1
|
Hao H, Bian Y, Yang N, Ji X, Bao J, Zhu K. Discovery of anti-tumor small molecule lead compounds targeting the SH3 domain of c-Src protein through virtual screening and biological evaluation. Arch Biochem Biophys 2025; 764:110286. [PMID: 39743031 DOI: 10.1016/j.abb.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
c-Src, also known as cellular Src, is a non-receptor tyrosine kinase that plays a crucial role in various cellular processes, including cell proliferation, adhesion, and migration. Its dysregulation has been implicated in the development and progression of several diseases, particularly cancer. Current therapeutic agents targeting c-Src are primarily small molecules binding to its kinase domain. However, drug resistance often reduces the effectiveness of these drugs. The SH3 domain of c-Src is a highly conserved functional region with a low propensity for developing drug resistance, whereas there are no existing anti-cancer drugs specifically binding to this domain. In this study, structure-based virtual screening and thermal shift experimental verification identified three molecules that showed potent binding affinity with SH3 domain of c-Src. Subsequent kinase activity assay validated the inhibitory activity of these compounds against c-Src, with IC50 values ranging from 60.42 to 122.2 nM. Next, cell-level assays and preliminary study were conducted to further evaluate the efficacy of the identified active compounds. In conclusion, the present work has provided new chemical templates as lead structures for the future development of new antitumor therapeutics targeting the c-Src SH3 domain to overcome drug resistance.
Collapse
Affiliation(s)
- Haifang Hao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yuan Bian
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Na Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kongkai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Jones I, Arias-Garcia M, Pascual-Vargas P, Beykou M, Dent L, Chaudhuri TP, Roumeliotis T, Choudhary J, Sero J, Bakal C. YAP activation is robust to dilution. Mol Omics 2024; 20:554-569. [PMID: 39282972 PMCID: PMC11403994 DOI: 10.1039/d4mo00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
The concentration of many transcription factors exhibits high cell-to-cell variability due to differences in synthesis, degradation, and cell size. Whether the functions of these factors are robust to fluctuations in concentration, and how this may be achieved, is poorly understood. Across two independent panels of breast cancer cells, we show that the average whole cell concentration of YAP decreases as a function of cell area. However, the nuclear concentration distribution remains constant across cells grouped by size, across a 4-8 fold size range, implying unperturbed nuclear translocation despite the falling cell wide concentration. Both the whole cell and nuclear concentration was higher in cells with more DNA and CycA/PCNA expression suggesting periodic synthesis of YAP across the cell cycle offsets dilution due to cell growth and/or cell spreading. The cell area - YAP scaling relationship extended to melanoma and RPE cells. Integrative analysis of imaging and phospho-proteomic data showed the average nuclear YAP concentration across cell lines was predicted by differences in RAS/MAPK signalling, focal adhesion maturation, and nuclear transport processes. Validating the idea that RAS/MAPK and cell cycle regulate YAP translocation, chemical inhibition of MEK or CDK4/6 increased the average nuclear YAP concentration. Together, this study provides an example case, where cytoplasmic dilution of a protein, for example through cell growth, does not limit a cognate cellular function. Here, that same proteins translocation into the nucleus.
Collapse
Affiliation(s)
- Ian Jones
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Melina Beykou
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Lucas Dent
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Tara Pal Chaudhuri
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Julia Sero
- Institute for Mathematical Innovation, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
3
|
Lang A, Fernández A, Diaz-Lobo M, Vilanova M, Cárdenas F, Gairí M, Pons M. Modulation of Functional Phosphorylation Sites by Basic Residues in the Unique Domain of c-Src. Molecules 2023; 28:4686. [PMID: 37375241 DOI: 10.3390/molecules28124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In contrast to the well-studied canonical regulatory mechanisms, the way by which the recently discovered Src N-terminal regulatory element (SNRE) modulates Src activity is not yet well understood. Phosphorylation of serine and threonine residues modulates the charge distribution along the disordered region of the SNRE and may affect a fuzzy complex with the SH3 domain that is believed to act as an information transduction element. The pre-existing positively charged sites can interact with the newly introduced phosphate groups by modulating their acidity, introducing local conformational restrictions, or by coupling various phosphosites into a functional unit. In this paper, we use pH-dependent NMR measurements combined with single point mutations to identify the interactions of basic residues with physiologically important phosphorylated residues and to characterize the effect of these interactions in neighbor residues, thus providing insight into the electrostatic network in the isolated disordered regions and in the entire SNRE. From a methodological point of view, the linear relationships observed between the mutation-induced pKa changes of the phosphate groups of phosphoserine and phosphothreonine and the pH-induced chemical shifts of the NH groups of these residues provide a very convenient alternative to identify interacting phosphate groups without the need to introduce point mutations on specific basic residues.
