1
|
Aymoz-Bressot T, Canis M, Meurisse F, Wijkhuisen A, Favier B, Mousseau G, Dupressoir A, Heidmann T, Bacquin A. Cell-Int: a cell-cell interaction assay to identify native membrane protein interactions. Life Sci Alliance 2024; 7:e202402844. [PMID: 39237366 PMCID: PMC11377309 DOI: 10.26508/lsa.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.
Collapse
Affiliation(s)
- Thibaud Aymoz-Bressot
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Canis
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne Wijkhuisen
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | | | - Anne Dupressoir
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thierry Heidmann
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | | |
Collapse
|
2
|
Xian M, Wang Q, Xiao L, Zhong L, Xiong W, Ye L, Su P, Zhang C, Li Y, Orlowski RZ, Zhan F, Ganguly S, Zu Y, Qian J, Yi Q. Leukocyte immunoglobulin-like receptor B1 (LILRB1) protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis. Nat Commun 2024; 15:5767. [PMID: 38982045 PMCID: PMC11233649 DOI: 10.1038/s41467-024-50073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by uncontrolled proliferation of plasma cells in the bone marrow. MM patients with aggressive progression have poor survival, emphasizing the urgent need for identifying new therapeutic targets. Here, we show that the leukocyte immunoglobulin-like receptor B1 (LILRB1), a transmembrane receptor conducting negative immune response, is a top-ranked gene associated with poor prognosis in MM patients. LILRB1 deficiency inhibits MM progression in vivo by enhancing the ferroptosis of MM cells. Mechanistic studies reveal that LILRB1 forms a complex with the low-density lipoprotein receptor (LDLR) and LDLR adapter protein 1 (LDLRAP1) to facilitate LDL/cholesterol uptake. Loss of LILRB1 impairs cholesterol uptake but activates the de novo cholesterol synthesis pathway to maintain cellular cholesterol homeostasis, leading to the decrease of anti-ferroptotic metabolite squalene. Our study uncovers the function of LILRB1 in regulating cholesterol metabolism and protecting MM cells from ferroptosis, implicating LILRB1 as a promising therapeutic target for MM patients.
Collapse
Affiliation(s)
- Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Bora M, Singha S, Madan T, Deka G, Hazarika SG, Baruah S. HLA-G isoforms, HLA-C allotype and their expressions differ between early abortus and placenta in relation to spontaneous abortions. Placenta 2024; 149:44-53. [PMID: 38492472 DOI: 10.1016/j.placenta.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION Spontaneous abortion (SAB) affects approximately 10% of clinically recognized pregnancies. Fetal trophobalst invasion and remodeling of maternal spiral arteries is reported to be dependent on crosstalk between HLA-C/HLA-G expressed on extra villous trophoblast (EVTs)and Killer cell Immunoglobin like receptors (KIRs) of decidual NK (dNK). Immune dysfunction in decidua contributes to early miscarriage. METHODOLOGY The study used mother neonate paired cord blood and term placenta samples (n = 46), elective abortus (n = 17,gestational age = 10-12 weeks of pregnancy) and SAB abortus (n = 24, gestational age = 12-15 weeks of pregnancy) for HLA-G, KIR2D and HLA-C. In addition, term placenta was collected from women with history of spontaneous pregnancy loss (n = 24) and women with history of live birth (n = 32). SSP-PCR was used for genotyping, RT-PCR for gene expression, copy number variation (CNVs) and HLA-C allotyping and ELISA for protein expression studies. RESULTS Membrane bound HLA-G4 isoform proportion was higher 39.28%, p = 0.02) in term placenta. SAB abortus had higher proportion of HLA-G3 (50%),while elective abortus exhibited higher proportion of soluble isoforms (HLA-G5, = 5.9, HLA-G6 = 5.9%, HLA-G7 = 11.8%). Higher inhibitory KIR2DL1 content and copy numbers with lower HLA-C2 in SAB contrasted with higher copy numbers of KIR2DS1(p = 0.001), KIR2DS1+/2DL1+- HLA-C2 combined genotype in healthy placenta. Elevated KIR2D protein levels (p = 0.001), and concurrently, HLA-C levels were upregulated in healthy placenta. CONCLUSION Our data supports lower cognate receptor ligand KIR2DS1+/2DL1+ HLA-C2 together with predominance of HLA-G3 isoform in SAB as confounding factors in spontaneous pregnancy loss. HLA-G isoforms and expression differed between first trimester abortus and term placenta suggesting temporal modulation and marks novelty of the study.
Collapse
Affiliation(s)
- Mayuri Bora
- Department of Molecular Biology and Biotechnology Tezpur University, Napaam, Sonitpur, Assam, 784028, India.
| | - Sushmita Singha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| | - Taruna Madan
- National Institute for Research in Reproductive and Child Health, Department of Innate Immunity, Mumbai, 400012, India.
| | - Gitanjali Deka
- Tezpur Medical College and Hospital, Bihaguri, Tezpur, 784010, Assam, India.
| | | | - Shashi Baruah
- Department of Molecular Biology and Biotechnology Tezpur University, Napaam, Sonitpur, Assam, 784028, India.
| |
Collapse
|
4
|
Bhattarai A, Shah S, Dahal K, Neupane R, Thapa S, Neupane N, Barboza JJ, Shrestha A, Sah R, Apostolopoulos V. Biomarker role of maternal soluble human leukocyte antigen G in pre-eclampsia: A meta-analysis. Immun Inflamm Dis 2024; 12:e1254. [PMID: 38639563 PMCID: PMC11027746 DOI: 10.1002/iid3.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Human leukocyte antigen-G (HLA-G) is a non-classical class I HLA molecule shown to regulate the immunomodulation of maternal immune cells to prevent fetal tissue destruction. Low levels of freely circulating maternal soluble HLA-G (sHLA-G) have been observed in pre-eclampsia, however, no pooled evidence exists. This meta-analysis aimed to generate pooled findings on the association of sHLA-G levels with pre-eclampsia and is the first study to perform a trimester-wise comparison of the levels of sHLA-G in preeclamptic cases and normal pregnant controls. METHODS The databases PubMed, Emba, Web of Science, and Google Scholar through May 31, 2023. Preeclamptic women were defined as cases and normal pregnancies as controls. Data on the level of sHLA-G in cases and controls was extracted and subjected to a meta-analysis using a random-effects model. The pooled effect was expressed in terms of standardized mean difference (SMD). Sensitivity analysis was performed to investigate the effect of the exclusion of each study on the pooled results. Publication bias was assessed statistically. RESULTS Nine studies with altogether 567 PE cases and 1132 normal pregnancy controls were included in the meta-analysis. The first and third trimester levels of sHLA-G in PE cases were significantly lower than that of normal pregnant controls: (SMD: -0.84 [-1.29; -0.38]; p = .003; I2 = 54%) and (SMD: -0.39 [-0.71; -0.06]; p = .02; I2 = 79%) respectively. Sensitivity analysis revealed significant fluctuations in the pooled findings when few studies were excluded, raising questions on the consistency of results among studies. CONCLUSION Although we found that first and third-trimester sHLA-G levels in pre-eclampsia are significantly lower, taking into consideration the inconsistent results from the sensitivity analysis, our findings advocate the demand for more studies with larger sample sizes to generate solid ground pooled evidence on the predictive role of sHLA-G in pre-eclampsia.
Collapse
Affiliation(s)
| | - Sangam Shah
- Institute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Krishna Dahal
- Institute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Raksha Neupane
- Institute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Sangharsha Thapa
- Department of NeurologyWestchester Medical CenterValhallaNew YorkUSA
| | | | | | | | - Ranjit Sah
- Department of MicrobiologyTribhuvan University Teaching Hospital, Institute of MedicineKathmanduNepal
- Department of MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil VidyapeethPuneIndia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational ResearchVictoria UniversityMelbourneVictoriaAustralia
- Australian Institute for Musculoskeletal Science, Immunology ProgramMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Terzieva A, Alexandrova M, Manchorova D, Slavov S, Djerov L, Dimova T. HLA-G Expression/Secretion and T-Cell Cytotoxicity in Missed Abortion in Comparison to Normal Pregnancy. Int J Mol Sci 2024; 25:2643. [PMID: 38473890 DOI: 10.3390/ijms25052643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The main role of HLA-G is to protect the semi-allogeneic embryo from immune rejection by proper interaction with its cognate receptors on the maternal immune cells. Spontaneous abortion is the most common adverse pregnancy outcome, with an incidence rate between 10% and 15%, with immunologic dysregulation being thought to play a role in some of the cases. In this study, we aimed to detect the membrane and soluble HLA-G molecule at the maternal-fetal interface (MFI) and in the serum of women experiencing missed abortion (asymptomatic early pregnancy loss) in comparison to the women experiencing normal early pregnancy. In addition, the proportion of T cells and their cytotoxic profile was evaluated. We observed no difference in the spatial expression of HLA-G at the MFI and in its serum levels between the women with missed abortions and those with normal early pregnancy. In addition, comparable numbers of peripheral blood and decidual total T and γδT cells were found. In addition, as novel data we showed that missed abortion is not associated with altered extravilous invasion into uterine blood vessels and increased cytotoxicity of γδT cells. A strong signal for HLA-G on non-migrating extravilous trophoblast in the full-term normal placental bed was detected. In conclusion, HLA-G production at the MFI or in the blood of the women could not be used as a marker for normal pregnancy or missed abortions.
