1
|
Ellis J, Marziani E, Aziz C, Brown CM, Cohn LA, Lea C, Moore GE, Taneja N. 2022 AAHA Canine Vaccination Guidelines (2024 Update). J Am Anim Hosp Assoc 2024; 60:1-19. [PMID: 39480742 DOI: 10.5326/jaaha-ms-7468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Vaccination is a cornerstone of canine preventive healthcare and one of the most cost-effective ways of maintaining a dog's health, longevity, and quality of life. Canine vaccination also serves a public health function by forming a barrier against several zoonotic diseases affecting dogs and humans. Canine vaccines are broadly categorized as containing core and noncore immunizing antigens, with administration recommendations based on assessment of individual patient risk factors. The guidelines include a comprehensive table listing canine core and noncore vaccines and a recommended vaccination and revaccination schedule for each vaccine. The guidelines explain the relevance of different vaccine formulations, including those containing modified-live virus, inactivated, and recombinant immunizing agents. Factors that potentially affect vaccine efficacy are addressed, including the patient's prevaccination immune status and vaccine duration of immunity. Because animal shelters are one of the most challenging environments for prevention and control of infectious diseases, the guidelines also provide recommendations for vaccination of dogs presented at or housed in animal shelters, including the appropriate response to an infectious disease outbreak in the shelter setting. The guidelines explain how practitioners can interpret a patient's serological status, including maternally derived antibody titers, as indicators of immune status and suitability for vaccination. Other topics covered include factors associated with postvaccination adverse events, vaccine storage and handling to preserve product efficacy, interpreting product labeling to ensure proper vaccine use, and using client education and healthcare team training to raise awareness of the importance of vaccinations.
Collapse
Affiliation(s)
- John Ellis
- University of Saskatchewan, Department of Veterinary Microbiology, Saskatoon, Saskatchewan (J.E.)
| | | | - Chumkee Aziz
- Association of Shelter Veterinarians, Houston, Texas (C.A.)
| | - Catherine M Brown
- Massachusetts Department of Public Health, Boston, Massachusetts (C.M.B.)
| | - Leah A Cohn
- University of Missouri, Columbia, Missouri (L.A.C.)
| | | | - George E Moore
- Purdue University, College of Veterinary Medicine, West Lafayette, Indiana (G.E.M.)
| | - Neha Taneja
- A Paw Partnership, Veterinary Well-being Advocate, Centreville, Virginia (N.T.)
| |
Collapse
|
2
|
Lin YL, Cheng PY, Chin CL, Chuang KT, Lin JY, Chang N, Pan CK, Lin CS, Pan SC, Chiang BL. A novel mucosal bivalent vaccine of EV-A71/EV-D68 adjuvanted with polysaccharides from Ganoderma lucidum protects mice against EV-A71 and EV-D68 lethal challenge. J Biomed Sci 2023; 30:96. [PMID: 38110940 PMCID: PMC10729491 DOI: 10.1186/s12929-023-00987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.
Collapse
Affiliation(s)
- Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Li Chin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Ting Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ning Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Kei Pan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Sheng Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Siao-Cian Pan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Dénes B, Fuller RN, Kelin W, Levin TR, Gil J, Harewood A, Lőrincz M, Wall NR, Firek AF, Langridge WHR. A CTB-SARS-CoV-2-ACE-2 RBD Mucosal Vaccine Protects Against Coronavirus Infection. Vaccines (Basel) 2023; 11:1865. [PMID: 38140268 PMCID: PMC10747655 DOI: 10.3390/vaccines11121865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Mucosal vaccines protect against respiratory virus infection by stimulating the production of IgA antibodies that protect against virus invasion of the mucosal epithelium. In this study, a novel protein subunit mucosal vaccine was constructed for protection against infection by the beta coronavirus SARS-CoV-2. The vaccine was assembled by linking a gene encoding the SARS-CoV-2 virus S1 angiotensin converting enzyme receptor binding domain (ACE-2-RBD) downstream from a DNA fragment encoding the cholera toxin B subunit (CTB), a mucosal adjuvant known to stimulate vaccine immunogenicity. A 42 kDa vaccine fusion protein was identified in homogenates of transformed E. coli BL-21 cells by acrylamide gel electrophoresis and by immunoblotting against anti-CTB and anti-ACE-2-RBD primary antibodies. The chimeric CTB-SARS-CoV-2-ACE-2-RBD vaccine fusion protein was partially purified from clarified bacterial homogenates by nickel affinity column chromatography. Further vaccine purification was accomplished by polyacrylamide gel electrophoresis and electro-elution of the 42 kDa chimeric vaccine protein. Vaccine protection against SARS-CoV-2 infection was assessed by oral, nasal, and parenteral immunization of BALB/c mice with the CTB-SARS-CoV-2-ACE-2-RBD protein. Vaccine-induced SARS-CoV-2 specific antibodies were quantified in immunized mouse serum by ELISA analysis. Serum from immunized mice contained IgG and IgA antibodies that neutralized SARS-CoV-2 infection in Vero E6 cell cultures. In contrast to unimmunized mice, cytological examination of cell necrosis in lung tissues excised from immunized mice revealed no detectable cellular abnormalities. Mouse behavior following vaccine immunization remained normal throughout the duration of the experiments. Together, our data show that a CTB-adjuvant-stimulated CTB-SARS-CoV-2-ACE-2-RBD chimeric mucosal vaccine protein synthesized in bacteria can produce durable and persistent IgA antibodies in mice that neutralize the SARS-CoV-2 subvariant Omicron BA.1.1.
Collapse
Affiliation(s)
- Béla Dénes
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ryan N. Fuller
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Wayne Kelin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Tessa R. Levin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Jaipuneet Gil
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Aaren Harewood
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Basic Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - Márta Lőrincz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Nathan R. Wall
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Anthony F. Firek
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Comparative Effectiveness and Clinical Outcomes Research Center (CECORC), Riverside University Health System Medical Center, Moreno Valley, CA 92555, USA
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
4
|
Suvorov A, Loginova S, Leontieva G, Gupalova T, Desheva Y, Korzhevskii D, Kramskaya T, Bormotova E, Koroleva I, Kopteva O, Kirik O, Shchukina V, Savenko S, Kutaev D, Borisevitch S. SARS-CoV-2 Spike Protein-Expressing Enterococcus for Oral Vaccination: Immunogenicity and Protection. Vaccines (Basel) 2023; 11:1714. [PMID: 38006046 PMCID: PMC10675790 DOI: 10.3390/vaccines11111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The declaration of the conclusion of the COVID-19 pandemic notwithstanding, coronavirus remains prevalent in circulation, and the potential emergence of novel variants of concern introduces the possibility of new outbreaks. Moreover, it is not clear how quickly and to what extent the effectiveness of vaccination will decline as the virus continues to mutate. One possible solution to combat the rapidly mutating coronavirus is the creation of safe vaccine platforms that can be rapidly adapted to deliver new, specific antigens in response to viral mutations. Recombinant probiotic microorganisms that can produce viral antigens by inserting specific viral DNA fragments into their genome show promise as a platform and vector for mucosal vaccine antigen delivery. The authors of this study have developed a convenient and universal technique for inserting the DNA sequences of pathogenic bacteria and viruses into the gene that encodes the pili protein of the probiotic strain E. faecium L3. The paper presents data on the immunogenic properties of two E. faecium L3 vaccine strains, which produce two different fragments of the coronavirus S1 protein, and provides an assessment of the protective efficacy of these oral vaccines against coronavirus infection in Syrian hamsters.
Collapse
Affiliation(s)
- Alexander Suvorov
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Svetlana Loginova
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Galina Leontieva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Tatiana Gupalova
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Yulia Desheva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Dmitry Korzhevskii
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Tatiana Kramskaya
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Elena Bormotova
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Irina Koroleva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Olga Kopteva
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Olga Kirik
- Scientific and Educational Center, Molecular Bases of Interaction of Microorganisms and Human of the World-Class Research Center, Center for Personalized Medicine, FSBSI, IEM, 197022 Saint-Petersburg, Russia; (A.S.); (G.L.); (T.G.); (D.K.); (T.K.); (E.B.); (I.K.); (O.K.); (O.K.)
| | - Veronika Shchukina
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Sergey Savenko
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Dmitry Kutaev
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| | - Sergey Borisevitch
- Federal State Budgetary Institution 48th Central Research Institute of the Ministry of Defense of the Russian Federation, 141306 Moscow, Russia
| |
Collapse
|
5
|
Van der Ley P, Schijns VE. Outer membrane vesicle-based intranasal vaccines. Curr Opin Immunol 2023; 84:102376. [PMID: 37598549 DOI: 10.1016/j.coi.2023.102376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Delivery of vaccines via the mucosal route is regarded as the most effective mode of immunization to counteract infectious diseases that enter via mucosal tissues, including oral, nasal, pulmonary, intestinal, and urogenital surfaces. Mucosal vaccines not only induce local immune effector elements, such as secretory Immunoglobulin A (IgA) reaching the luminal site of the mucosa, but also systemic immunity. Moreover, mucosal vaccines may trigger immunity in distant mucosal tissues because of the homing of primed antigen-specific immune cells toward local and distant mucosal tissue via the common mucosal immune system. While most licensed intramuscular vaccines induce only systemic immunity, next-generation mucosal vaccines may outperform parenteral vaccination strategies by also eliciting protective mucosal immune responses that block infection and/or transmission. Especially the nasal route of vaccination, targeting the nasal-associated lymphoid tissue, is attractive for local and distant mucosal immunization. In numerous studies, bacterial outer membrane vesicles (OMVs) have proved attractive as vaccine platform for homologous bacterial strains, but also as antigen delivery platform for heterologous antigens of nonbacterial diseases, including viruses, parasites, and cancer. Their application has also been extended to mucosal delivery. Here, we will summarize the characteristics and clinical potential of (engineered) OMVs as vaccine platform for mucosal, especially intranasal delivery.
