1
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
2
|
Han W, Shen Z, Zou J, Ye Q, Ge C, Zhao Y, Wang T, Chen Y. Therapeutic Approaches of Dual-targeted Nanomedicines for Tumor Multidrug Resistance. Curr Drug Deliv 2024; 21:155-167. [PMID: 37143266 DOI: 10.2174/1567201820666230504145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Currently, the main cause of cancer chemotherapy failure is multi-drug resistance (MDR), which involves a variety of complex mechanisms. Compared with traditional small-molecule chemotherapy, targeted nanomedicines offer promising alternative strategies as an emerging form of therapy, especially active targeted nanomedicines. However, although single-targeted nanomedicines have made some progress in tumor therapy, the complexity of tumor microenvironment and tumor heterogeneity limits their efficacy. Dual-targeted nanomedicines can simultaneously target two tumor-specific factors that cause tumor MDR, which have the potential in overcoming tumor MDR superior to single-targeted nanomedicines by further enhancing cell uptake and cytotoxicity in new forms, as well as the effectiveness of tumor-targeted delivery. This review discusses tumor MDR mechanisms and the latest achievements applied to dual-targeted nanomedicines in tumor MDR.
Collapse
Affiliation(s)
- Weili Han
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Zhenglin Shen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Jie Zou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Qiufang Ye
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Cheng Ge
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yuqin Zhao
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Ting Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yafang Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| |
Collapse
|
3
|
Goyal S, Cambronne XA. Layered mechanisms regulating the human mitochondrial NAD+ transporter SLC25A51. Biochem Soc Trans 2023; 51:1989-2004. [PMID: 38108469 PMCID: PMC10802112 DOI: 10.1042/bst20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
SLC25A51 is the primary mitochondrial NAD+ transporter in humans and controls many local reactions by mediating the influx of oxidized NAD+. Intriguingly, SLC25A51 lacks several key features compared with other members in the mitochondrial carrier family, thus its molecular mechanism has been unclear. A deeper understanding would shed light on the control of cellular respiration, the citric acid cycle, and free NAD+ concentrations in mammalian mitochondria. This review discusses recent insights into the transport mechanism of SLC25A51, and in the process highlights a multitiered regulation that governs NAD+ transport. The aspects regulating SLC25A51 import activity can be categorized as contributions from (1) structural characteristics of the transporter itself, (2) its microenvironment, and (3) distinctive properties of the transported ligand. These unique mechanisms further evoke compelling new ideas for modulating the activity of this transporter, as well as new mechanistic models for the mitochondrial carrier family.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Xiaolu A. Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
4
|
Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Front Neurosci 2023; 17:1144896. [PMID: 37559701 PMCID: PMC10409489 DOI: 10.3389/fnins.2023.1144896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.
Collapse
Affiliation(s)
| | | | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
WANG J, JIN QG, LIU RP, WANG XQ, LI YH, KIM NH, XU YN. Dihydromyricetin supplementation during in vitro culture improves porcine oocyte developmental competence by regulating oxidative stress. J Reprod Dev 2023; 69:10-17. [PMID: 36403957 PMCID: PMC9939282 DOI: 10.1262/jrd.2022-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dihydromyricetin (DHM), a dihydroflavonoid compound, exhibits a variety of biological activities, including antitumor activity. However, the effects of DHM on mammalian reproductive processes, especially during early embryonic development, remain unclear. In this study, we added DHM to porcine zygotic medium to explore the influence and underlying mechanisms of DHM on the developmental competence of parthenogenetically activated porcine embryos. Supplementation with 5 μM DHM during in vitro culture (IVC) significantly improved blastocyst formation rate and increased the total number of cells in porcine embryos. Further, DHM supplementation also improved glutathione levels and mitochondrial membrane potential; reduced natural reactive oxygen species levels in blastomeres and apoptosis rate; upregulated Nanog, Oct4, SOD1, SOD2, Sirt1, and Bcl2 expression; and downregulated Beclin1, ATG12, and Bax expression. Collectively, DHM supplementation regulated oxidative stress during IVC and could act as a potential antioxidant during in vitro porcine oocytes maturation.
Collapse
Affiliation(s)
- Jing WANG
- College of Agriculture, Yanbian University, Yanji 133000, China,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Qing-Guo JIN
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Rong-Ping LIU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Xin-Qin WANG
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Ying-Hua LI
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Nam-Hyung KIM
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Yong-Nan XU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| |
Collapse
|
6
|
Guo X, Tu P, Zhu L, Cheng C, Jiang W, Du C, Wang X, Qiu X, Luo Y, Wan L, Tang R, Ran H, Wang Z, Ren J. Nanoenabled Tumor Energy Metabolism Disorder via Sonodynamic Therapy for Multidrug Resistance Reversal and Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:309-326. [PMID: 36576435 DOI: 10.1021/acsami.2c16278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer multidrug resistance (MDR) is an important reason that results in chemotherapy failure. As a main mechanism of MDR, overexpressed P-glycoprotein (P-gp) utilizes adenosine triphosphate (ATP) to actively pump chemotherapy drugs out of cells. In addition, metabolic reprogramming of drug-resistant tumor cells (DRTCs) exacerbates the specific hypoxic microenvironment and promotes tumor metastasis and recurrence. Therefore, we propose a novel sonodynamic therapy (SDT) paradigm to induce energy metabolism disorder and drug resistance change of DRTCs. A US-controlled "Nanoenabled Energy Metabolism Jammer" (TL@HPN) is designed using perfluoropentane (PFP) adsorbing oxygen in the core, and a targeting peptide (CGNKRTR) is attached to the liposome as the delivery carrier shell to incorporate hematoporphyrin monomethyl ether (HMME) and paclitaxel (PTX). The TL@HPN with ultrasonic/photoacoustic imaging (PAI/USI) precisely controlled the release of drugs and oxygen after being triggered by ultrasound (US), which attenuated the hypoxic microenvironment. SDT boosted the reactive oxygen species (ROS) content in tumor tissues, preferentially inducing mitochondrial apoptosis and maximizing immunogenic cell death (ICD). Persistently elevated oxidative stress levels inhibited ATP production and downregulated P-gp expression by disrupting the redox balance and electron transfer of the respiratory chain. We varied the effect of TL@HPN combined with PD-1/PD-L1 to activate autoimmunity and inhibit tumor metastasis, providing a practical strategy for expanding the use of SDT-mediated tumor energy metabolism.