Collapse
Affiliation(s)
- Andras Lang
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Alejandro Fernández
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Mireia Diaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Francisco Cárdenas
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Margarida Gairí
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Miquel Pons
- BioNMR Laboratory, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Onyedibe KI, Mohallem R, Wang M, Aryal UK, Sintim HO. Proteomic and phosphoproteomic analyses of Jurkat T-cell treated with 2'3' cGAMP reveals various signaling axes impacted by cyclic dinucleotides. J Proteomics 2023; 279:104869. [PMID: 36889538 DOI: 10.1016/j.jprot.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Cyclic dinucleotides (CDNs), such as 2'3'-cGAMP, bind to STING to trigger the production of cytokines and interferons, mainly via activation of TBK1. STING activation by CDN also leads to the release and activation of Nuclear Factor Kappa-light-chain-enhancer of activated B cells (NF-κB) via the phosphorylation of Inhibitor of NF-κB (IκB)-alpha (IκBα) by IκB Kinase (IKK). Beyond the canonical TBK1 or IKK phosphorylations, little is known about how CDNs broadly affect the phosphoproteome and/or other signaling axes. To fill this gap, we performed an unbiased proteome and phosphoproteome analysis of Jurkat T-cell treated with 2'3'-cGAMP or vehicle control to identify proteins and phosphorylation sites that are differentially modulated by 2'3'-cGAMP. We uncovered different classes of kinase signatures associated with cell response to 2'3'-cGAMP. 2'3'-cGAMP upregulated Arginase 2 (Arg2) and the antiviral innate immune response receptor RIG-I as well as proteins involved in ISGylation, E3 ISG15-protein ligase HERC5 and ubiquitin-like protein ISG15, while downregulating ubiquitin-conjugating enzyme UBE2C. Kinases that play a role in DNA double strand break repair, apoptosis, and cell cycle regulation were differentially phosphorylated. Overall, this work demonstrates that 2'3'-cGAMP has a much broader effects on global phosphorylation events than currently appreciated, beyond the canonical TBK1/IKK signaling. SIGNIFICANCE: The host cyclic dinucleotide, 2'3'-cGAMP is known to bind to Stimulator of Interferon Genes (STING) to trigger the production of cytokines and interferons in immune cells via STING-TBK1-IRF3 pathway. Beyond the canonical phosphorelay via the STING-TBK1-IRF3 pathway, little is known about how this second messenger broadly affects the global proteome. Using an unbiased phosphoproteomics, this study identifies several kinases and phosphosites that are modulated by cGAMP. The study expands our knowledge about how cGAMP modulates global proteome and also global phosphorylations.
Collapse
Affiliation(s)
- Kenneth I Onyedibe
- Department of Chemistry, Purdue University, West Lafayette, IN, USA; Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Modi Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, West Lafayette, IN, USA; Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Zhu S, Sun R, Guo X, Bao Y, Zhang D. Regulation, targets and functions of CHK. Front Cell Dev Biol 2022; 10:1068952. [PMID: 36568988 PMCID: PMC9780368 DOI: 10.3389/fcell.2022.1068952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Src family kinases (SFKs) play pivotal roles in multiple signaling pathways (Yeatman, 2004). SFK activity is inhibited by phosphorylation at its C-terminal tyrosine, by CSK (C-terminal Src kinase) and CHK (CSK-homologous kinase). CHK expression is restricted to normal hematopoietic cells, brain, and colon tissues. Downregulation of CHK in brain and colon tumors contributes to tumorigenicity in these tissues. CHK does not phosphorylate Src efficiently, however, in contrast to CSK, CHK inhibits Src kinase activity allosterically. Although the functions of CHK are still largely unknown, potential substrates of CHK including β-synuclein, α-tubulin, α-spectrin, 14-3-3, and Hsp90 have been identified. CHK is regulated epigenetically via promoter methylation. As the unknown roles of CHK are beginning to be revealed, current knowledge of regulation, molecular targets and functions of CHK is summarized, and important topics for future CHK research are discussed.
Collapse
Affiliation(s)
- Shudong Zhu
- School of Medicine, Nantong University, Nantong, China,Argus Pharmaceuticals, Changsha, China,*Correspondence: Shudong Zhu,
| | - Rong Sun
- School of Medicine, Nantong University, Nantong, China
| | | | | | - Dianzheng Zhang
- Department of Bio-medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Min JK, Park HS, Lee YB, Kim JG, Kim JI, Park JB. Cross-Talk between Wnt Signaling and Src Tyrosine Kinase. Biomedicines 2022; 10:biomedicines10051112. [PMID: 35625853 PMCID: PMC9138253 DOI: 10.3390/biomedicines10051112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Src, a non-receptor tyrosine kinase, was first discovered as a prototype oncogene and has been shown to critical for cancer progression for a variety of tissues. Src activity is regulated by a number of post-translational modifications in response to various stimuli. Phosphorylations of Src Tyr419 (human; 416 in chicken) and Src Tyr530 (human; 527 in chicken) have been known to be critical for activation and inactivation of Src, respectively. Wnt signaling regulates a variety of cellular functions including for development and cell proliferation, and has a role in certain diseases such as cancer. Wnt signaling is carried out through two pathways: β-catenin-dependent canonical and β-catenin-independent non-canonical pathways as Wnt ligands bind to their receptors, Frizzled, LRP5/6, and ROR1/2. In addition, many signaling components including Axin, APC, Damm, Dishevelled, JNK kinase and Rho GTPases contribute to these canonical and non-canonical Wnt pathways. However, the communication between Wnt signaling and Src tyrosine kinase has not been well reviewed as Src regulates Wnt signaling through LRP6 tyrosine phosphorylation. GSK-3β phosphorylated by Wnt also regulates Src activity. As Wnt signaling and Src mutually regulate each other, it is noted that aberrant regulation of these components give rise to various diseases including typically cancer, and as such, merit a closer look.