Collapse
Affiliation(s)
- Antonia Terzieva
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Sergei Slavov
- Obstetrics and Gynecology Department, Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria
| | - Lyubomir Djerov
- Obstetrics and Gynecology Department, Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Bu X, Pan W, Wang J, Liu L, Yin Z, Jin H, Liu Q, Zheng L, Sun H, Gao Y, Ping B. Therapeutic Effects of HLA-G5 Overexpressing hAMSCs on aGVHD After Allo-HSCT: Involving in the Gut Microbiota at the Intestinal Barrier. J Inflamm Res 2023; 16:3669-3685. [PMID: 37645691 PMCID: PMC10461746 DOI: 10.2147/jir.s420747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Background Acute graft-versus-host disease (aGVHD) initiated by intestinal barrier dysfunction and gut microbiota dysbiosis, remains one of the main obstacles for patients undergoing allogenic hematopoietic stem cell transplantation (allo-HSCT) to achieve good prognosis. Studies have suggested that mesenchymal stem cells (MSCs) can suppress immune responses and reduce inflammation, and human leukocyte antigen-G5 (HLA-G5) plays an important role in the immunomodulatory effects of MSCs, but very little is known about the potential mechanisms in aGVHD. Thus, we explored the effect of HLA-G5 on the immunosuppressive properties of human amnion MSCs (hAMSCs) and demonstrated its mechanism related to the gut microbiota at the intestinal barrier in aGVHD. Methods Patients undergoing allo-HSCT were enrolled to detect the levels of plasma-soluble HLA-G (sHLA-G) and regulatory T cells (Tregs). Humanized aGVHD mouse models were established and treated with hAMSCs or HLA-G5 overexpressing hAMSCs (ov-HLA-G5-hAMSCs) to explore the mechanism of HLA-G5 mediated immunosuppressive properties of hAMSCs and the effect of ov-HLA-G5-hAMSCs on the gut microbiota at the intestinal barrier in aGVHD. Results The plasma levels of sHLA-G on day +30 after allo-HSCT in aGVHD patients were lower than those in patients without aGVHD, and the sHLA-G levels were positively correlated with Tregs percentages. ov-HLA-G5-hAMSCs had the potential to inhibit the expansion of CD3+CD4+ T and CD3+CD8+ T cells and promote Tregs differentiation, suppress proinflammatory cytokine secretion but promote anti-inflammatory cytokines release. Besides, ov-HLA-G5-hAMSCs also could reverse the intestinal barrier dysfunction and gut microbiota dysbiosis in aGVHD. Conclusion We demonstrated that HLA-G might work with Tregs to create a regulatory network together to reduce the occurrence of aGVHD. HLA-G5 mediated hAMSCs to exert higher immunosuppressive properties in vivo and reverse the immune imbalance caused by T lymphocytes and cytokines. Furthermore, HLA-G5 overexpressing hAMSCs could restore gut microbiota and intestinal barriers, thereby ameliorating aGVHD.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Haitao Sun
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
7
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
8
|
Bassey-Archibong BI, Rajendra Chokshi C, Aghaei N, Kieliszek AM, Tatari N, McKenna D, Singh M, Kalpana Subapanditha M, Parmar A, Mobilio D, Savage N, Lam F, Tokar T, Provias J, Lu Y, Chafe SC, Swanton C, Hynds RE, Venugopal C, Singh SK. An HLA-G/SPAG9/STAT3 axis promotes brain metastases. Proc Natl Acad Sci U S A 2023; 120:e2205247120. [PMID: 36780531 PMCID: PMC9974476 DOI: 10.1073/pnas.2205247120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/18/2022] [Indexed: 02/15/2023] Open
Abstract
Brain metastases (BM) are the most common brain neoplasm in adults. Current BM therapies still offer limited efficacy and reduced survival outcomes, emphasizing the need for a better understanding of the disease. Herein, we analyzed the transcriptional profile of brain metastasis initiating cells (BMICs) at two distinct stages of the brain metastatic cascade-the "premetastatic" or early stage when they first colonize the brain and the established macrometastatic stage. RNA sequencing was used to obtain the transcriptional profiles of premetastatic and macrometastatic (non-premetastatic) lung, breast, and melanoma BMICs. We identified that lung, breast, and melanoma premetastatic BMICs share a common transcriptomic signature that is distinct from their non-premetastatic counterparts. Importantly, we show that premetastatic BMICs exhibit increased expression of HLA-G, which we further demonstrate functions in an HLA-G/SPAG9/STAT3 axis to promote the establishment of brain metastatic lesions. Our findings suggest that unraveling the molecular landscape of premetastatic BMICs allows for the identification of clinically relevant targets that can possibly inform the development of preventive and/or more efficacious BM therapies.
Collapse
Affiliation(s)
| | - Chirayu Rajendra Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Agata Monika Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Dillon McKenna
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mohini Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Arun Parmar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Fred Lam
- Department of Surgery, Division of Neurosurgery, McMaster University Faculty of Health Sciences, Hamilton General Hospital, Hamilton, ON, L8S 4K1, Canada
| | - Tomas Tokar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - John Provias
- Department of Anatomical Pathology (Neuropathology), Hamilton General Hospital, Hamilton, ON, L8L 2X2, Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Yu Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Charles Swanton
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Robert Edward Hynds
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Sheila Kumari Singh
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
9
|
Alves CC, Arns T, Oliveira ML, Moreau P, Antunes DA, Castelli EC, Mendes-Junior CT, Giuliatti S, Donadi EA. Computational and atomistic studies applied to the understanding of the structural and behavioral features of the immune checkpoint HLA-G molecule and gene. Hum Immunol 2023:S0198-8859(23)00004-6. [PMID: 36710086 DOI: 10.1016/j.humimm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with β2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.
Collapse
Affiliation(s)
- Cinthia C Alves
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Thaís Arns
- Luxembourg Centre for Systems Biomedicine, Luxembourg
| | - Maria L Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Philippe Moreau
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris-Cité, Paris, France
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, USA
| | - Erick C Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Eduardo A Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Arnaiz-Villena A, Suarez-Trujillo F, Juarez I, Rodríguez-Sainz C, Palacio-Gruber J, Vaquero-Yuste C, Molina-Alejandre M, Fernández-Cruz E, Martin-Villa JM. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol Life Sci 2022; 79:464. [PMID: 35925520 PMCID: PMC9352621 DOI: 10.1007/s00018-022-04491-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Classical HLA (Human Leukocyte Antigen) is the Major Histocompatibility Complex (MHC) in man. HLA genes and disease association has been studied at least since 1967 and no firm pathogenic mechanisms have been established yet. HLA-G immune modulation gene (and also -E and -F) are starting the same arduous way: statistics and allele association are the trending subjects with the same few results obtained by HLA classical genes, i.e., no pathogenesis may be discovered after many years of a great amount of researchers' effort. Thus, we believe that it is necessary to follow different research methodologies: (1) to approach this problem, based on how evolution has worked maintaining together a cluster of immune-related genes (the MHC) in a relatively short chromosome area since amniotes to human at least, i.e., immune regulatory genes (MHC-G, -E and -F), adaptive immune classical class I and II genes, non-adaptive immune genes like (C2, C4 and Bf) (2); in addition to using new in vitro models which explain pathogenetics of HLA and disease associations. In fact, this evolution may be quite reliably studied during about 40 million years by analyzing the evolution of MHC-G, -E, -F, and their receptors (KIR-killer-cell immunoglobulin-like receptor, NKG2-natural killer group 2-, or TCR-T-cell receptor-among others) in the primate evolutionary lineage, where orthology of these molecules is apparently established, although cladistic studies show that MHC-G and MHC-B genes are the ancestral class I genes, and that New World apes MHC-G is paralogous and not orthologous to all other apes and man MHC-G genes. In the present review, we outline past and possible future research topics: co-evolution of adaptive MHC classical (class I and II), non-adaptive (i.e., complement) and modulation (i.e., non-classical class I) immune genes may imply that the study of full or part of MHC haplotypes involving several loci/alleles instead of single alleles is important for uncovering HLA and disease pathogenesis. It would mainly apply to starting research on HLA-G extended haplotypes and disease association and not only using single HLA-G genetic markers.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Manuel Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
11
|
Liu S, Bos NA, Verschuuren EAM, van Baarle D, Westra J. Biological Characteristics of HLA-G and Its Role in Solid Organ Transplantation. Front Immunol 2022; 13:902093. [PMID: 35769475 PMCID: PMC9234285 DOI: 10.3389/fimmu.2022.902093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Organ transplantation is a lifesaving option for patients with advanced diseases. Rejection is regarded as one of the most severe risk factors post-transplantation. A molecule that contributes to immune tolerance and resisting rejection is human leukocyte antigen (HLA)-G, which belongs to the non-classical major histocompatibility complex class (MHC) I family. HLA-G was originally found to play a role during pregnancy to maintain immune tolerance between mother and child. It is expressed in the placenta and detected in several body fluids as soluble factor as well as different membrane isoforms on cells. Recent findings on HLA-G show that it can also play multifaceted roles during transplantation. This review will explain the general characteristics and biological function of HLA-G and summarize the views supporting the tolerogenic and other roles of HLA-G to better understand its role in solid organ transplantation (SOT) and its complications. Finally, we will discuss potential future research on the role of HLA-G in prevention, diagnosis, and treatment in SOT.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johanna Westra,
| |
Collapse
|
12
|
Rashidi S, Vieira C, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. Immunomodulatory Potential of Non-Classical HLA-G in Infections including COVID-19 and Parasitic Diseases. Biomolecules 2022; 12:257. [PMID: 35204759 PMCID: PMC8961671 DOI: 10.3390/biom12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Human Leukocyte Antigen-G (HLA-G), a polymorphic non-classical HLA (HLA-Ib) with immune-regulatory properties in cancers and infectious diseases, presents both membrane-bound and soluble (sHLA-G) isoforms. Polymorphism has implications in host responses to pathogen infections and in pathogenesis. Differential expression patterns of HLA-G/sHLA-G or its polymorphism seem to be related to different pathological conditions, potentially acting as a disease progression biomarker. Pathogen antigens might be involved in the regulation of both membrane-bound and sHLA-G levels and impact immune responses during co-infections. The upregulation of HLA-G in viral and bacterial infections induce tolerance to infection. Recently, sHLA-G was found useful to identify the prognosis of Coronavirus disease 2019 (COVID-19) among patients and it was observed that the high levels of sHLA-G are associated with worse prognosis. The use of pathogens, such as Plasmodium falciparum, as immune modulators for other infections could be extended for the modulation of membrane-bound HLA-G in COVID-19-infected tissues. Overall, such information might open new avenues concerning the effect of some pathogens such as parasites in decreasing the expression level of HLA-G to restrict pathogenesis in some infections or to influence the immune responses after vaccination among others.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Carmen Vieira
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran;
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran;
| | - Antonio Muro
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| |
Collapse
|
13
|
Hubert L, Paganini J, Picard C, Chiaroni J, Abi-Rached L, Pontarotti P, Di Cristofaro J. HLA-H*02:07 Is a Membrane-Bound Ligand of Denisovan Origin That Protects against Lysis by Activated Immune Effectors. THE JOURNAL OF IMMUNOLOGY 2022; 208:49-53. [DOI: 10.4049/jimmunol.2100358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/01/2021] [Indexed: 04/08/2023]
Abstract
Abstract
The biological relevance of genes initially categorized as “pseudogenes” is slowly emerging, notably in innate immunity. In the HLA region on chromosome 6, HLA-H is one such pseudogene; yet, it is transcribed, and its variation is associated with immune properties. Furthermore, two HLA-H alleles, H*02:07 and H*02:14, putatively encode a complete, membrane-bound HLA protein. Here we thus hypothesized that HLA-H contributes to immune homeostasis similarly to tolerogenic molecules HLA-G, -E, and -F. We tested if HLA-H*02:07 encodes a membrane-bound protein that can inhibit the cytotoxicity of effector cells. We used an HLA-null human erythroblast cell line transduced with HLA-H*02:07 cDNA to demonstrate that HLA-H*02:07 encodes a membrane-bound protein. Additionally, using a cytotoxicity assay, our results support that K562 HLA-H*02:07 inhibits human effector IL-2–activated PBMCs and human IL-2–independent NK92-MI cell line activity. Finally, through in silico genotyping of the Denisovan genome and haplotypic association with Denisovan-derived HLA-A*11, we also show that H*02:07 is of archaic origin. Hence, admixture with archaic humans brought a functional HLA-H allele into modern European and Asian populations.
