1
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
Tong J, Chen Y, Ling X, Huang Z, Yao G, Xie Z. MSC-derived exosomal miR-125b-5p suppressed retinal microvascular endothelial cell ferroptosis in diabetic retinopathy. Stem Cells 2025; 43:sxaf023. [PMID: 40247684 DOI: 10.1093/stmcls/sxaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Progressive endothelial cell injury of retinal vascular is a vital factor in diabetic retinopathy (DR) pathogenesis. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) showed beneficial effects on DR. However, the effects of MSC-sEVs on endothelial dysfunction of DR and the mechanism is still unclear. In this study, MSC-sEVs mitigated retinal blood-retina barrier (BRB) impairment in rats with streptozotocin (STZ)-induced DR by reducing ferroptosis in vivo and in vitro. MSC-sEVs miRNA sequencing analysis revealed that miR-125b-5p may mediate human retina microvascular endothelial cells (HRMECs) ferroptosis and P53 as a downstream target based on dual-luciferase reporter assays. Silencing miR-125b-5p in MSC-sEVs reversed the therapeutic effects of MSC-sEVs on rats with DR and advanced glycation end products (AGEs)-treated HRMECs. Additionally, overexpression of miR-125b-5p could diminish ferroptosis in HRMECs, and this effect could be effectively reversed by overexpressing P53. This study indicated the potential therapeutic effect of MSC-sEVs on vascular endothelial function maintenance and that the delivery of sEVs carrying miR-125b-5p could prevent endothelial cell ferroptosis by inhibiting P53, thereby protecting the BRB.
Collapse
Affiliation(s)
- Jun Tong
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
- Department of Ophthalmology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Yueqin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Xinru Ling
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Zhenping Huang
- Department of Ophthalmology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Zhenggao Xie
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| |
Collapse
|
3
|
Zhu M, Lu Z, Liao X, Liang Q, Xu C, Luo X, Li J. Clinical value of dysregulated miR-125b-5p in severe pneumonia children. BMC Immunol 2025; 26:31. [PMID: 40221643 PMCID: PMC11993971 DOI: 10.1186/s12865-025-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Severe pneumonia is an important contributor to the high mortality of sick young children. The microRNA-125b-5p (miR-125b-5p), which is widely involved in various cancers, is closely related to a variety of lung diseases. However, its role in severe pneumonia children remains to be studied. OBJECTIVE This study focused on the expression and clinical value of miR-125b-5p in severe pneumonia children. MATERIALS AND METHODS The study subjects included 96 pneumonia children and 127 severe pneumonia children. These children were aged between 2-10 years. The expression level of serum miR-125b-5p was assessed by qRT-PCR. The receiver operator characteristic (ROC) curve was employed to identify severe pneumonia children from pneumonia individuals. Kaplan-Meier curve was plotted based on follow-up results and multivariate Cox regression analysis was applied to evaluate the contribution of miR-125b-5p to poor prognostic in severe pneumonia children. RESULTS MiR-125b-5p was remarkedly reduced in severe pneumonia children compared to pneumonia individuals. The area under the curve (AUC) was 0.9267 and the sensitivity and specificity were 84.25% and 89.58%, respectively. The accumulative survival rate in low miR-125b-5p group showed a remarkable decrease compared to the high miR-125b-5p group (P = 0.033). Increased procalcitonin (PCT, HR: 2.631, 95% CI: 1.029-6.732, P = 0.043) and reduced miR-125b-5p (HR: 0.301, 95% CI: 0.110-0.826, P = 0.020) were found to be related to the poor prognosis in severe pneumonia children. CONCLUSION The reduced miR-125b-5p was an underlying diagnostic indicator of severe pneumonia and was an independent risk factor of poor prognosis in severe pneumonia children.
Collapse
Affiliation(s)
- Meiqin Zhu
- Department of Respiratory, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternal and Child Health Hospital), Zhenjiang, 212001, China
| | - Ziyan Lu
- Department of Pediatrics, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
| | - Xingjuan Liao
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Qin Liang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Chao Xu
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Xinbing Luo
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Jun Li
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Lianhu District, Xi'an, 710003, China.
| |
Collapse
|
4
|
García-Concejo A, Sánchez-Quirós B, Gómez-Sánchez E, Sánchez-de Prada L, Tamayo-Velasco Á, Tovar-Doncel MS, Lorenzo M, Gómez-Pesquera E, Poves-Álvarez R, Bernardo D, Martín-Fernández M, Gonzalo-Benito H, Moreno-Portales P, Prieto-Utrera R, Bardají-Carrillo M, López-Herrero R, Fernández Arranz M, Calaveras-Fernández R, Tomillo-Cebrián F, Aydillo T, Jiménez-Sousa MÁ, Fernández-Rodríguez A, Resino S, Heredia-Rodríguez M, Martínez-Paz P, Tamayo E. Study on the diagnostic role of exosome-derived miRNAs in postoperative septic shock and non-septic shock patients. Crit Care 2025; 29:96. [PMID: 40033446 PMCID: PMC11874436 DOI: 10.1186/s13054-025-05320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Diagnosing septic shock promptly is essential but challenging, especially due to its clinical similarity to non-septic shock. Extracellular vesicle-derived miRNAs may serve as biomarkers to distinguish septic shock from non-septic shock, providing a more accurate diagnostic tool for postsurgical patients. This study aims to identify extracellular vesicle-derived miRNA signatures that differentiate septic shock from non-septic shock in postsurgical patients, potentially improving diagnostic accuracy and clinical decision-making. METHODS A multicentre, prospective study was conducted on miRNA profiles in shock patients. Two cohorts were recruited from the Intensive Care Units of two Spanish hospitals: a discovery cohort with 109 patients and a validation cohort with 52 patients. Plasma samples were collected within 24 h of shock diagnosis and subjected to miRNA sequencing. High-throughput sequencing data from the discovery cohort were analysed to identify differentially expressed miRNAs. These findings were validated via qPCR in the validation cohort. RESULTS Thirty miRNAs were identified as significantly differentially expressed between septic and non-septic shock patients. Among these, six miRNAs-miR-100-5p, miR-484, miR-10a-5p, miR-148a-3p, miR-342-3p, and miR-451a-demonstrated strong diagnostic capabilities for septic shock. A combination of miR-100-5p, miR-148a-3p, and miR-451a achieved an area under the curve of 0.894, with qPCR validation in the validation cohort yielding an area under the curve of 0.960. CONCLUSIONS This study highlights extracellular vesicle-derived miRNAs as promising biomarkers for differentiating septic from non-septic shock. The identified three-miRNA signature has significant potential to enhance septic shock diagnosis, thereby aiding in timely and appropriate treatment for postsurgical patients.