Collapse
Affiliation(s)
- Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2542; Fax: +82-33-244-8425
| |
Collapse
|
7
|
Hayden L, Chao A, Deneke VE, Vergassola M, Puliafito A, Di Talia S. Cullin-5 mutants reveal collective sensing of the nucleocytoplasmic ratio in Drosophila embryogenesis. Curr Biol 2022; 32:2084-2092.e4. [PMID: 35334230 PMCID: PMC9090985 DOI: 10.1016/j.cub.2022.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
In most metazoans, early embryonic development is characterized by rapid division cycles that pause before gastrulation at the midblastula transition (MBT).1 These cleavage divisions are accompanied by cytoskeletal rearrangements that ensure proper nuclear positioning. However, the molecular mechanisms controlling nuclear positioning are not fully elucidated. In Drosophila, early embryogenesis unfolds in a multinucleated syncytium. Nuclei rapidly move across the anterior-posterior (AP) axis at cell cycles 4-6 in a process driven by actomyosin contractility and cytoplasmic flows.2,3 In shackleton (shkl) mutants, this axial spreading is impaired.4 Here, we show that shkl mutants carry mutations in the cullin-5 (cul-5) gene. Live imaging experiments show that Cul-5 is downstream of the cell cycle but is required for cortical actomyosin contractility. The nuclear spreading phenotype of cul-5 mutants can be rescued by reducing Src activity, suggesting that a major target of cul-5 is Src kinase. cul-5 mutants display gradients of nuclear density across the AP axis that we exploit to study cell-cycle control as a function of the N/C ratio. We found that the N/C ratio is sensed collectively in neighborhoods of about 100 μm, and such collective sensing is required for a precise MBT, in which all the nuclei in the embryo pause their division cycle. Moreover, we found that the response to the N/C ratio is slightly graded along the AP axis. These two features can be linked to Cdk1 dynamics. Collectively, we reveal a new pathway controlling nuclear positioning and provide a dissection of how nuclear cycles respond to the N/C ratio.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Chao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria E Deneke
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France; Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Alberto Puliafito
- Candiolo Cancer Institute, FPO-IRCCS, Laboratory of Cell Migration, 10060 Candiolo, Italy; Department of Oncology, Università di Torino, 10060 Candiolo, Italy
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
8
|
β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin. Cells 2022; 11:cells11091473. [PMID: 35563779 PMCID: PMC9103620 DOI: 10.3390/cells11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.
Collapse
|
9
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
10
|
Yao J, Shen Q, Huang M, Ding M, Guo Y, Chen W, Lin Y, Zheng Y, Yu S, Yan W, Su T, Liu Z, Lu L. Screening tumor specificity targeted by arnicolide D, the active compound of Centipeda minima and molecular mechanism underlying by integrative pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114583. [PMID: 34487850 DOI: 10.1016/j.jep.2021.114583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb-derived anti-tumor agents, such as paclitaxel and vincristine, exert significant but varied effectivenesses towards different cancer types. Similarly, Centipeda minima (CM) is a well-known traditional Chinese medicine that has been used to treat rhinitis, relieve pain and reduce swelling, and recently found to exert overwhelming anti-tumor effects against breast cancer, colon cancer, and nasopharyngeal carcinoma with different response rates. However, what is the optimizing cancer model that benefits most from CM, and what is the specific target underlying still require more exclusive and profound investigations. AIMS OF THE STUDY This study aimed to explore the dominant tumor model and specific target of CM by integrative pharmacology and biological experiments. MATERIALS AND METHODS The most predominant and specific cancer types that are sensitive to CM were screened and identified based on a combination network pharmacology and bioinformatics analysis. Compound-target network and protein-protein interaction of CM-related cancer targets were carried out to determine the most abundant active compound. Simultaneously, the priority target responsible for CM-related anti-tumor efficacy was further validated by molecular docking and in vitro experiments. RESULTS In total, approximately 42% (8/19) of the targets were enriched in prostate cancer (p = 1.25E-09), suggesting prostate cancer would be the most sensitive tumor response to CM-related efficacy. Furthermore, we found that arnicolide D (ARD), the most abundant and representative active compound of CM, could directly bind to Src with binding energy of -7.3 kcal/mol, implying Src would be the priority target responsible for CM-related anti-tumor efficacy. Meanwhile, the results were further validated by solvent-induced protein precipitation (SIP) assay. In addition, PCR and WB results also revealed that either CM or ARD could not influence the gene expression of Src, while significantly decreased its protein expression instead, which further suggested that ARD might markedly shortene the Src protein half-life to promote Src protein degradation, thereby achieving significant anti-prostate cancer efficacy. CONCLUSION Our findings not only suggest CM as a promising Src-targeting candidate for prostate cancer treatment, but also bring up a strategy for understanding the personalization of herbal medicines by using integrative pharmacology.