Collapse
|
6
|
Gutiérrez-Sánchez M, Carrasco-Yépez MM, Correa-Basurto J, Ramírez-Salinas GL, Rojas-Hernández S. Two MP2CL5 Antigen Vaccines from Naegleria fowleri Stimulate the Immune Response against Meningitis in the BALB/c Model. Infect Immun 2023; 91:e0018123. [PMID: 37272791 PMCID: PMC10353451 DOI: 10.1128/iai.00181-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Naegleria fowleri is an etiological agent that generates primary amoebic meningoencephalitis; unfortunately, no effective treatment or vaccine is available. The objective of this work was to determine the immunoprotective response of two vaccine antigens, as follows: (i) the polypeptide band of 19 kDa or (ii) a predicted immunogenic peptide from the membrane protein MP2CL5 (Smp145). Both antigens were administered intranasally in mice using cholera toxin (CT) as an adjuvant. The survival rate and immune response of immunized mice with both antigens and challenged with N. fowleri trophozoites were measured in the nose-associated lymphoid tissue (NALT) and nasal passages (NPs) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We also determined the immunolocalization of both antigens in N. fowleri trophozoites by confocal microscopy. Immunization with the polypeptide band of 19 kDa alone or coadministered with CT was able to confer 80% and 100% of protection, respectively. The immunization with both antigens (alone or coadministered with CT) showed an increase in T and B lymphocytes. In addition, there was an increase in the expression of integrin α4β1 and IgA in the nasal cavity of protected mice, and the IgA, IgG, and IgM levels were increased in serum and nasal washes. The immunolocalization of both antigens in N. fowleri trophozoites was observed in the plasma membrane, specifically in pseudopod-like structures. The MP2CL5 antigens evaluated in this work were capable of conferring protection which would lead us to consider them as potential candidates for vaccines against meningitis caused by N. fowleri.
Collapse
Affiliation(s)
- Mara Gutiérrez-Sánchez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología, Grupo CyMA, Unidad de Investigación Interdisciplinaria en Ciencias de la Salud y la Educación, Universidad Nacional Autónoma de México, UNAM FES Iztacala, Tlalnepantla, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City, Mexico
| | - Gema Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City, Mexico
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
7
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
8
|
Microencapsulated IL-12 Drives Genital Tract Immune Responses to Intranasal Gonococcal Outer Membrane Vesicle Vaccine and Induces Resistance to Vaginal Infection with Diverse Strains of Neisseria gonorrhoeae. mSphere 2023; 8:e0038822. [PMID: 36537786 PMCID: PMC9942569 DOI: 10.1128/msphere.00388-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
An experimental gonococcal vaccine consisting of outer membrane vesicles (OMVs) and microsphere (ms)-encapsulated interleukin-12 (IL-12 ms) induces Th1-driven immunity, with circulating and genital antibodies to Neisseria gonorrhoeae, after intravaginal (i.vag.) administration in female mice, and generates resistance to vaginal challenge infection. Because i.vag. administration is inapplicable to males and may not be acceptable to women, we determined whether intranasal (i.n.) administration would generate protective immunity against N. gonorrhoeae. Female and male mice were immunized i.n. with gonococcal OMVs plus IL-12 ms or blank microspheres (blank ms). Responses to i.n. immunization were similar to those with i.vag. immunization, with serum IgG, salivary IgA, and vaginal IgG and IgA antigonococcal antibodies induced when OMVs were administered with IL-12 ms. Male mice responded with serum IgG and salivary IgA antibodies similarly to female mice. Gamma interferon (IFN-γ) production by CD4+ T cells from iliac lymph nodes was elevated after i.n. or i.vag. immunization with OMVs plus IL-12 ms. Female mice immunized with OMVs plus IL-12 ms by either route resisted challenge with N. gonorrhoeae to an equal extent, and resistance generated by i.n. immunization extended to heterologous strains of N. gonorrhoeae. Detergent-extracted OMVs, which have diminished lipooligosaccharide, generated protective immunity to challenge similar to native OMVs. OMVs from mutant N. gonorrhoeae, in which genes for Rmp and LpxL1 were deleted to eliminate the induction of blocking antibodies against Rmp and diminish lipooligosaccharide endotoxicity, also generated resistance to challenge infection similar to wild-type OMVs when administered i.n. with IL-12 ms. IMPORTANCE We previously demonstrated that female mice can be immunized intravaginally with gonococcal outer membrane vesicles (OMVs) plus microsphere (ms)-encapsulated interleukin-12 (IL-12 ms) to induce antigonococcal antibodies and resistance to genital tract challenge with live Neisseria gonorrhoeae. However, this route of vaccination may be impractical for human vaccine development and is inapplicable to males. Because intranasal immunization has previously been shown to induce antibody responses in both male and female genital tracts, we have evaluated this route of immunization with gonococcal OMVs plus IL-12 ms. In addition, we have refined the composition of gonococcal OMVs to reduce the endotoxicity of lipooligosaccharide and to eliminate the membrane protein Rmp, which induces countereffective blocking antibodies. The resulting vaccine may be more suitable for ultimate translation to human application against the sexually transmitted infection gonorrhea, which is becoming increasingly resistant to treatment with antibiotics.
Collapse
|
9
|
Baruah N, Ahamad N, Halder P, Koley H, Katti DS. Facile synthesis of multi-faceted, biomimetic and cross-protective nanoparticle-based vaccines for drug-resistant Shigella: a flexible platform technology. J Nanobiotechnology 2023; 21:34. [PMID: 36710326 PMCID: PMC9884485 DOI: 10.1186/s12951-023-01780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND No commercial vaccines are available against drug-resistant Shigella due to serotype-specific/narrow-range of protection. Nanoparticle-based biomimetic vaccines involving stable, conserved, immunogenic proteins fabricated using facile chemistries can help formulate a translatable cross-protective Shigella vaccine. Such systems can also negate cold-chain transportation/storage thus overcoming challenges prevalent in various settings. METHODS We explored facile development of biomimetic poly (lactide-co-glycolide)/PLGA 50:50 based nanovaccines (NVs), encapsulating conserved stabilized antigen(s)/immunostimulant of S. dysenteriae 1 origin surface-modified using simple chemistries. All encapsulants (IpaC/IpaB/LPS) and nanoparticles (NPs)-bare and modified (NV), were thoroughly characterized. Effect of IpaC on cellular uptake of NPs was assessed in-vitro. Immunogenicity of the NVs was assessed in-vivo in BALB/c mice by intranasal immunization. Cross-protective efficacy was assessed by intraperitoneally challenging the immunized groups with a high dose of heterologous S. flexneri 2a and observing for visible diarrhea, weight loss and survival. Passive-protective ability of the simplest NV was assessed in the 5-day old progeny of vaccinated mice. RESULTS All the antigens and immunostimulant to be encapsulated were successfully purified and found to be stable both before and after encapsulation into NPs. The ~ 300 nm sized NPs with a zeta potential of ~ - 25 mV released ~ 60% antigen by 14th day suggesting an appropriate delivery kinetics. The NPs could be successfully surface-modified with IpaC and/or CpG DNA. In vitro experiments revealed that the presence of IpaC can significantly increase cellular uptake of NPs. All NVs were found to be cytocompatible and highly immunogenic. Antibodies in sera of NV-immunized mice could recognize heterologous Shigella. Immunized sera also showed high antibody and cytokine response. The immunized groups were protected from diarrhea and weight loss with ~ 70-80% survival upon heterologous Shigella challenge. The simplest NV showed ~ 88% survival in neonates. CONCLUSIONS Facile formulation of biomimetic NVs can result in significant cross-protection. Further, passive protection in neonates suggest that parental immunization could protect infants, the most vulnerable group in context of Shigella infection. Non-invasive route of vaccination can also lead to greater patient compliance making it amenable for mass-immunization. Overall, our work contributes towards a yet to be reported platform technology for facile development of cross-protective Shigella vaccines.
Collapse
Affiliation(s)
- Namrata Baruah
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India ,grid.417965.80000 0000 8702 0100The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| | - Nadim Ahamad
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| | - Prolay Halder
- grid.419566.90000 0004 0507 4551Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010 West Bengal India
| | - Hemanta Koley
- grid.419566.90000 0004 0507 4551Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010 West Bengal India
| | - Dhirendra S. Katti
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India ,grid.417965.80000 0000 8702 0100The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| |
Collapse
|
10
|
Tsai CJY, Loh JMS, Fujihashi K, Kiyono H. Mucosal vaccination: onward and upward. Expert Rev Vaccines 2023; 22:885-899. [PMID: 37817433 DOI: 10.1080/14760584.2023.2268724] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION The unique mucosal immune system allows the generation of robust protective immune responses at the front line of pathogen encounters. The needle-free delivery route and cold chain-free logistic requirements also provide additional advantages in ease and economy. However, the development of mucosal vaccines faces several challenges, and only a handful of mucosal vaccines are currently licensed. These vaccines are all in the form of live attenuated or inactivated whole organisms, whereas no subunit-based mucosal vaccine is available. AREAS COVERED The selection of antigen, delivery vehicle, route and adjuvants for mucosal vaccination are highly important. This is particularly crucial for subunit vaccines, as they often fail to elicit strong immune responses. Emerging research is providing new insights into the biological and immunological uniqueness of mucosal tissues. However, many aspects of the mucosal immunology still await to be investigated. EXPERT OPINION This article provides an overview of the current understanding of mucosal vaccination and discusses the remaining knowledge gaps. We emphasize that because of the potential benefits mucosal vaccines can bring from the biomedical, social and economic standpoints, the unmet goal to achieve mucosal vaccine success is worth the effort.