Collapse
Affiliation(s)
- Xun Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Peng Tu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Leilei Zhu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Ultrasound, Chongqing General Hospital, Chongqing 401147, P. R. China
| | - Chen Cheng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Ultrasound, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing 402760, P. R. China
| | - Weixi Jiang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chier Du
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoting Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoling Qiu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yuanli Luo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Li Wan
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Health Management Center & Physical Examination Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Rui Tang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhigang Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
7
|
Flierl A, Schriner SE, Hancock S, Coskun PE, Wallace DC. The mitochondrial adenine nucleotide transporters in myogenesis. Free Radic Biol Med 2022; 188:312-327. [PMID: 35714845 DOI: 10.1016/j.freeradbiomed.2022.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 01/06/2023]
Abstract
Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes. These cell lines are immortal under permissive conditions (IFN-γ + serum at 32 °C) permitting expansion but return to normal myoblasts that can be differentiated into myotubes at 37 °C. With this system we were able to complement our Ant1 mutant studies by demonstrating that ANT2 is important for myoblast to myotube differentiation and myotube mitochondrial respiration. ANT2 is also important in the regulation of mitochondrial biogenesis and antioxidant defenses. ANT2 is also associated with increased oxidative stress response and modulation for Ca++ sequestration and activation of the mitochondrial permeability transition (mtPTP) pore during cell differentiation.
Collapse
Affiliation(s)
- Adrian Flierl
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Samuel E Schriner
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Saege Hancock
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Pinar E Coskun
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
8
|
Wilson DF, Matschinsky FM. Integration of Eukaryotic Energy Metabolism: The Intramitochondrial and Cytosolic Energy States ([ATP] f/[ADP] f[Pi]). Int J Mol Sci 2022; 23:ijms23105550. [PMID: 35628359 PMCID: PMC9146745 DOI: 10.3390/ijms23105550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Maintaining a robust, stable source of energy for doing chemical and physical work is essential to all living organisms. In eukaryotes, metabolic energy (ATP) production and consumption occurs in two separate compartments, the mitochondrial matrix and the cytosol. As a result, understanding eukaryotic metabolism requires knowledge of energy metabolism in each compartment and how metabolism in the two compartments is coordinated. Central to energy metabolism is the adenylate energy state ([ATP]/[ADP][Pi]). ATP is synthesized by oxidative phosphorylation (mitochondrial matrix) and glycolysis (cytosol) and each compartment provides the energy to do physical work and to drive energetically unfavorable chemical syntheses. The energy state in the cytoplasmic compartment has been established by analysis of near equilibrium metabolic reactions localized in that compartment. In the present paper, analysis is presented for energy-dependent reactions localized in the mitochondrial matrix using data obtained from both isolated mitochondria and intact tissues. It is concluded that the energy state ([ATP]f/[ADP]f[Pi]) in the mitochondrial matrix, calculated from the free (unbound) concentrations, is not different from the energy state in the cytoplasm. Corollaries are: (1) ADP in both the cytosol and matrix is selectively bound and the free concentrations are much lower than the total measured concentrations; and (2) under physiological conditions, the adenylate energy states in the mitochondrial matrix and cytoplasm are not substantially different.
Collapse
|
9
|
Liang L, Peng Y, Qiu L. Mitochondria-targeted vitamin E succinate delivery for reversal of multidrug resistance. J Control Release 2021; 337:117-131. [PMID: 34274383 DOI: 10.1016/j.jconrel.2021.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022]
Abstract
Inducing mitochondrial malfunction is an appealing strategy to overcome tumor multidrug resistance (MDR). Reported here a versatile mitochondrial-damaging molecule, vitamin E succinate (VES), is creatively utilized to assist MDR reversal of doxorubicin hydrochloride (DOX·HCl) via a nanovesicle platform self-assembled from amphiphilic polyphosphazenes containing pH-sensitive 1H-benzo-[d]imidazol-2-yl) methanamine (BIMA) groups. Driven by multiple non-covalent interactions, VES is fully introduced into the hydrophobic membrane of DOX·HCl-loaded nanovesicles with loading content of 23.5%. The incorporated VES also offers robust anti-leakage property toward DOX·HCl under normal physiological conditions. More importantly, upon release within acidic tumor cells, VES can target mitochondria and result in various dysfunctions including excessive generation of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm) loss, and inhibited adenosine triphosphate (ATP) synthesis, which contribute to cell apoptosis and insufficient energy supply for drug efflux pumps. Consequently, the killing-effect of DOX·HCl is significantly enhanced toward drug resistant cancer cells at the optimal mass ratio of DOX·HCl to VES. Further in vivo antitumor investigation on nude mice bearing xenograft drug-resistant human chronic myelogenous leukemia K562/ADR tumors verifies the extremely enhanced anti-tumor efficacy of the dual drug-loaded nanovesicle with the tumor inhibition rate (TIR) of 82.38%. Collectively, this study provides a s safe, facile and promising strategy for both precise drug delivery and MDR eradication to improve cancer therapy.
Collapse
Affiliation(s)
- Lina Liang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Peng
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
10
|
Abstract
Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.
Collapse
Affiliation(s)
- J J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| | - E R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
11
|
Guo W, Chen Z, Feng X, Shen G, Huang H, Liang Y, Zhao B, Li G, Hu Y. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnology 2021; 19:146. [PMID: 34011375 PMCID: PMC8136184 DOI: 10.1186/s12951-021-00874-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paclitaxel (PTX) has been suggested to be a promising front-line drug for gastric cancer (GC), while P-glycoprotein (P-gp) could lead to drug resistance by pumping PTX out of GC cells. Consequently, it might be a hopeful way to combat drug resistance by inhibiting the out-pumping function of P-gp. RESULTS In this study, we developed a drug delivery system incorporating PTX onto polyethylene glycol (PEG)-modified and oxidized sodium alginate (OSA)-functionalized graphene oxide (GO) nanosheets (NSs), called PTX@GO-PEG-OSA. Owing to pH/thermal-sensitive drug release properties, PTX@GO-PEG-OSA could induced more obvious antitumor effects on GC, compared to free PTX. With near infrared (NIR)-irradiation, PTX@GO-PEG-OSA could generate excessive reactive oxygen species (ROS), attack mitochondrial respiratory chain complex enzyme, reduce adenosine-triphosphate (ATP) supplement for P-gp, and effectively inhibit P-gp's efflux pump function. Since that, PTX@GO-PEG-OSA achieved better therapeutic effect on PTX-resistant GC without evident toxicity. CONCLUSIONS In conclusion, PTX@GO-PEG-OSA could serve as a desirable strategy to reverse PTX's resistance, combined with chemo/photothermal/photodynamic therapy.
Collapse
Affiliation(s)
- Weihong Guo
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Zhian Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Guodong Shen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Huilin Huang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Yanrui Liang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bingxia Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 PR China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Yanfeng Hu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
12
|
Fernandes IG, de Brito CA, dos Reis VMS, Sato MN, Pereira NZ. SARS-CoV-2 and Other Respiratory Viruses: What Does Oxidative Stress Have to Do with It? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8844280. [PMID: 33381273 PMCID: PMC7757116 DOI: 10.1155/2020/8844280] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
The phenomenon of oxidative stress, characterized as an imbalance in the production of reactive oxygen species and antioxidant responses, is a well-known inflammatory mechanism and constitutes an important cellular process. The relationship of viral infections, reactive species production, oxidative stress, and the antiviral response is relevant. Therefore, the aim of this review is to report studies showing how reactive oxygen species may positively or negatively affect the pathophysiology of viral infection. We focus on known respiratory viral infections, especially severe acute respiratory syndrome coronaviruses (SARS-CoVs), in an attempt to provide important information on the challenges posed by the current COVID-19 pandemic. Because antiviral therapies for severe acute respiratory syndrome coronaviruses (e.g., SARS-CoV-2) are rare, knowledge about relevant antioxidant compounds and oxidative pathways may be important for understanding viral pathogenesis and identifying possible therapeutic targets.
