ. The nia gene of Fusarium oxysporum: isolation, sequence and development of a homologous transformation system. Gene 1993; 131:61-7. [PMID: 8370541 DOI: 10.1016/0378-1119(93)90669-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Fusarium oxysporum gene nia, encoding nitrate reductase (NR), was isolated from a cosmid library by direct complementation of an F. oxysporum nia- mutant. The gene specifies a protein of 905 amino acids and contains a 57-bp intron. Comparison of the deduced aa sequence with NR of other fungi revealed a high degree of similarity and conservation in the intron position. The cloned nia made it possible to develop the first homologous transformation system for this fungus. Transformation frequencies of up to 600 transformants per microgram of DNA were achieved. Gene replacement, single-copy homologous integrations and integrations at non-homologous sites were observed. Direct comparison between plasmids and cosmids carrying the same gene showed a higher frequency of targeted transformation using cosmid vectors. Gene replacement events were observed in about 50% of the transformants analysed with each type of vector used. This high frequency of substitution offers new applications for the transformation system in F. oxysporum.
Collapse
Affiliation(s)
- A Diolez
- Institut de Génétique et Microbiologie, Unité associée au CNRS 1354, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
36
|
Salch YP, Beremand MN. Gibberella pulicaris transformants: state of transforming DNA during asexual and sexual growth. Curr Genet 1993; 23:343-50. [PMID: 8467533 DOI: 10.1007/bf00310897] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A genetically fertile, trichothecene-producing plant pathogen, Gibberella pulicaris (Fusarium sambucinum), was transformed with three different vectors: cosHyg1, pUCH1, and pDH25. All three vectors carry hph (encoding hygromycin B phosphotransferase) as the selectable marker. Transformation frequency was 0.03 transformants per mumg of DNA for pDH25 and 0.5 for pUCH1 or cosHyg1. The vector DNA sequences integrated at different sites into the fungal genome. Transformants were classified into three types based upon distinctive integration patterns: type A contained a single, intact copy of the vector at one site per genome; type B contained multiple tandem copies or a combination of single and multiple tandem copies at one or more sites per genome; type C contained a partial vector copy at one site per genome. While the transformants with cosHyg1 and pUCH1 were type A or B, type C was unique to pDH25 transformants. Type A and C transformants were both meiotically and mitotically stable. However, type B multiple inserts were unstable in mitosis and meiosis since: (1) multiple tandem copies were deleted; (2) rearrangements occurred during premeiosis; and (3) inserts in one of the type B transformants became methylated during premeiosis. Differential expression of transforming sequences between spore germination and mycelial growth was also observed among type B transformants. The ability to transform G. pulicaris with the resulting varied features of integration patterns and the behavior of transforming DNA during mitosis and meiosis provides a means to isolate, manipulate, and study cloned genes in this mycotoxin-producing plant pathogen.
Collapse
Affiliation(s)
- Y P Salch
- USDA/ARS, National Center for Agricultural Utilization Research, St., Peoria, IL 61604
| | | |
Collapse
|
37
|
Protoplast formation and DNA-mediated transformation of Fusarium culmorum to hygromycin B resistance. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0953-7562(09)81127-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Nara F, Watanabe I, Serizawa N. Development of a transformation system for the filamentous, ML-236B (compactin)--producing fungus Penicillium citrinum. Curr Genet 1993; 23:28-32. [PMID: 8381335 DOI: 10.1007/bf00336746] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present here the first report of a transformation system developed for the filamentous, ML-236B (compactin)-producing fungus Penicillium citrinum. Hygromycin B-resistant colonies were obtained after treatment of protoplasts with a vector containing an Escherichia coli hygromycin B phosphotransferase gene fused to a 3-phosphoglycerate kinase promoter from Aspergillus nidulans. The transformation rate was 194 transformants per microgram circular DNA per 4 x 10(5) viable protoplasts under optimized transformation conditions. Transformation took place via the integration of plasmid DNA into the fungal chromosomal DNA. Most of the integration events appeared to produce tandemly iterated arrays of plasmid molecules at different sites in the chromosome. The transformed, drug-resistant, phenotype and the integrated plasmids were mitotically stable with or without selection in a majority of cases. The demonstration of such a transformation system is an essential first step in the application of recombinant DNA technology to strain improvement and for the production of novel ML-236B derivatives.