Collapse
Affiliation(s)
- Catherine J Y Tsai
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Lee J, Khang D. Mucosal delivery of nanovaccine strategy against COVID-19 and its variants. Acta Pharm Sin B 2022; 13:S2211-3835(22)00489-0. [PMID: 36438851 PMCID: PMC9676163 DOI: 10.1016/j.apsb.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the global administration of approved COVID-19 vaccines (e.g., ChAdOx1 nCoV-19®, mRNA-1273®, BNT162b2®), the number of infections and fatalities continue to rise at an alarming rate because of the new variants such as Omicron and its subvariants. Including COVID-19 vaccines that are licensed for human use, most of the vaccines that are currently in clinical trials are administered via parenteral route. However, it has been proven that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, and administration of the currently approved vaccines does not necessarily lead to sterilizing immunity. This further supports the necessity of a mucosal vaccine that blocks the main entrance route of COVID-19: nasal and oral mucosal surfaces. Understanding the mechanism of immune regulation of M cells and dendritic cells and targeting them can be another promising approach for the successful stimulation of the mucosal immune system. This paper reviews the basic mechanisms of the mucosal immunity elicited by mucosal vaccines and summarizes the practical aspects and challenges of nanotechnology-based vaccine platform development, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.
Collapse
Affiliation(s)
- Junwoo Lee
- College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- College of Medicine, Gachon University, Incheon 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
12
|
Ellis J, Marziani E, Aziz C, Brown CM, Cohn LA, Lea C, Moore GE, Taneja N. 2022 AAHA Canine Vaccination Guidelines. J Am Anim Hosp Assoc 2022; 58:213-230. [PMID: 36049241 DOI: 10.5326/jaaha-ms-canine-vaccination-guidelines] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
These guidelines are an update and extension of previous AAHA peer-reviewed canine vaccination guidelines published in 2017. Vaccination is a cornerstone of canine preventive healthcare and one of the most cost-effective ways of maintaining a dog's health, longevity, and quality of life. Canine vaccination also serves a public health function by forming a barrier against several zoonotic diseases affecting dogs and humans. Canine vaccines are broadly categorized as containing core and noncore immunizing antigens, with administration recommendations based on assessment of individual patient risk factors. The guidelines include a comprehensive table listing canine core and noncore vaccines and a recommended vaccination and revaccination schedule for each vaccine. The guidelines explain the relevance of different vaccine formulations, including those containing modified-live virus, inactivated, and recombinant immunizing agents. Factors that potentially affect vaccine efficacy are addressed, including the patient's prevaccination immune status and vaccine duration of immunity. Because animal shelters are one of the most challenging environments for prevention and control of infectious diseases, the guidelines also provide recommendations for vaccination of dogs presented at or housed in animal shelters, including the appropriate response to an infectious disease outbreak in the shelter setting. The guidelines explain how practitioners can interpret a patient's serological status, including maternally derived antibody titers, as indicators of immune status and suitability for vaccination. Other topics covered include factors associated with postvaccination adverse events, vaccine storage and handling to preserve product efficacy, interpreting product labeling to ensure proper vaccine use, and using client education and healthcare team training to raise awareness of the importance of vaccinations.
Collapse
Affiliation(s)
- John Ellis
- University of Saskatchewan, Department of Veterinary Microbiology, Saskatoon, Saskatchewan (J.E.)
| | | | - Chumkee Aziz
- Association of Shelter Veterinarians, Houston, Texas (C.A.)
| | - Catherine M Brown
- Massachusetts Department of Public Health, Boston, Massachusetts (C.M.B.)
| | - Leah A Cohn
- University of Missouri, Columbia, Missouri (L.A.C.)
| | | | - George E Moore
- Purdue University, College of Veterinary Medicine, West Lafayette, Indiana (G.E.M.)
| | - Neha Taneja
- A Paw Partnership, Veterinary Well-being Advocate, Centreville, Virginia (N.T.)
| |
Collapse
|
13
|
Treppiccione L, Maurano F, Rossi S, Luongo D, Rossi M. Transamidated wheat gliadin induces differential antigen recognition in the small intestine of HLA/DQ8 transgenic mice. Food Funct 2022; 13:8941-8950. [PMID: 35929785 DOI: 10.1039/d2fo02032g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lifelong gluten-free diet (GFD) is currently the only available therapy for coeliac disease (CD). However, GFD compliance is difficult and alternative strategies are envisaged in the near future. We previously found that wheat gliadin following transamidation by microbial transglutaminase (mTG) does not induce IFN-γ secretion by intestinal T cells from CD patients. Fully transamidated gliadin with lysine ethyl ester can be recovered in a soluble protein fraction (spf) generated by the enzymatic treatment of wheat flour. Herein, we analysed the performance of transamidation by mTG on a pilot-scale (1L) by evaluating the reaction kinetics and its biological effect on the intestinal immune response in HLA/DQ8 transgenic mice, a model of gluten sensitivity. At 1 h, all gliadin fractions showed a faster electrophoretic mobility by acid-polyacrylamide gel electrophoresis (A-PAGE) following transamidation in comparison with their native counterparts. In parallel, the yield of residual native gliadin dropped (30% at 180 min), confirming our previous findings on a lab scale. Mucosal sensitisation of mice with gliadin via the intranasal route induced a Th1 phenotype in mesenteric lymph nodes (MLNs). Importantly, IFN-γ secretion was significantly reduced when gliadin-specific MLN cells were challenged in vitro with spf (P < 0.001). Multiplex analysis revealed that the adaptive immune response evoked by spf involved a distinct cell population characterised by secretion of IL-2, IL-3 and IL-5. Notably, spf stimulated in vitro a reduced or null secretion of all of the examined pro-inflammatory markers mainly associated to innate immunity. In conclusion, our data revealed the ability of transamidated gliadin to modulate both innate and adaptive mechanisms involved in the inflammatory response induced by wheat gliadin in the small intestine of DQ8 mice.
Collapse
Affiliation(s)
| | - Francesco Maurano
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Stefano Rossi
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Diomira Luongo
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Mauro Rossi
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| |
Collapse
|
14
|
Chlamydia pneumoniae can infect the central nervous system via the olfactory and trigeminal nerves and contributes to Alzheimer's disease risk. Sci Rep 2022; 12:2759. [PMID: 35177758 PMCID: PMC8854390 DOI: 10.1038/s41598-022-06749-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Chlamydia pneumoniae is a respiratory tract pathogen but can also infect the central nervous system (CNS). Recently, the link between C. pneumoniae CNS infection and late-onset dementia has become increasingly evident. In mice, CNS infection has been shown to occur weeks to months after intranasal inoculation. By isolating live C. pneumoniae from tissues and using immunohistochemistry, we show that C. pneumoniae can infect the olfactory and trigeminal nerves, olfactory bulb and brain within 72 h in mice. C. pneumoniae infection also resulted in dysregulation of key pathways involved in Alzheimer’s disease pathogenesis at 7 and 28 days after inoculation. Interestingly, amyloid beta accumulations were also detected adjacent to the C. pneumoniae inclusions in the olfactory system. Furthermore, injury to the nasal epithelium resulted in increased peripheral nerve and olfactory bulb infection, but did not alter general CNS infection. In vitro, C. pneumoniae was able to infect peripheral nerve and CNS glia. In summary, the nerves extending between the nasal cavity and the brain constitute invasion paths by which C. pneumoniae can rapidly invade the CNS likely by surviving in glia and leading to Aβ deposition.
Collapse
|
15
|
Trincado V, Gala RP, Morales JO. Buccal and Sublingual Vaccines: A Review on Oral Mucosal Immunization and Delivery Systems. Vaccines (Basel) 2021; 9:vaccines9101177. [PMID: 34696284 PMCID: PMC8539688 DOI: 10.3390/vaccines9101177] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, most vaccines available on the market are for parental use; however, this may not be the best option on several occasions. Mucosal routes of administration such as intranasal, sublingual, and buccal generate great interest due to the benefits they offer. These range from increasing patient compliance to inducing a more effective immune response than that achieved through conventional routes. Due to the activation of the common mucosal immune system, it is possible to generate an effective systemic and local immune response, which is not achieved through parenteral administration. Protection against pathogens that use mucosal entry routes is provided by an effective induction of mucosal immunity. Mucosal delivery systems are being developed, such as films and microneedles, which have proven to be effective, safe, and easy to administer. These systems have multiple advantages over commonly used injections, which are simple to manufacture, stable at room temperature, painless for the patient since they do not require puncture. Therefore, these delivery systems do not require to be administered by medical personnel; in fact, they could be self-administered.
Collapse
Affiliation(s)
- Valeria Trincado
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
- Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
| | - Rikhav P. Gala
- Biotechnology Division, Center Mid-Atlantic, Fraunhofer USA, Newark, DE 19702, USA;
| | - Javier O. Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
- Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
- Correspondence:
| |
Collapse
|
16
|
Mahallawi WH, Aljeraisi TM. Infection with SARS-CoV-2 primes immunological memory in human nasal-associated lymphoid tissue. Clin Immunol 2021; 231:108850. [PMID: 34506944 PMCID: PMC8423672 DOI: 10.1016/j.clim.2021.108850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has resulted in considerable morbidity and mortality in humans. Little is known regarding the development of immunological memory following SARS-CoV-2 infection or whether immunological memory can provide long-lasting protection against reinfection. Urgent need for vaccines is a considerable issue for all governments worldwide. METHODS A total of 39 patients were recruited in this study. Tonsillar mononuclear cells (MNCs) were co-cultured in RPMI medium and stimulated with the full-length SARS-CoV-2 spike protein in the presence and absence of a CpG-DNA adjuvant. An enzyme-linked immunosorbent assay (ELISA) was utilised to measure the specific antibody response to the spike protein in the cell culture supernatants. RESULTS The SARS-CoV-2 spike protein primed a potent memory B cell-mediated immune response in nasal-associated lymphoid tissue (NALT) from patients previously infected with the virus. Additionally, spike protein combined with the CpG-DNA adjuvant induced a significantly increased level of specific anti-spike protein IgG antibody compared with the spike protein alone (p < 0.0001, n = 24). We also showed a strong positive correlation between the specific anti-spike protein IgG antibody level in a serum samples and that produced by MNCs derived from the same COVID-19-recovered patients following stimulation (r = 0.76, p = 0.0002, n = 24). CONCLUSION Individuals with serological evidence of previous SARS-CoV-2 exposure showed a significant anti-spike protein-specific memory humoral immune response to the viral spike protein upon stimulation. Additionally, our results demonstrated the functional response of NALT-derived MNCs to the viral spike protein. CpG-DNA adjuvant combined with spike protein induced significantly stronger humoral immune responses than the spike protein alone. These data indicate that the S protein antigen combined with CpG-DNA adjuvant could be used as a future vaccine candidate.