Collapse
Affiliation(s)
- Adrián García-Concejo
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
| | - Belén Sánchez-Quirós
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - Esther Gómez-Sánchez
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
- Department of Surgery, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Laura Sánchez-de Prada
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- National Influenza Centre, Valladolid, Spain
- Department of Microbiology, Río Hortega University Hospital, Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Haematology and Hemotherapy, University Clinical Hospital of Valladolid, 47003, Valladolid, Spain
| | - María Sherezade Tovar-Doncel
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Anaesthesiology, Resuscitation and Pain Therapy Service, Unit of Critical Care, University Hospital of Toledo, Toledo, Spain
| | - Mario Lorenzo
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - Estefanía Gómez-Pesquera
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - Rodrigo Poves-Álvarez
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - David Bernardo
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Mucosal Immunology Laboratory, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid - Spanish National Research Council, Valladolid, Spain
| | - Marta Martín-Fernández
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Hugo Gonzalo-Benito
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Institute of Health Sciences of Castile and Leon (ICSCYL), Soria, Spain
| | - Paula Moreno-Portales
- Institute of Health Sciences of Castile and Leon (ICSCYL), Soria, Spain
- Research Unit, University Clinical Hospital of Valladolid, 47003, Valladolid, Spain
| | - Rosa Prieto-Utrera
- Institute of Health Sciences of Castile and Leon (ICSCYL), Soria, Spain
- Research Unit, University Clinical Hospital of Valladolid, 47003, Valladolid, Spain
| | - Miguel Bardají-Carrillo
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - Rocío López-Herrero
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
- Department of Surgery, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - María Fernández Arranz
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - Rosario Calaveras-Fernández
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - Fé Tomillo-Cebrián
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - María Ángeles Jiménez-Sousa
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Unit of Viral Infection and Immunity, National Centre for Microbiology (CNM), Carlos III Health Institute, Majadahonda, Spain
| | - Amanda Fernández-Rodríguez
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Unit of Viral Infection and Immunity, National Centre for Microbiology (CNM), Carlos III Health Institute, Majadahonda, Spain
| | - Salvador Resino
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Unit of Viral Infection and Immunity, National Centre for Microbiology (CNM), Carlos III Health Institute, Majadahonda, Spain
| | - María Heredia-Rodríguez
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Salamanca, Salamanca, Spain
| | - Pedro Martínez-Paz
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain.
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain.
- Centre for Experimental Medicine and Rheumatology, Queen Mary University of London, London, UK.
| | - Eduardo Tamayo
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Group for Biomedical Research in Critical Care (Biocritic), Avenida Ramón y Cajal 7, 47005, Valladolid, Spain
- Department of Anaesthesiology and Critical Care, University Clinical Hospital of Valladolid, Valladolid, Spain
- Department of Surgery, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| |
Collapse
|
5
|
He W, Zhao L, Wang P, Ren M, Han Y. MiR-125b-5p ameliorates ox-LDL-induced vascular endothelial cell dysfunction by negatively regulating TNFSF4/TLR4/NF-κB signaling. BMC Biotechnol 2025; 25:11. [PMID: 39856662 PMCID: PMC11760099 DOI: 10.1186/s12896-025-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction plays a crucial role in the progression of atherosclerosis (AS). Although miR-125b-5p is known to be involved in cardiovascular and cerebrovascular disorders, its function in ox-LDL-induced endothelial injury is still not well understood. METHODS An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 µg/mL ox-LDL for 24 h. A series of functional assays, including CCK-8 assay, flow cytometry, MDA and SOD kits, capillary-like network formation assay and ELISA assay were performed in vitro. TNFSF4/TLR4/NF-κB pathway-related protein expressions were measured by Western blot. Molecular mechanisms were elucidated through quantitative real-time PCR, western blot analysis, and luciferase reporter assays. RESULTS Our investigation revealed that exposure to ox-LDL led to a downregulation in miR-125b-5p, while upregulating the expression of tumor necrosis factor (ligand) superfamily, member 4 (TNFSF4), TLR4, p-p65 and p-IkBa in HUVECs in a dose-dependent manner. We confirmed TNFSF4 as a direct target of miR-125b-5p. Ox-LDL exposure led to decreased cell viability and angiogenic capacity, along with increased apoptosis, inflammation, and oxidative stress in HUVECs. These effects were reversed by overexpressing miR-125b-5p or knocking down TNFSF4. Overexpression of TNFSF4 significantly reversed the effects brought about by miR-125b-5p in HUVECs exposed to ox-LDL. Moreover, miR-125b-5p inactivated the TLR4/NF-κB signaling pathway by negatively regulating TNFSF4. CONCLUSIONS In summary, our findings demonstrate that miR-125b-5p possessed an anti-inflammatory and anti-apoptosis against ox-LDL-induced HUVEC injury by regulating the TNFSF4/TLR4/NF-κB signaling, indicating that miR-125b-5p may have an important therapeutic function for AS.