Collapse
Affiliation(s)
- Jingjing Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qinghong Shen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Min Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ming Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yajuan Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenbo Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuefang Lin
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yaqiu Zheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shaofang Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenxin Yan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Tao Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
11
|
Quantitative phosphoproteomics uncovers dysregulated kinase networks in Alzheimer’s disease. NATURE AGING 2021; 1:550-565. [PMID: 37117831 DOI: 10.1038/s43587-021-00071-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a form of dementia characterized by amyloid-β plaques and tau neurofibrillary tangles that progressively disrupt neural circuits in the brain. The signaling networks underlying AD pathological changes are poorly characterized at the phosphoproteome level. Using mass spectrometry, we analyzed the proteome and tyrosine, serine and threonine phosphoproteomes of temporal cortex tissue from patients with AD and aged-matched controls. We identified cocorrelated peptide clusters that were linked to varying levels of phospho-tau, oligodendrocyte, astrocyte, microglia and neuron pathologies. We found that neuronal synaptic protein abundances were strongly anti-correlated with markers of microglial reactivity. We also observed that phosphorylation sites on kinases targeting tau and other new signaling factors were correlated with these peptide modules. Finally, we used data-driven statistical modeling to identify individual peptides and peptide clusters that were predictive of AD histopathologies. Together, these results build a map of pathology-associated phosphorylation signaling events occurring in AD.
Collapse
|
12
|
Lee CS, Cho HJ, Lee JW, Son H, Chai J, Kim HS. Adhesion GPCR Latrophilin-2 Specifies Cardiac Lineage Commitment through CDK5, Src, and P38MAPK. Stem Cell Reports 2021; 16:868-882. [PMID: 33798451 PMCID: PMC8072181 DOI: 10.1016/j.stemcr.2021.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Identifying lineage-specific markers is pivotal for understanding developmental processes and developing cell therapies. Here, we investigated the functioning of a cardiomyogenic cell-surface marker, latrophilin-2 (LPHN2), an adhesion G-protein-coupled receptor, in cardiac differentiation. LPHN2 was selectively expressed in cardiac progenitor cells (CPCs) and cardiomyocytes (CMCs) during mouse and human pluripotent stem cell (PSC) differentiation; cell sorting with an anti-LPHN2 antibody promoted the isolation of populations highly enriched in CPCs and CMCs. Lphn2 knockdown or knockout PSCs did not express cardiac genes. We used the Phospho Explorer Antibody Array, which encompasses nearly all known signaling pathways, to assess molecular mechanisms underlying LPHN2-induced cardiac differentiation. LPHN2-dependent phosphorylation was the strongest for cyclin-dependent kinase 5 (CDK5) at Tyr15. We identified CDK5, Src, and P38MAPK as key downstream molecules of LPHN2 signaling. These findings provide a valuable strategy for isolating CPCs and CMCs from PSCs and insights into the still-unknown cardiac differentiation mechanisms.
Collapse
Affiliation(s)
- Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - HyunJu Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jinho Chai
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Cai ML, Wang MY, Zhang CH, Wang JX, Liu H, He HW, Zhao WL, Xia GM, Shao RG. Role of co- and post-translational modifications of SFKs in their kinase activation. J Drug Target 2019; 28:23-32. [PMID: 31094236 DOI: 10.1080/1061186x.2019.1616297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and are involved in various cellular functions (proliferation, differentiation, migration, survival and invasion) by regulating downstream pathways. Considerable evidence suggests that co- and post-translational modifications are highly related to the activation of SFKs and their downstream signals. How SFKs are activated and how their subsequent cascades were regulated has been reviewed in previous reports. However, the contribution of co- and post-translational modification to SFKs activation has not been fully elucidated. This review focuses on the effect of these modifications on SFKs activity according to structural and biochemical studies and uncovers the significance of co-and post-translational modifications in the regulation of SFKs activity.
Collapse
Affiliation(s)
- Mei-Lian Cai
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Yan Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hui Zhang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Xia Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liu
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Wei He
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wu-Li Zhao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gui-Ming Xia
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong-Guang Shao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Nonphosphorylatable Src Ser75 Mutation Increases Ethanol Preference and Consumption in Mice. eNeuro 2019; 6:eN-NWR-0418-18. [PMID: 30963106 PMCID: PMC6451160 DOI: 10.1523/eneuro.0418-18.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/21/2022] Open
Abstract
Src is highly expressed in CNS neurons and contributes not only to developmental proliferation and differentiation but also to high-order brain functions, such as those contributing to alcohol consumption. Src knock-out mice exhibit no CNS abnormalities, presumably due to compensation by other Src family kinases (SFKs), but have a shortened lifespan and osteopetrosis-associated defects, impeding investigations of the role of Src on behavior in adult mice. However, the Unique domain of Src differs from those in other SFKs and is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and Cdk5 at Ser75, which influences its postmitotic function in neurons. Therefore, ethanol consumption in mice harboring nonphosphorylatable (Ser75Ala) or phosphomimetic (Ser75Asp) Src mutants was investigated. Mice harboring the Ser75Ala Src mutant, but not the Ser75Asp mutant, had a higher preference for and consumption of solutions containing 5% and 10% ethanol than wild-type mice. However, plasma ethanol concentrations and sensitivities to the sedative effects of ethanol were not different among the groups. In mice harboring the Ser75Ala Src mutant, the activity of Rho-associated kinase (ROCK) in the striatum was significantly lower and Akt Ser473 phosphorylation was significantly higher than in wild-type mice. These results suggest that Src regulates voluntary ethanol drinking in a manner that depends on Ser75 phosphorylation.
Collapse
|
15
|
A Ser75-to-Asp phospho-mimicking mutation in Src accelerates ageing-related loss of retinal ganglion cells in mice. Sci Rep 2017; 7:16779. [PMID: 29196663 PMCID: PMC5711949 DOI: 10.1038/s41598-017-16872-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/18/2017] [Indexed: 11/08/2022] Open
Abstract
Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.