Collapse
Affiliation(s)
- Waleed H Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia.
| | - Talal M Aljeraisi
- Otorhinolaryngology, Head& Neck Surgery Department, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.
| |
Collapse
|
17
|
Mahallawi WH, Aljeraisi TM. In vitro cell culture model of human nasal-associated lymphoid tissue (NALT) to evaluate the humoral immune response to SARS-CoV-2 spike proteins. Saudi J Biol Sci 2021; 28:4516-4521. [PMID: 33942008 PMCID: PMC8064899 DOI: 10.1016/j.sjbs.2021.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
To date, coronavirus disease 2019 (COVID-19) continues to be considered a pandemic worldwide, with a mild to severe disease presentation that is sometimes associated with serious complications that are concerning to global health authorities. Scientists are working hard to understand the pathogenicity of this novel virus, and a great deal of attention and effort has been focused on identifying therapeutics and vaccines to control this pandemic. Methods This study used tonsils removed from twelve patients who underwent an elective tonsillectomy in the ear, nose, and throat (ENT) department at Saudi Germany Hospital, Madinah, Saudi Arabia. Tonsillar mononuclear cells (MNCs) were separated and co-cultured in RPMI complete medium in the presence and absence of viral spike (S) proteins (the full-length S, S1 subunit, and S2 subunit proteins). Enzyme-linked immunosorbent assay (ELISA) was used to measure secreted antibody concentrations following stimulation. Results The in vitro human nasal-associated lymphoid tissue (NALT) cell culture model was successfully used to evaluate the humoral immune response against SARS-CoV-2- S protein. Significant (p < 0.0001, n = 12) levels of specific, anti-S IgG, IgM, and IgA antibody responses were detected in cells culture supernatanat folloeing stimulation with the full-length S protein compared with unstimulated cells. In contrast, S1 and S2 subunit proteins alone failed to induce a mucosal humoral immune response following tonsillar MNC stimulation. Conclusion We demonstrated a successful human NALT in vitro cell culture model that was used to study the mucosal humoral immune response to the SARS-CoV-2 S protein. This model could be advantageous for the in-depth study of cellular immune responses to the S protein and other viral antigens, such as nucleocapsid and matrix antigen. The S protein appears to be the important viral protein that may be able to mimic the natural infection process intranasally and should be studied as a component of a candidate vaccine.
Collapse
Affiliation(s)
- Waleed H Mahallawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah 41541, Saudi Arabia
| | - Talal M Aljeraisi
- Otorhinolaryngology, Head& Neck Surgery Department, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
18
|
Du Y, Xu Y, Feng J, Hu L, Zhang Y, Zhang B, Guo W, Mai R, Chen L, Fang J, Zhang H, Peng T. Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse. Vaccine 2021; 39:2280-2287. [PMID: 33731271 PMCID: PMC7934688 DOI: 10.1016/j.vaccine.2021.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
The emergence of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic underscores the importance of the rapid development of a non-invasive vaccine that can be easily administered. A vaccine administered by nasal delivery is endowed with such characteristics against respiratory viruses. In this study, we generated a recombinant SARS-CoV-2 receptor-binding domain (RBD)-based subunit vaccine. Mice were immunized via intranasal inoculation, microneedle-intradermal injection, or intramuscular injection, after which the RBD-specific immune responses were compared. Results showed that when administrated intranasally, the vaccine elicited a robust systemic humoral immunity with high titers of IgG antibodies and neutralizing antibodies as well as a significant mucosal immunity. Besides, antigen-specific T cell responses were also analyzed. These results indicated that the non-invasive intranasal administration should be explored for the future SARS-CoV-2 vaccine design.
Collapse
Affiliation(s)
- Yingying Du
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuhua Xu
- Guangdong South China Vaccine, Guangzhou, China
| | - Jin Feng
- Guangdong South China Vaccine, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yanan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weili Guo
- Guangdong South China Vaccine, Guangzhou, China
| | - Runming Mai
- Guangdong South China Vaccine, Guangzhou, China
| | - Liyun Chen
- Guangdong South China Vaccine, Guangzhou, China
| | - Jianmin Fang
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Tao Peng
- Guangdong South China Vaccine, Guangzhou, China; Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Teeling KP, Werling D, Berner D. Preliminary Volumetric Calculation of the Mucosal Surface in the Nares of Lambs Using a Segmentation of Computed Tomographic Images. Front Vet Sci 2020; 7:620647. [PMID: 33392302 PMCID: PMC7775521 DOI: 10.3389/fvets.2020.620647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 12/03/2022] Open
Abstract
Intranasal vaccinations are becoming more important in both human and animal medicine to generate a localized IgA immune response not seen with parenteral vaccinations. This localized IgA response is more effective at reducing pathogen load on the mucosal surface of a potential host. One prerequisite for a successful nasal vaccination is the need to understand the distribution pattern of the nebulized vaccine, which requires an understanding the volume of the nares as well as the mucosal surface area. The exact mucosal surface area of ruminant nares has not yet been investigated. The aim of this concept study is to provide a detailed breakdown of a new method of volumetric rendering that can be used to calculate the volume and mucosal surface area of ruminant nares from computed tomographic images. The program Seg 3D was used to perform semi-automatic segmentation of a CT scan of a 9-month-old lamb head. Threshold segmentation and manual segmentation were used in combination to select the lamb's nasal cavity. The segmentation process yielded a volumetric rendering that was used to calculate the surface area and volume of the lamb's nasal cavity, with the segmentation process was repeated for each individual side of the lamb's nares. The surface area of the mucosal surface of each nostril is approximately 448 cm2, and the volume is approximately 45 cm3. The methodology described in this study successfully calculated the volume and surface area of a lamb's nares using volumetric rendering.
Collapse
Affiliation(s)
- K P Teeling
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - D Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - D Berner
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
20
|
Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2020; 7:1765-1779. [DOI: 10.1021/acsbiomaterials.0c01291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Cossette
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Sean H. Kelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
21
|
Ezeasor C, Shoyinka S, Emikpe B, Bodjo C. Intranasal Peste des petits ruminants virus vaccination of goats using Irvingia gabonensis gum as delivery system: hematological and humoral immune responses. J Immunoassay Immunochem 2020; 42:82-94. [PMID: 32970525 DOI: 10.1080/15321819.2020.1821215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peste des petits ruminants (PPR) in Africa continues to defy conventional vaccinational approaches aimed at its control. There is need for route modification and immunopotentiation of the current vaccination methods, using easily affordable materials. This study evaluates the immunomodulatory potential of Irvingia gabonensis (IG) seed gum extract for intranasal PPR vaccination in goats using attenuated Nigeria 75/1 PPR vaccine. Twenty West African dwarf goats were divided into four groups (n=5). Group 1 was vaccinated intranasally using IG gum as vehicle; Group 2 was vaccinated intranasally without the gum; Group 3 via subcutaneous injection while Group 4 was not vaccinated. Hematology and Serum IgG levels were assessed weekly for 28 days post vaccination (dpv). H-PPR bELISA detected antibodies against PPR by 7th dpv, peaking by 21st dpv with mean percentage inhibitions of 78.2%; 69.6%; 87.0% and 0% in Groups 1, 2, 3 and 4, respectively. Also, significantly lower neutrophil to lymphocyte ratio (P<0.05) were observed by 14th dpv to 28th dpv in the vaccinated groups. The findings of this study show that the use of I. gabonensis seed gum extract for mucoadhesive intranasal PPR vaccine delivery has an immunomodulatory effect on the systemic immune response following PPR intranasal vaccine administration.
Collapse
Affiliation(s)
- Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka. Enugu State, Nigeria
| | - Shodeinde Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka. Enugu State, Nigeria
| | - Benjamin Emikpe
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Charles Bodjo
- African Union Pan-African Veterinary Vaccine Centre, Debre-Zeit, Ethiopia
| |
Collapse
|
22
|
Matchett WE, Malewana GBR, Mudrick H, Medlyn MJ, Barry MA. Genetic Adjuvants in Replicating Single-Cycle Adenovirus Vectors Amplify Systemic and Mucosal Immune Responses against HIV-1 Envelope. Vaccines (Basel) 2020; 8:E64. [PMID: 32024265 PMCID: PMC7158672 DOI: 10.3390/vaccines8010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Most infections occur at mucosal surfaces. Providing a barrier of protection at these surfaces may be a useful strategy to combat the earliest events in infection when there are relatively few pathogens to address. The majority of vaccines are delivered systemically by the intramuscular (IM) route. While IM vaccination can drive mucosal immune responses, mucosal immunization at intranasal (IN) or oral sites can lead to better immune responses at mucosal sites of viral entry. In macaques, IN immunization with replicating single-cycle adenovirus (SC-Ads) and protein boosts generated favorable mucosal immune responses. However, there was an apparent "distance effect" in generating mucosal immune responses. IN immunization generated antibodies against HIV envelope (env) nearby in the saliva, but weaker responses in samples collected from the distant vaginal samples. To improve on this, we tested here if SC-Ads expressing genetic adjuvants could be used to amplify antibody responses in distant vaginal samples when they are codelivered with SC-Ads expressing clade C HIV env immunogen. SC-Ads env 1157 was coadministered with SC-Ads expressing 4-1BBL, granulocyte macrophage colony-stimulating factor (GMCSF), IL-21, or Clostridoides difficile (C. diff.) toxin fragments by IN or IM routes. These data show that vaginal antibody responses were markedly amplified after a single immunization by the IN or IM routes, with SC-Ad expressing HIV env if this vaccine is complemented with SC-Ads expressing genetic adjuvants. Furthermore, the site and combination of adjuvants appear to "tune" these antibody responses towards an IgA or IgG isotype bias. Boosting these priming SC-Ad responses with another SC-Ad or with SOSIP native-like env proteins markedly amplifies env antibody levels in vaginal washes. Together, this data may be useful in informing the choice of route of delivery adenovirus and peptide vaccines against HIV-1.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Walkden H, Delbaz A, Nazareth L, Batzloff M, Shelper T, Beacham IR, Chacko A, Shah M, Beagley KW, Tello Velasquez J, St John JA, Ekberg JAK. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl Trop Dis 2020; 14:e0008017. [PMID: 31978058 PMCID: PMC7002012 DOI: 10.1371/journal.pntd.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.