Collapse
Affiliation(s)
- Wenshuai He
- Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China.
| | - Limin Zhao
- Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China
| | - Pengfei Wang
- Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China
| | - Maojia Ren
- Department of Cardiology, Inner Mongolia People's Hospital, Inner Mongolia Autonomous, Region, 010017, China
| | - Yunfei Han
- Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China
| |
Collapse
|
6
|
Li D, Xie Z, Shaikh SB, Rahman I. Altered expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. Sci Rep 2025; 15:2714. [PMID: 39837838 PMCID: PMC11751386 DOI: 10.1038/s41598-025-85373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550. We performed differential analyses using DESeq2 in R/Bioconductor, adjusting for race, and conducted gene enrichment analyses on target genes regulated by significant miRNAs. Further, molecular-based techniques using the miRNA mimics and inhibitors were applied for the validation of the expressions of the miRNAs in vitro. We identified four miRNAs that were upregulated in exclusive e-cigarette users compared to non-users: hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p, after adjusting for the confounding effects of race. However, none of the miRNAs remained statistically significant after controlling for the false discovery rate (FDR) at 5%. Subgroup analysis of White participants only identified four miRNAs (hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-200b-3p, and hsa-miR-99a-5p) that were also upregulated in e-cigarette users with one miRNA hsa-miR-200b-3p remaining statistical significance after controlling for the FDR at 5%. GO enrichment analysis showed that these miRNAs are involved in processes like transcription regulation and cellular protein modification. KEGG pathway analysis indicated their involvement in cancer pathways, including small cell lung cancer, renal cell carcinoma, and signaling pathways (neurotrophin, ErbB, PI3K-Akt, FoxO, Hippo, MAPK, TGF-beta). Overexpression of hsa-miR-125b-5p promoted DNA damage in bronchial epithelial cells. These findings suggest an elevation of carcinogenic cellular signaling pathways in exclusive e-cigarette users.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US.
| | - Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US
| | - Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| |
Collapse
|
7
|
Zhu Z, Zhang Y, Chen H, Zhang H. Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome. Tissue Barriers 2025:2452082. [PMID: 39798076 DOI: 10.1080/21688370.2025.2452082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli. The aim of this review is to provide a summary and discussion of recent advances in the understanding of the importance of cell-cell crosstalk in the pathogenesis of ALI/ARDS, with a specific focus on the cell-cell interactions that may offer prospective therapeutic avenues for ALI/ARDS.
Collapse
Affiliation(s)
- Zhenzhen Zhu
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Ying Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huan Chen
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huali Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
8
|
Jiang L, Yang D, Zhang Z, Xu L, Jiang Q, Tong Y, Zheng L. Elucidating the role of Rhodiola rosea L. in sepsis-induced acute lung injury via network pharmacology: emphasis on inflammatory response, oxidative stress, and the PI3K-AKT pathway. PHARMACEUTICAL BIOLOGY 2024; 62:272-284. [PMID: 38445620 PMCID: PMC10919309 DOI: 10.1080/13880209.2024.2319117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
CONTEXT Sepsis-induced acute lung injury (ALI) is associated with high morbidity and mortality. Rhodiola rosea L. (Crassulaceae) (RR) and its extracts have shown anti-inflammatory, antioxidant, immunomodulatory, and lung-protective effects. OBJECTIVE This study elucidates the molecular mechanisms of RR against sepsis-induced ALI. MATERIALS AND METHODS The pivotal targets of RR against sepsis-induced ALI and underlying mechanisms were revealed by network pharmacology and molecular docking. Human umbilical vein endothelial cells (HUVECs) were stimulated by 1 μg/mL lipopolysaccharide for 0.5 h and treated with 6.3, 12.5, 25, 50, 100, and 200 μg/mL RR for 24 h. Then, the lipopolysaccharide-stimulated HUVECs were subjected to cell counting kit-8 (CCK-8), enzyme-linked immunosorbent, apoptosis, and Western blot analyses. C57BL/6 mice were divided into sham, model, low-dose (40 mg/kg), mid-dose (80 mg/kg), and high-dose (160 mg/kg) RR groups. The mouse model was constructed through caecal ligation and puncture, and histological, apoptosis, and Western blot analyses were performed for further validation. RESULTS We identified six hub targets (MPO, HRAS, PPARG, FGF2, JUN, and IL6), and the PI3K-AKT pathway was the core pathway. CCK-8 assays showed that RR promoted the viability of the lipopolysaccharide-stimulated HUVECs [median effective dose (ED50) = 18.98 μg/mL]. Furthermore, RR inhibited inflammation, oxidative stress, cell apoptosis, and PI3K-AKT activation in lipopolysaccharide-stimulated HUVECs and ALI mice, which was consistent with the network pharmacology results. DISCUSSION AND CONCLUSION This study provides foundational knowledge of the effective components, potential targets, and molecular mechanisms of RR against ALI, which could be critical for developing targeted therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Dongdong Yang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhuoyi Zhang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qingyu Jiang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yixin Tong
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Lanzhi Zheng
- Department of Medical Administration, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Tang F, Zhang JN, Xu LY, Zhao XL, Wan F, Ao H, Peng C. Endothelial-derived exosomes: A novel therapeutic strategy for LPS-induced myocardial damage with anisodamine. Int J Biol Macromol 2024; 282:136993. [PMID: 39489255 DOI: 10.1016/j.ijbiomac.2024.136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-induced myocardial dysfunction presents significant challenges in clinical management and is associated with increased mortality. Anisodamine (654-1/-2) has potentials in alleviating cardiac and endothelial impairments associated with sepsis. Exosomes, small vesicles secreted by cells, carry various bioactive molecules, such as nucleic acids, proteins, and lipids. These vesicles can travel to target cells to influence their function and modulating biological processes. In the context of endothelial-cardiac crosstalk, exosomes derived from endothelial cells can transfer signals that either exacerbate or mitigate myocardial injury, playing a crucial role in the progression of cardiovascular diseases. However, the precise role of endothelial-cardiac crosstalk, particularly through exosomes, in mediating the cardioprotective effects of anisodamine remains unclear. This study evaluated the effects of anisodamine on myocardial and endothelial injuries induced by LPS. Mechanisms were analyzed through network pharmacology, molecular docking, Western blotting, and RT-qPCR. The interaction between endothelial and cardiomyocyte inflammatory responses to anisodamine was assessed using a co-culture assay. Furthermore, both in vivo and in vitro assays were conducted to evaluate the effects of anisodamine-/LPS- treated HUVECs exosomes on A16 cell and myocardial function in mice. Anisodamine effectively mitigated apoptosis, inflammation, mitochondrial and myocardial injury, glycocalyx degradation, and oxidative stress by regulating the PI3K-AKT, NLRP-3/Caspase-1/ASC, TNF-α/PKCα/eNOs/NO, and NF-κB/iNOs/NO pathways in A16 cells and HUVECs. Moreover, in vivo and in vitro assays confirmed the protective effects of anisodamine against myocardial injuries mediated by exosomes derived from LPS-treated HUVECs. In summary, anisodamine ameliorated inflammation-induced endothelial and cardiomyocyte dysfunction. The in vitro and in vivo assays demonstrated that anisodamine could alleviate myocardial dysfunction through exosome-mediated mechanisms, offering new therapeutic avenues for treating myocardial injury and highlighting the potential of targeted exosome therapy in clinical settings.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Wan
- Chengdu NO. 1 Pharmaceutical Co., Ltd., No. 133, Section 2, East Third Ring Road, Tianpeng, Pengzhou 611930, Sichuan, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Jadamba B, Jin Y, Lee H. Harmonising cellular conversations: decoding the vital roles of extracellular vesicles in respiratory system intercellular communications. Eur Respir Rev 2024; 33:230272. [PMID: 39537245 PMCID: PMC11558538 DOI: 10.1183/16000617.0272-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) released by various cells play crucial roles in intercellular communication within the respiratory system. This review explores the historical context and significance of research into extracellular vesicles. Categorised into exosomes (sized 30-150 nm), microvesicles (sized 50-1000 nm) and apoptotic bodies (sized 500-2000nm), based on their generation mechanisms, extracellular vesicles carry diverse cargoes of biomolecules, including proteins, lipids and nucleic acids. Respiratory ailments are the primary contributors to both mortality and morbidity across various populations globally, significantly impacting public health. Recent studies have underscored the pivotal role of extracellular vesicles, particularly their cargo content, in mediating intercellular communication between lung cells in respiratory diseases. This comprehensive review provides insights into extracellular vesicle mechanisms and emphasises their significance in major respiratory conditions, including acute lung injury, COPD, pulmonary hypertension, pulmonary fibrosis, asthma and lung cancer.