Collapse
Affiliation(s)
- Lucas Hubert
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| | | | - Christophe Picard
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| | - Jacques Chiaroni
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| | - Laurent Abi-Rached
- §Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranée Infection, Marseille, France; and
- ¶CNRS, Marseille, France
| | - Pierre Pontarotti
- §Aix Marseille University, IRD, APHM, MEPHI, IHU-Mediterranée Infection, Marseille, France; and
- ¶CNRS, Marseille, France
| | - Julie Di Cristofaro
- *Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins,” Marseille, France
- †Etablissement Français du Sang PACA Corse, Marseille, France
| |
Collapse
|
14
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:435-454. [DOI: 10.1093/humupd/dmac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Indexed: 11/13/2022] Open
|
15
|
The HLA-G Immune Checkpoint Plays a Pivotal Role in the Regulation of Immune Response in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413348. [PMID: 34948145 PMCID: PMC8706866 DOI: 10.3390/ijms222413348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The human G-leukocyte antigen (HLA-G) molecule is a non-classical major histocompatibility complex (MHC) class I molecule. The pertinence of HLA-G has been investigated in numerous studies which have sought to elucidate the relevance of HLA-G in pathologic conditions, such as autoimmune diseases, cancers, and hematologic malignancies. One of the main goals of the current research on HLA-G is to use this molecule in clinical practice, either in diagnostics or as a therapeutic target. Since HLA-G antigens are currently considered as immunomodulatory molecules that are involved in reducing inflammatory and immune responses, in this review, we decided to focus on this group of antigens as potential determinants of progression in autoimmune diseases. This article highlights what we consider as recent pivotal findings on the immunomodulatory function of HLA-G, not only to establish the role of HLA-G in the human body, but also to explain how these proteins mediate the immune response.
Collapse
|
16
|
Li P, Wang N, Zhang Y, Wang C, Du L. HLA-G/sHLA-G and HLA-G-Bearing Extracellular Vesicles in Cancers: Potential Role as Biomarkers. Front Immunol 2021; 12:791535. [PMID: 34868081 PMCID: PMC8636042 DOI: 10.3389/fimmu.2021.791535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
As a non-classic major histocompatibility complex (MHC) class I molecule, human leukocyte antigen G (HLA-G) is expressed in fetal-maternal interface and immunoprivileged site only in healthy condition, and in pathological conditions such as cancer, it can be de novo expressed. It is now widely accepted that HLA-G is a key molecule in the process of immune escape of cancer cells, which is ubiquitously expressed in the tumor environment. This raises the possibility that it may play an adverse role in tumor immunity. The expression level of HLA-G has been demonstrated to be highly correlated with clinical parameters in many tumors, and its potential significance in the diagnosis and prognosis of cancer has been postulated. However, because HLA-G itself has up to seven different subtypes, and for some subtypes, detected antibodies are few or absent, it is hard to evaluate the actual expression of HLA-G in tumors. In the present work, we described (a) the structure and three main forms of HLA-G, (b) summarized the mechanism of HLA-G in the immune escape of tumor cells, (c) discussed the potential role of HLA-G as a tumor marker, and reviewed (d) the methods for detecting and quantifying HLA-G.
Collapse
Affiliation(s)
- Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Nan Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yi Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| |
Collapse
|
17
|
Zhuang B, Shang J, Yao Y. HLA-G: An Important Mediator of Maternal-Fetal Immune-Tolerance. Front Immunol 2021; 12:744324. [PMID: 34777357 PMCID: PMC8586502 DOI: 10.3389/fimmu.2021.744324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Maternal-fetal immune-tolerance occurs throughout the whole gestational trimester, thus a mother can accept a genetically distinct fetus without immunological aggressive behavior. HLA-G, one of the non-classical HLA class I molecules, is restricted-expression at extravillous trophoblast. It can concordantly interact with various kinds of receptors mounted on maternally immune cells residing in the uterus (e.g. CD4+ T cells, CD8+ T cells, natural killer cells, macrophages, and dendritic cells) for maintaining immune homeostasis of the maternal-fetus interface. HLA-G is widely regarded as the pivotal protective factor for successful pregnancies. In the past 20 years, researches associated with HLA-G have been continually published. Indeed, HLA-G plays a mysterious role in the mechanism of maternal-fetal immune-tolerance. It can also be ectopically expressed on tumor cells, infected sites and other pathologic microenvironments to confer a significant local tolerance. Understanding the characteristics of HLA-G in immunologic tolerance is not only beneficial for pathological pregnancy, but also helpful to the therapy of other immune-related diseases, such as organ transplant rejection, tumor migration, and autoimmune disease. In this review, we describe the biological properties of HLA-G, then summarize our understanding of the mechanisms of fetomaternal immunologic tolerance and the difference from transplant tolerance. Furthermore, we will discuss how HLA-G contributes to the tolerogenic microenvironment during pregnancy. Finally, we hope to find some new aspects of HLA-G in fundamental research or clinical application for the future.
Collapse
Affiliation(s)
- Baimei Zhuang
- Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jin Shang
- Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
18
|
Tantengco OAG, Richardson L, Lee A, Kammala A, Silva MDC, Shahin H, Sheller-Miller S, Menon R. Histocompatibility Antigen, Class I, G (HLA-G)'s Role during Pregnancy and Parturition: A Systematic Review of the Literature. Life (Basel) 2021; 11:life11101061. [PMID: 34685432 PMCID: PMC8537334 DOI: 10.3390/life11101061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Immune homeostasis of the intrauterine cavity is vital for pregnancy maintenance. At term or preterm, fetal and maternal tissue inflammation contributes to the onset of labor. Though multiple immune-modulating molecules are known, human leukocyte antigen (HLA)-G is unique to gestational tissues and contributes to maternal–fetal immune tolerance. Several reports on HLA-G’s role exist; however, ambiguity exists regarding its functional contributions during pregnancy and parturition. To fill these knowledge gaps, a systematic review (SR) of the literature was conducted to better understand the expression, localization, function, and regulation of HLA-G during pregnancy and parturition. Methods: A SR of the literature on HLA-G expression and function reported in reproductive tissues during pregnancy, published between 1976–2020 in English, using three electronic databases (SCOPE, Medline, and ClinicalTrials.gov) was conducted. The selection of studies, data extraction, and quality assessment were performed in duplicate by two independent reviewers. Manuscripts were separated into three categories: (1) expression and localization of HLA-G, (2) regulators of HLA-G, and (3) the mechanistic roles of HAL-G. Data were extracted, analyzed, and summarized. Results: The literature search yielded 2554 citations, 117 of which were selected for full-text evaluation, and 115 were included for the final review based on our inclusion/exclusion criteria. HLA-G expression and function were mostly studied in placental tissue and/or cells and peripheral blood immune cells, while only 13% of the studies reported data on amniotic fluid/cord blood and fetal membranes. Measurements of soluble and membranous HLA-G were determined mostly by RNA-based methods and protein by immunostaining, Western blot, or flow cytometric analyses. HLA-G was reported to regulate inflammation and inhibit immune-cell-mediated cytotoxicity and trophoblast invasion. Clinically, downregulation of HLA-G is reported to be associated with poor placentation in preeclampsia and immune cell infiltration during ascending infection. Conclusions: This SR identified several reports supporting the hypothesized role of immune regulation in gestational tissues during pregnancy. A lack of rigor and reproducibility in the experimental approaches and models in several reports make it difficult to fully elucidate the mechanisms of action of HLA-G in immune tolerance during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1101, Philippines
| | - Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Alan Lee
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ananthkumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Mariana de Castro Silva
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu 18618-687, São Paulo, Brazil
| | - Hend Shahin
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Samantha Sheller-Miller
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Correspondence:
| |
Collapse
|
19
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
20
|
Tumor infiltrating and peripheral CD4 +ILT2 + T cells are a cytotoxic subset selectively inhibited by HLA-G in clear cell renal cell carcinoma patients. Cancer Lett 2021; 519:105-116. [PMID: 34186161 DOI: 10.1016/j.canlet.2021.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022]
Abstract
HLA-G ILT2 has recently been positioned as a major immune checkpoint in urologic cancers. In clear cell renal cell carcinoma (ccRCC), tumor-infiltrating CD8+ T cells expressing ILT2 are a highly cytotoxic cell population, distinct from PD1+ T cells, and whose function is inhibited by HLA-G+ targets. Here we report that ILT2 receptor can also be expressed by CD4+ T cells in urologic cancer patients. In the course of deciphering the role of these ILT2+CD4+ T cells, we found a statistical association between the tumor context and these T cells, and a positive correlation between the levels of peripheral and intra-tumoral CD4+ILT2+ T cells. Phenotypic analyses revealed that CD4+ILT2+ T cells express memory T cell (CD27-CD28-CD57+) and cytotoxicity (Tbet+Perforin+KLRG1+NKp80+GPR56+) markers, consistent with a CD4+CTL phenotype. Functional assays showed that ccRCC-infiltrating CD4+ILT2+ T cells indeed have high cytolytic properties and therefore function as proper CD4+CTLs, but are selectively inhibited by HLA-G+ targets. Clinical relevance was provided by immunohistochemical analyses on ccRCC tumor lesions with HLA-G+ HLA class II+ tumor cells next to CD4+ T cell infiltrates. Our findings provide evidence supporting that ILT2+ T cells constitute a reservoir of intratumor cytotoxic T cells that is not targeted by the current checkpoint inhibitors, but could be by anti-HLA-G/anti-ILT2 antibodies as novel immunotherapy in HLA-G+ tumors.