Collapse
Affiliation(s)
- F Nara
- Fermentation Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan
| | | | | |
Collapse
|
39
|
Tsai HF, Siegel MR, Schardl CL. Transformation of Acremonium coenophialum, a protective fungal symbiont of the grass Festuca arundinacea. Curr Genet 1992; 22:399-406. [PMID: 1423727 DOI: 10.1007/bf00352441] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acremonium coenophialum is a mutualistic mycosymbiont and natural agent of biological protection of the widely distributed grass Festuca arundinacea (tall fescue). An electroporative transformation system was developed for A. coenophialum. Segments of DNA 5' to the beta-tubulin gene (tub2) of the closely related ascomycete Epichloë typhina, fused to the Escherichia coli hph gene encoding hygromycin B phosphotransferase, conferred hygromycin resistance when introduced into A. coenophialum by electroporation. The incorporation of the Emericella nidulans trpC terminator greatly increased protoplast germination on selective medium and improved transformation efficiencies 30-200% depending on the plasmid construct. Plasmid pCSN43, which incorporates the trpC controlling elements for hph expression, was also used to transform A. coenophialum. Southern blot analysis of ten pCSN43 transformants indicated the possibility of random integration of this vector into the genome.
Collapse
Affiliation(s)
- H F Tsai
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091
| | | | | |
Collapse
|
40
|
Kistler HC, Benny U. Autonomously replicating plasmids and chromosome rearrangement during transformation of Nectria haematococca. Gene X 1992; 117:81-9. [PMID: 1644317 DOI: 10.1016/0378-1119(92)90493-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A previously described, autonomously replicating plasmid was examined for its ability to replicate in the plant pathogenic fungus, Nectria haematococca (Nh). The plasmid, pFOLT4R4, replicates as a linear molecule, contains a subterminal inverted repeat, as well as the repeated hexanucleotide telomere consensus sequence, TTAGGG, at both ends, and increases frequency of fungal transformation approximately 100-fold compared to a similar integrative plasmid, pHRC. Transformation of Nh occurs by way of autonomous replication; the transformed, hygromycin B-resistant (HyR) phenotype is unstable without selection and in most cases pFOLT4R4 is maintained in the fungus, separate from chromosome-sized DNAs. Surprisingly, a non-autonomously replicating derivative of pFOLT4R4 (called pLD), lacking the subterminal inverted repeat and having the 5'-TTAGGG repeat in only one direction on the plasmid, transformed Nh at a rate as high as pFOLT4R4. Therefore, autonomous replication and high-frequency transformation are separable phenomena in Nh. In pLD transformants, plasmid sequences are integrated into chromosome-sized DNAs of Nh and these cultures generally have a stable HyR phenotype. Treatments involving ligation of Nh genomic DNA to pLD result in a lower frequency of transformation. In many cultures transformed with pLD plus genomic DNA, one wild-type chromosome-sized band is not visible, but another smaller chromosome-sized band is found. Mobility changes in some cases are consistent with deletions of over 1000 kb. Some HyS revertants of transformants appear to lack the entire chromosome into which integration had occurred. These results indicate that the Nh genome is extremely malleable and large portions may be non-essential for growth in culture.