Collapse
Affiliation(s)
- Budjav Jadamba
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
12
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
13
|
Long X, Wu Z, Jiang P, Tan K, Liu P, Peng Q. The shared mechanism and potential diagnostic markers for premature ovarian failure and dry eye disease. Sci Rep 2024; 14:16178. [PMID: 39003404 PMCID: PMC11246504 DOI: 10.1038/s41598-024-67284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Premature ovarian failure (POF), which is often comorbid with dry eye disease (DED) is a key issue affecting female health. Here, we explored the mechanism underlying comorbid POF and DED to further elucidate disease mechanisms and improve treatment. Datasets related to POF (GSE39501) and DED (GSE44101) were identified from the Gene Expression Omnibus (GEO) database and subjected to weighted gene coexpression network (WGCNA) and differentially expressed genes (DEGs) analyses, respectively, with the intersection used to obtain 158 genes comorbid in POF and DED. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of comorbid genes revealed that identified genes were primarily related to DNA replication and Cell cycle, respectively. Protein-Protein interaction (PPI) network analysis of comorbid genes obtained the 15 hub genes: CDC20, BIRC5, PLK1, TOP2A, MCM5, MCM6, MCM7, MCM2, CENPA, FOXM1, GINS1, TIPIN, MAD2L1, and CDCA3. To validate the analysis results, additional POF- and DED-related datasets (GSE48873 and GSE171043, respectively) were selected. miRNAs-lncRNAs-genes network and machine learning methods were used to further analysis comorbid genes. The DGIdb database identified valdecoxib, amorfrutin A, and kaempferitrin as potential drugs. Herein, the comorbid genes of POF and DED were identified from a bioinformatics perspective, providing a new strategy to explore the comorbidity mechanism, opening up a new direction for the diagnosis and treatment of comorbid POF and DED.
Collapse
Affiliation(s)
- Xi Long
- Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zixuan Wu
- Hunan University of Chinese Medicine, Changsha, China
| | - Pengfei Jiang
- Quzhou Hospital of Zhejiang Medical and Health Group, Quzhou, China
| | - Kang Tan
- Hunan University of Chinese Medicine, Changsha, China
| | - Pei Liu
- Hunan University of Chinese Medicine, Changsha, China
| | - Qinghua Peng
- Hunan University of Chinese Medicine, Changsha, China.
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
14
|
Ogasawara T, Ito S, Ogashira S, Hoshino T, Sotomaru Y, Yoshiko Y, Tanimoto K. The expression of MIR125B transcripts and bone phenotypes in Mir125b2-deficient mice. PLoS One 2024; 19:e0304074. [PMID: 38976685 PMCID: PMC11230526 DOI: 10.1371/journal.pone.0304074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024] Open
Abstract
MIR125B, particularly its 5p strand, is apparently involved in multiple cellular processes, including osteoblastogenesis and osteoclastogenesis. Given that MIR125B is transcribed from the loci Mir125b1 and Mir125b2, three mature transcripts (MIR125B-5p, MIR125B1-3p, and MIR125B2-3p) are generated (MIR125B-5p is common to both); however, their expression profiles and roles in the bones remain poorly understood. Both primary and mature MIR125B transcripts were differentially expressed in various organs, tissues, and cells, and their expression patterns did not necessarily correlate in wild-type (WT) mice. We generated Mir125b2 knockout (KO) mice to examine the contribution of Mir125b2 to MIR125B expression profiles and bone phenotypes. Mir125b2 KO mice were born and grew normally without any changes in bone parameters. Interestingly, in WT and Mir125b2 KO, MIR125B-5p was abundant in the calvaria and bone marrow stromal cells. These results indicate that the genetic ablation of Mir125b2 does not impinge on the bones of mice, attracting greater attention to MIR125B-5p derived from Mir125b1. Future studies should investigate the conditional deletion of Mir125b1 and both Mir125b1 and Mir125b2 in mice.