Collapse
|
16
|
c- Src and its role in cystic fibrosis. Eur J Cell Biol 2016; 95:401-413. [DOI: 10.1016/j.ejcb.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
|
17
|
Kwon OK, Kim SJ, Lee YM, Lee YH, Bae YS, Kim JY, Peng X, Cheng Z, Zhao Y, Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 2015; 16:136-49. [DOI: 10.1002/pmic.201500017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Young-Hoon Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Xiaojun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd; Hangzhou P. R. China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine; Tongji University; Shanghai P. R. China
| | - Yingming Zhao
- Ben May Department for Cancer Research; University of Chicago; Chicago IL USA
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| |
Collapse
|
18
|
Bioinformatics Knowledge Map for Analysis of Beta-Catenin Function in Cancer. PLoS One 2015; 10:e0141773. [PMID: 26509276 PMCID: PMC4624812 DOI: 10.1371/journal.pone.0141773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/13/2015] [Indexed: 01/26/2023] Open
Abstract
Given the wealth of bioinformatics resources and the growing complexity of biological information, it is valuable to integrate data from disparate sources to gain insight into the role of genes/proteins in health and disease. We have developed a bioinformatics framework that combines literature mining with information from biomedical ontologies and curated databases to create knowledge "maps" of genes/proteins of interest. We applied this approach to the study of beta-catenin, a cell adhesion molecule and transcriptional regulator implicated in cancer. The knowledge map includes post-translational modifications (PTMs), protein-protein interactions, disease-associated mutations, and transcription factors co-activated by beta-catenin and their targets and captures the major processes in which beta-catenin is known to participate. Using the map, we generated testable hypotheses about beta-catenin biology in normal and cancer cells. By focusing on proteins participating in multiple relation types, we identified proteins that may participate in feedback loops regulating beta-catenin transcriptional activity. By combining multiple network relations with PTM proteoform-specific functional information, we proposed a mechanism to explain the observation that the cyclin dependent kinase CDK5 positively regulates beta-catenin co-activator activity. Finally, by overlaying cancer-associated mutation data with sequence features, we observed mutation patterns in several beta-catenin PTM sites and PTM enzyme binding sites that varied by tissue type, suggesting multiple mechanisms by which beta-catenin mutations can contribute to cancer. The approach described, which captures rich information for molecular species from genes and proteins to PTM proteoforms, is extensible to other proteins and their involvement in disease.
Collapse
|
19
|
Machiyama H, Yamaguchi T, Sawada Y, Watanabe TM, Fujita H. SH3 domain of c-Src governs its dynamics at focal adhesions and the cell membrane. FEBS J 2015; 282:4034-55. [DOI: 10.1111/febs.13404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Yasuhiro Sawada
- Research Institute; National Rehabilitation Center for Persons with Disabilities; Saitama Japan
| | - Tomonobu M. Watanabe
- Immunology Frontier Research Center; Osaka University; Suita Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| | - Hideaki Fujita
- Immunology Frontier Research Center; Osaka University; Suita Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| |
Collapse
|
20
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
21
|
Tripathi BK, Lowy DR, Zelenka PS. The Cdk5 activator P39 specifically links muskelin to myosin II and regulates stress fiber formation and actin organization in lens. Exp Cell Res 2014; 330:186-98. [PMID: 25128817 DOI: 10.1016/j.yexcr.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
Cyclin dependent kinase 5 (Cdk5), a proline-directed serine/threonine kinase, requires p39 for its enzymatic activity, and is implicated in cytoskeletal organization and contraction in numerous cell types. The C-terminus of p39 binds muskelin, a multi-domain scaffolding protein known to affect cytoskeletal organization, but the mechanisms by which muskelin affects cytoskeletal organization remain unclear. The present study sought to determine whether p39 might serve as an adaptor protein that links muskelin to stress fibers and to investigate the possible biological relevance of such an interaction. Double immunoprecipitation showed that muskelin, p39, and myosin II are components of a single intracellular complex, and suppressing p39 abrogated the interaction between muskelin and the myosin subunits, demonstrating that p39 is required to link muskelin to myosin II. Muskelin is colocalized with myosin regulatory light chain (MRLC) and on stress fibers. The suppression of muskelin reduced Rho-GTP, MRLC phosphorylation, disrupted stress fiber organization, and promoted cell migration, all of which closely mimic the effect of Cdk5 inhibition. Moreover, suppressing muskelin and inhibiting Cdk5 together have no additional effect, indicating that muskelin plays an important role in Cdk5-dependent signaling. p39 is necessary and sufficient for Cdk5-dependent regulation of MRLC phosphorylation, as suppression of p39, but not p35, reduces MRLC phosphorylation. Together, these results demonstrate that p39 specifically links muskelin to myosin II and consequently, to stress fibers and reveal a novel role for muskelin in regulating myosin phosphorylation and cytoskeletal organization.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA; Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA
| | - Peggy S Zelenka
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Amata I, Maffei M, Pons M. Phosphorylation of unique domains of Src family kinases. Front Genet 2014; 5:181. [PMID: 25071818 PMCID: PMC4075076 DOI: 10.3389/fgene.2014.00181] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/29/2014] [Indexed: 12/11/2022] Open
Abstract
Members of the Src family of kinases (SFKs) are non-receptor tyrosine kinases involved in numerous signal transduction pathways. The catalytic, SH3 and SH2 domains are attached to the membrane-anchoring SH4 domain through the intrinsically disordered "Unique" domains, which exhibit strong sequence divergence among SFK members. In the last decade, structural and biochemical studies have begun to uncover the crucial role of the Unique domain in the regulation of SFK activity. This mini-review discusses what is known about the phosphorylation events taking place on the SFK Unique domains, and their biological relevance. The modulation by phosphorylation of biologically relevant inter- and intra- molecular interactions of Src, as well as the existence of complex phosphorylation/dephosphorylation patterns observed for the Unique domain of Src, reinforces the important functional role of the Unique domain in the regulation mechanisms of the Src kinases and, in a wider context, of intrinsically disordered regions in cellular processes.