Collapse
|
21
|
Persson G, Stæhr CS, Klok FS, Lebech M, Hviid TVF. Evidence for a shift in placental HLA-G allelic dominance and the HLA-G isoform profile during a healthy pregnancy and pre-eclampsia. Biol Reprod 2021; 105:846-858. [PMID: 34159362 DOI: 10.1093/biolre/ioab121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Human leukocyte antigen (HLA)-G is a non-classical class Ib major expressed by placental trophoblast cells plays a central role in establishing tolerance to the semi-allogeneic fetus and in placentation. HLA-G exists in different soluble or membrane-bound isoforms. Pre-eclampsia, a major cause of fetal and maternal morbidity and mortality, has been linked to insufficient placentation and an altered immune response in pregnancy, including altered HLA-G expression. The 14 bp insertion/deletion polymorphism in the 3' untranslated region of the gene and the isoform profile may affect HLA-G expression. The aim of the current pilot study was to characterize the expression patterns of HLAG mRNA, protein and isoform profile in uncomplicated term pregnancies and in cases of pre-eclampsia. Maternal sHLA-G mRNA and protein levels was slightly reduced in pre-eclampsia. No difference was found for placental blood, and no correlation between peripheral and placental sHLA-G levels was found. We observed no association between neither fetal nor maternal HLA-G 14 bp insertion/deletion genotypes and pre-eclampsia, nor a significant difference in isoform profiles. However, in HLA-G 14 bp insertion/deletion heterozygous placental samples, we observed abundant HLA-G1 14 bp insertion allele expression in the term placentae, which is contrary to previous findings in first trimester trophoblast. Increased HLA-G1 14 bp insertion allele expression in the placenta was associated with reduced levels of placental sHLA-G and an altered isoform profile with increased relative levels of HLA-G1 and -G5 and reduced levels of HLA-G3. The results indicate that an allelic shift in heterozygous individuals could represent a novel regulatory pathway.
Collapse
Affiliation(s)
- Gry Persson
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Christina Seefeldt Stæhr
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Freja Syrach Klok
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Morten Lebech
- Department of Gynaecology and Obstetrics, The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Arnaiz-Villena A, Juarez I, Suarez-Trujillo F, López-Nares A, Vaquero C, Palacio-Gruber J, Martin-Villa JM. HLA-G: Function, polymorphisms and pathology. Int J Immunogenet 2021; 48:172-192. [PMID: 33001562 DOI: 10.1111/iji.12513] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
HLA-G immune modulatory genes and molecules are presently being studied by a widespread number of research groups. In the present study, we do not aim to be exhaustive since the number of manuscripts published every year is overwhelming. Instead, our aim is pointing out facts about HLA-G function, polymorphism and pathology that have been confirmed by several different researchers, together with exposing aspects that may have been overlooked or not sufficiently remarked in this productive field of study. On the other hand, we question whether performing mainly studies on HLA-G and disease associations is going to give a clear answer in the future, since 40 years of study of classical HLA molecules association with disease has still given no definite answer on this issue.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Adrián López-Nares
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Christian Vaquero
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose M Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
23
|
Anna F, Bole-Richard E, LeMaoult J, Escande M, Lecomte M, Certoux JM, Souque P, Garnache F, Adotevi O, Langlade-Demoyen P, Loustau M, Caumartin J. First immunotherapeutic CAR-T cells against the immune checkpoint protein HLA-G. J Immunother Cancer 2021; 9:e001998. [PMID: 33737343 PMCID: PMC7978334 DOI: 10.1136/jitc-2020-001998] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CAR-T cells immunotherapy is a breakthrough in the treatment of hematological malignancies such as acute lymphoblastic leukemia (ALL) and B-cell malignancies. However, CAR-T therapies face major hurdles such as the lack of tumor-specific antigen (TSA), and immunosuppressive tumor microenvironment sometimes caused by the tumorous expression of immune checkpoints (ICPs) such as HLA-G. Indeed, HLA-G is remarkable because it is both a potent ICP and a TSA. HLA-G tumor expression causes immune escape by impairing innate and adaptive immune responses and by inducing a suppressive microenvironment. Yet, to date, no immunotherapy targets it. METHODS We have developed two anti-HLA-G third-generation CARs based on new anti-HLA-G monoclonal antibodies. RESULTS Anti-HLA-G CAR-T cells were specific for immunosuppressive HLA-G isoforms. HLA-G-activated CAR-T cells polarized toward T helper 1, and became cytotoxic against HLA-G+ tumor cells. In vivo, anti-HLA-G CAR-T cells were able to control and eliminate HLA-G+ tumor cells. The interaction of tumor-HLA-G with interleukin (IL)T2-expressing T cells is known to result in effector T cell functional inhibition, but anti-HLA-G CAR-T cells were insensitive to this inhibition and still exerted their function even when expressing ILT2. Lastly, we show that anti-HLA-G CAR-T cells differentiated into long-term memory effector cells, and seemed not to lose function even after repeated stimulation by HLA-G-expressing tumor cells. CONCLUSION We report for the first time that HLA-G, which is both a TSA and an ICP, constitutes a valid target for CAR-T cell therapy to specifically target and eliminate both tumor cells and HLA-G+ suppressive cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antigens, CD/metabolism
- Cell Differentiation
- Coculture Techniques
- Cytotoxicity, Immunologic
- HLA-G Antigens/immunology
- HLA-G Antigens/metabolism
- Humans
- Immunologic Memory
- Immunotherapy, Adoptive
- K562 Cells
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/therapy
- Leukocyte Immunoglobulin-like Receptor B1/metabolism
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/transplantation
- Mice, Inbred NOD
- Mice, SCID
- Phenotype
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Time Factors
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- François Anna
- Preclinical Department, Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Pasteur Institute, Paris, Île-de-France, France
| | - Elodie Bole-Richard
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Joel LeMaoult
- Service de Recherche en Hémato-Immunologie (SRHI), CEA, Paris, France
- Université de Paris, Paris, Île-de-France, France
| | | | | | - Jean-Marie Certoux
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Philippe Souque
- Molecular Virology and Vaccinology Unit, Virology Department, Pasteur Institute, Paris, Île-de-France, France
| | - Francine Garnache
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Olivier Adotevi
- INSERM UMR1098 RIGHT Interactions hôte-greffon-tumeur - Ingénierie Cellulaire et Génique, Besancon, Franche-Comté, France
- Université Bourgogne Franche-Comté, Besançon, France
- Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | | | | | | |
Collapse
|
24
|
Attia JVD, Dessens CE, van de Water R, Houvast RD, Kuppen PJK, Krijgsman D. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy? Int J Mol Sci 2020; 21:ijms21228678. [PMID: 33213057 PMCID: PMC7698525 DOI: 10.3390/ijms21228678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) mediates maternal-fetal immune tolerance. It is also considered an immune checkpoint in cancer since it may mediate immune evasion and thus promote tumor growth. HLA-G is, therefore, a potential target for immunotherapy. However, existing monoclonal antibodies directed against HLA-G lack sufficient specificity and are not suitable for immune checkpoint inhibition in a clinical setting. For this reason, it is essential that alternative approaches are explored to block the interaction between HLA-G and its receptors. In this review, we discuss the structure and peptide presentation of HLA-G, and its interaction with the receptors Ig-like transcript (ILT) 2, ILT4, and Killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4). Based on our findings, we propose three alternative strategies to block the interaction between HLA-G and its receptors in cancer immunotherapy: (1) prevention of HLA-G dimerization, (2) targeting the peptide-binding groove of HLA-G, and (3) targeting the HLA-G receptors. These strategies should be an important focus of future studies that aim to develop immune checkpoint inhibitors to block the interaction between HLA-G and its receptors for the treatment of cancer.
Collapse
|
25
|
Arns T, Antunes DA, Abella JR, Rigo MM, Kavraki LE, Giuliatti S, Donadi EA. Structural Modeling and Molecular Dynamics of the Immune Checkpoint Molecule HLA-G. Front Immunol 2020; 11:575076. [PMID: 33240264 PMCID: PMC7677236 DOI: 10.3389/fimmu.2020.575076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/13/2020] [Indexed: 02/01/2023] Open
Abstract
HLA-G is considered to be an immune checkpoint molecule, a function that is closely linked to the structure and dynamics of the different HLA-G isoforms. Unfortunately, little is known about the structure and dynamics of these isoforms. For instance, there are only seven crystal structures of HLA-G molecules, being all related to a single isoform, and in some cases lacking important residues associated to the interaction with leukocyte receptors. In addition, they lack information on the dynamics of both membrane-bound HLA-G forms, and soluble forms. We took advantage of in silico strategies to disclose the dynamic behavior of selected HLA-G forms, including the membrane-bound HLA-G1 molecule, soluble HLA-G1 dimer, and HLA-G5 isoform. Both the membrane-bound HLA-G1 molecule and the soluble HLA-G1 dimer were quite stable. Residues involved in the interaction with ILT2 and ILT4 receptors (α3 domain) were very close to the lipid bilayer in the complete HLA-G1 molecule, which might limit accessibility. On the other hand, these residues can be completely exposed in the soluble HLA-G1 dimer, due to the free rotation of the disulfide bridge (Cys42/Cys42). In fact, we speculate that this free rotation of each protomer (i.e., the chains composing the dimer) could enable alternative binding modes for ILT2/ILT4 receptors, which in turn could be associated with greater affinity of the soluble HLA-G1 dimer. Structural analysis of the HLA-G5 isoform demonstrated higher stability for the complex containing the peptide and coupled β2-microglobulin, while structures lacking such domains were significantly unstable. This study reports for the first time structural conformations for the HLA-G5 isoform and the dynamic behavior of HLA-G1 molecules under simulated biological conditions. All modeled structures were made available through GitHub (https://github.com/KavrakiLab/), enabling their use as templates for modeling other alleles and isoforms, as well as for other computational analyses to investigate key molecular interactions.
Collapse
Affiliation(s)
- Thais Arns
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dinler A. Antunes
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Jayvee R. Abella
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Maurício M. Rigo
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo A. Donadi
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Rashidi S, Farhadi L, Ghasemi F, Sheikhesmaeili F, Mohammadi A. The potential role of HLA-G in the pathogenesis of HBV infection: Immunosuppressive or immunoprotective? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104580. [PMID: 33022425 DOI: 10.1016/j.meegid.2020.104580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The non-classical human leukocyte antigens (HLA)-G could be generally considered as a potent tolerogenic molecule, which modulates immune responses. HLA-G due to the immunosuppressive properties may play an important role in the pathogenesis of infections related to the liver. HLA-G may display two distinct activities in the pathological conditions so that it could be protective in the autoimmune and inflammatory diseases or could be suppressive of the immune system in the infections or cancers. HLA-G might be used as a novel therapeutic target for liver diseases in the future. Indeed, new therapeutic agents targeting HLA-G expression or antibodies which block HLA-G activity are being developed and tested. However, further consideration of the HLA-G function in liver disease is required. This review aims to summarize the role of HLA-G in the liver of patients with HBV infection.