Collapse
Affiliation(s)
- H C Kistler
- Plant Pathology Department, University of Florida, Gainesville 32611
| | | |
Collapse
|
41
|
Rozman D, Komel R. Transformation of Cochliobolus lunatus with pUT 720 changes the steroid hydroxylating ability of the fungus. Curr Genet 1992; 22:123-7. [PMID: 1384995 DOI: 10.1007/bf00351471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The filamentous fungus Cochliobolus lunatus, a known 11 beta-hydroxylator of steroids, was transformed to bleomycin resistance using the heterologous plasmid pUT 720. This plasmid contains the Sh ble gene expressed under the control of the Aspergillus nidulans gpd and trpC expression signals. The bleomycin-resistant colonies appeared with a frequency of six per microgram of DNA. All colonies were real transformants and no "abortive" growth was observed. In all transformants tested the plasmid molecules became stably integrated into the genome of the host, and one of the plasmid molecules integrated in a site-specific manner. Transformants retained the ability to hydroxylate the steroid ring, but the hydroxy group was inserted at the 15 alpha position.
Collapse
Affiliation(s)
- D Rozman
- Institute of Biochemistry, Medical Faculty, Ljubljana, Slovenia
| | | |
Collapse
|
42
|
Judelson HS, Tyler BM, Michelmore RW. Regulatory sequences for expressing genes in oomycete fungi. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:138-46. [PMID: 1495476 DOI: 10.1007/bf00272355] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Promoter and terminator sequences from a range of species were tested for activity in the oomycetes, a group of lower fungi that bear an uncertain taxonomic affinity to other organisms and in which little is known of the sequences required for transcription. Transient assays, using the reporter gene beta-glucuronidase (GUS), were used to examine the function of these promoters and terminators in the plant pathogens Phytophthora infestans and P. megasperma f. sp. glycinea, and in the saprophytic water mold, Achlya ambisexualis. Oomycete promoters, isolated from the ham34 and hsp70 genes of Bremia lactucae and the actin gene of P. megasperma f. sp. glycinea, resulted in high levels of GUS accumulation in each of the three oomycetes. In contrast, little or no activity was detected when promoters from higher fungi (four ascomycetes and one basidiomycete), plants, and animals were tested. The terminator from the ham34 gene resulted in much higher levels of GUS accumulation than did others, although an oomycete terminator was not absolutely required for expression. Transcript mapping of RNA from stable transformants confirmed accurate initiation from the B. lactucae hsp70 promoter and termination within 3' ham34 sequences in P. infestans. Our results indicate that the transcriptional machinery of the oomycetes differs significantly from that of the higher fungi, but that enough conservation exists within the class to allow vectors developed from one oomycete species to be used for others.
Collapse
Affiliation(s)
- H S Judelson
- NSF Center for Engineering Plants for Resistance Against Pathogens, University of California, Davis 95616
| | | | | |
Collapse
|
43
|
Crowhurst RN, Rees-George J, Rikkerink EH, Templeton MD. High efficiency transformation of Fusarium solani f. sp. cucurbitae race 2 (mating population V). Curr Genet 1992; 21:463-9. [PMID: 1617735 DOI: 10.1007/bf00351656] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cosmid vector, suitable for library construction and DNA transformation in filamentous fungi, has been constructed and a reliable and highly efficient PEG-mediated DNA transformation system for F. solani f. sp. cucurbitae, based on resistance to hygromycin B, has been developed for use with this vector. This transformation system yielded 10(4) transformants per micrograms of DNA when using 10(7) protoplasts. Factors important in achieving high efficiency included: the maintenance of an osmoticum in all transformation steps, PEG 4000 concentration, and the ratio of transforming vector DNA to protoplasts. Approximately 60% of transformants stably integrated vector DNA. Molecular analysis revealed multiple copies of the plasmid integrated into the genome at one or more sites. The frequency of transformation achieved will facilitate the isolation of genes from this fungus by complementation.