Collapse
Affiliation(s)
- Irene Amata
- Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona Barcelona, Spain
| | - Mariano Maffei
- Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona Barcelona, Spain
| |
Collapse
|
23
|
Huber RJ. The cyclin-dependent kinase family in the social amoebozoan Dictyostelium discoideum. Cell Mol Life Sci 2014; 71:629-39. [PMID: 23974243 PMCID: PMC11113532 DOI: 10.1007/s00018-013-1449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinases (Cdk) are a family of serine/threonine protein kinases that regulate eukaryotic cell cycle progression. Their ability to modulate the cell cycle has made them an attractive target for anti-cancer therapies. Cdk protein function has been studied in a variety of Eukaryotes ranging from yeast to humans. In the social amoebozoan Dictyostelium discoideum, several homologues of mammalian Cdks have been identified and characterized. The life cycle of this model organism is comprised of a feeding stage where single cells grow and divide mitotically as they feed on their bacterial food source and a multicellular developmental stage that is induced by starvation. Thus it is a valuable system for studying a variety of cellular and developmental processes. In this review I summarize the current knowledge of the Cdk protein family in Dictyostelium by highlighting the research efforts focused on the characterization of Cdk1, Cdk5, and Cdk8 in this model Eukaryote. Accumulated evidence indicates that each protein performs distinct functions during the Dictyostelium life cycle with Cdk1 being required for growth and Cdk5 and Cdk8 being required for processes that occur during development. Recent studies have shown that Dictyostelium Cdk5 shares attributes with mammalian Cdk5 and that the mammalian Cdk inhibitor roscovitine can be used to inhibit Cdk5 activity in Dictyostelium. Together, these results show that Dictyostelium can be used as a model system for studying Cdk protein function.
Collapse
Affiliation(s)
- Robert J Huber
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA, 02114, USA,
| |
Collapse
|
24
|
Teckchandani A, Laszlo GS, Simó S, Shah K, Pilling C, Strait AA, Cooper JA. Cullin 5 destabilizes Cas to inhibit Src-dependent cell transformation. J Cell Sci 2013; 127:509-20. [PMID: 24284072 DOI: 10.1242/jcs.127829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation-dependent protein ubiquitylation and degradation provides an irreversible mechanism to terminate protein kinase signaling. Here, we report that mammary epithelial cells require cullin-5-RING-E3-ubiquitin-ligase complexes (Cul5-CRLs) to prevent transformation by a Src-Cas signaling pathway. Removal of Cul5 stimulates growth-factor-independent growth and migration, membrane dynamics and colony dysmorphogenesis, which are all dependent on the endogenous tyrosine kinase Src. Src is activated in Cul5-deficient cells, but Src activation alone is not sufficient to cause transformation. We found that Cul5 and Src together stimulate degradation of the Src substrate p130Cas (Crk-associated substrate). Phosphorylation stimulates Cas binding to the Cul5-CRL adaptor protein SOCS6 and consequent proteasome-dependent degradation. Cas is necessary for the transformation of Cul5-deficient cells. Either knockdown of SOCS6 or use of a degradation-resistant Cas mutant stimulates membrane ruffling, but not other aspects of transformation. Our results show that endogenous Cul5 suppresses epithelial cell transformation by several pathways, including inhibition of Src-Cas-induced ruffling through SOCS6.
Collapse
Affiliation(s)
- Anjali Teckchandani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Simó S, Cooper JA. Rbx2 regulates neuronal migration through different cullin 5-RING ligase adaptors. Dev Cell 2013; 27:399-411. [PMID: 24210661 PMCID: PMC3851519 DOI: 10.1016/j.devcel.2013.09.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/29/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022]
Abstract
Morphogenesis requires the proper migration and positioning of different cell types in the embryo. Much more is known about how cells start and guide their migrations than about how they stop when they reach their destinations. Here we provide evidence that Rbx2, a subunit of the Cullin 5-RING E3 ubiquitin ligase (CRL5) complex, stops neocortical projection neurons at their target layers. Rbx2 mutation causes neocortical and cerebellar ectopias dependent on Dab1, a key signaling protein in the Reelin pathway. SOCS7, a CRL5 substrate adaptor protein, is also required for neocortical layering. SOCS7-CRL5 complexes stimulate the ubiquitylation and turnover of Dab1. SOCS7 is upregulated during projection neuron migration, and unscheduled SOCS7 expression stops migration prematurely. Cerebellar development requires Rbx2 but not SOCS7, pointing to the importance of other CRL5 adaptors. Our results suggest that CRL5 adaptor expression is spatiotemporally regulated to modulate Reelin signaling and ensure normal neuron positioning in the developing brain.