Collapse
Affiliation(s)
- Saadyeh Rashidi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Farhadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Farshad Sheikhesmaeili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
27
|
Wuerfel FM, Huebner H, Häberle L, Gass P, Hein A, Jud SM, Hack CC, Wunderle M, Schulz-Wendtland R, Erber R, Hartmann A, Ekici AB, Beckmann MW, Fasching PA, Ruebner M. HLA-G and HLA-F protein isoform expression in breast cancer patients receiving neoadjuvant treatment. Sci Rep 2020; 10:15750. [PMID: 32978482 PMCID: PMC7519664 DOI: 10.1038/s41598-020-72837-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The immunosuppressive human leukocyte antigens HLA-G and HLA-F are expressed on trophoblast and malignant cells. Four membrane-bound and three soluble HLA-G protein isoforms have been described, which have different immunosuppressive potentials. HLA-F has three transcript variants, resulting in three different protein isoforms. The aim of this study was to evaluate the prognostic and predictive value of HLA-G and HLA-F protein isoform expression patterns in patients with breast cancer. Core biopsies were taken at diagnosis in patients with HER2+ (n = 28), luminal B-like (n = 49) and triple-negative (n = 38) breast cancers who received neoadjuvant chemotherapy. Expression levels of HLA-F and -G were correlated with the pathological complete response (pCR). Protein expression was determined by Western blot analysis, using two antibodies for each HLA, specific for different isoforms. The protein expression of HLA isoforms did not significantly differ between breast cancer subtypes. However, some initial indications were found for an association between the soluble HLA-G6 protein isoform and pCR in HER2+ breast cancer. The study provides preliminary evidence for the evaluation of HLA-G isoform expression, in particular HLA-G6, as a possible new marker for pCR in HER2+ breast cancer.
Collapse
Affiliation(s)
- Franziska M Wuerfel
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Lothar Häberle
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Paul Gass
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Alexander Hein
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Sebastian M Jud
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Carolin C Hack
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Marius Wunderle
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Rüdiger Schulz-Wendtland
- Institute of Diagnostic Radiology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany.
| |
Collapse
|
28
|
Emadi E, Akhoundi F, Kalantar SM, Emadi-Baygi M. Predicting the most deleterious missense nsSNPs of the protein isoforms of the human HLA-G gene and in silico evaluation of their structural and functional consequences. BMC Genet 2020; 21:94. [PMID: 32867672 PMCID: PMC7457528 DOI: 10.1186/s12863-020-00890-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Human Leukocyte Antigen G (HLA-G) protein is an immune tolerogenic molecule with 7 isoforms. The change of expression level and some polymorphisms of the HLA-G gene are involved in various pathologies. Therefore, this study aimed to predict the most deleterious missense non-synonymous single nucleotide polymorphisms (nsSNPs) in HLA-G isoforms via in silico analyses and to examine structural and functional effects of the predicted nsSNPs on HLA-G isoforms. RESULTS Out of 301 reported SNPs in dbSNP, 35 missense SNPs in isoform 1, 35 missense SNPs in isoform 5, 8 missense SNPs in all membrane-bound HLA-G isoforms and 8 missense SNPs in all soluble HLA-G isoforms were predicted as deleterious by all eight servers (SIFT, PROVEAN, PolyPhen-2, I-Mutant 3.0, SNPs&GO, PhD-SNP, SNAP2, and MUpro). The Structural and functional effects of the predicted nsSNPs on HLA-G isoforms were determined by MutPred2 and HOPE servers, respectively. Consurf analyses showed that the majority of the predicted nsSNPs occur in conserved sites. I-TASSER and Chimera were used for modeling of the predicted nsSNPs. rs182801644 and rs771111444 were related to creating functional patterns in 5'UTR. 5 SNPs in 3'UTR of the HLA-G gene were predicted to affect the miRNA target sites. Kaplan-Meier analysis showed the HLA-G deregulation can serve as a prognostic marker for some cancers. CONCLUSIONS The implementation of in silico SNP prioritization methods provides a great framework for the recognition of functional SNPs. The results obtained from the current study would be called laboratory investigations.
Collapse
Affiliation(s)
- Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Akhoundi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
29
|
Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020; 11:1685. [PMID: 32922387 PMCID: PMC7456902 DOI: 10.3389/fimmu.2020.01685] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-G is known to modulate the immune system activity in tissues where physiological immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea). However, the frequent neo-expression of HLA-G in many cancer types has been previously and extensively described and is correlated with a bad prognosis. Despite being an MHC class I molecule, HLA-G is highly present in tumor context and shows unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently, HLA-G appears to be an excellent molecular target for immunotherapy. Although the relevance of HLA-G in cancer incidence and development has been proven in numerous tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation of HLA-G's actual expression in tumor tissue is limited, particularly concerning the presence and percentage of the new non-canonical isoforms, for which detection antibodies are scarce or inexistent. Here, we summarize the current knowledge about HLA-G neo-expression and implication in various tumor types, pointing out the need for the development of new tools to analyze in-depth the HLA-G neo-expression patterns, opening the way for the generation of new monoclonal antibodies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - François Anna
- Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Institut Pasteur & CNRS URA 3015, Paris, France
| | - Raphaelle Dréan
- Invectys, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, Paris, France
| | | | | | | |
Collapse
|
30
|
Cho K, Kook H, Kang S, Lee J. Study of immune-tolerized cell lines and extracellular vesicles inductive environment promoting continuous expression and secretion of HLA-G from semiallograft immune tolerance during pregnancy. J Extracell Vesicles 2020; 9:1795364. [PMID: 32944184 PMCID: PMC7480490 DOI: 10.1080/20013078.2020.1795364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An immune reaction is a protector of our body but a target to be overcome for all non-self-derived medicine. Extracellular Vesicles (EVs), noted as a primary alternative to cell therapy products that exhibit immune rejection due to mismatching-major histocompatibility complex (MHC), were discovered to have excellent curative effects through the delivery of various biologically active substances. Although EVs are sure to incur immune reaction by immunogenicity due to alloantigens from their parental cells, their immune rejection is rarely known. Hence, to develop cell lines and EVs as medicines with no immune rejection, we noted the immune tolerance where the foetus, as semi-allograft, is perfectly protected from the maternal immune system. We designed the ex-vivo culture systems to simulate in-vivo environmental factors inducing extravillous trophoblast (EVT)-specific Human Leukocyte Antigen-G (HLA-G) expression and secretion of HLA-G-bearing EVs at the mother-foetus interface. Using them, we confirmed that immune-tolerized stem cells (itSCs) continuously expressing and secreting HLA-G like EVTs during pregnancy can be induced. Also, EVs secreted from itSCs are verified as immune-tolerized EVs (itSC-EVs) containing HLA-G and not causing immune rejection through various analytical methods. These findings can provide a new perspective on the local and extensive immune tolerance environment where HLA-G is expressed and secreted by pregnancy-related hormones and different biological conditions. Furthermore, they show the new way to develop itSCs-EVs-based therapeutics that are free from time, space, and donor limitation causing immune rejection. Abbreviations CFSE: carboxyfluorescein succinimidyl ester; DC: dendritic cells; ELISA: enzyme-linked immunosorbent assay; EV: extracellular vesicles; EVT: extravillous trophoblast; FSH: follicle stimulating hormone; HA: hyaluronic acid; hCG: human chorionic gonadotropin; HLA-G: human leukocyte antigen G; iPSC: induced pluripotent stem cells; itSC-EVs: immune-tolerized extracellular vesicles from itSCs; itTBC-EVs: immune-tolerized extracellular vesicles from itTBCs; itSCs: immune tolerized stem cells; itTBCs: immune-tolerized trophoblast cells; LH: luteinizing hormone; MHC: major histocompatibility complex; MSC: mesenchymal stem cells; NK: natural killer cells; NTA: nanoparticle tracking analysis; PBMC: peripheral blood mononuclear cells; PHA: phytohemagglutinin; SP-IRIS: single particle interferometric reflectance imaging sensing; STB: syncytiotrophoblast
Collapse
Affiliation(s)
- Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| |
Collapse
|
31
|
Xu HH, Yan WH, Lin A. The Role of HLA-G in Human Papillomavirus Infections and Cervical Carcinogenesis. Front Immunol 2020; 11:1349. [PMID: 32670296 PMCID: PMC7330167 DOI: 10.3389/fimmu.2020.01349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Human leukocyte antigen (HLA)-G, a non-classical HLA-class I molecule, has a low polymorphism frequency, restricted tissue distribution and immunoinhibitory property. HLA-G expression in tumor cells and cells chronically infected with virus may enable them to escape from host immune surveillance. It is well-known that the HLA-G molecule is a novel biomarker and potential therapeutic target that is relevant in various types of cancers, but its role in cervical cancer has not been fully explored. In this review, we aim to summarize and discuss the immunologic role of the HLA-G molecule in the context of HPV infections and the process of cervical cancer carcinogenesis. A better understanding of the potential impact of HLA-G on the clinical course of persistent HPV infections, cervical epithelial cell transformation, tumor growth, recurrence and metastasis is needed to identify a novel diagnostic/prognostic biomarker for cervical cancer, which is critical for cervical cancer risk screening. In addition, it is also necessary to identify HLA-G-driven immune mechanisms involved in the interactions between host and virus to explore novel immunotherapy strategies that target HLA-G/immunoglobulin-like transcript (ILT) immune checkpoints.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
32
|
Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front Immunol 2020; 11:1182. [PMID: 32655556 PMCID: PMC7324675 DOI: 10.3389/fimmu.2020.01182] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother's immune system. Regulatory T cells (Tregs) play a prominent role in this process. Novel technologies allow for in-depth phenotyping of previously unidentified immune cell subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets. Similar to other immunological events, there appears to be great diversity within the Treg population during pregnancy, both at the maternal-fetal interface as in the peripheral blood. Different Treg subsets have distinct phenotypes and various ways of functioning. Furthermore, the frequency of individual Treg subsets varies throughout gestation and is altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at different time points of gestation and that their role in maintaining healthy pregnancy is crucial, as reflected for instance by their reduced frequency in women with recurrent pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple immune regulatory mechanisms and cell types are likely at play to assure successful pregnancy. Therefore, it is important to understand the complete microenvironment of the decidua, preferably in the context of the whole immune cell repertoire of the pregnant woman. So far, most studies have focused on a single mechanism or cell type, which often is the FoxP3 positive regulatory T cell when studying immune regulation. In this review, we instead focus on the contribution of FoxP3 negative Treg subsets to the decidual microenvironment and their possible role in pregnancy complications. Their phenotype, function, and effect in pregnancy are discussed.