Collapse
Affiliation(s)
- Heidi Walkden
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ali Delbaz
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Todd Shelper
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Anu Chacko
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Kenneth W. Beagley
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - James A. St John
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jenny A. K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
24
|
Yang H, Yan Z, Zhang Z, Realivazquez A, Ma B, Liu Y. Anti-caries vaccine based on clinical cold-adapted influenza vaccine: A promising alternative for scientific and public-health protection against dental caries. Med Hypotheses 2019; 126:42-45. [PMID: 31010498 DOI: 10.1016/j.mehy.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 01/20/2023]
Abstract
Dental caries remains one of the most pervasive infectious disease around the world. Protection against dental caries can be achieved experimentally by eliciting salivary IgA targeting surficial antigens of S. mutans, however, no such a vaccine has been launched for human use yet. Live vectored vaccines hold the greatest feasibility to induce potent and long-lasting immunity in the host. The FDA approved intranasal cold-adapted influenza vaccine has been used in clinical settings for many years. The vaccine can not only induce broad adaptive immune responses especially mucosal immunity, but the member strains can also circumvent existing immunity, presenting promising candidates for live vectored anti-caries vaccine. Moreover, the genetic techniques for modification of cold-adapted influenza viruses are well developed and widely applicable. Thus, we hypothesize that effective anti-caries vaccine can be developed with the backbone of cold-adapted influenza viruses by inserting specific antigenic identifier sequences of S. mutans into the viral genome, which is anticipated to protect against dental caries in humans with easy inoculation. The immune efficacies of recombinant cold-adapted influenza viruses expressing exogenous antigens have been verified by in vivo experiments for multiple infectious diseases, giving us great confidence to validate the safety properties and protection effect with this chimeric vaccine in animals or even humans. Existing data suggests that the live anti-caries vaccine may help improve public oral health by controlling the caries disease itself.
Collapse
Affiliation(s)
- Huixiao Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, PR China
| | - Zhonghai Yan
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Zijian Zhang
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Adilene Realivazquez
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Binger Ma
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, PR China
| | - Yi Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
25
|
Date Y, Ebisawa M, Fukuda S, Shima H, Obata Y, Takahashi D, Kato T, Hanazato M, Nakato G, Williams IR, Hase K, Ohno H. NALT M cells are important for immune induction for the common mucosal immune system. Int Immunol 2018; 29:471-478. [PMID: 29186424 DOI: 10.1093/intimm/dxx064] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/26/2017] [Indexed: 01/05/2023] Open
Abstract
Nasopharynx-associated lymphoid tissue (NALT) is one of the major constituents of the mucosa-associated lymphoid tissue (MALT), and has the ability to induce antigen-specific immune responses. However, the molecular mechanisms responsible for antigen uptake from the nasal cavity into the NALT remain largely unknown. Immunohistochemical analysis showed that CCL9 and CCL20 were co-localized with glycoprotein 2 (GP2) in the epithelium covering NALT, suggesting the existence of M cells in NALT. In analogy with the reduced number of Peyer's patch M cells in CCR6-deficient mice, the number of NALT M cells was drastically decreased in CCR6-deficient mice compared with the wild-type mice. Translocation of nasally administered Salmonella enterica serovar Typhimurium into NALT via NALT M cells was impaired in CCR6-deficient mice, whereas S. Typhimurium demonstrated consistent co-localization with NALT M cells in wild-type mice. When wild-type mice were nasally administered with an attenuated vaccine strain of S. Typhimurium, the mice were protected from a subsequent challenge with wild-type S. Typhimurium. Antigen-specific fecal and nasal IgA was detected after nasal immunization with the attenuated vaccine strain of S. Typhimurium only in wild-type mice but not in CCR6-deficient mice. Taken together, these observations demonstrate that NALT M cells are important as a first line of defense against infection by enabling activation of the common mucosal immune system (CMIS).
Collapse
Affiliation(s)
- Yasuhiro Date
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.,RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Masashi Ebisawa
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Shinji Fukuda
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Hideaki Shima
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Yuuki Obata
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daisuke Takahashi
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Tamotsu Kato
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Misaho Hanazato
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Gaku Nakato
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Ifor R Williams
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Koji Hase
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.,Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
26
|
Alvites RD, Caseiro AR, Pedrosa SS, Branquinho ME, Varejão ASP, Maurício AC. The Nasal Cavity of the Rat and Mouse-Source of Mesenchymal Stem Cells for Treatment of Peripheral Nerve Injury. Anat Rec (Hoboken) 2018; 301:1678-1689. [PMID: 29710430 DOI: 10.1002/ar.23844] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
The nasal cavity performs several crucial functions in mammals, including rodents, being involved in respiration, behavior, reproduction, and olfaction. Its anatomical structure is complex and divided into several regions, including the olfactory recess where the olfactory mucosa (OM) is located and where the capture and interaction with the environmental odorants occurs. Among the cells of this region are the OM mesenchymal stem cells (MSCs), whose location raises the possibility that these cells could be involved in the peculiar ability of the olfactory nerve to regenerate continuously throughout life, although this relationship has not yet been confirmed. These cells, like all MSCs, present functional characteristics that make them candidates in new therapies associated with regenerative medicine, namely to promote the regeneration of the peripheral nerve after injury. The availability of stem cells to be therapeutically applied essentially depends on their collection in the tissue of origin. In the case of mice and rat's OM-MSCs, knowledge about the anatomy and histology of their nasal cavity is essential in establishing effective collection protocols. The present article describes the morphological characteristics of rodent's OM and establishes an alternative protocol for access to the olfactory recess and collection of the OM. Anat Rec, 301:1678-1689, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Mariana Esteves Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Artur S P Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| |
Collapse
|
27
|
Activation and Induction of Antigen-Specific T Follicular Helper Cells Play a Critical Role in Live-Attenuated Influenza Vaccine-Induced Human Mucosal Anti-influenza Antibody Response. J Virol 2018; 92:JVI.00114-18. [PMID: 29563292 PMCID: PMC5952133 DOI: 10.1128/jvi.00114-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
There is increasing interest recently in developing intranasal vaccines against respiratory tract infections. The antibody response is critical for vaccine-induced protection, and T follicular helper cells (TFH) are considered important for mediating the antibody response. Most data supporting the role for TFH in the antibody response are from animal studies, and direct evidence from humans is limited, apart from the presence of TFH-like cells in blood. We studied the activation and induction of TFH and their role in the anti-influenza antibody response induced by a live-attenuated influenza vaccine (LAIV) in human nasopharynx-associated lymphoid tissue (NALT). TFH activation in adenotonsillar tissues was analyzed by flow cytometry, and anti-hemagglutinin (anti-HA) antibodies were examined following LAIV stimulation of tonsillar mononuclear cells (MNC). Induction of antigen-specific TFH by LAIV was studied by flow cytometry analysis of induced TFH and CD154 expression. LAIV induced TFH proliferation, which correlated with anti-HA antibody production, and TFH were shown to be critical for the antibody response. Induction of TFH from naive T cells by LAIV was shown in newly induced TFH expressing BCL6 and CD21, followed by the detection of anti-HA antibodies. Antigen specificity of LAIV-induced TFH was demonstrated by expression of the antigen-specific T cell activation marker CD154 upon challenge by H1N1 virus antigen or HA. LAIV-induced TFH differentiation was inhibited by BCL6, interleukin-21 (IL-21), ICOS, and CD40 signaling blocking, and that diminished anti-HA antibody production. In conclusion, we demonstrated the induction by LAIV of antigen-specific TFH in human NALT that provide critical support for the anti-influenza antibody response. Promoting antigen-specific TFH in NALT by use of intranasal vaccines may provide an effective vaccination strategy against respiratory infections in humans. IMPORTANCE Airway infections, such as influenza, are common in humans. Intranasal vaccination has been considered a biologically relevant and effective way of immunization against airway infection. The vaccine-induced antibody response is crucial for protection against infection. Recent data from animal studies suggest that one type of T cells, TFH, are important for the antibody response. However, data on whether TFH-mediated help for antibody production operates in humans are limited due to the lack of access to human immune tissue containing TFH. In this study, we demonstrate the induction of TFH in human immune tissue, providing critical support for the anti-influenza antibody response, by use of an intranasal influenza vaccine. Our findings provide direct evidence that TFH play a critical role in vaccine-induced immunity in humans and suggest a novel strategy for promoting such cells by use of intranasal vaccines against respiratory infections.