Collapse
Affiliation(s)
- Tomohiro Ogasawara
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Shota Ito
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Shintaro Ogashira
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomonori Hoshino
- Neuroprotection Research Laboratories, Department of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Li O, Li X, He J. Knockdown of TOP2A suppresses IL-17 signaling pathway and alleviates the progression of ulcerative colitis. Immun Inflamm Dis 2024; 12:e1207. [PMID: 38661103 PMCID: PMC11044219 DOI: 10.1002/iid3.1207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease of the colonic mucosa, with a gradually increasing incidence. Therefore, it is necessary to actively seek targets for the treatment of UC. METHODS Common differentially expressed genes (DEGs) were screened from two microarray data sets related to UC. Protein-protein interaction network was constructed to find the hub genes. The UC mouse model and cell model were induced by dextran sulfate sodium (DSS). The pathological changes of colon tissue were observed by hematoxylin-eosin staining. Immunohistochemistry and immunofluorescence were performed to detect the expressions of Ki67 and Claudin-1. The performance of mice was observed by disease activity index (DAI). The effect of TOP2A on proliferation, inflammation, oxidative stress, and interleukin-17 (IL-17) signaling pathway in UC model was measured by cell counting kit-8, enzyme-linked immunosorbent assay, and western blot. RESULTS Through bioinformatics analysis, 295 common DEGs were screened, and the hub gene TOP2A was selected. In UC model, there was obvious inflammatory cell infiltration in the colon and less goblet cells, while si-TOP2A lessened it. More Ki67 positive cells and less Claudin-1 positive cells were observed in UC model mice. Furthermore, knockdown of TOP2A increased the body weight and colon length of UC mice, while the DAI was decreased. Through in vivo and in vitro experiments, knockdown of TOP2A also inhibited inflammation and IL-17 signaling pathway, and promoted proliferation in DSS-induced NCM460 cells. CONCLUSION Knockdown of TOP2A alleviated the progression of UC by suppressing inflammation and inhibited IL-17 signaling pathway.
Collapse
Affiliation(s)
- Ou Li
- Department of ProctologyZhuJiang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Xuexiao Li
- Department of ProctologyZhuJiang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Jianping He
- Department of ProctologyZhuJiang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
16
|
Zhang B, Li J, Wang Y, Liu X, Yang X, Liao Z, Deng S, Deng Y, Zhou Z, Tian Y, Wei W, Meng J, Hu Y, Wan C, Zhang Z, Huang F, Wen L, Wu B, Sun Y, Li Y, Yang K. Deubiquitinase USP7 stabilizes KDM5B and promotes tumor progression and cisplatin resistance in nasopharyngeal carcinoma through the ZBTB16/TOP2A axis. Cell Death Differ 2024; 31:309-321. [PMID: 38287116 PMCID: PMC10923876 DOI: 10.1038/s41418-024-01257-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Cisplatin-based chemotherapy improves the control of distant metastases in patients with nasopharyngeal carcinoma (NPC); however, around 30% of patients fail treatment due to acquired drug resistance. Epigenetic regulation is known to contribute to cisplatin resistance; nevertheless, the underlying mechanisms remain poorly understood. Here, we showed that lysine-specific demethylase 5B (KDM5B) was overexpressed and correlates with tumor progression and cisplatin resistance in patients with NPC. We also showed that specific inhibition of KDM5B impaired the progression of NPC and reverses cisplatin resistance, both in vitro and in vivo. Moreover, we found that KDM5B inhibited the expression of ZBTB16 by directly reducing H3K4me3 at the ZBTB16 promoter, which subsequently increased the expression of Topoisomerase II- α (TOP2A) to confer cisplatin resistance in NPC. In addition, we showed that the deubiquitinase USP7 was critical for deubiquitinating and stabilizing KDM5B. More importantly, the deletion of USP7 increased sensitivity to cisplatin by disrupting the stability of KDM5B in NPC cells. Therefore, our findings demonstrated that USP7 stabilized KDM5B and promoted cisplatin resistance through the ZBTB16/TOP2A axis, suggesting that targeting KDM5B may be a promising cisplatin-sensitization strategy in the treatment of NPC.
Collapse
Affiliation(s)
- Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Jin X, Sun H, Yang L. How Extracellular Nano-Vesicles Can Play a Role in Sepsis? An Evidence-Based Review of the Literature. Int J Nanomedicine 2023; 18:5797-5814. [PMID: 37869065 PMCID: PMC10588718 DOI: 10.2147/ijn.s427116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by infection. Severe sepsis can lead to multiple organ dysfunction, with a high incidence rate and mortality. The molecular pathogenesis of sepsis is complex and diverse. In recent years, with further study of the role of extracellular vesicles (EVs) in inflammatory diseases, it has been found that EVs play a dual role in the imbalance of inflammatory response in sepsis. Due to the great advantages such as lower toxicity, lower immunogenicity compared with stem cells and better circulation stability, EVs are increasingly used for the diagnosis and treatment of sepsis. The roles of EVs in the pathogenesis, diagnosis and treatment of sepsis were summarized to guide further clinical studies.
Collapse
Affiliation(s)
- Xiaolin Jin
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shengyang, People’s Republic of China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, People’s Republic of China
| | - Lina Yang
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shengyang, People’s Republic of China
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
19
|
Lan B, Dong X, Yang Q, Luo Y, Wen H, Chen Z, Chen H. Exosomal MicroRNAs: An Emerging Important Regulator in Acute Lung Injury. ACS OMEGA 2023; 8:35523-35537. [PMID: 37810708 PMCID: PMC10551937 DOI: 10.1021/acsomega.3c04955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Acute lung injury (ALI) is a clinically life-threatening form of respiratory failure with a mortality of 30%-40%. Acute respiratory distress syndrome is the aggravated form of ALI. Exosomes are extracellular lipid vesicles ubiquitous in human biofluids with a diameter of 30-150 nm. They can serve as carriers to convey their internal cargo, particularly microRNA (miRNA), to the target cells involved in cellular communication. In disease states, the quantities of exosomes and the cargo generated by cells are altered. These exosomes subsequently function as autocrine or paracrine signals to nearby or distant cells, regulating various pathogenic processes. Moreover, exosomal miRNAs from multiple stem cells can provide therapeutic value for ALI by regulating different signaling pathways. In addition, changes in exosomal miRNAs of biofluids can serve as biomarkers for the early diagnosis of ALI. This study aimed to review the role of exosomal miRNAs produced by different sources participating in various pathological processes of ALI and explore their potential significance in the treatment and diagnosis.