Collapse
Affiliation(s)
- Juliette Krop
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
33
|
Scarabel L, Garziera M, Fortuna S, Asaro F, Toffoli G, Geremia S. Soluble HLA-G expression levels and HLA-G/irinotecan association in metastatic colorectal cancer treated with irinotecan-based strategy. Sci Rep 2020; 10:8773. [PMID: 32471996 PMCID: PMC7260212 DOI: 10.1038/s41598-020-65424-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
We here explore the soluble Human Leukocyte Antigen-G (sHLA-G) expression level as clinical biomarker in metastatic colorectal cancer (mCRC). To this aim the sHLA-G protein was measured in plasma samples of 40 patients with mCRC treated with the FOLFIRI (irinotecan (CPT-11) plus 5-fluorouracil (5-FU) and leucovorin (LV)) regimen. The results suggest a link between HLA-G levels and irinotecan (CPT-11) pharmacokinetic, leading to hypothesize a molecular interaction between sHLA-G and CPT-11. This interaction was confirmed experimentally by fluorescence spectroscopy. HLA-G is known to exist in a number of polymorphs that affect both the protein expression levels and its peptide-binding cleft. The interaction between HLA-G polymorphs and CPT-11 was explored by means of computational modelling, confirming the hypothesis that CPT-11 could actually target the peptide binding cleft of the most common HLA-G polymorphs.
Collapse
Affiliation(s)
- Lucia Scarabel
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Marica Garziera
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
34
|
Persson G, Bork JBS, Isgaard C, Larsen TG, Bordoy AM, Bengtsson MS, Hviid TVF. Cytokine stimulation of the choriocarcinoma cell line JEG-3 leads to alterations in the HLA-G expression profile. Cell Immunol 2020; 352:104110. [PMID: 32387976 DOI: 10.1016/j.cellimm.2020.104110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
Abstract
The checkpoint molecule human leukocyte antigen (HLA)-G has restricted tissue expression, and plays a role in the establishment of maternal tolerance to the semi-allogenic fetus during pregnancy by expression on the trophoblast cells in the placenta. HLA-G exists in at least seven well-described mRNA isoforms, of which four are membrane-bound and three soluble. Regulation of the tissue expression of HLA-G and its isoforms is relatively unknown. Therefore, it is important to understand the regulation of HLA-G, and the HLA-G+ choriocarcinoma cell line JEG-3 is a widely used cellular model. We hypothesized that cytokines present in the microenvironment can regulate the HLA-G expression profile. In the present study, we systematically stimulated JEG-3 cells with various concentrations of IL-2, IL-4 IL-6, IL-10, IL-12, IL-15, IL-17A, TGF-β1, TNF-α and IFN-γ1b. The results suggest that IFN-γ plays a role in maintenance of HLA-G expression, while IL-10 might be involved in regulation of the isoform profile.
Collapse
Affiliation(s)
- Gry Persson
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Julie Birgit Siig Bork
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Cecilie Isgaard
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Tine Graakjær Larsen
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Anna Maria Bordoy
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Meghan Sand Bengtsson
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Thomas Vauvert Faurschou Hviid
- Center for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and the Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Ajith A, Portik-Dobos V, Horuzsko DD, Kapoor R, Mulloy LL, Horuzsko A. HLA-G and humanized mouse models as a novel therapeutic approach in transplantation. Hum Immunol 2020; 81:178-185. [PMID: 32093884 DOI: 10.1016/j.humimm.2020.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/12/2023]
Abstract
HLA-G is a nonclassical MHC-Class I molecule whose expression, along the feto-maternal barrier contributes towards tolerance of the semiallogeneic fetus during pregnancy. In light of its inhibitory properties, recent research has established HLA-G involvement in mechanisms responsible for directing allogeneic immune responses towards tolerance during allogeneic situations such as organ transplantation. Here, we critically review the data supporting the tolerogenic role of HLA-G in organ transplantation, the various factors influencing its expression, and the introduction of novel humanized mouse models that are one of the best approaches to assess the utility of HLA-G as a therapeutic tool in organ transplantation.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vera Portik-Dobos
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel D Horuzsko
- Philadelphia College of Osteopathic Medicine South Georgia, Moultrie, GA, USA
| | - Rajan Kapoor
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Laura L Mulloy
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Anatolij Horuzsko
- Georgia Cancer Canter, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
36
|
Jacquier A, Dumont C, Carosella ED, Rouas-Freiss N, LeMaoult J. Cytometry-based analysis of HLA-G functions according to ILT2 expression. Hum Immunol 2020; 81:168-177. [PMID: 32081570 DOI: 10.1016/j.humimm.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 01/14/2023]
Abstract
HLA-G was described as a molecule inhibiting NK and T cells functions through its receptor, ILT2. However, most functional studies of HLA-G were so far performed on heterogeneous immune populations and regardless of ILT2 expression. This may lead to an underestimation of the effect of HLA-G. Thus, considering the immune subpopulations sensitive to HLA-G remained an important issue in the field. Here we present a new cytometry assay to evaluate HLA-G effects on both NK and CD8+ T cell cytotoxic functions. Using flow cytometry allows for the comparison of HLA-G function on multiple subsets and multiple functions in the same time. In particular, we sharpen the analysis by specifically studying the immune subpopulations expressing HLA-G receptor ILT2. We focused our work on: IFN-gamma production and cytotoxicity (CD107a expression) by CD8+ T cells and NK cells expressing or not ILT2. We compared the expression of these markers in presence of target cells, expressing or not HLA-G1, and added a blocking antibody to reverse HLA-G inhibition. This new method allows for the discrimination of cell subsets responding and non-responding to HLA-G1 in one tube. We confirm that HLA-G-specifically inhibits the ILT2+ CD8+ T cell and ILT2+ NK cell subsets but not ILT2-negative ones. By blocking HLA-G/ILT2 interaction using an anti-ILT2 antibody we restored the cytotoxicity level, corroborating the specific inhibition of HLA-G1. We believe that our methodology enables to investigate HLA-G immune functions easily and finely towards other immune cell lineages or expressing other receptors, and might be applied in several pathological contexts, such as cancer and transplantation.
Collapse
Affiliation(s)
- A Jacquier
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France
| | - C Dumont
- Department of Medical Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, France
| | - E D Carosella
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France
| | - N Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France
| | - J LeMaoult
- CEA, DRF-Francois Jacob Institute, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France; U976 HIPI Unit, IRSL, Paris University, Paris, France.
| |
Collapse
|
37
|
Jordier F, Gras D, De Grandis M, D'Journo XB, Thomas PA, Chanez P, Picard C, Chiaroni J, Paganini J, Di Cristofaro J. HLA-H: Transcriptional Activity and HLA-E Mobilization. Front Immunol 2020; 10:2986. [PMID: 32010122 PMCID: PMC6978722 DOI: 10.3389/fimmu.2019.02986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 01/25/2023] Open
Abstract
Little attention is paid to pseudogenes from the highly polymorphic HLA genetic region. The pseudogene HLA-H is defined as a non-functional gene because it is deleted at different frequencies in humans and because it encodes a potentially non-functional truncated protein. However, different studies have shown HLA-H transcriptional activity. We formerly identified 13 novel HLA-H alleles, including the H*02:07 allele, which reaches 19.6% in East Asian populations and encodes a full-length HLA protein. The aims of this study were to explore the expression and possible function of the HLA-H molecule. HLA-H may act as a transmembrane molecule and/or indirectly via its signal peptide by mobilizing HLA-E to the cell surface. We analyzed HLA-H RNA expression in Peripheral Blood Mononuclear Cells (PBMC), Human Bronchial Epithelial Cells (HBEC), and available RNA sequencing data from lymphoblastoid cell lines, and we looked to see whether HLA-E was mobilized at the cell surface by the HLA-H signal peptide. Our data confirmed that HLA-H is transcribed at similar levels to HLA-G. We characterized a hemizygous effect in HLA-H expression, and expression differed according to HLA-H alleles; most interestingly, the HLA-H*02:07 allele had the highest level of mRNA expression. We showed that HLA-H signal peptide incubation mobilized HLA-E molecules at the cell surface of T-Lymphocytes, monocytes, B-Lymphocytes, and primary epithelial cells. Our results suggest that HLA-H may be functional but raises many biological issues that need to be addressed.
Collapse
Affiliation(s)
- François Jordier
- Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins”, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | - Delphine Gras
- Aix-Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Maria De Grandis
- Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins”, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | - Xavier-Benoît D'Journo
- Department of Thoracic Surgery, North Hospital, Aix-Marseille University & Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Pascal-Alexandre Thomas
- Department of Thoracic Surgery, North Hospital, Aix-Marseille University & Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Pascal Chanez
- Aix-Marseille University, INSERM, INRA, C2VN, Marseille, France
- Clinique des Bronches, Allergie et Sommeil, North Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Christophe Picard
- Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins”, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | - Jacques Chiaroni
- Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins”, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | | | - Julie Di Cristofaro
- Aix-Marseille University, CNRS, EFS, ADES, “Biologie des Groupes Sanguins”, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| |
Collapse
|
38
|
Adamson MB, Di Giovanni B, Ribeiro RVP, Yu F, Lazarte J, Rao V, Delgado DH. HLA-G +3196 polymorphism as a risk factor for cell mediated rejection following heart transplant. Hum Immunol 2020; 81:134-140. [PMID: 31928922 DOI: 10.1016/j.humimm.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Rejection is a leading cause of mortality following heart transplantation. Human leukocyte antigen-G (HLA-G) is an immune checkpoint which dampens the immune response. Reports suggest elevated HLA-G expression is associated with reduced allograft rejection. Our objective was to evaluate HLA-G polymorphisms and cell mediated rejection (CMR) development. METHODS Recipients (n = 123) were genotyped to identify relevant HLA-G polymorphisms in the 5'regulatory (-725, -201), 3'untranslated (+3197, +3187, +3142, 14-bp indel) and coding regions (haplotypes 1-6). CMR was evaluated via endomyocardial biopsy (grade ≥ 2R). Univariate/adjusted analyses were conducted via Kaplan Meier and proportional hazard models. RESULTS Mean recipient age was 48 (±12) years, with a median time to CMR of 4.6 years. 55 (45%) recipients had a biopsy grade ≥ 2R. Adjusted analysis revealed the +3196 G allele as a risk factor for CMR (p = 0.03). Compared to the minor GG genotype, CG had a 47.2% reduction in CMR risk (HR[95% CI] = 0.528 [0.235, 1.184]), while CC had a 66.9% reduction (0.331 [0.144, 0.761]). The recessive effect significantly increased CMR likelihood (2.388 [1.128, 5.059], p = 0.02). CONCLUSION The HLA-G +3196 G allele was identified as a risk factor for CMR diagnosis. HLA-G may have a role in therapeutic/diagnostic strategies against transplant rejection.
