1
|
Wu Y, Du Y, Zhang Y, Ye M, Wang D, Zhou L. Transcriptome-derived evidence reveals the regulatory network in the skeletal muscle of the fast-growth mstnb -/- male tilapia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101405. [PMID: 39729946 DOI: 10.1016/j.cbd.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Myostatin (Mstn) negatively regulates muscle growth and Mstn deficiency induced "double-skeletal muscle" development in vertebrates, including tilapias. In this study, we performed a transcriptomic analysis of skeletal muscle from both wild-type and mstnb-/- males to investigate the molecular mechanisms underlying skeletal muscle hypertrophy in mstnb-/- mutants. We identified 4697 differentially expressed genes (DEGs), 113 differentially expressed long non-coding RNAs (DE lncRNAs), 211 differentially expressed circular RNAs (DE circRNAs), and 98 differentially expressed microRNAs (DE miRNAs). The DEGs were significantly enriched in proteasome and ubiquitin-mediated proteolysis pathways. Cis- and trans-targeting genes of DE lncRNAs were also notably enriched in the above two pathways. The putative host genes of DE circRNAs linked to myofibrils, contractile fibers, and so on. Additionally, DE miRNAs were associated with ubiquitin-mediated proteolysis and key signaling pathways, including AMPK, FoxO, and mTOR. Furthermore, the core competing endogenous RNA (ceRNA) network was constructed comprising 31 DEGs, 37 DE miRNAs, 14 DE circRNAs, and 45 DE lncRNAs. The key roles of ubiquitin-proteasome system were highlighted in the ceRNA network. Taken together, this study provides a novel perspective on muscle mass increase in Mstn mutants through the repression of protein degradation and facilitates our understanding of the molecular mechanisms of skeletal muscle hypertrophy in fish.
Collapse
Affiliation(s)
- You Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Yiyun Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Yanbin Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Maolin Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China.
| | - Linyan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Chen YF, Teng YC, Yang JH, Kao CH, Tsai TF. Cisd1 synergizes with Cisd2 to modulate protein processing by maintaining mitochondrial and ER homeostasis. Aging (Albany NY) 2025; 17:206249. [PMID: 40349253 DOI: 10.18632/aging.206249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025]
Abstract
Connection and crosstalk among the organelles critically contribute to cellular functions. Destruction of any kind of organelle is likely to induce a series of intracellular disorders and finally lead to cell death. Because of its subcellular locations, CDGSH iron-sulfur domain-containing protein 1 (Cisd1) and Cisd2 have functions that are related to maintaining mitochondria and ER homeostasis. As previous reports have shown, Cisd2 knockout mice have a decreased body weight and poor survival rate, and the primary defects were conducted in skeletal muscle. Our previous findings indicated that Cisd1 deletion causes a range of skeletal muscle defects in mice with Cisd2 deficiency, including mitochondrial degeneration, endoplasmic reticulum (ER) stress, and alteration of protein process, as well as programmed cell death. In Cisd1 and Cisd2 deficient condition, the whole of the protein biosynthesis was damaged, including translation, modification, transport, and degradation. Changes in the immune response, redox regulation, and metabolism were also present in Cisd1 and Cisd2 double knockout mice. Overall, we have demonstrated that Cisd1 and Cisd2 knockout have a synergistic effect on skeletal muscles, and that Cisd2 plays a more critical role than Cisd1. These synergistic effects impact signaling regulation and interrupt the crosstalk and homeostasis of organelles. This creates severe disorders in various tissues and organs.