Collapse
Affiliation(s)
- Iara Grigoletto Fernandes
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Role of DRAM1 in mitophagy contributes to preeclampsia regulation in mice. Mol Med Rep 2020; 22:1847-1858. [PMID: 32582984 PMCID: PMC7411365 DOI: 10.3892/mmr.2020.11269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE) is a complication during pregnancy that is diagnosed by a new onset of hypertension and proteinuria. Although the pathogenesis of PE is not fully understood, a growing body of evidence indicates that oxidative stress and mitochondrial dysfunction might contribute to the progression of PE. Therefore, the aim of the present study was to determine the role of mitophagy in mitochondrial dysfunction and oxidative stress in PE, and to evaluate the role of DNA damage‑regulated autophagy modulator 1 (DRAM1) in the development of PE. First, a mouse model of PE induced by hypoxia‑inducible factor 1α was established, and high levels of oxidative stress, apoptosis and mitochondrial dysfunction were found in the placentas of PE mice. Additionally, the placentas of PE mice exhibited decreased mitophagy and significantly decreased DRAM1 expression. To further explore the role of DRAM1 in mitophagy, DRAM1 was overexpressed in the placental tissues of PE mice, and this overexpression effectively improved the symptoms of PE mice and significantly reduced blood lipid and urine protein levels. DRAM1 overexpression also improved mitochondrial function and reduced oxidative stress in the placentas of PE mice. In addition, the overexpression of DRAM1 improved mitochondrial fusion and fission, and enhanced mitophagy. Altogether, these results indicated a key role for DRAM1 in mitophagy that contributed to the regulation of PE. To the best of the authors' knowledge, the present study provided the first evidence of a role for DRAM1 in PE, and offered novel insight into the pathophysiological mechanisms of PE.
Collapse
|
14
|
Bround MJ, Bers DM, Molkentin JD. A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. J Mol Cell Cardiol 2020; 144:A3-A13. [PMID: 32454061 DOI: 10.1016/j.yjmcc.2020.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022]
Abstract
The adenosine nucleotide translocase (ANT) family of proteins are inner mitochondrial membrane proteins involved in energy homeostasis and cell death. The primary function of ANT proteins is to exchange cytosolic ADP with matrix ATP, facilitating the export of newly synthesized ATP to the cell while providing new ADP substrate to the mitochondria. As such, the ANT proteins are central to maintaining energy homeostasis in all eukaryotic cells. Evidence also suggests that the ANTs constitute a pore-forming component of the mitochondrial permeability transition pore (MPTP), a structure that forms in the inner mitochondrial membrane that is thought to underlie regulated necrotic cell death. Additionally, emerging studies suggest that ANT proteins are also critical for mitochondrial uncoupling and for promoting mitophagy. Thus, the ANTs are multifunctional proteins that are poised to participate in several aspects of mitochondrial biology and the greater regulation of cell death, which will be discussed here.
Collapse
Affiliation(s)
- Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
15
|
Galkina KV, Zyrina AN, Golyshev SA, Kashko ND, Markova OV, Sokolov SS, Severin FF, Knorre DA. Mitochondrial dynamics in yeast with repressed adenine nucleotide translocator AAC2. Eur J Cell Biol 2020; 99:151071. [PMID: 32057484 DOI: 10.1016/j.ejcb.2020.151071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.
Collapse
Affiliation(s)
- Kseniia V Galkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Anna N Zyrina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Sergey A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Nataliia D Kashko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia
| | - Olga V Markova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
16
|
Abstract
Regulation of ATP production by mitochondria, critical to multicellular life, is poorly understood. Here we investigate the molecular controls of this process in heart and provide a framework for its Ca2+-dependent regulation. We find that the entry of Ca2+ into the matrix through the mitochondrial calcium uniporter (MCU) in heart has neither an apparent cytosolic Ca2+ threshold nor gating function and guides ATP production by its influence on the inner mitochondrial membrane (IMM) potential, ΔΨm. This regulation occurs by matrix Ca2+-dependent modulation of pyruvate and glutamate dehydrogenase activity and not through any effect of Ca2+ on ATP Synthase or on Electron Transport Chain Complexes II, III or IV. Examining the ΔΨm dependence of ATP production over the range of -60 mV to -170 mV in detail reveals that cardiac ATP synthase has a voltage dependence that distinguishes it fundamentally from the previous standard, the bacterial ATP synthase. Cardiac ATP synthase operates with a different ΔΨm threshold for ATP production than bacterial ATP synthase and reveals a concave-upwards shape without saturation. Skeletal muscle MCU Ca2+ flux, while also having no apparent cytosolic Ca2+ threshold, is substantially different from the cardiac MCU, yet the ATP synthase voltage dependence in skeletal muscle is identical to that in the heart. These results suggest that while the conduction of cytosolic Ca2+ signals through the MCU appears to be tissue-dependent, as shown by earlier work1, the control of ATP synthase by ΔΨm appears to be broadly consistent among tissues but is clearly different from bacteria.
Collapse
Affiliation(s)
- Andrew P Wescott
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H2O2 during porcine embryonic development. Theriogenology 2019; 135:174-180. [DOI: 10.1016/j.theriogenology.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022]
|
18
|
Mitochondria and the Brain: Bioenergetics and Beyond. Neurotox Res 2019; 36:219-238. [DOI: 10.1007/s12640-019-00061-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
19
|
Yi Q, Li Q, Yao S, Chen Y, Guan MX, Cang X. Molecular dynamics simulations on apo ADP/ATP carrier shed new lights on the featured motif of the mitochondrial carriers. Mitochondrion 2019; 47:94-102. [PMID: 31129042 DOI: 10.1016/j.mito.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 02/04/2023]
Abstract
The ADP/ATP carrier (AAC) is a transporter responsible for the equal molar exchange of cytosolic ADP and ATP synthesized within mitochondrial matrix across the mitochondrial membrane. Its primary structure consists of three homologous repeats, and each repeat contains a conserved motif that is shared by all members of the mitochondrial carrier family (MCF). Although these MCF motif residues cluster together in the crystal structure of AAC, detailed analyses on the interactions among the motif residues are still limited. In the present study, all-atom molecular dynamics (MD) simulations of up to 10 μs have been carried out on AAC, and interactions and structural dynamics of the MCF motif residues have been specifically investigated. Our simulations have revealed: i) a very asymmetrical electrostatic network at the bottom of the pocket of apo AAC, ii) the asymmetrical interactions between the Pro kink region and the [YWF][KR] G motif in three repeats, iii) the role of the conserved Arg residues in stabilizing the C-ends of the odd-numbered helices, iv) the structural change of the [YWF][KR] G motif and its potential involvement in substrate translocation process. Our results highlight the asymmetry of the MCF residues in the three repeats, which might contribute to the ability of the carriers to transport the asymmetrical substrates. Our observations provide microscopic basis for further research on the translocation mechanism of mitochondrial carriers.