Collapse
Affiliation(s)
- Mitchell B Adamson
- Department of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Division of Cardiovascular Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada.
| | - Bennett Di Giovanni
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Roberto V P Ribeiro
- Department of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Division of Cardiovascular Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Frank Yu
- Division of Cardiovascular Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Julieta Lazarte
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Vivek Rao
- Department of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Division of Cardiovascular Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Diego H Delgado
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
39
|
Furukawa A, Meguro M, Yamazaki R, Watanabe H, Takahashi A, Kuroki K, Maenaka K. Evaluation of the Reactivity and Receptor Competition of HLA-G Isoforms toward Available Antibodies: Implications of Structural Characteristics of HLA-G Isoforms. Int J Mol Sci 2019; 20:ijms20235947. [PMID: 31779209 PMCID: PMC6928721 DOI: 10.3390/ijms20235947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
The human leucocyte antigen (HLA)-G, which consists of seven splice variants, is a tolerogenic immune checkpoint molecule. It plays an important role in the protection of the fetus from the maternal immune response by binding to inhibitory receptors, including leukocyte Ig-like receptors (LILRs). Recent studies have also revealed that HLA-G is involved in the progression of cancer cells and the protection from autoimmune diseases. In contrast to its well characterized isoform, HLA-G1, the binding activities of other major HLA-G isoforms, such as HLA-G2, toward available anti-HLA-G antibodies are only partially understood. Here, we investigate the binding specificities of anti-HLA-G antibodies by using surface plasmon resonance. MEM-G9 and G233 showed strong affinities to HLA-G1, with a nM range for their dissociation constants, but did not show affinities to HLA-G2. The disulfide-linker HLA-G1 dimer further exhibited significant avidity effects. On the other hand, 4H84 and MEM-G1, which can be used for the Western blotting of HLA-G isoforms, can bind to native HLA-G2, while MEM-G9 and G233 cannot. These results reveal that HLA-G2 has a partially intrinsically disordered structure. Furthermore, MEM-G1, but not 4H84, competes with the LILRB2 binding of HLA-G2. These results provide novel insight into the functional characterization of HLA-G isoforms and their detection systems.
Collapse
Affiliation(s)
- Atsushi Furukawa
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Manami Meguro
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Rika Yamazaki
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Hiroshi Watanabe
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Ami Takahashi
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; (A.F.); (M.M.); (R.Y.); (H.W.); (A.T.); (K.K.)
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: ; Tel.: +81-011-706-3970
| |
Collapse
|
40
|
Lázaro-Sánchez AD, Salces-Ortiz P, Velásquez LI, Orozco-Beltrán D, Díaz-Fernández N, Juárez-Marroquí A. HLA-G as a new tumor biomarker: detection of soluble isoforms of HLA-G in the serum and saliva of patients with colorectal cancer. Clin Transl Oncol 2019; 22:1166-1171. [PMID: 31748960 DOI: 10.1007/s12094-019-02244-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/03/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Recent medical investigations suggest that HLA-G, due to its tolerogenic properties, can be used as a biomarker in the diagnosis, treatment, and prognosis of different neoplasms. This observational prospective pilot study aims at detecting sHLA-G in the serum and saliva of patients diagnosed with colorectal cancer (CRC). For this purpose, we compared the expression of sHLA-G from patients with a control sample from a healthy population. MATERIALS AND METHODS Using the specific enzyme-linked immunosorbent assay (ELISA) method, the expression of sHLA-G in the serum and saliva samples from patients affected by CRC (n = 20) and in a control sample (n = 10) were analyzed. RESULTS The data showed that in patients with CRC, salivary sHLA-G values were significantly higher than in the control group (18.84 U/ml versus 6.3 U/ml, p = 0.036). In addition, higher levels of sHLA-G were observed in the saliva of patients with CRC in more advanced stages, compared with patients in early stages (24.2 U/ml vs. 8.1 U/ml, p = 0.019). A significant correlation was observed between the concentration of sHLA-G in the serum and saliva of the analyzed samples (Spearman correlation 0.7, p = 0.004). CONCLUSIONS This study demonstrates, for the first time, the possibility of detecting sHLA-G in the saliva of patients with CRC, resulting in a less invasive alternative to venipuncture. Likewise, we propose that sHLA-G could be an attractive molecular target based on its significant high levels in advanced stages.
Collapse
Affiliation(s)
- A D Lázaro-Sánchez
- Medical Oncology Service of the University Hospital of Sant Joan d'Alacant, Ctra. Nnal. 332, s/n, 03550, Alicante, Spain.
| | - P Salces-Ortiz
- Medical Oncology Service of the University Hospital of Sant Joan d'Alacant, Ctra. Nnal. 332, s/n, 03550, Alicante, Spain
| | - L I Velásquez
- Department of Clínical Medicine of the Miguel Hernández University of Elche, Alicante, Spain
| | - D Orozco-Beltrán
- Department of Clínical Medicine of the Miguel Hernández University of Elche, Alicante, Spain
| | - N Díaz-Fernández
- Medical Oncology Service of the University Hospital of Sant Joan d'Alacant, Ctra. Nnal. 332, s/n, 03550, Alicante, Spain
| | - A Juárez-Marroquí
- Medical Oncology Service of the University Hospital of Sant Joan d'Alacant, Ctra. Nnal. 332, s/n, 03550, Alicante, Spain
| |
Collapse
|
41
|
Dumont C, Jacquier A, Verine J, Noel F, Goujon A, Wu CL, Hung TM, Desgrandchamps F, Culine S, Carosella ED, Rouas-Freiss N, LeMaoult J. CD8 +PD-1 -ILT2 + T Cells Are an Intratumoral Cytotoxic Population Selectively Inhibited by the Immune-Checkpoint HLA-G. Cancer Immunol Res 2019; 7:1619-1632. [PMID: 31451484 DOI: 10.1158/2326-6066.cir-18-0764] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/25/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Only some cancer patients respond to the immune-checkpoint inhibitors being used in the clinic, and other therapeutic targets are sought. Here, we investigated the HLA-G/ILT2 checkpoint in clear-cell renal-cell carcinoma (ccRCC) patients and focused on tumor-infiltrating CD8+ T lymphocytes (TIL) expressing the HLA-G receptor ILT2. Using transcriptomics and flow cytometry, we characterized both peripheral blood and tumor-infiltrating CD8+ILT2+ T cells from cancer patients as late-differentiated CD27-CD28-CD57+ cytotoxic effectors. We observed a clear dichotomy between CD8+ILT2+ and CD8+PD-1+ TIL subsets. These subsets, which were sometimes present at comparable frequencies in TIL populations, barely overlapped phenotypically and were distinguished by expression of exclusive sets of surface molecules that included checkpoint molecules and activating and inhibitory receptors. CD8+ILT2+ TILs displayed a more mature phenotype and higher expression of cytotoxic molecules. In ex vivo functional experiments with both peripheral blood T cells and TILs, CD8+ILT2+ T cells displayed significantly higher cytotoxicity and IFNγ production than their ILT2- (peripheral blood mononuclear cells, PBMC) and PD-1+ (TILs) counterparts. HLA-G expression by target cells specifically inhibited CD8+ILT2+ T-cell cytotoxicity, but not that of their CD8+ILT2- (PBMC) or CD8+PD-1+ (TIL) counterparts, an effect counteracted by blocking the HLA-G/ILT2 interaction. CD8+ILT2+ TILs may therefore constitute an untapped reservoir of fully differentiated cytotoxic T cells within the tumor microenvironment, independent of the PD1+ TILs targeted by immune therapies, and specifically inhibited by HLA-G. These results emphasize the potential of therapeutically targeting the HLA-G/ILT2 checkpoint in HLA-G+ tumors, either concomitantly with anti-PD-1/PD-L1 or in cases of nonresponsiveness to anti-PD-1/PD-L1.
Collapse
Affiliation(s)
- Clement Dumont
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France.,Department of Medical Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alix Jacquier
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| | - Jerome Verine
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France.,Department of Pathology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France and Paris-Diderot University, Paris, France
| | - Floriane Noel
- Institut Curie, PSL Research University, France and INSERM, UMR 932, Paris, France and Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Annabelle Goujon
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France.,Department of Urology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ching-Lien Wu
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| | - Tzu-Min Hung
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,National Taiwan University Hospital, Taipei City, Taiwan, Republic of China; University of Taipei and E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, Republic of China
| | - François Desgrandchamps
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France.,Department of Urology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stephane Culine
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France.,Department of Medical Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Edgardo D Carosella
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| | - Nathalie Rouas-Freiss
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| | - Joel LeMaoult
- Hemato-Immunology Research Department, CEA-DRF, Saint-Louis Hospital, Paris, France. .,Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| |
Collapse
|
42
|
HLAIb worldwide genetic diversity: New HLA-H alleles and haplotype structure description. Mol Immunol 2019; 112:40-50. [PMID: 31078115 DOI: 10.1016/j.molimm.2019.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
The classical HLA class I genes (HLA Ia) were extensively studied because of their implication in clinical fields and anthropology. Less is known about worldwide genetic diversity and linkage disequilibrium for non-classical HLA class I genes (HLA Ib) and HLA pseudogenes. Notably, HLA-H, which is deleted in a fraction of the population, remains scarcely explored. The aims of this study were 1/ to get further insight into HLA-H genetic diversity and into how this variability potentially affects its expression and 2/ to define HLA Ib worldwide allelic diversity and linkage. Exome sequence data from the 1000 Genomes Project were used to define second field HLA-A, -E, -F, -G and -H typing using PolyPheMe software. Allelic and two-loci haplotype frequencies were estimated using Gene[Rate] software both at worldwide and continental levels. Eleven novel HLA-H alleles identified in exome data were validated by NGS performed on 25 genomic DNA samples from the same cohort. Phylogenetic analysis and frequency distribution of HLA-H alleles revealed three clades, each predominantly represented in Admixed American, European and East Asian populations, African populations and South Asian populations. Among these eleven novel alleles, two potentially encode complete transmembrane HLA proteins. We confirm the high LD between HLA-H and -A, and between HLA-H and -G, and show the three genes have distinct worldwide allelic distribution. Conversely, HLA-E and HLA-F both showed little LD, displayed restricted allelic diversity and practically no difference in their distribution across the planet. Our work thus reveals an unexpectedly high HLA-H genetic diversity, with alleles highly represented in Asia possibly encoding a functional HLA protein. Functional implication of these results remains to be explored, both in physiological and pathological contexts.