Collapse
Affiliation(s)
- Bowen Lan
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xuanchi Dong
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Qi Yang
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Traditional Chinese Medicine, The Second
Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haiyun Wen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Zhe Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Hailong Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| |
Collapse
|
20
|
Mori T, Giovannelli L, Bilia AR, Margheri F. Exosomes: Potential Next-Generation Nanocarriers for the Therapy of Inflammatory Diseases. Pharmaceutics 2023; 15:2276. [PMID: 37765245 PMCID: PMC10537720 DOI: 10.3390/pharmaceutics15092276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory diseases are common pathological processes caused by various acute and chronic factors, and some of them are autoimmune diseases. Exosomes are fundamental extracellular vesicles secreted by almost all cells, which contain a series of constituents, i.e., cytoskeletal and cytosolic proteins (actin, tubulin, and histones), nucleic acids (mRNA, miRNA, and DNA), lipids (diacylglycerophosphates, cholesterol, sphingomyelin, and ceramide), and other bioactive components (cytokines, signal transduction proteins, enzymes, antigen presentation and membrane transport/fusion molecules, and adhesion molecules). This review will be a synopsis of the knowledge on the contribution of exosomes from different cell sources as possible therapeutic agents against inflammation, focusing on several inflammatory diseases, neurological diseases, rheumatoid arthritis and osteoarthritis, intestinal bowel disease, asthma, and liver and kidney injuries. Current knowledge indicates that the role of exosomes in the therapy of inflammation and in inflammatory diseases could be distinctive. The main limitations to their clinical translation are still production, isolation, and storage. Additionally, there is an urgent need to personalize the treatments in terms of the selection of exosomes; their dosages and routes of administration; and a deeper knowledge about their biodistribution, type and incidence of adverse events, and long-term effects of exosomes. In conclusion, exosomes can be a very promising next-generation therapeutic option, superior to synthetic nanocarriers and cell therapy, and can represent a new strategy of effective, safe, versatile, and selective delivery systems in the future.
Collapse
Affiliation(s)
- Tosca Mori
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Lisa Giovannelli
- Department of Neurosciences (Department of Neurosciences, Psychology, Drug Research and Child Health), University of Florence, 50139 Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy;
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy;
| |
Collapse
|
21
|
Li Y, Wang W, Zhang B, Li L, Zhou D. A bibliometric analysis of exosomes in sepsis from 2004 to 2022. Medicine (Baltimore) 2023; 102:e34613. [PMID: 37543762 PMCID: PMC10403034 DOI: 10.1097/md.0000000000034613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
The study aims to summarize topical and frontier issues in sepsis and exosomes and provide advice and resources for researchers working in related disciplines. Publications on exosomes in sepsis from 2004 to 2022 were extracted from the Web of Science Core Collection database. VOSviewer 1.6.18 and CiteSpace 6.1.3 were used to conduct the bibliometric analysis. The number of publications on exosomes in sepsis showed a rapidly rising trend globally. China and the United States were the most published countries. Shanghai Jiao Tong University is the most prolific institution. Frontiers in Immunology was one of the journals with the highest number of papers. Journal of Immunology was the most co-cited journal. Ping Wang was the most productive author. Clotilde Thery was the author who has been cited the most times among co-cited authors. Singer m, 2016, Jama-j am med assoc was the most co-cited reference. "Mesenchymal stem cells derived exosomes," "microRNAs," "apoptosis," and "immunomodulatory therapy" are the current research hot spots and frontiers. This study provides a comprehensive overview of the current status and trends in sepsis and exosomal research. Researchers working in this area will benefit from the hot spots and trends of exosomes in sepsis discovered through this study.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, China
| | - Weina Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, China
| | - Bo Zhang
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, China
| | - Lili Li
- Department of Gastroenterology, Wuhan Fourth Hospital, Wuhan, China
| | - Dengfeng Zhou
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
22
|
Mai J, He Q, Liu Y, Hou Y. Hyperoside Attenuates Sepsis-Induced Acute Lung Injury (ALI) through Autophagy Regulation and Inflammation Suppression. Mediators Inflamm 2023; 2023:1257615. [PMID: 37545738 PMCID: PMC10400302 DOI: 10.1155/2023/1257615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/21/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background Sepsis mortality and morbidity are aggravated by acute lung injury (ALI) or acute respiratory distress syndrome. Published studies have discovered that hyperoside (HYP) has an anti-inflammatory and therapeutic effect in many diseases. However, whether HYP treatment can attenuate sepsis-induced ALI is still obscure. Methods In this study, a cecal ligation and puncture (CLP)-induced sepsis mouse model was constructed. The mouse lungs were harvested and assessed using proteomics, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay for pro-inflammatory cytokines. Human lung microvascular endothelial cells (HLMVECs) were induced with lipopolysaccharide (LPS) for the in vitro model. Results The results showed that HYP treatment attenuated sepsis-induced ALI through an increased survival rate, decreased inflammatory factor expression, and lung tissue apoptosis. At the same time, HYP pretreatment restored angiogenesis in CLP-induced mouse lung tissues. Proteomics detection showed that Atg13 played a vital role in HYP-mediated protection against sepsis-induced ALI. The in vitro experiment showed HYP treatment attenuated LPS-induced HLMVEC damage by regulating Atg13-mediated autophagy. Inhibiting autophagy or silencing Atg13 reversed the protective effect of HYP against sepsis-induced ALI. Conclusion Taken together, we conclude that HYP attenuated sepsis-induced ALI by regulating autophagy and inhibiting inflammation.