Collapse
|
28
|
Lakhrif Z, Moreau A, Hérault B, Di-Tommaso A, Juste M, Moiré N, Dimier-Poisson I, Mévélec MN, Aubrey N. Targeted Delivery of Toxoplasma gondii Antigens to Dendritic Cells Promote Immunogenicity and Protective Efficiency against Toxoplasmosis. Front Immunol 2018. [PMID: 29515595 PMCID: PMC5826183 DOI: 10.3389/fimmu.2018.00317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv) directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites.
Collapse
|
29
|
Petukhova NA. [Epithelial dysfunction associated with pyo-inflammatory diseases of the ENT organs]. Vestn Otorinolaringol 2017; 82:64-70. [PMID: 29072669 DOI: 10.17116/otorino201782564-70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome associated with pyo-inflammatory ENT diseases is presented. It has provided a basis for the analysis of the initial stages of etiopathogenesis of acute and chronic inflammation in the ENT system including the mucous and associated lymphoid tissues as well as the Pirogov-Waldeyer limphopharyngeal ring making up the first protective barrier. The leading role of dysbiosis of synanthropic microflora and endotoxins of the Gram-negative bacteria in the mechanisms of regional responsiveness of the organism to the infection and chronic endotoxic aggression is demonstrated. The regional and synthetic mechanisms underlying the interaction between the external and internal media of the organism are subjected to the analysis with special reference to those operating in epithelium. The possible variants of the outcome of these processes are considered including both the recovery and the development of chronic inflammation. It has been proved that the exhaustion of the internal reserves for the stabilization of the epithelium-associated lymphoid tissue system including the Pirogov-Waldeyer limphopharyngeal ring leads to the formation of epithelial dysfunction as the initial stage of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome. It is concluded that the modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome is a fundamental interdisciplinary phenomenon.
Collapse
Affiliation(s)
- N A Petukhova
- L.I. Sverzhevsky Research and Clinical Institute of Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152
| |
Collapse
|
30
|
Haley PJ. The lymphoid system: a review of species differences. J Toxicol Pathol 2017; 30:111-123. [PMID: 28458449 PMCID: PMC5406590 DOI: 10.1293/tox.2016-0075] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/02/2023] Open
Abstract
While an understanding of the structure and function of a generically described immune system is essential in contemporary biomedicine, it is clear that a one-size-fits-all approach applied across multiple species is fraught with contradictions and inconsistencies. Nevertheless, the breakthroughs achieved in immunology following the application of observations in murine systems to that of man have been pivotal in the advancement of biology and human medicine. However, as additional species have been used to further address biologic and safety assessment questions relative to the structure and function of the immune system, it has become clear that there are differences across species, gender, age and strain that must be considered. The meaningfulness of these differences must be determined on a case-by-case basis. This review article attempts to collect, consolidate and discuss some of these species differences thereby aiding in the accurate placement of new observations in a proper immunobiological and immunopathological perspective.
Collapse
Affiliation(s)
- Patrick J. Haley
- Independent Consultant specializing in Immunotoxicology and Immunopathology, 852 Penns Way, West Chester, Pennsylvania, USA 19382
| |
Collapse
|
31
|
Kuper CF, Wijnands MVW, Zander SAL. Mucosa-Associated Lymphoid Tissues. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47385-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Upregulated CCL28 expression in the nasal mucosa in experimental allergic rhinitis: Implication for CD4(+) memory T cell recruitment. Cell Immunol 2016; 302:58-62. [PMID: 26868716 DOI: 10.1016/j.cellimm.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
Abstract
During nasal immune responses, lymphocytes activated in the nasopharynx-associated lymphoid tissue (NALT) are thought to traffic to the nasal mucosa. Here we found a prominent infiltration of CD4(+) memory T cells into the nasal mucosa in a mouse model of allergic rhinitis. CCR3 and CCR10 mRNA was increased in the NALT, and CCR3- or CCR10-expressing CD4(+) T cells were present in the nasal mucosa. CCL28, a chemokine ligand for CCR3 and CCR10, was upregulated in nasal epithelial cells. Our results suggest that memory CD4(+) T cells traffic to the nasal mucosa in a process that may involve CCL28 and its receptors CCR3 and CCR10.
Collapse
|
33
|
Partial protective immunity against toxoplasmosis in mice elicited by recombinant Toxoplasma gondii malate dehydrogenase. Vaccine 2016; 34:989-94. [DOI: 10.1016/j.vaccine.2015.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 11/22/2022]
|
34
|
Therapeutic Transcutaneous Immunization with a Band-Aid Vaccine Resolves Experimental Otitis Media. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:867-74. [PMID: 26018536 DOI: 10.1128/cvi.00090-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/14/2015] [Indexed: 12/30/2022]
Abstract
Transcutaneous immunization (TCI) is a noninvasive strategy to induce protective immune responses. We describe TCI with a band-aid vaccine placed on the postauricular skin to exploit the unique organization of the stratum corneum and to promote the development of immune responses to resolve active experimental otitis media due to nontypeable Haemophilus influenzae (NTHI). This therapeutic immunization strategy induced significantly earlier resolution of middle ear fluid and rapid eradication of both planktonic and mucosal biofilm-resident NTHI within 7 days after receipt of the first immunizing band-aid vaccine. Efficacy was ascribed to the homing of immunogen-bearing cutaneous dendritic cells to the nasal-associated lymphoid tissue, induction of polyfunctional CD4(+) T cells, and the presence of immunogen-specific IgM and IgG within the middle ear. TCI using band-aid vaccines could expand the use of traditional parenteral preventative vaccines to include treatment of active otitis media, in addition to other diseases of the respiratory tract due to NTHI.
Collapse
|
35
|
Zhang TE, Yin LT, Li RH, Wang HL, Meng XL, Yin GR. Protective immunity induced by peptides of AMA1, RON2 and RON4 containing T-and B-cell epitopes via an intranasal route against toxoplasmosis in mice. Parasit Vectors 2015; 8:15. [PMID: 25582167 PMCID: PMC4297402 DOI: 10.1186/s13071-015-0636-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Toxoplasma gondii is a ubiquitous protozoan intracellular parasite, the causative agent of toxoplasmosis, and a worldwide zoonosis. Apical membrane antigen-1 (AMA1) and rhoptry neck protein (RON2, RON4) are involved in the invasion of T. gondii. Methods This study chemically synthesized peptides of TgAMA1, TgRON2 and TgRON4 that contained the T- and B-cell epitopes predicted by bioinformatics analysis. We evaluated the systemic response by proliferation, cytokine and antibody measurements as well as the mucosal response by examining the levels of antigen-specific secretory IgA (SIgA) in the nasal, vesical and intestinal washes obtained from mice after nasal immunization with single (AMA1, RON2, RON4) or mixtures of peptides (A1 + R2, A1 + R4, R2 + R4, A1 + R2 + R4). We also assessed the parasite burdens in the liver and brain as well as the survival of mice challenged with a virulent strain. Results The results showed that the mice immunized with single or mixed peptides produced effective mucosal and systemic immune responses with a high level of specific antibody responses, a strong lymphoproliferative response and significant levels of gamma interferon (IFN-γ), interleukin-2 (IL-2) and IL-4 production. These mice also elicited partial protection against acute and chronic T. gondii infection. Moreover, our study indicated that mixtures of peptides, especially the A1 + R2 mixture, were more powerful and efficient than any other single peptides. Conclusions These results demonstrated that intranasal immunisation with peptides of AMA1, RON2 and RON4 containing T- and B-cell epitopes can partly protect mice against toxoplasmosis, and a combination of peptides as a mucosal vaccine strategy is essential for future Toxoplasma vaccine development.
Collapse
Affiliation(s)
- Tie-E Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China. .,Department of Clinical Laboratory, Central Hospital of the 12th Bureau Group of China Railway, Taiyuan, Shanxi, 030053, China.
| | - Li-Tian Yin
- Department of physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Run-Hua Li
- Department of Biology, Taiyuan Normal University, Taiyuan, Shanxi, 030031, China.
| | - Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China.
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China.
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Xinjian South Road, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
36
|
|
37
|
Abstract
The respiratory tract is served by a variety of lymphoid tissues, including the tonsils, adenoids, nasal-associated lymphoid tissue (NALT), and bronchus-associated lymphoid tissue (BALT), as well as the lymph nodes that drain the upper and lower respiratory tract. Each of these tissues uses unique mechanisms to acquire antigens and respond to pathogens in the local environment and supports immune responses that are tailored to protect those locations. This chapter will review the important features of NALT and BALT and define how these tissues contribute to immunity in the upper and lower respiratory tract, respectively.
Collapse
|
38
|
Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines 2014; 6:401-18. [PMID: 17542755 DOI: 10.1586/14760584.6.3.401] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although polymeric nanoparticles/microparticles are well established for the mucosal administration of conventional drugs, they have not yet been developed commercially for vaccine delivery. The limitation of the mucosal (particularly oral) route of delivery, including low pH, gastric enzymes, rapid transit and poor absorption of large molecules, has made mucosal vaccine delivery challenging. Nevertheless, several polymeric delivery systems for mucosal vaccine delivery are currently being evaluated. The polymer-based approaches are designed to protect the antigen in the gut, to target the antigen to the gut-associated lymphoid tissue or to increase the residence time of the antigen in the gut through bioadhesion. M-cell targeting is a potential approach for mucosal vaccine delivery, which can be achieved using M-cell-specific lectins, microbial adhesins or immunoglobulins. While many hurdles must be overcome before targeted mucosal vaccine delivery becomes a practical reality, this is a potential area of research that has important implications for future vaccine development. This review comprises various aspects that could be decisive in the development of polymer based mucosal vaccine delivery systems.