Collapse
Affiliation(s)
- Sergi Simó
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, Washington 98109, U.S.A
| | - Jonathan A. Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, Washington 98109, U.S.A
| |
Collapse
|
26
|
Zhao Y, Sun Y. Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des 2013; 19:3215-25. [PMID: 23151137 DOI: 10.2174/13816128113199990300] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
27
|
Amata I, Maffei M, Igea A, Gay M, Vilaseca M, Nebreda AR, Pons M. Multi-phosphorylation of the intrinsically disordered unique domain of c-Src studied by in-cell and real-time NMR spectroscopy. Chembiochem 2013; 14:1820-7. [PMID: 23744817 DOI: 10.1002/cbic.201300139] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Indexed: 12/28/2022]
Abstract
Intrinsically disordered regions (IDRs) are preferred sites for post-translational modifications essential for regulating protein function. The enhanced local mobility of IDRs facilitates their observation by NMR spectroscopy in vivo. Phosphorylation events can occur at multiple sites and respond dynamically to changes in kinase-phosphatase networks. Here we used real-time NMR spectroscopy to study the effect of kinases and phosphatases present in Xenopus oocytes and egg extracts on the phosphorylation state of the "unique domain" of c-Src. We followed the phosphorylation of S17 in oocytes, and of S17, S69, and S75 in egg extracts by NMR spectroscopy, MS, and western blotting. Addition of specific kinase inhibitors showed that S75 and S69 are phosphorylated by CDKs (cyclin-dependent kinases) differently from Cdk1. Moreover, although PKA (cAMP-dependent protein kinase) can phosphorylate S17 in vitro, this was not the major S17 kinase in egg extracts. Changes in PKA activity affected the phosphorylation levels of CDK-dependent sites, thus suggesting indirect effects of kinase-phosphatase networks. This study provides a proof-of-concept of the use of real-time in vivo NMR spectroscopy to characterize kinase/phosphatase effects on intrinsically disordered regulatory domains.
Collapse
Affiliation(s)
- Irene Amata
- Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona (Spain); Signaling and Cell Cycle Laboratory, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain)
| | | | | | | | | | | | | |
Collapse
|
28
|
Sakkiah S, Arullaperumal V, Hwang S, Lee KW. Ligand-based pharmacophore modeling and Bayesian approaches to identify c-Src inhibitors. J Enzyme Inhib Med Chem 2013; 29:69-80. [PMID: 23432516 DOI: 10.3109/14756366.2012.753881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract Cellular Src (c-Src) kinases play a critical role in cell adhesion, proliferation, angiogenesis and cancer. Ligand-based pharmacophore models, used to identify the critical chemical features of c-Src inhibitors, were generated and validated by training, test and decoy sets, respectively. Best pharmacophore model, Hypo1, consists of four features such as HBA, HBD, Hy-Ar and RA. Hypo1 was used in virtual screening of the chemical databases such as Maybridge, Chembridge and NCI. The sorted compounds by Hypo1 were further reduced by applying drug-like properties and ADMET. Totally, 85 compounds which showed the good drug-like properties were selected from three databases and subjected to molecular docking for refinement of the retrieved hits by analysing the suitable orientation of the compounds in the active site of c-Src. Finally, 18 compounds were selected based on consensus scoring and hydrogen bond interactions with critical amino acids such as Met341, Thr338, Glu339 or Asp404. In addition, the Bayesian model was generated from the training set to find suitable fragments for inhibition of the c-Src function. Based on the above finding, we suggested that the Hypo1 and the good fragments from the Bayesian model will be helpful to select the compounds from various databases to identify the novel and potent c-Src inhibitor.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU) , Jinju , Republic of Korea
| | | | | | | |
Collapse
|
29
|
Arpitha P, Gao CY, Tripathi BK, Saravanamuthu S, Zelenka P. Cyclin-dependent kinase 5 promotes the stability of corneal epithelial cell junctions. Mol Vis 2013; 19:319-32. [PMID: 23401660 PMCID: PMC3566902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/05/2013] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Although cyclin-dependent kinase 5 (Cdk5) inhibits the formation of junctions containing N-cadherin, the effect of Cdk5 on junctions containing E-cadherin is less clear. The present study investigates the functional significance of Cdk5 in forming and maintaining cell-cell stability in corneal epithelial cells. METHODS A Cdk5-deficient human corneal limbal epithelial cell line was generated by lentiviral transduction of small hairpin RNA specific for Cdk5 (shCdk5-HCLE cells). A blasticidin-inducible vector for expression of Cdk5-specific short hairpin RNA (ShCdk5) was generated by recombination and packaged into non-replicative lentiviral particles for transduction of human corneal limbal epithelial (HCLE) cells. Blasticidin-resistant cells were isolated for analysis. Cell aggregations were performed using HCLE, Cdk5 inhibitor olomoucine, ShCdk5, and MDA-MB 231 cells in the presence and absence of calcium, and particle size was measured using image analysis software. Relative protein concentrations were measured with immunoblotting and quantitative densitometry. Total internal reflection fluorescence (TIRF) microscopy was performed on cells transfected with green fluorescent protein (GFP)-E-cadherin or GFP-p120, and internalization of boundary-localized proteins was analyzed with particle tracking software. The stability of surface-exposed proteins