Collapse
Affiliation(s)
- Jingyin Mai
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200071, China
| | - Qingqing He
- Hospital Infection Management Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Liu
- Cardiovascular Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Hou
- Department of Pharmacy, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| |
Collapse
|
23
|
Peng W, Yang Y, Chen J, Xu Z, Lou Y, Li Q, Zhao N, Qian K, Liu F. Small Extracellular Vesicles Secreted by iPSC-Derived MSCs Ameliorate Pulmonary Inflammation and Lung Injury Induced by Sepsis through Delivery of miR-125b-5p. J Immunol Res 2023; 2023:8987049. [PMID: 37425491 PMCID: PMC10329558 DOI: 10.1155/2023/8987049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
Background Sepsis-induced acute lung injury is a common critical illness in intensive care units with no effective treatment is currently available. Small extracellular vesicles, secreted by mesenchymal stem cells (MSCs), derived from human-induced pluripotent stem cells (iMSC-sEV), possess striking advantages when incorporated MSCs and iPSCs, which are considered extremely promising cell-free therapeutic agents. However, no studies have yet been conducted to systemically examine the effects and underlying mechanisms of iMSC-sEV application on attenuated lung injury under sepsis conditions. Method iMSC-sEV were intraperitoneally administered in a rat septic lung injury model induced by cecal ligation and puncture (CLP). The efficacy of iMSC-sEV was assessed by histology, immunohistochemistry, and pro-inflammatory cytokines of bronchoalveolar lavage fluid. We also evaluated the in vitro effects of iMSC-sEV on the activation of the inflammatory response in alveolar macrophages (AMs). Small RNA sequencing was utilized to detect changes in the miRNA expression profile in lipopolysaccharide (LPS)-treated AMs after iMSC-sEV administration. The effects of miR-125b-5p on the function of AMs were studied. Results iMSC-sEV were able to attenuate pulmonary inflammation and lung injury following CLP-induced lung injury. iMSC-sEV were internalized by AMs and alleviated the release of inflammatory factors by inactivating the NF-κB signaling pathway. Moreover, miR-125b-5p showed a fold-change in LPS-treated AMs after iMSC-sEV administration and was enriched in iMSC-sEV. Mechanistically, iMSC-sEV transmitted miR-125b-5p into LPS-treated AMs to target TRAF6. Conclusion Our findings demonstrated that iMSC-sEV treatment protects against septic lung injury and exerts anti-inflammatory effects on AMs at least partially through miR-125b-5p, suggesting that iMSC-sEV may provide a novel cell-free strategy for the treatment of septic lung injury.
Collapse
Affiliation(s)
- Wei Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yun Yang
- Department of Critical Care Medicine, The People's Hospital of Fengcheng City, Yichun, Jiangxi, China
| | - Jiaquan Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zeyao Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanlei Lou
- Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ning Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kejian Qian
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Xiong C, Huang X, Chen S, Li Y. Role of Extracellular microRNAs in Sepsis-Induced Acute Lung Injury. J Immunol Res 2023; 2023:5509652. [PMID: 37378068 PMCID: PMC10292948 DOI: 10.1155/2023/5509652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening pathological disease characterized by the damage of pulmonary endothelial cells and epithelial cell barriers by uncontrolled inflammation. During sepsis-induced ALI, multiple cells cooperate and communicate with each other to respond to the stimulation of inflammatory factors. However, the underlying mechanisms of action have not been fully identified, and the modes of communication therein are also being investigated. Extracellular vesicles (EVs) are a heterogeneous population of spherical membrane structures released by almost all types of cells, containing various cellular components. EVs are primary transport vehicles for microRNAs (miRNAs), which play essential roles in physiological and pathological processes in ALI. EV miRNAs from different sources participated in regulating the biological function of pulmonary epithelial cells, endothelial cells, and phagocytes by transferring miRNA through EVs during ALI induced by sepsis, which has great potential diagnostic and therapeutic values. This study aims to summarize the role and mechanism of extracellular vesicle miRNAs from different cells in the regulation of sepsis-induced ALI. It provides ideas for further exploring the role of extracellular miRNA secreted by different cells in the ALI induced by sepsis, to make up for the deficiency of current understanding, and to explore the more optimal scheme for diagnosis and treatment of ALI.
Collapse
Affiliation(s)
- Chenlu Xiong
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Shibiao Chen
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Muralidhara P, Kumar A, Chaurasia MK, Bansal K. Topoisomerases in Immune Cell Development and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:126-133. [PMID: 36596219 PMCID: PMC7614072 DOI: 10.4049/jimmunol.2200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 01/04/2023]
Abstract
DNA topoisomerases (TOPs) are complex enzymatic machines with extraordinary capacity to maintain DNA topology during torsion-intensive steps of replication and transcription. Recently, TOPs have gained significant attention for their tissue-specific function, and the vital role of TOPs in immune homeostasis and dysfunction is beginning to emerge. TOPs have been implicated in various immunological disorders such as autoimmunity, B cell immunodeficiencies, and sepsis, underscoring their importance in immune regulation. However, much remains unknown about immunological underpinnings of TOPs, and a deeper understanding of the role of TOPs in the immune system will be critical for yielding significant insights into the etiology of immunological disorders. In this review, we first discuss the recent literature highlighting the contribution of TOPs in the development of immune cells, and we further provide an overview of their importance in immune cell responses.
Collapse
Affiliation(s)
- Prerana Muralidhara
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Amit Kumar
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Mukesh Kumar Chaurasia
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India,Corresponding author ()
| |
Collapse
|
26
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
27
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
28
|
Tao YC, Wang YH, Wang ML, Jiang W, Wu DB, Chen EQ, Tang H. Upregulation of microRNA-125b-5p alleviates acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway. Front Immunol 2022; 13:988668. [PMID: 36268033 PMCID: PMC9578503 DOI: 10.3389/fimmu.2022.988668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) are the two most common subtypes of liver failure. They are both life-threatening clinical problems with high short-term mortality. Although liver transplantation is an effective therapeutic, its application is limited due to the shortage of donor organs. Given that both ACLF and ALF are driven by excessive inflammation in the initial stage, molecules targeting inflammation may benefit the two conditions. MicroRNAs (miRNAs) are a group of small endogenous noncoding interfering RNA molecules. Regulation of miRNAs related to inflammation may serve as promising interventions for the treatment of liver failure. AIMS To explore the role and mechanism of miR-125b-5p in the development of liver failure. METHODS Six human liver tissues were categorized into HBV-non-ACLF and HBV-ACLF groups. Differentially expressed miRNAs (DE-miRNAs) were screened and identified through high-throughput sequencing analysis. Among these DE-miRNAs, miR-125b-5p was selected for further study of its role and mechanism in lipopolysaccharide (LPS)/D-galactosamine (D-GalN) -challenged Huh7 cells and mice in vitro and in vivo. RESULTS A total of 75 DE-miRNAs were obtained. Of these DE-miRNAs, miR-125b-5p was the focus of further investigation based on our previous findings and preliminary results. We preliminarily observed that the levels of miR-125b-5p were lower in the HBV-ACLF group than in the HBV-non-ACLF group. Meanwhile, LPS/D-GalN-challenged mice and Huh7 cells both showed decreased miR-125b-5p levels when compared to their untreated control group, suggesting that miR-125b-5p may have a protective role against liver injury, regardless of ACLF or ALF. Subsequent results revealed that miR-125b-5p not only inhibited Huh7 cell apoptosis in vitro but also relieved mouse ALF in vivo with evidence of improved liver histology, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and reduced tumor necrosis factor-α (TNF-α) and IL-1β levels. Based on the results of a biological prediction website, microRNA.org, Kelch-like ECH-associated protein 1 (Keap1) was predicted to be one of the target genes of miR-125b-5p, which was verified by a dual-luciferase reporter gene assay. Western blot results in vitro and in vivo showed that miR-125b-5p could decrease the expression of Keap1 and cleaved caspase-3 while upregulating the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1(HO-1). CONCLUSION Upregulation of miR-125b-5p can alleviate acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway, and regulation of miR-125b-5p may serve as an alternative intervention for liver failure.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Maiese A, Scatena A, Costantino A, Chiti E, Occhipinti C, La Russa R, Di Paolo M, Turillazzi E, Frati P, Fineschi V. Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:9354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Scatena
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Enrica Chiti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| |
Collapse
|
30
|
Liu C, Xiao K, Xie L. Advances in the use of exosomes for the treatment of ALI/ARDS. Front Immunol 2022; 13:971189. [PMID: 36016948 PMCID: PMC9396740 DOI: 10.3389/fimmu.2022.971189] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high morbidity and mortality. Currently, the primary treatment for ALI/ARDS is mainly symptomatic therapy such as mechanical ventilation and fluid management. Due to the lack of effective treatment strategies, most ALI/ARDS patients face a poor prognosis. The discovery of exosomes has created a promising prospect for the treatment of ALI/ARDS. Exosomes can exert anti-inflammatory effects, inhibit apoptosis, and promote cell regeneration. The microRNA contained in exosomes can participate in intercellular communication and play an immunomodulatory role in ALI/ARDS disease models. This review discusses the possible mechanisms of exosomes in ALI/ARDS to facilitate the development of innovative treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
31
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
32
|
Lee S, Ko JH, Kim SN. The Extracellular MicroRNAs on Inflammation: A Literature Review of Rodent Studies. Biomedicines 2022; 10:1601. [PMID: 35884901 PMCID: PMC9312877 DOI: 10.3390/biomedicines10071601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an indispensable biological process stimulated by infection and injuries. Inflammatory mechanisms related to extracellular vesicles (EVs), which are small membrane structures carrying various molecules, were summarized in this review. Emerging evidence from animal studies has highlighted the role of EVs in modulating inflammatory responses, by transporting various molecules involved in host defense. In this review, we have discussed the role of EV miRNAs in inflammation. Rodent studies associated with extracellular miRNAs in inflammatory diseases, published from 2012 to 2022, were explored from PUBMED, EMBASE, and MEDLINE. A total of 95 studies were reviewed. In summary, EV-associated miRNAs play a key role in various diseases, including organ injury, immune dysfunction, neurological disease, metabolic syndrome, vesicular disease, arthritis, cancer, and other inflammatory diseases. Diverse EV-associated miRNAs regulate inflammasome activation and pro- and anti-inflammatory cytokine levels by targeting genes.
Collapse
Affiliation(s)
- Seri Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
- Graduate School, Dongguk University, Seoul 04620, Korea
| | - Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| |
Collapse
|
33
|
Tian J, Cui X, Sun J, Zhang J. RETRACTED: Exosomal microRNA-16-5p from adipose mesenchymal stem cells promotes TLR4-mediated M2 macrophage polarization in septic lung injury. Int Immunopharmacol 2021; 98:107835. [PMID: 34186282 DOI: 10.1016/j.intimp.2021.107835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). The authors have requested that this paper be retracted as they were unable to replicate the experimental data reported in Figure 1A. The authors posit that changes in reagents or experimental conditions might be the source of their inability to do so. Additional concerns were raised about the reliability of the Western blot results in Figure 1E, Figure 4B and F, Figure 5B, and Figure 6B, as regarding ‘morphology space’ similarities contained within a series of papers with distinctive eyebrow blots, tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [nam11.safelinks.protection.outlook.com] [nam11.safelinks.protection.outlook.com]). The journal requested the authors comment on these concerns and provide raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jiakun Tian
- Department of Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130021, Jilin Provence, China
| | - Xiaoqian Cui
- Department of Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130021, Jilin Provence, China
| | - Jian Sun
- Department of Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130021, Jilin Provence, China
| | - Jingxiao Zhang
- Department of Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130021, Jilin Provence, China.
| |
Collapse
|
34
|
Cui W, Chen J, Yu F, Liu W, He M. GYY4137 protected the integrity of the blood-brain barrier via activation of the Nrf2/ARE pathway in mice with sepsis. FASEB J 2021; 35:e21710. [PMID: 34143548 DOI: 10.1096/fj.202100074r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Injury to the blood-brain barrier (BBB) plays a vital role in sepsis-associated encephalopathy (SAE), which is one of the most common complications of sepsis. GYY4137, a new synthetic compound of hydrogen sulfide (H2 S), has extensive biological benefits. In this study, we focused on the protective effects of GYY4137 on the BBB in septic mice and the underlying mechanisms. The results suggested that whether administrated at the same time or 3 hours after LPS injection, GYY4137 both significantly alleviated the clinical symptoms and the long-term prognosis. Besides, GYY4137 improved the pathological abnormalities of septic mice. Moreover, the degradation of tight junctions in the BBB was considerably inhibited by GYY4137. In addition, GYY4137 significantly attenuated inflammation and apoptosis in the brain. Furthermore, GYY4137 activated the Nrf2/ARE pathway through the sulfhydrylation of Keap1 and inhibited oxidative stress. ML385, the specific inhibitor of Nrf2, significantly reversed the protective effects of GYY4137 in sepsis mice. In conclusion, this study indicated that through the sulfhydrylation of Keap1, GYY4137 activated the Nrf2/ARE pathway and exerted anti-inflammatory, anti-apoptotic and antioxidant effects in septic mice that consequently protected the integrity of the BBB and improved the clinical outcome of sepsis. Our findings suggest that GYY4137 might be a promising agent for the treatment of SAE.
Collapse
Affiliation(s)
- Wei Cui
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Yu
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenhong Liu
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Maolin He
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|