Collapse
Affiliation(s)
- Qiuzi Yi
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiang Li
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- School of Information and Electric Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, China; Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
20
|
Wang H, Gao Z, Liu X, Agarwal P, Zhao S, Conroy DW, Ji G, Yu J, Jaroniec CP, Liu Z, Lu X, Li X, He X. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun 2018; 9:562. [PMID: 29422620 PMCID: PMC5805731 DOI: 10.1038/s41467-018-02915-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
Multidrug resistance is a major challenge to cancer chemotherapy. The multidrug resistance phenotype is associated with the overexpression of the adenosine triphosphate (ATP)-driven transmembrane efflux pumps in cancer cells. Here, we report a lipid membrane-coated silica-carbon (LSC) hybrid nanoparticle that targets mitochondria through pyruvate, to specifically produce reactive oxygen species (ROS) in mitochondria under near-infrared (NIR) laser irradiation. The ROS can oxidize the NADH into NAD+ to reduce the amount of ATP available for the efflux pumps. The treatment with LSC nanoparticles and NIR laser irradiation also reduces the expression and increases the intracellular distribution of the efflux pumps. Consequently, multidrug-resistant cancer cells lose their multidrug resistance capability for at least 5 days, creating a therapeutic window for chemotherapy. Our in vivo data show that the drug-laden LSC nanoparticles in combination with NIR laser treatment can effectively inhibit the growth of multidrug-resistant tumors with no evident systemic toxicity.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Zan Gao
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Xuanyou Liu
- Division of Cardiovascular Medicine, Center for Precision Medicine, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Pranay Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Shuting Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel W Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Division of Hematology, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Division of Cardiovascular Medicine, Center for Precision Medicine, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics and Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaodong Li
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
21
|
Springett R, King MS, Crichton PG, Kunji ERS. Modelling the free energy profile of the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:906-914. [PMID: 28554566 PMCID: PMC5604490 DOI: 10.1016/j.bbabio.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/23/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
Abstract
The mitochondrial ADP/ATP carrier catalyses the equimolar exchange of adenosine di- and tri-phosphates. It operates by an alternating access mechanism in which a single substrate-binding site is made available either to the mitochondrial matrix or the intermembrane space through conformational changes. These changes are prevented in the absence of substrate by a large energy barrier due to the need for sequential disruption and formation of a matrix and cytoplasmic salt bridge network that are located on either side of the central cavity. In analogy to enzyme catalysis, substrate lowers the energy barrier by binding tighter in the intermediate state. Here we provide an in-silico kinetic model that captures the free energy profile of these conformational changes and treats the carrier as a nanomachine moving stochastically from the matrix to cytoplasmic conformation under the influence of thermal energy. The model reproduces the dependency of experimentally determined kcat and KM values on the cytoplasmic network strength with good quantitative accuracy, implying that it captures the transport mechanism and can provide a framework to understand the structure-function relationships of this class of transporter. The results show that maximum transport occurs when the interaction energies of the cytoplasmic network, matrix network and substrate binding are approximately equal such that the energy barrier is minimized. Consequently, the model predicts that there will be other interactions in addition to those of the cytoplasmic network that stabilise the matrix conformation of the ADP/ATP carrier.
Collapse
Affiliation(s)
- Roger Springett
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Paul G Crichton
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
22
|
Gao Y, Pan L, Sun Y, Zhang T, Dong L, Li J. Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crus-galli var. zelayensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:231-238. [PMID: 29183597 DOI: 10.1016/j.pestbp.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/29/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Quinclorac, an auxin-type herbicide, is widely used to control barnyardgrass and some dicotyledon weeds. Echinochloa crus-galli var. zelayensis, a variety of E. crus-galli (L.) Beauv., is widespread in China and some populations have resistance to quinclorac. E. crus-galli var. zelayensis seeds with varying sensitivity to quinclorac were used in the present study. The expression of the ADP/ATP carrier protein (ANT) gene, which plays an important role in the maintenance of cellular energy balance, dramatically rose in the S biotype after exposure to quinclorac, while no change was found in two R biotypes. The activity of β-cyanoalanine synthase (β-CAS), which is the key enzyme for cyanide degradation, was higher in two R biotypes than in the S biotype before and after treatment with quinclorac. One single-nucleotide difference was detected in the EcCAS gene of two R biotypes compared with the S biotype. The nucleotide change, which caused one amino acid substitution, replacing Methionine (Met)-295 with Lysine (Lys)-295 in the two R biotypes, which are same as the rice β-CAS gene at this position. In addition, EcCAS gene expression was higher in the two R biotypes than in the S biotype. In conclusion, β-CAS may play a crucial role in the resistance of E. crus-galli var. zelayensis to quinclorac. EcCAS gene mutation and higher gene expression may enhance the activity of β-CAS to avoid the accumulation of toxic cyanide in resistant populations, thus contributing to the resistance mechanism of E. crus-galli var. zelayensis. to quinclorac.
Collapse
Affiliation(s)
- Yuan Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Lang Pan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Yu Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Teng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China.
| | - Jun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, China.
| |
Collapse
|
23
|
Wang X, Wang M, Xu J, Jia Z, Liu Z, Wang L, Song L. Soluble adenylyl cyclase mediates mitochondrial pathway of apoptosis and ATP metabolism in oyster Crassostrea gigas exposed to elevated CO 2. FISH & SHELLFISH IMMUNOLOGY 2017; 66:140-147. [PMID: 28476673 DOI: 10.1016/j.fsi.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Ocean acidification (OA) has deleterious impacts on immune response and energy homeostasis status of Mollusca. In the present study, the apoptosis ratio of hemocytes and the adenosine triphosphate (ATP) allocation in gill tissues were determined after Pacific oysters Crassostrea gigas were exposed to elevated CO2 environment (pH = 7.50) for 16 days.The apoptosis ratio in CO2 exposure group (35.2%) was significantly higher (p < 0.05) than that in the control group, and the increased apoptosis ratio induced by elevated CO2 could be significantly inhibited (p < 0.05) by KH7, a specific inhibitor of a bicarbonate sensor soluble adenylyl cyclase (sAC). After CO2 exposure, sAC in oyster (CgsAC) was found to be clustered with mitochondria in the cytoplasm, and the pro-caspase-3 was cleaved into two small fragments. Moreover, the activities of caspase-3 and caspase-9 also increased post CO2 exposure and these increases could be inhibited by KH7. However, the activities of caspase-8 did not change significantly compared with that in the control group. After CO2 exposure, the ATP content in the gill increased significantly (p < 0.05) and such increase could also be inhibited by KH7. The ATP content in purified gill mitochondria decreased significantly (p < 0.05) after CO2 exposure, which was also inhibited by KH7. These results implied that the elevated CO2 could activate the mitochondria-CgsAC pathway of apoptosis and ATP metabolism in oyster, and this pathway played essential roles in maintaining the homeostasis and the balance of energy metabolism in response to OA.