Collapse
Affiliation(s)
- Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar-470003 (M.P.), India.
| | | |
Collapse
|
39
|
Costiniuk CT, Jenabian MA. The lungs as anatomical reservoirs of HIV infection. Rev Med Virol 2013; 24:35-54. [DOI: 10.1002/rmv.1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Cecilia T. Costiniuk
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH); Durban South Africa
- Division of Infectious Diseases, Department of Medicine; University of Ottawa; Ottawa ON Canada
| | - Mohammad-Ali Jenabian
- Chronic Viral Illnesses Service; Montreal Chest Institute; Montreal QC Canada
- Research Institute; McGill University Health Centre; Montreal QC Canada
| |
Collapse
|
40
|
Novotny LA, Clements JD, Bakaletz LO. Kinetic analysis and evaluation of the mechanisms involved in the resolution of experimental nontypeable Haemophilus influenzae-induced otitis media after transcutaneous immunization. Vaccine 2012; 31:3417-26. [PMID: 23092856 DOI: 10.1016/j.vaccine.2012.10.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/31/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023]
Abstract
Transcutaneous immunization (TCI) is a simple and needle-free method with which to induce protective immune responses. Using a chinchilla model of nontypeable Haemophilus influenzae (NTHI)-induced otitis media (OM), we examined the efficacy afforded by TCI with a novel chimeric immunogen called 'chimV4' which targets two critical adhesins expressed by NTHI, outer membrane protein P5 and the majority subunit of NTHI Type IV pilus, PilA. Experimental OM was first established in cohorts of animals, and then TCI performed via a therapeutic immunization regime by rubbing vaccine formulations on hydrated pinnae. The kinetics of resolution of established experimental disease was evaluated by clinically-relevant assessments of OM, bacterial culture of planktonic and adherent NTHI within the middle ear and gross examination of the relative amount of NTHI mucosal biofilms within the middle ear space. Within seven days after primary TCI, a significant reduction in the signs of OM, significantly fewer NTHI adherent to the middle ear mucosa and significant resolution of mucosal biofilms was detected in animals that received chimV4+ the adjuvant LT(R192G-L211A), compared to animals administered LT(R192G-L211A) alone or saline by TCI (p<0.05) with eradication of NTHI within an additional seven days. The mechanism for rapid disease resolution involved efflux of activated dermal dendritic cells from the pinnae after TCI, secretion of factors chemotactic for CD4(+) T-cells, induction of polyfunctional IFNγ- and IL-17-producing CD4(+) T-cells and secretion of host defense peptide within the middle ear. These data support TCI as a therapeutic intervention against experimental NTHI-induced OM and begin to elucidate the host response to immunization by this noninvasive regimen.
Collapse
Affiliation(s)
- Laura A Novotny
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis and The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205, United States
| | | | | |
Collapse
|
41
|
Eyles JE, Williamson ED, Alpar HO. Intranasal administration of influenza vaccines: current status. BioDrugs 2012; 13:35-59. [PMID: 18034512 DOI: 10.2165/00063030-200013010-00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThis review article focuses on intranasal immunisation against influenza,although it also encompasses antigen uptake and processing in the nasopharyngealpassages, host defence from influenza and current influenza vaccination practices.Improvement of current vaccination strategies is clearly required; current proceduresinvolve repeated annual injections that sometimes fail to protect the recipient. It isenvisaged that nonpercutaneous immunisation would be more attractive to potentialvaccinees, thus improving uptake and coverage. As well as satisfying noninvasivecriteria, intranasal influenza immunisation has a number of perceived immunologicaladvantages over current procedures. Perhaps one of the greatest attributes of thisapproach is its potential to evoke the secretion of haemagglutinin-specific IgAantibodies in the upper respiratory tract, the main site of viral infection. Inactivated influenza vaccines have the advantage that they have a long historyof good tolerability as injected immunogens, and in this respect are possibly morelikely to be licensed than attenuated viruses. Inert influenza vaccines are poormucosal immunogens, requiring several administrations, or prior immunologicalpriming, in order to engender significant antibody responses. The use of vaccinedelivery systems or mucosal adjuvants serves to appreciably improve theimmunogenicity of mucosally applied inactivated influenza vaccines. As is the casewhen they are introduced parenterally, inactivated influenza vaccines are relativelypoor stimulators of virus-specific cytotoxic T lymphocyte activity following nasalinoculation. Live attenuated intranasal influenza vaccines are at a far moreadvanced stage of clinical readiness (phase III versus phase I). With the use of liveattenuated vaccines, it is possible to stimulate mucosal and cell-mediatedimmunological responses of a similar kind to those elicited by natural influenzainfection. In children, recombinant live attenuated cold-adapted influenza viruses arewell tolerated. Moreover, cold-adapted influenza viruses usually stimulate protectiveimmunity following only a single nasal inoculation. Safety of recombinant liveattenuated cold-adapted influenza viruses has also been demonstrated in high riskindividuals with cystic fibrosis, asthma, cardiovascular disease and diabetes mellitus.They are not suitable for immunising immunocompromised patients, however, andare poorly efficacious in individuals with pre-existing immunity to strains closelyantigenically matched with the recombinant virus. According to the reviewedliterature, it is apparent that intranasal administration of vaccine as an aerosol issuperior to administration as nose drops. The information reviewed in this papersuggests that nasally administered influenza vaccines could make a substantialimpact on the human and economic cost of influenza.
Collapse
Affiliation(s)
- J E Eyles
- School of Pharmacy, Aston University, Birmingham, England
| | | | | |
Collapse
|
42
|
Cisney ED, Fernandez S, Hall SI, Krietz GA, Ulrich RG. Examining the role of nasopharyngeal-associated lymphoreticular tissue (NALT) in mouse responses to vaccines. J Vis Exp 2012:3960. [PMID: 22871688 PMCID: PMC3476754 DOI: 10.3791/3960] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nasopharyngeal-associated lymphoreticular tissues (NALT) found in humans, rodents, and other mammals, contribute to immunity in the nasal sinuses1-3. The NALT are two parallel bell-shaped structures located in the nasal passages above the hard palate, and are usually considered to be secondary components of the mucosal-associated lymphoid system4-6. Located within the NALT are discrete compartments of B and T lymphocytes interspersed with antigen-presenting dendritic cells4,7,8. These cells are surrounded by an epithelial cell layer intercalated with M-cells that are responsible for antigen retrieval from the mucosal surfaces of the air passages9,10. Naive lymphocytes circulating through the NALT are poised to respond to first encounters with respiratory pathogens7. While NALT disappear in humans by the age of two years, the Waldeyer's Ring and similarly structured lymphatic organs continue to persist throughout life6. In contrast to humans, mice retain NALT throughout life, thus providing a convenient animal model for the study of immune responses originating within the nasal sinuses11. Cultures of single-cell suspensions of NALT are not practical due to low yields of mononuclear cells. However, NALT biology can be examined by ex vivo culturing of the intact organ, and this method has the additional advantage of maintaining the natural tissue structure. For in vivo studies, genetic knockout models presenting defects limited to NALT are not currently available due to a poor understanding of the developmental pathway. For example, while lymphotoxin-α knockout mice have atrophied NALT, the Peyer's patches, peripheral lymph nodes, follicular dendritic cells and other lymphoid tissues are also altered in these genetically manipulated mice12,13. As an alternative to gene knockout mice, surgical ablation permanently eliminates NALT from the nasal passage without affecting other tissues. The resulting mouse model has been used to establish relationships between NALT and immune responses to vaccines1,3. Serial collection of serum, saliva, nasal washes and vaginal secretions is necessary for establishing the basis of host responses to vaccination, while immune responses originating directly from NALT can be confirmed by tissue culture. The following procedures outline the surgeries, tissue culture and sample collection necessary to examine local and systemic humoral immune responses to intranasal (IN) vaccination.
Collapse
Affiliation(s)
- Emily D Cisney
- U.S. Army Medical Research Institute of Infectious Diseases, USA
| | | | | | | | | |
Collapse
|
43
|
Fujkuyama Y, Tokuhara D, Kataoka K, Gilbert RS, McGhee JR, Yuki Y, Kiyono H, Fujihashi K. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev Vaccines 2012; 11:367-79. [PMID: 22380827 DOI: 10.1586/erv.11.196] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed.
Collapse
Affiliation(s)
- Yoshiko Fujkuyama
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect Immun 2012; 80:2426-35. [PMID: 22526674 DOI: 10.1128/iai.00181-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces both heat-labile (LT) and heat-stable (ST) enterotoxins and is a major cause of diarrhea in infants in developing countries and in travelers to those regions. In addition to inducing fluid secretion, LT is a powerful mucosal adjuvant capable of promoting immune responses to coadministered antigens. In this study, we examined purified A subunit to further understand the toxicity and adjuvanticity of LT. Purified A subunit was enzymatically active but sensitive to proteolytic degradation and unable to bind gangliosides, and even in the presence of admixed B subunit, it displayed low cyclic AMP (cAMP) induction and no enterotoxicity. Thus, the AB5 structure plays a key role in protecting the A subunit from proteolytic degradation and in delivering the enzymatic signals required for secretion. In contrast, the A subunit alone was capable of activating dendritic cells and enhanced immune responses to multiple antigens following intranasal immunization; therefore, unlike toxicity, LT adjuvanticity is not dependent on the AB5 holotoxin structure or the presence of the B subunit. However, immune responses were maximal when signals were received from both subunits either in an AB5 structure or with A and B admixed. Furthermore, the quality of the immune response (i.e., IgG1/IgG2 balance and mucosal IgA and IL-17 secretion) was determined by the presence of an A subunit, revealing for the first time induction of Th17 responses with the A subunit alone. These results have important implications for understanding ETEC pathogenesis, unraveling immunologic responses induced by LT-based adjuvants, and developing new mucosal vaccines.