was determined by measuring the recovery of biotin-labeled proteins with affinity chromatography. Rho and Rac activity was measured with affinity chromatography and immunoblotting. RESULTS Examining the effect of Cdk5 on E-cadherin containing epithelial cell-cell adhesions using a corneal epithelial cell line (HCLE), we found that Cdk5 and Cdk5 (pY15) coimmunoprecipitate with E-cadherin and Cdk5 (pY15) colocalizes with E-cadherin at cell-cell junctions. Inhibiting Cdk5 activity in HCLE or suppressing Cdk5 expression in a stable HCLE-derived cell line (ShHCLE) decreased calcium-dependent cell adhesion, promoted the cytoplasmic localization of E-cadherin, and accelerated the loss of surface-biotinylated E-cadherin. TIRF microscopy of GFP-E-cadherin in transfected HCLE cells showed an actively internalized sub-population of E-cadherin, which was not bound to p120 as it was trafficked away from the cell-cell boundary. This population increased in the absence of Cdk5 activity, suggesting that Cdk5 inhibition promotes dissociation of p120/E-cadherin junctional complexes. These effects of Cdk5 inhibition or suppression were accompanied by decreased Rac activity, increased Rho activity, and enhanced binding of E-cadherin to the Rac effector Ras GTPase-activating-like protein (IQGAP1). Cdk5 inhibition also reduced adhesion in a cadherin-deficient cell line (MDA-MB-231) expressing exogenous E-cadherin, although Cdk5 inhibition promoted adhesion when these cells were transfected with N-cadherin, as previous studies of Cdk5 and N-cadherin predicted. Moreover, Cdk5 inhibition induced N-cadherin expression and formation of N-cadherin/p120 complexes in HCLE cells. CONCLUSIONS These results indicate that loss of Cdk5 activity destabilizes junctional complexes containing E-cadherin, leading to internalization of E-cadherin and upregulation of N-cadherin. Thus, Cdk5 activity promotes stability of E-cadherin-based cell-cell junctions and inhibits the E-cadherin-to-N-cadherin switch typical of epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
| | - Chun Y. Gao
- National Eye Institute, NIH, Building 5635, Room 1S-02, Fishers Lane, Rockville, MD,National Eye Institute, NIH, Building 6, Bethesda, MD
| | | | | | - Peggy Zelenka
- National Eye Institute, NIH, Building 5635, Room 1S-02, Fishers Lane, Rockville, MD
| |
Collapse
|
30
|
Sun Y, Li H. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell 2012; 4:103-16. [PMID: 23136067 DOI: 10.1007/s13238-012-2105-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 01/28/2023] Open
Abstract
SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra-molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target.
Collapse
Affiliation(s)
- Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B Medical Science-I, 1301 Catherine Street, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
31
|
Arif A. Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochem Pharmacol 2012; 84:985-93. [PMID: 22795893 DOI: 10.1016/j.bcp.2012.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent kinase, Cdk5, is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases with no evident role in cell cycle progression. Cdk5 is present in post-mitotic and terminally differentiated neuronal/glial cells and is also known to arrest cell cycle. Also atypical is the activation of Cdk5 by binding of a non-cyclin activator protein, namely, the Cdk5 regulatory proteins Cdk5R1 (p35), truncated Cdk5R1 (p25), or Cdk5R2 (p39). Despite its ubiquitous presence in all cells and tissues, Cdk5 is often referred to as a neuron-specific kinase largely due to the abundant presence of the activator proteins in neuronal cells. Recently, this concept of a canonical neuronal function of Cdk5 has been extended, if not challenged, by the observation of p35 and p39 expression, as well as Cdk5 activity, in multiple non-neuronal cells. Extraneuronal Cdk5 regulates critical biological processes including transcript-selective translation control for regulation of macrophage gene expression, glucose-inducible insulin secretion, hematopoietic cell differentiation, vascular angiogenesis, cell migration, senescence, and wound-healing, among others. Recent advances in the extraneuronal functions of Cdk5 are reviewed and discussed here in the context of their physiological activities and pathophysiological implications with some speculative comments on the endogenous control mechanisms that might "turn on" Cdk5 activity. The potential importance of targeted inhibition of Cdk5 as therapeutic agents against glucotoxicity, diabetes, cardiovascular diseases, and cancer is also discussed.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
32
|
Twice switched at birth: cell cycle-independent roles of the "neuron-specific" cyclin-dependent kinase 5 (Cdk5) in non-neuronal cells. Cell Signal 2011; 23:1698-707. [PMID: 21741478 DOI: 10.1016/j.cellsig.2011.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 01/21/2023]
Abstract
Cdk5 (cyclin-dependent kinase 5 or initially NCLK for neuronal CDC2-like kinase) was switched twice at its birth nearly twenty years ago: first it was thought to be cyclin-dependent, second it was assumed to be primarily of importance in neuronal cells-both turned out not to be the case. In this review we want to discuss issues of pharmacological inhibition, to highlight the versatile roles, and to summarize the growing evidence for the functional importance of Cdk5 in non-neuronal tissues, such as blood cells, tumor cells, epithelial cells, the vascular endothelium, testis, adipose and endocrine tissues. The organizing principles we follow are apoptosis/cell death, migration/motility, aspects of inflammation, and, finally, secretion/metabolism.
Collapse
|