Collapse
Affiliation(s)
- Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
24
|
Abstract
Apart from energy transformation, mitochondria play important signaling roles. In
yeast, mitochondrial signaling relies on several molecular cascades. However, it
is not clear how a cell detects a particular mitochondrial malfunction. The
problem is that there are many possible manifestations of mitochondrial
dysfunction. For example, exposure to the specific antibiotics can either
decrease (inhibitors of respiratory chain) or increase (inhibitors of
ATP-synthase) mitochondrial transmembrane potential. Moreover, even in the
absence of the dysfunctions, a cell needs feedback from mitochondria to
coordinate mitochondrial biogenesis and/or removal by mitophagy during the
division cycle. To cope with the complexity, only a limited set of compounds is
monitored by yeast cells to estimate mitochondrial functionality. The known
examples of such compounds are ATP, reactive oxygen species, intermediates of
amino acids synthesis, short peptides, Fe-S clusters and heme, and also the
precursor proteins which fail to be imported by mitochondria. On one hand, the
levels of these molecules depend not only on mitochondria. On the other hand,
these substances are recognized by the cytosolic sensors which transmit the
signals to the nucleus leading to general, as opposed to mitochondria-specific,
transcriptional response. Therefore, we argue that both ways of
mitochondria-to-nucleus communication in yeast are mostly (if not completely)
unspecific, are mediated by the cytosolic signaling machinery and strongly
depend on cellular metabolic state.
Collapse
Affiliation(s)
- Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Anna N Zyrina
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia. ; Institute of Mitoengineering, Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
25
|
Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 2016; 473:1129-40. [PMID: 26920024 PMCID: PMC4845862 DOI: 10.1042/bcj20160070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/24/2016] [Indexed: 01/11/2023]
Abstract
The molecular identity of the mitochondrial permeability transition pore (MPTP), a key player in cell death, remains controversial. Here we use a novel MPTP inhibitor to demonstrate that formation of the pore involves native mitochondrial membrane proteins adopting novel conformations. Inhibition of the mitochondrial permeability transition pore (MPTP) by the novel inhibitor GNX-4975 was characterized. Titration of MPTP activity in de-energized rat liver mitochondria allowed determination of the number of GNX-4975-binding sites and their dissociation constant (Ki). Binding sites increased in number when MPTP opening was activated by increasing [Ca2+], phenylarsine oxide (PAO) or KSCN, and decreased when MPTP opening was inhibited with bongkrekic acid (BKA) or ADP. Values ranged between 9 and 50 pmol/mg of mitochondrial protein, but the Ki remained unchanged at ∼1.8 nM when the inhibitor was added before Ca2+. However, when GNX-4975 was added after Ca2+ it was much less potent with a Ki of ∼140 nM. These data imply that a protein conformational change is required to form the MPTP complex and generate the GNX-4975-binding site. Occupation of the latter with GNX-4975 prevents the Ca2+ binding that triggers pore opening. We also demonstrated that GNX-4975 stabilizes an interaction between the adenine nucleotide translocase (ANT), held in its ‘c’ conformation with carboxyatractyloside (CAT), and the phosphate carrier (PiC) bound to immobilized PAO. No components of the F1Fo-ATP synthase bound significantly to immobilized PAO. Our data are consistent with our previous proposal that the MPTP may form at an interface between the PiC and ANT (or other similar mitochondrial carrier proteins) when they adopt novel conformations induced by factors that sensitize the MPTP to [Ca2+]. We propose that GNX-4975 binds to this interface preventing a calcium-triggered event that opens the interface into a pore.
Collapse
|
26
|
Chinopoulos C, Kiss G, Kawamata H, Starkov AA. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption. Methods Enzymol 2015; 542:333-48. [PMID: 24862274 DOI: 10.1016/b978-0-12-416618-9.00017-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations.
Collapse
Affiliation(s)
| | - Gergely Kiss
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Hibiki Kawamata
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, USA
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, USA
| |
Collapse
|
27
|
Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc Natl Acad Sci U S A 2014; 111:E4560-7. [PMID: 25313036 DOI: 10.1073/pnas.1406251111] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.
Collapse
|
28
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
29
|
Klimenko ES, Mileiko VA, Morozkin ES, Laktionov PP, Konstantinov YM. Study of DNA import and export in potato (Solanum tuberosum) mitochondria using quantitative PCR. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2011. [DOI: 10.1134/s1990747811030044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Chinopoulos C, Konràd C, Kiss G, Metelkin E, Töröcsik B, Zhang SF, Starkov AA. Modulation of F0F1-ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels. FEBS J 2011; 278:1112-25. [PMID: 21281446 PMCID: PMC3062657 DOI: 10.1111/j.1742-4658.2011.08026.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyclophilin D was recently shown to bind to and decrease the activity of F(0)F(1)-ATP synthase in submitochondrial particles and permeabilized mitochondria [Giorgio V et al. (2009) J Biol Chem, 284, 33982-33988]. Cyclophilin D binding decreased both ATP synthesis and hydrolysis rates. In the present study, we reaffirm these findings by demonstrating that, in intact mouse liver mitochondria energized by ATP, the absence of cyclophilin D or the presence of cyclosporin A led to a decrease in the extent of uncoupler-induced depolarization. Accordingly, in substrate-energized mitochondria, an increase in F(0)F(1)-ATP synthase activity mediated by a relief of inhibition by cyclophilin D was evident in the form of slightly increased respiration rates during arsenolysis. However, the modulation of F(0)F(1)-ATP synthase by cyclophilin D did not increase the adenine nucleotide translocase (ANT)-mediated ATP efflux rate in energized mitochondria or the ATP influx rate in de-energized mitochondria. The lack of an effect of cyclophilin D on the ANT-mediated adenine nucleotide exchange rate was attributed to the ∼ 2.2-fold lower flux control coefficient of the F(0)F(1)-ATP synthase than that of ANT, as deduced from measurements of adenine nucleotide flux rates in intact mitochondria. These findings were further supported by a recent kinetic model of the mitochondrial phosphorylation system, suggesting that an ∼ 30% change in F(0)F(1)-ATP synthase activity in fully energized or fully de-energized mitochondria affects the ADP-ATP exchange rate mediated by the ANT in the range 1.38-1.7%. We conclude that, in mitochondria exhibiting intact inner membranes, the absence of cyclophilin D or the inhibition of its binding to F(0)F(1)-ATP synthase by cyclosporin A will affect only matrix adenine nucleotides levels.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Weill Medical College Cornell University, New York, NY, 10021, USA
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Csaba Konràd
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Gergely Kiss
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | | | - Beata Töröcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Steven F. Zhang
- Weill Medical College Cornell University, New York, NY, 10021, USA
| | | |
Collapse
|
31
|
Orij R, Brul S, Smits GJ. Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta Gen Subj 2011; 1810:933-44. [PMID: 21421024 DOI: 10.1016/j.bbagen.2011.03.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nearly all processes in living cells are pH dependent, which is why intracellular pH (pH(i)) is a tightly regulated physiological parameter in all cellular systems. However, in microbes such as yeast, pH(i) responds to extracellular conditions such as the availability of nutrients. This raises the question of how pH(i) dynamics affect cellular function. SCOPE OF REVIEW We discuss the control of pH(i,) and the regulation of processes by pH(i), focusing on the model organism Saccharomyces cerevisiae. We aim to dissect the effects of pH(i) on various aspects of cell physiology, which are often intertwined. Our goal is to provide a broad overview of how pH(i) is controlled in yeast, and how pH(i) in turn controls physiology, in the context of both general cellular functioning as well as of cellular decision making upon changes in the cell's environment. MAJOR CONCLUSIONS Besides a better understanding of the regulation of pH(i), evidence for a signaling role of pH(i) is accumulating. We conclude that pH(i) responds to nutritional cues and relays this information to alter cellular make-up and physiology. The physicochemical properties of pH allow the signal to be fast, and affect multiple regulatory levels simultaneously. GENERAL SIGNIFICANCE The mechanisms for regulation of processes by pH(i) are tightly linked to the molecules that are part of all living cells, and the biophysical properties of the signal are universal amongst all living organisms, and similar types of regulation are suggested in mammals. Therefore, dynamic control of cellular decision making by pH(i) is therefore likely a general trait. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Rick Orij
- Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands.