Collapse
|
43
|
Ben Azzouz E, Boumaza A, Mezouar S, Bardou M, Carlini F, Picard C, Raoult D, Mège JL, Desnues B. Tropheryma whipplei Increases Expression of Human Leukocyte Antigen-G on Monocytes to Reduce Tumor Necrosis Factor and Promote Bacterial Replication. Gastroenterology 2018; 155:1553-1563. [PMID: 30076840 DOI: 10.1053/j.gastro.2018.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Infection with Tropheryma whipplei has a range of effects-some patients can be chronic carriers without developing any symptoms, whereas others can develop systemic Whipple disease, characterized by a lack a protective inflammatory immune response. Alterations in HLA-G function have been associated with several diseases. We investigated the role of HLA-G during T whipplei infection. METHODS Sera, total RNA, and genomic DNA were collected from peripheral blood from 22 patients with classic Whipple's disease, 19 patients with localized T whipplei infections, and 21 asymptomatic carriers. Levels of soluble HLA-G in sera were measured by enzyme-linked immuosorbent assay, and expressions of HLA-G and its isoforms were monitored by real-time polymerase chain reaction. HLA-G alleles were identified and compared with a population of voluntary bone marrow donors. Additionally, monocytes from healthy subjects were stimulated with T whipplei, and HLA-G expression was monitored by real-time polymerase chain reaction and flow cytometry. Bacterial replication was assessed by polymerase chain reaction in the presence of HLA-G or inhibitor of tumor necrosis factor (TNF) (etanercept). RESULTS HLA-G mRNAs and levels of soluble HLA-G were significantly increased in sera from patients with chronic T whipplei infection compared with sera from asymptomatic carriers and control individuals. No specific HLA-G haplotypes were associated with disease or T whipplei infection. However, T whipplei infection of monocytes induced expression of HLA-G, which was associated with reduced secretion of TNF compared with noninfected monocytes. A neutralizing antibody against HLA-G increased TNF secretion by monocytes in response to T whipplei, and a TNF inhibitor promoted bacteria replication. CONCLUSIONS Levels of HLA-G are increased in sera from patients with T whipplei tissue infections, associated with reduced production of TNF by monocytes. This might promote bacteria colonization in patients.
Collapse
Affiliation(s)
- Eya Ben Azzouz
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Asma Boumaza
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Matthieu Bardou
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | | | - Christophe Picard
- Aix-Marseille Univ, CNRS, EFS, ADES UMR 7268, Marseille, France; Laboratoire d'immunogénétique, Établissement Français du Sang Provence Alpes Côte d'Azur Corse, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mège
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France.
| |
Collapse
|
44
|
ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2018; 1869:278-285. [DOI: 10.1016/j.bbcan.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
|
45
|
Expression and differential regulation of HLA-G isoforms in the retinal pigment epithelial cell line, ARPE-19. Hum Immunol 2017; 78:414-420. [DOI: 10.1016/j.humimm.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
|
46
|
Kuroki K, Mio K, Takahashi A, Matsubara H, Kasai Y, Manaka S, Kikkawa M, Hamada D, Sato C, Maenaka K. Cutting Edge: Class II-like Structural Features and Strong Receptor Binding of the Nonclassical HLA-G2 Isoform Homodimer. THE JOURNAL OF IMMUNOLOGY 2017; 198:3399-3403. [PMID: 28348268 DOI: 10.4049/jimmunol.1601296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
Abstract
HLA-G is a natural tolerogenic molecule and has the following unique features: seven isoforms (HLA-G1 to HLA-G7), formation of disulfide-linked homodimers, and β2-microglobulin (β2m)-free forms. Interestingly, individuals null for the major isoform, HLA-G1, are healthy and expressed the α2 domain-deleted isoform, HLA-G2, which presumably compensates for HLA-G1 function. However, the molecular characteristics of HLA-G2 are largely unknown. In this study, we unexpectedly found that HLA-G2 naturally forms a β2m-free and nondisulfide-linked homodimer, which is in contrast to the disulfide-bonded β2m-associated HLA-G1 homodimer. Furthermore, single-particle analysis, using electron microscopy, revealed that the overall structure and domain organization of the HLA-G2 homodimer resemble those of the HLA class II heterodimer. The HLA-G2 homodimer binds to leukocyte Ig-like receptor B2 with slow dissociation and a significant avidity effect. These findings provide novel insights into leukocyte Ig-like receptor B2-mediated immune regulation by the HLA-G2 isoform, as well as the gene evolution of HLA classes.
Collapse
Affiliation(s)
- Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kazuhiro Mio
- Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwanoha 277-8589 Japan
| | - Ami Takahashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Haruki Matsubara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yoshiyuki Kasai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sachie Manaka
- Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwanoha 277-8589 Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daizo Hamada
- Graduate School of Engineering, Kobe University, Kobe 650-0047, Japan.,Center for Applied Structural Science, Kobe University, Kobe 650-0047, Japan; and
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan;
| |
Collapse
|
47
|
Takahashi A, Kuroki K, Okabe Y, Kasai Y, Matsumoto N, Yamada C, Takai T, Ose T, Kon S, Matsuda T, Maenaka K. The immunosuppressive effect of domain-deleted dimer of HLA-G2 isoform in collagen-induced arthritis mice. Hum Immunol 2016; 77:754-9. [DOI: 10.1016/j.humimm.2016.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022]
|
48
|
Nardi FDS, König L, Wagner B, Giebel B, Santos Manvailer LF, Rebmann V. Soluble monomers, dimers and HLA-G-expressing extracellular vesicles: the three dimensions of structural complexity to use HLA-G as a clinical biomarker. HLA 2016; 88:77-86. [PMID: 27440734 DOI: 10.1111/tan.12844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
The HLA-G molecule belongs to the family of nonclassical human leukocyte antigen (HLA) class I. At variance to classical HLA class I, HLA-G displays (i) a low number of nucleotide variations within the coding region, (ii) a high structural diversity, (iii) a restricted peptide repertoire, (iv) a limited tissue distribution and (v) strong immune-suppressive properties. The physiological HLA-G surface expression is restricted to the maternal-fetal interface and to immune-privileged adult tissues. Soluble forms of HLA-G (sHLA-G) are detectable in various body fluids. Cellular activation and pathological processes are associated with an aberrant or a neo-expression of HLA-G/sHLA-G. Functionally, HLA-G and its secreted forms are considered to be key players in the induction of short- and long-term tolerance. Thus, its unique expression profile and tolerance-inducing functions render HLA-G/sHLA-G an attractive biomarker to monitor the systemic health/disease status and disease activity/progression for clinical approaches in disease management and treatments. Here, we place emphasis on (i) the current status of the tolerance-inducing functions by HLA-G/sHLA-G, (ii) the current complexity to implement this molecule as a meaningful clinical biomarker regarding the three dimensions of structural diversity (monomers, dimers and HLA-G-expressing extracellular vesicles) with its functional implications, and (iii) novel and future approaches to detect and quantify sHLA-G structures and functions.
Collapse
Affiliation(s)
- F da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Laboratory of Immunogenetics and Histocompatibility (LIGH), Federal University of Paraná, Genetics Department, Curitiba, Brazil.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - L König
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - B Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - B Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - L F Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - V Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
49
|
Rebmann V, König L, Nardi FDS, Wagner B, Manvailer LFS, Horn PA. The Potential of HLA-G-Bearing Extracellular Vesicles as a Future Element in HLA-G Immune Biology. Front Immunol 2016; 7:173. [PMID: 27199995 PMCID: PMC4854879 DOI: 10.3389/fimmu.2016.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022] Open
Abstract
The HLA-G molecule is a member of the non-classical HLA class I family. Its surface expression is physiologically restricted to the maternal–fetal interface and to immune privileged adult tissues. Despite the restricted tissue expression, HLA-G is detectable in body fluids as secreted soluble molecules. A unique feature of HLA-G is the structural diversity as surface expressed and as secreted molecules. Secreted HLA-G can be found in various body fluids either as free soluble HLA-G or as part of extracellular vesicles (EVs), which are composed of various antigens/ligands/receptors, bioactive lipids, cytokines, growth factors, and genetic information, such as mRNA and microRNA. Functionally, HLA-G and its secreted forms are considered to play a crucial role in the network of immune-regulatory tolerance mechanisms, preferentially interacting with the cognate inhibitory receptors LILRB1 and LILRB2. The HLA-G mediated tolerance is described in processes of pregnancy, inflammation, and cancer. However, almost all functional and clinical implications of HLA-G in vivo and in vitro have been established based on simple single ligand/receptor interactions at the cell surface, whereas HLA-G-bearing EVs were in minor research focus. Indeed, cytotrophoblast cells, mesenchymal stem cells, and cancer cells were recently described to secrete HLA-G-bearing EVs, displaying immunosuppressive effects and modulating the tumor microenvironment. However, numerous functional and clinical open questions persist. Here, we (i) introduce basic aspects of EVs biology, (ii) summarize the functional knowledge, clinical implications and open questions of HLA-G-bearing EVs, and (iii) discuss HLA-G-bearing EVs as a future element in HLA-G biology.
Collapse
Affiliation(s)
- Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen , Essen , Germany
| | - Lisa König
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany; Department of Gynecology and Obstetrics, Essen, Germany
| | - Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany; Laboratory of Immunogenetics and Histocompatibility (LIGH), Federal University of Paraná Genetics Department, Curitiba, Paraná, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District, Brazil
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen , Essen , Germany
| | - Luis Felipe Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany; CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District, Brazil
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen , Essen , Germany
| |
Collapse
|
50
|
Nguyen-Lefebvre AT, Ajith A, Portik-Dobos V, Horuzsko DD, Mulloy LL, Horuzsko A. Mouse models for studies of HLA-G functions in basic science and pre-clinical research. Hum Immunol 2016; 77:711-9. [PMID: 27085792 DOI: 10.1016/j.humimm.2016.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
HLA-G was described originally as a tolerogenic molecule that allows the semiallogeneic fetus to escape from recognition by the maternal immune response. This review will discuss different steps in the study of HLA-G expression and functions in vivo, starting with analyses of expression of the HLA-G gene and its receptors in transgenic mice, and continuing with applications of HLA-G and its receptors in prevention of allograft rejection, transplantation tolerance, and controlling the development of infection. Humanized mouse models have been discussed for developing in vivo studies of HLA-G in physiological and pathological conditions. Collectively, animal models provide an opportunity to evaluate the importance of the interaction between HLA-G and its receptors in terms of its ability to regulate immune responses during maternal-fetal tolerance, survival of allografts, tumor-escape mechanisms, and development of infections when both HLA-G and its receptors are expressed. In addition, in vivo studies on HLA-G also offer novel approaches to achieve a reproducible transplantation tolerance and to develop personalized medicine to prevent allograft rejection.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Ashwin Ajith
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Vera Portik-Dobos
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Daniel D Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Laura L Mulloy
- Department of Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Anatolij Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA; Department of Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|