Collapse
|
44
|
Blaiseau PL, Kunz C, Grison R, Bertheau Y, Brygoo Y. Cloning and expression of a chitinase gene from the hyperparasitic fungus Aphanocladium album. Curr Genet 1992; 21:61-6. [PMID: 1735126 DOI: 10.1007/bf00318656] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recombinant clones from a cDNA library of an Aphanocladium album chitinase-overproducing mutant strain were isolated by screening with antiserum against a 39 kDa chitinase purified from this hyperparasitic fungus. Analysis of the isolated positive clones indicated that most of them carried the same cDNA. A cDNA from this group was used as a hybridization probe to isolate an 8 kb DNA fragment from a genomic library of the wild-type strain. The chitinase 1 gene was mapped to this fragment by two independent approaches. Its partial DNA sequence was in perfect agreement with an amino-terminal peptide sequence obtained by sequencing 23 amino acids of the 39 kDa chitinase. Its transfer in Fusarium oxysporum resulted in a transformant producing both a protein of about 39 kDa that cross-reacted with the chitinase antiserum and a chitinase activity that was inhibited by the same antiserum. Northern blot analysis indicates that the cloned chitinase gene was subject to catabolite repression and appeared inducible by chitin.
Collapse
Affiliation(s)
- P L Blaiseau
- Institut de Génétique et Microbiologie, Université Paris Sud, Orsay, France
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Cullen D, Yang V, Jeffries T, Bolduc J, Andrews JH. Genetic transformation of Aureobasidium pullulans. J Biotechnol 1991; 21:283-8. [PMID: 1369347 DOI: 10.1016/0168-1656(91)90048-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aureobasidium pullulans strain Y117 was transformed to hygromycin resistance using plasmid pDH33, which contains the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Aspergillus niger glucoamylase gene (glaA). Southern hybridizations of transformants revealed multiple, integrated copies of the vector. The glaA promoter was not induced by starch in A. pullulans as it is in A. niger; however, the transcriptional start points were the same in both species.
Collapse
Affiliation(s)
- D Cullen
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, U.S. Department of Agriculture, Madison, Wisconsin 53705-2398
| | | | | | | | | |
Collapse
|
47
|
Morphological changes and induced sporulation in HmBR transformants ofCochliobolus lunatus. Curr Microbiol 1991. [DOI: 10.1007/bf02104130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Kroon BAM, Elgersma DM. Induction of mutants of Fusarium oxysporum f. sp. lycopersici with altered virulence. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf03041388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Leslie JF, Dickman MB. Fate of DNA encoding hygromycin resistance after meiosis in transformed strains of Gibberella fujikuroi (Fusarium moniliforme). Appl Environ Microbiol 1991; 57:1423-9. [PMID: 1854200 PMCID: PMC182965 DOI: 10.1128/aem.57.5.1423-1429.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stability of foreign DNA transformed into a novel host is an important parameter in decisions to permit the release of genetically engineered microorganisms into the environment. Meiotic instability of transformed DNA has been reported in fungi such as Ascobolus, Aspergillus, and Neurospora. We used strains of Gibberella fujikuroi (Fusarium moniliforme) transformed with the hygr gene from Escherichia coli to study meiotic stability of foreign DNA in this plant pathogenic fungus. Crosses with single-copy transformants segregated hygr:hygs in a 1:1 manner consistent with that expected for a Mendelian locus in a haploid organism. Multicopy transformants, however, segregated hygr:hygs in a 1:2 manner that was not consistent with Mendelian expectations for a chromosomal marker, even though two unrelated auxotrophic nuclear genes were segregating normally. Segregation ratios in crosses in which hygr was introduced via the male parent did not differ significantly from crosses in which the transformed strain served as the female parent. Some of the sensitive progeny from the crosses with the multicopy transformants carried hygr sequences. When these phenotypically sensitive progeny were crossed with a wild-type strain that carried no hygr sequences, some of the progeny were phenotypically hygr. Some progeny from some crosses were more resistant to hygromycin than were their sibs or the transformant strains that served as their parents. Transformants passaged through a maize plant only rarely segregated progeny with the high levels of resistance. The mechanism underlying these genetic instabilities is not clear but may involve unequal crossing over or methylation or both. Further work with cloned genes with homology to sequences already present in the Fusarium genome is warranted.
Collapse
Affiliation(s)
- J F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan 66506-5502
| | | |
Collapse
|
50
|
Durand N, Reymond P, F�vre M. Transformation of Penicillium roqueforti to phleomycin- and to hygromycin B-resistance. Curr Genet 1991. [DOI: 10.1007/bf00326296] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|