| | | | | |
Collapse
|
32
|
Panda V, Khambat P, Patil S. Mitocans as Novel Agents for Anticancer Therapy: An Overview. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ijcm.2011.24086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Chinopoulos C, Zhang SF, Thomas B, Ten V, Starkov AA. Isolation and functional assessment of mitochondria from small amounts of mouse brain tissue. Methods Mol Biol 2011; 793:311-24. [PMID: 21913109 DOI: 10.1007/978-1-61779-328-8_20] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subregions, such as ventral midbrain, hippocampus, or striatum, require pooling brain tissue from six to nine animals for a single mitochondrial preparation. Working with pooled tissue significantly decreases the quality of data because of the time required to dissect several brains. It also greatly increases the labor intensity and the cost of experiments as several animals are required per single data point. We describe a method for isolation of brain mitochondria from mouse striata or other 7-12 mg brain samples. The method utilizes a refrigerated table-top microtube centrifuge, and produces research grade quality mitochondria in amounts sufficient for performing multiple enzymatic and functional assays, thereby eliminating the necessity for pooling mouse brain tissue. We also include a method of measuring ADP-ATP exchange rate as a function of mitochondrial membrane potential (ΔΨm) in small amounts of isolated mitochondria, adapted to a plate reader format.
Collapse
|
34
|
Oxygen Utilization and Toxicity in the Lungs. Compr Physiol 2011. [DOI: 10.1002/cphy.cp030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Kawamata H, Starkov AA, Manfredi G, Chinopoulos C. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells. Anal Biochem 2010; 407:52-7. [PMID: 20691655 DOI: 10.1016/j.ab.2010.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/27/2022]
Abstract
We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Weill Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The ability of mitochondria to sequester and retain divalent cations in the form of precipitates consisting of organic and inorganic moieties has been known for decades. Of these cations, Ca(2+) has emerged as a major player in both signal transduction and cell death mechanisms, and, as a consequence, the importance of mitochondria in these processes was soon recognized. Early studies showed considerable effort in identifying the mechanisms of Ca(2+) sequestration, precipitation and release by uncouplers of oxidative phosphorylation; however, relatively little information was obtained, and these processes were eventually taken for granted. Here, we re-examine: (a) the thermodynamic aspects of mitochondrial Ca(2+) uptake and release, (b) the insufficiently explained effect of uncouplers in inducing mitochondrial Ca(2+) release, (c) the thermodynamic effects of exogenously added adenine nucleotides on mitochondrial Ca(2+) uptake capacity and precipitate formation, and (d) the elusive nature of the Ca(2+) -phosphate precipitates formed in the mitochondrial matrix.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | | |
Collapse
|
37
|
Chorna SV, Dosenko VI, Strutyns'ka NA, Vavilova HL, Sahach VF. Increased expression of voltage-dependent anion channel and adenine nucleotide translocase and the sensitivity of calcium-induced mitochondrial permeability transition opening pore in the old rat. ACTA ACUST UNITED AC 2010. [DOI: 10.15407/fz56.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Pestana CR, Silva CHTP, Uyemura SA, Santos AC, Curti C. Impact of adenosine nucleotide translocase (ANT) proline isomerization on Ca2+-induced cysteine relative mobility/mitochondrial permeability transition pore. J Bioenerg Biomembr 2010; 42:329-35. [PMID: 20614171 DOI: 10.1007/s10863-010-9297-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/25/2010] [Indexed: 01/26/2023]
Abstract
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT "c" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT "c" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT "c" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
Collapse
Affiliation(s)
- Cezar R Pestana
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
39
|
Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1672-80. [PMID: 20599681 DOI: 10.1016/j.bbabio.2010.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
This paper describes the problems of measuring the allosteric ATP-inhibition of cytochrome c oxidase (CcO) in isolated mitochondria. Only by using the ATP-regenerating system phosphoenolpyruvate and pyruvate kinase full ATP-inhibition of CcO could be demonstrated by kinetic measurements. The mechanism was proposed to keep the mitochondrial membrane potential (DeltaPsi(m)) in living cells and tissues at low values (100-140 mV), when the matrix ATP/ADP ratios are high. In contrast, high DeltaPsi(m) values (180-220 mV) are generally measured in isolated mitochondria. By using a tetraphenyl phosphonium electrode we observed in isolated rat liver mitochondria with glutamate plus malate as substrates a reversible decrease of DeltaPsi(m) from 233 to 123 mV after addition of phosphoenolpyruvate and pyruvate kinase. The decrease of DeltaPsi(m) is explained by reversal of the gluconeogenetic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase yielding ATP and GTP, thus increasing the matrix ATP/ADP ratio. With rat heart mitochondria, which lack these enzymes, no decrease of DeltaPsi(m) was found. From the data we conclude that high matrix ATP/ADP ratios keep DeltaPsi(m) at low values by the allosteric ATP-inhibition of CcO, thus preventing the generation of reactive oxygen species which could generate degenerative diseases. It is proposed that respiration in living eukaryotic organisms is normally controlled by the DeltaPsi(m)-independent "allosteric ATP-inhibition of CcO." Only when the allosteric ATP-inhibition is switched off under stress, respiration is regulated by "respiratory control," based on DeltaPsi(m) according to the Mitchell Theory.