Collapse
|
45
|
Igietseme JU, Eko FO, Black CM. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations. Expert Rev Vaccines 2012; 10:1585-96. [PMID: 22043957 DOI: 10.1586/erv.11.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacteria of the genus Chlamydia cause a plethora of ocular, genital and respiratory diseases that continue to pose a considerable public health challenge worldwide. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility and interstitial pneumonia. The rampart asymptomatic infections prevent timely and effective antibiotic treatments, and quite often clinical presentation of sequelae is the first evidence of an infection. Besides, significant broad coverage in population screening and treatment is economically and logistically impractical, and mass education for public awareness has been ineffective. The current medical opinion is that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, a human vaccine has yet to be realized despite successful veterinary vaccines. Fortunately, recent advances in chlamydial immunobiology, cell biology, molecular pathogenesis, genomics, antigen discovery and animal models of infections are hastening progress toward an efficacious vaccine. Thus, it is established that Chlamydia immunity is mediated by T cells and a complementary antibody response, and several potential vaccine candidates have been identified. However, further advances are needed in effective vaccine delivery systems and safe potent adjuvants to boost and sustain immune responses for long-lasting protective immunity. This article focuses on the current status of human chlamydial vaccine research, specifically how application of new delivery systems and human compatible adjuvants could lead to a timely achievement of efficacious Chlamydia vaccines. The ranking of the candidate vaccine antigens for human vaccine development will await the availability of results from studies in which the antigens are tested by comparable experimental standards, such as antigen-adjuvant combination, route of delivery and possible toxicity.
Collapse
Affiliation(s)
- Joseph U Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MailStop G-36, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
46
|
Transferrin conjugation confers mucosal molecular targeting to a model HIV-1 trimeric gp140 vaccine antigen. J Control Release 2011; 158:240-9. [PMID: 22119743 PMCID: PMC3314955 DOI: 10.1016/j.jconrel.2011.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 12/30/2022]
Abstract
The generation of effective immune responses by mucosal vaccination without the use of inflammatory adjuvants, that compromise the epithelial barrier and recruit new cellular targets, is a key goal of vaccines designed to protect against sexually acquired pathogens. In the present study we use a model HIV antigen (CN54gp140) conjugated to transferrin (Tf) and evaluate the ability of the natural transferrin receptor CD71 to modulate immunity. We show that the conjugated transferrin retained high affinity for its receptor and that the conjugate was specifically transported across an epithelial barrier, co-localizing with MHC Class II+ cells in the sub-mucosal stroma. Vaccination studies in mice revealed that the Tf-gp140 conjugate elicited high titres of CN54gp140-specific serum antibodies, equivalent to a systemic vaccination, when conjugate was applied topically to the nasal mucosae whereas gp140 alone was poorly immunogenic. Moreover, the Tf-gp140 conjugate elicited both IgG and IgA responses and significantly higher gp140-specific IgA titre in the female genital tract than unconjugated antigen. These responses were achieved after mucosal application of the conjugated protein alone, in the absence of any pro-inflammatory adjuvant and suggest a potentially useful and novel molecular targeting approach, delivering a vaccine cargo to directly elicit or enhance pathogen-specific mucosal immunity.
Collapse
|
47
|
Igarashi M, Zulpo DL, Cunha IALD, Barros LD, Pereira VF, Taroda A, Navarro IT, Vidotto O, Vidotto MC, Jenkins MC, Garcia JL. Toxoplasma gondii: humoral and cellular immune response of BALB/c mice immunized via intranasal route with rTgROP2. ACTA ACUST UNITED AC 2011; 19:210-6. [PMID: 21184696 DOI: 10.1590/s1984-29612010000400004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/05/2010] [Indexed: 11/22/2022]
Abstract
TgROP2 is an intracellular protein associated with rhoptries of Toxoplama gondii and an antigen component of a candidate vaccine for toxoplasmosis. The purpose of the present study was to evaluate the efficacy of rTgROP2 to stimulate humoral and cellular immune responses in BALB/c mice via intranasal injection. TgROP2 partial coding sequence was (196-561) amplified by PCR from genomic T. gondii RH strain DNA and cloned into the pTrcHis expression vector. Escherichia coli Rosetta 2 cells transformed with pTrcHis-TgROP2 showed high levels (~1 mg.mL(-1)) of recombinant protein after 4 hours of IPTG induction. Recombinant TgROP2 exhibited an apparent Mr equal to 54 kDa. In order to test immunogenicity of the recombinant protein, 10 BALB/c mice received 10 µg of rROP2 protein + 10 µg of Quil-A via intranasal injection. Doses were administered at days 0, 21, and 42. Three animals were euthanized and used to evaluate cellular immune response on day 62. Five (50%) and two (20%) out of ten animals produced IgG (DO mean = 0.307; cut-off = 0.240) and IgA (DO mean = 0.133, cut-off = 0.101), respectively, by ELISA on day 62. The proliferation of splenocytes revealed high stimulation index (SI) when co-cultured with 5, 10 and 15 µg.mL(-1) of rTgROP2. These results indicate that intranasal immunization with recombinant protein ROP2 plus Quil-A can elicit both cellular and humoral immune responses in BALB/c mice.
Collapse
Affiliation(s)
- Michelle Igarashi
- Laboratório de Protozoologia, Departamento de Medicina Veterinária Preventiva, Universidade de Londrina, Londrina-PR, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee CH, Masso-Welch P, Hajishengallis G, Connell TD. TLR2-dependent modulation of dendritic cells by LT-IIa-B5, a novel mucosal adjuvant derived from a type II heat-labile enterotoxin. J Leukoc Biol 2011; 90:911-21. [PMID: 21791597 DOI: 10.1189/jlb.0511236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A host of human pathogens invades the body at mucosal surfaces. Yet, strong, protective mucosal immune responses directed against those pathogens routinely cannot be induced without the use of adjuvants. Although the strongest mucosal adjuvants are members of the family of HLTs, the inherent toxicities of HLT holotoxins preclude their clinical use. Herein, it is shown that LT-IIa-B(5) enhances mucosal immune responses by modulating activities of DCs. i.n. immunization of mice with OVA in the presence of LT-IIa-B(5) recruited DCs to the NALT and significantly increased uptake of OVA by those DCs. Furthermore, LT-IIa-B(5) increased expression of CCR7 by DCs, which mediated enhanced migration of the cells from the NALT to the draining CLNs. LT-IIa-B(5) also enhanced maturation of DCs, as revealed by increased surface expression of CD40, CD80, and CD86. Ag-specific CD4(+) T cell proliferation was augmented in the CLNs of mice that had received i.n. LT-IIa-B(5). Finally, when used as an i.n. adjuvant, LT-IIa-B(5) dramatically increased the levels of OVA-specific salivary IgA and OVA-specific serum IgG. Strikingly, each of the activities induced by LT-IIa-B(5) was strictly TLR2-dependent. The data strongly suggest that the immunomodulatory properties of LT-IIa-B(5) depend on the productive modulation of mucosal DCs. Notably, this is the first report for any HLT to demonstrate in vivo the elicitation of strong, TLR2-dependent modulatory effects on DCs with respect to adjuvanticity.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
49
|
Staats HF, Fielhauer JR, Thompson AL, Tripp AA, Sobel AE, Maddaloni M, Abraham SN, Pascual DW. Mucosal targeting of a BoNT/A subunit vaccine adjuvanted with a mast cell activator enhances induction of BoNT/A neutralizing antibodies in rabbits. PLoS One 2011; 6:e16532. [PMID: 21304600 PMCID: PMC3029387 DOI: 10.1371/journal.pone.0016532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We previously reported that the immunogenicity of Hcβtre, a botulinum neurotoxin A (BoNT/A) immunogen, was enhanced by fusion to an epithelial cell binding domain, Ad2F, when nasally delivered to mice with cholera toxin (CT). This study was performed to determine if Ad2F would enhance the nasal immunogenicity of Hcβtre in rabbits, an animal model with a nasal cavity anatomy similar to humans. Since CT is not safe for human use, we also tested the adjuvant activity of compound 48/80 (C48/80), a mast cell activating compound previously determined to safely exhibit nasal adjuvant activity in mice. METHODS New Zealand White or Dutch Belted rabbits were nasally immunized with Hcβtre or Hcβtre-Ad2F alone or combined with CT or C48/80, and serum samples were tested for the presence of Hcβtre-specific binding (ELISA) or BoNT/A neutralizing antibodies. RESULTS Hcβtre-Ad2F nasally administered with CT induced serum anti-Hcβtre IgG ELISA and BoNT/A neutralizing antibody titers greater than those induced by Hcβtre + CT. C48/80 provided significant nasal adjuvant activity and induced BoNT/A-neutralizing antibodies similar to those induced by CT. CONCLUSIONS Ad2F enhanced the nasal immunogenicity of Hcβtre, and the mast cell activator C48/80 was an effective adjuvant for nasal immunization in rabbits, an animal model with a nasal cavity anatomy similar to that in humans.
Collapse
Affiliation(s)
- Herman F Staats
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect Immun 2010; 79:887-94. [PMID: 21115718 DOI: 10.1128/iai.00950-10] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that serve a variety of functions related to survival and pathogenicity. Periplasmic and outer membrane proteins are naturally captured during vesicle formation. This property has been exploited as a method to derive immunogenic vesicle preparations for use as vaccines. In this work, we constructed a Salmonella enterica serovar Typhimurium strain that synthesized a derivative of the pneumococcal protein PspA engineered to be secreted into the periplasmic space. Vesicles isolated from this strain contained PspA in the lumen. Mice intranasally immunized with the vesicle preparation developed serum antibody responses against vesicle components that included PspA and Salmonella-derived lipopolysaccharide and outer membrane proteins, while no detectable responses developed in mice immunized with an equivalent dose of purified PspA. Mucosal IgA responses developed against the Salmonella components, while the response to PspA was less apparent in most mice. Mice immunized with the vesicle preparation were completely protected against a 10× 50% lethal dose (LD₅₀) challenge of Streptococcus pneumoniae and significantly protected against a 200× LD₅₀ challenge, while control mice immunized with purified PspA or empty vesicles were not protected. These results establish that vesicles can be used to mucosally deliver an antigen from a Gram-positive organism and induce a protective immune response.
Collapse
|