Collapse
Affiliation(s)
- Rabia Ramzan
- Biomedical Research Center, Cardiovascular Laboratory, Philipps-University, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
40
|
Klingenberg M. Wanderings in bioenergetics and biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:579-94. [PMID: 20175988 DOI: 10.1016/j.bbabio.2010.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/07/2010] [Accepted: 02/08/2010] [Indexed: 01/29/2023]
Abstract
Having worked for 55 years in the center and at the fringe of bioenergetics, my major research stations are reviewed in the following wanderings: from microsomes to mitochondria, from NAD to CoQ, from reversed electron transport to reversed oxidative phosphorylation, from mitochondrial hydrogen transfer to phosphate transfer pathways, from endogenous nucleotides to mitochondrial compartmentation, from transport to mechanism, from carrier to structure, from coupling by AAC to uncoupling by UCP, and from specific to general transport laws. These wanderings are recalled with varying emphasis paid to the covered science stations.
Collapse
Affiliation(s)
- Martin Klingenberg
- Institut für Physiologische Chemie der Universität München, Schillerstr. 44, D-80336 München, Germany.
| |
Collapse
|
41
|
Laco J, Zeman I, Pevala V, Polcic P, Kolarov J. Adenine nucleotide transport via Sal1 carrier compensates for the essential function of the mitochondrial ADP/ATP carrier. FEMS Yeast Res 2010; 10:290-6. [PMID: 20141534 DOI: 10.1111/j.1567-1364.2010.00606.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The mitochondrial ADP/ATP carrier (Aac2p) of Saccharomyces cerevisiae links two biochemical pathways, glycolysis in the cytosol and oxidative phosphorylation in the mitochondria, by exchanging their common substrates and products across the inner mitochondrial membrane. Recently, the product of the SAL1 gene, which is essential in cells lacking Aac2p, has been implicated in a similar communication. However, the mechanism by which Sal1p rescues the growth of Deltaaac2 mutants is not clear and it was proposed that both Sal1p and Aac2p share a common vital function other than ADP/ATP exchange. Here, the impact of SAL1 deletion on mitochondrial reactions involving either synthesis or hydrolysis of ATP was investigated. We show that adenine nucleotide transport activity related to Sal1p can be demonstrated in isolated mitochondria as well as in intact cells under conditions when Aac2-mediated exchange is not functional. Our results indicate that the vital role of both Sal1p and Aac2p is to maintain the essential intramitochondrial ATP pool owing to their ability to transport adenine nucleotides.
Collapse
Affiliation(s)
- Juraj Laco
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
42
|
|
43
|
A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. Biophys J 2009; 96:2490-504. [PMID: 19289073 DOI: 10.1016/j.bpj.2008.12.3915] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/08/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022] Open
Abstract
A novel method exploiting the differential affinity of ADP and ATP to Mg(2+) was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg(2+)] reported by the membrane-impermeable 5K(+) salt of the Mg(2+)-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg(2+)] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8-7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes.
Collapse
|
44
|
Shen L, Zhi L, Hu W, Wu MX. IEX-1 targets mitochondrial F1Fo-ATPase inhibitor for degradation. Cell Death Differ 2009; 16:603-12. [PMID: 19096392 PMCID: PMC2696391 DOI: 10.1038/cdd.2008.184] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
IEX-1 (Immediate Early response gene X-1) is a stress-inducible gene. It suppresses production of reactive oxygen species (ROS) and protects cells from apoptosis induced by a wide range of stimuli, but the underlying mechanism is not known. This study reveals that IEX-1 targets the mitochondrial F1Fo-ATPase Inhibitor (IF1) for degradation, resulting in acceleration of ATP hydrolysis, concomitant with reduction in ROS production. A prominent role for IF1 degradation in the function of IEX-1 was corroborated by siRNA-mediated gene silencing of IF1 that recapitulated the effects of IEX-1 on ATP hydrolysis and ROS production. Moreover, progressive C-terminal truncation studies demonstrated that IEX-1 interacted with the C terminus of IF1 and the interaction might render IF1 prone to degradation by an as yet unidentified mitochondrial protease. In support of a physiological importance of IEX-1 in the modulation of IF1 expression, gene-targeted deletion of IEX-1 stabilized IF1 and reduced mitochondrial F1Fo-ATPase activity in vivo. The altered activity of the F1Fo enzyme may account for a metabolic switch from oxidative phosphorylation toward glycolysis in IEX-1 deficient cells. Thus, IEX-1 deficient cells were more susceptible to glucose deprivation than wild type counterparts and displayed increased glucose uptake and lactate production in hypoxic conditions. The cells were also relatively refractory to oligomycin-mediated inhibition of ATP production. The studies offer novel insights into the primary role of IEX-1 in regulating a balance between energy provision and ROS production.
Collapse
Affiliation(s)
- L Shen
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - L Zhi
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - W Hu
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - MX Wu
- Wellman Center of Photomedicine, Massachusetts General Hospital, and Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA
| |
Collapse
|
45
|
Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc Natl Acad Sci U S A 2008; 105:9598-603. [PMID: 18621725 DOI: 10.1073/pnas.0801786105] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exchange of ATP and ADP across mitochondrial membrane replenishes the cytoplasm with newly synthesized ATP and provides the mitochondria with the substrate ADP for oxidative phosphorylation. The sole means of this exchange is the mitochondrial ADP/ATP carrier (AAC), a membrane protein that is suggested to cycle between two conformationally distinct states, cytosolic-open (c-state) and matrix-open (m-state), thereby shuttling nucleotides across the inner mitochondrial membrane. However, the c-state is the only structurally resolved state, and the binding site of ADP remains elusive. Here, we present approximately 0.3 mus of all-atom MD simulations of the c-state revealing rapid, spontaneous binding of ADP to deeply positioned binding sites within the AAC lumen. To our knowledge, a complete ligand-binding event has heretofore not been described in full atomic detail in unbiased simulations. The identified ADP-bound state and additional simulations shed light on key structural elements and the initial steps involved in conversion to the m-state. Electrostatic analysis of trajectories reveals the presence of an unusually strong positive electrostatic potential in the lumen of AAC that appears to be the main driving force for the observed spontaneous binding of ADP. We provide evidence that the positive electrostatic potential is likely a common attribute among the entire family of mitochondrial carriers. In addition to playing a key role in substrate recruitment and translocation, the electropositivity of mitochondrial carriers might also be critical for their binding to the negatively charged environment of the inner mitochondrial membrane.
Collapse
|
46
|
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1978-2021. [PMID: 18510943 DOI: 10.1016/j.bbamem.2008.04.011] [Citation(s) in RCA: 467] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
Different from some more specialised short reviews, here a general although not encyclopaedic survey of the function, metabolic role, structure and mechanism of the ADP/ATP transport in mitochondria is presented. The obvious need for an "old fashioned" review comes from the gateway role in metabolism of the ATP transfer to the cytosol from mitochondria. Amidst the labours, 40 or more years ago, of unravelling the role of mitochondrial compartments and of the two membranes, the sequence of steps of how ATP arrives in the cytosol became a major issue. When the dust settled, a picture emerged where ATP is exported across the inner membrane in a 1:1 exchange against ADP and where the selection of ATP versus ADP is controlled by the high membrane potential at the inner membrane, thus uplifting the free energy of ATP in the cytosol over the mitochondrial matrix. Thus the disparate energy and redox states of the two major compartments are bridged by two membrane potential responsive carriers to enable their symbiosis in the eukaryotic cell. The advance to the molecular level by studying the binding of nucleotides and inhibitors was facilitated by the high level of carrier (AAC) binding sites in the mitochondrial membrane. A striking flexibility of nucleotide binding uncovered the reorientation of carrier sites between outer and inner face, assisted by the side specific high affinity inhibitors. The evidence of a single carrier site versus separate sites for substrate and inhibitors was expounded. In an ideal setting principles of transport catalysis were elucidated. The isolation of intact AAC as a first for any transporter enabled the reconstitution of transport for unravelling, independently of mitochondrial complications, the factors controlling the ADP/ATP exchange. Electrical currents measured with the reconstituted AAC demonstrated electrogenic translocation and charge shift of reorienting carrier sites. Aberrant or vital para-functions of AAC in basal uncoupling and in the mitochondrial pore transition were demonstrated in mitochondria and by patch clamp with reconstituted AAC. The first amino acid sequence of AAC and of any eukaryotic carrier furnished a 6-transmembrane helix folding model, and was the basis for mapping the structure by access studies with various probes, and for demonstrating the strong conformation changes demanded by the reorientation mechanism. Mutations served to elucidate the function of residues, including the particular sensitivity of ATP versus ADP transport to deletion of critical positive charge in AAC. After resisting for decades, at last the atomic crystal structure of the stabilised CAT-AAC complex emerged supporting the predicted principle fold of the AAC but showing unexpected features relevant to mechanism. Being a snapshot of an extreme abortive "c-state" the actual mechanism still remains a conjecture.
Collapse
|
47
|
Schwarz M, Andrade-Navarro MA, Gross A. Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program? Apoptosis 2008; 12:869-76. [PMID: 17453157 DOI: 10.1007/s10495-007-0748-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria play a pivotal role in the process of apoptosis. Alterations in mitochondrial structure and function during apoptosis are regulated by proteins of the BCL-2 family, however their exact mechanism of action is largely unknown. Mitochondrial carriers and pores play an essential role in maintaining the normal function of mitochondria, and BCL-2 family members were shown to interact with several mitochondrial carriers/pores and to affect their function. This review focuses on the involvement of several of these mitochondrial carriers/pores in the regulation of the mitochondrial death pathway.
Collapse
Affiliation(s)
- Michal Schwarz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
48
|
Kihira Y, Hashimoto M, Shinohara Y, Majima E, Terada H. Roles of adjoining Asp and Cys residues of first matrix-facing loop in transport activity of yeast and bovine mitochondrial ADP/ATP carriers. J Biochem 2007; 139:575-82. [PMID: 16567423 DOI: 10.1093/jb/mvj052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial ADP/ATP carrier (AAC) transports substrate by interconversion of its conformation between m- and c-states. The 1st loop facing the matrix (LM1) is extruded into the matrix in the m-state and is suggested to intrude into the mitochondrial membrane on conversion to the c-state conformation [Hashimoto, M., Majima, E., Goto, S., Shinohara, Y., and Terada, H. (1999) Biochemistry 38, 1050-1056]. To elucidate the mechanism of the translocation of LM1, we examined the effects of site-directed mutagenesis of two adjoining residues, Cys56 and Asp55 in the bovine type 1 AAC and Cys73 and Asp72 in the yeast type 2 AAC, on the substrate transport activity. We found that (i) replacement of the Cys by bulky and hydrophilic residues was unfavorable for efficient transport activity, (ii) the carboxyl groups of the Asp residues of the bovine and yeast AACs were essential and strictly position-specific, and (iii) hence, the mutation to Glu showed transport activity comparable to that of the native AACs. Based on these results, we discussed the functional role of LM1 in the transport activity of AAC.
Collapse
Affiliation(s)
- Yoshitaka Kihira
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194
| | | | | | | | | |
Collapse
|
49
|
Leishmania mexicana amazonensis: plasma membrane adenine nucleotide translocator and chemotaxis. Exp Parasitol 2007; 118:408-19. [PMID: 18031742 DOI: 10.1016/j.exppara.2007.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/26/2007] [Accepted: 10/02/2007] [Indexed: 01/16/2023]
Abstract
Leishmania cannot synthesize purines de novo and rely on their host to furnish these compounds. To accomplish this, they possess multiple purine nucleoside and nucleobase transporters. Subcellular fractionation, immunohistochemical localization with anti-adenine nucleotide translocator (ANT) antibodies and surface biotinylation show that the mitochondrial ANT is also present in the plasma membrane of both promastigotes and amastigotes. Leishmania, however, do not appear to rely on this transporter to supplement their purine or energy requirements via preformed ATP from its host. Rather, Leishmania appear to use the plasma membrane ANT as part of a chemotaxis response. ATP is a chemorepellant for Leishmania and cells treated with atractyloside, an inhibitor of ANT, no longer exhibit negative chemotaxis for this compound.
Collapse
|
50
|
Zheng JY, Tsai YC, Kadimcherla P, Zhang R, Shi J, Oyler GA, Boustany NN. The C-terminal transmembrane domain of Bcl-xL mediates changes in mitochondrial morphology. Biophys J 2007; 94:286-97. [PMID: 17766334 PMCID: PMC2134878 DOI: 10.1529/biophysj.107.104323] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate the effect of mitochondrial localization and the Bcl-x(L) C-terminal transmembrane (TM) domain on mitochondrial morphology and subcellular light scattering. CSM 14.1 cell lines stably expressed yellow fluorescent protein (YFP), YFP-Bcl-x(L,) YFP-Bcl-x(L)-DeltaTM, containing the remainder of Bcl-x(L) after deletion of the last 21 amino acids corresponding to the TM domain, or YFP-TM, consisting of YFP fused at its C-terminal to the last 21 amino acids of Bcl-x(L). YFP-Bcl-x(L) and YFP-TM localized to the mitochondria. Their expression decreased the intensity ratio of wide-to-narrow angle forward scatter by subcellular organelles, and correlated with an increase in the proportion of mitochondria with an expanded matrix having greatly reduced intracristal spaces as observed by electron microscopy. Cells expressing YFP-TM also exhibited significant autophagy. In contrast, YFP-Bcl-x(L)-DeltaTM was diffusely distributed in the cells, and its expression did not alter light scattering or mitochondrial morphology compared with parental cells. Expression of YFP-Bcl-x(L) or YFP-Bcl-x(L)-DeltaTM provided significant resistance to staurosporine-induced apoptosis. Surprisingly however, YFP-TM expression also conferred a moderate level of cell death resistance in response to staurosporine. Taken together, our results suggest the existence of a secondary Bcl-x(L) function that is mediated by the transmembrane domain, alters mitochondrial morphology, and is distinct from BH3 domain sequestration.
Collapse
Affiliation(s)
- Jing-Yi Zheng
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|