Collapse
Affiliation(s)
- Yi-Fan Chen
- International Master Program for Translation Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23564, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11529, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Chi Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Jian-Hsin Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| |
Collapse
|
3
|
Wang L, Xu C, Xiong J, Qin C, Yang L, Yan X, Mi J, Nie G. Response of muscle growth, nutritional composition, textural properties, and glucose metabolism to elevated levels of dietary pre-gelatinized starch in common carp (Cyprinus carpio). Int J Biol Macromol 2025; 307:142330. [PMID: 40118408 DOI: 10.1016/j.ijbiomac.2025.142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Pre-gelatinized (PG) starch can effectively improve the quality of aquatic feed utilization, but reports on the quality of aquatic flesh remain scarce. This study aimed to evaluate the effects of dietary PG starch on the growth performance, nutritional composition, textural properties, and glucose metabolism of common carp (Cyprinus carpio). Fish (initial weight 451.20 ± 0.49 g) were fed with PG starch levels of 14.8 %, 29.6 %, or 44.3 % for 9 weeks. Increasing PG starch levels increased the carcass ratio and hepatosomatic index value. Muscle lipid content and monounsaturated fatty acid levels increased with an increase in dietary PG starch levels, whereas the muscle protein content, essential amino acids ratio, and polyunsaturated fatty acid levels decreased (P < 0.05). Elevated PG starch intake led to a reduction in fiber diameter and an increase in the density of muscle fibers; however, the muscle texture properties decreased. Notably, elevated PG intake inhibited muscle glycolysis and promoted glycogen deposition (P < 0.05). This study provides valuable insights into the role of PG starch in the precise nutritional regulation of muscle quality in the common carp.
Collapse
Affiliation(s)
- Luming Wang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chunchu Xu
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jinrui Xiong
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chaobin Qin
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Liping Yang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Yan
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jiali Mi
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
4
|
Ji LL. Nuclear factor κB signaling revisited: Its role in skeletal muscle and exercise. Free Radic Biol Med 2025; 232:158-170. [PMID: 40010515 DOI: 10.1016/j.freeradbiomed.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Nuclear factor (NF) κB as a redox sensitive, anti-apoptotic and pro-inflammatory signaling molecule has been studied extensively for more than three decades. Its role in inducing antioxidant enzymes, defending against extracellular and intracellular stress and maintaining redox homeostasis in skeletal muscle has also been recognized. New research continues to explore the polytropic nature of NFκB in cellular function, especially its crosstalk with other important signaling pathways. Understanding of the broad impact of these functions has significant implications in health and disease of skeletal muscle as an organ designed for contraction and mobility. Two important aspects of muscle wellbeing, i.e., disease and aging, are not discussed in this review. This review will provide an update on the new findings related to NFκB involvement in multiple signaling pathways and refresh our knowledge of its activation in skeletal muscle with a special reference to physical exercise.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, USA.
| |
Collapse
|
5
|
Song J, Jaklofsky M, Carmone C, de Boer V, Wever N, Keijer J, Grefte S. Six-hour hypoxia-induced protein degradation in M. gastrocnemius of 24-day-old mice by activating FOXO1 and suppressing AKT-mTORC1. Am J Physiol Endocrinol Metab 2025; 328:E620-E632. [PMID: 40094441 DOI: 10.1152/ajpendo.00508.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Long-term hypoxia has been associated with skeletal muscle atrophy, including increased protein degradation over protein synthesis. This contrasts sharply with muscle hypertrophy and net protein synthesis occurring in the developing skeletal muscle of young mice. Here, we aimed to understand the impact of acute, physiologically plausible environmental hypoxia on muscle proteostasis of the M. gastrocnemius of young mice. Fasted prepubertal, 24-day-old male B6JRccHsd(B6J)-Nnt+/Wuhap mice with similar body weight and lean mass were exposed to normobaric hypoxia (12% O2) or normoxia (20.9% O2) for 6 h. The transcriptome (n = 12) and protein (n = 6) responses of the M. gastrocnemius were analyzed. A hypoxic response of M. gastrocnemius was confirmed by increased expression of hypoxia-inducible factor 1 (HIF1) (Ankrd37 and Ddit4) and forkhead box-O (FOXO) 1 (Depp1 and Ddit4) target genes. RNA-Seq analysis revealed that hypoxia activated FOXO signaling, which was confirmed by increased FOXO1 protein levels and decreased p-AKT/AKT ratio. Detailed mapping of the FOXO1 pathway suggests a strong FOXO1-mediated hypoxic effect on protein degradation and synthesis. A central role of Atf4 is suggested by the hypoxic-dependent positive correlations with FOXO1, FBXO32, Depp1, Eif4ebp1, and Ddit4. Further analyses showed increased FBXO32, which positively correlated with FOXO1, and decreased p-S6K/S6K and p-4E-BP1/4E-BP1 ratios. Our results showed for the first time that a 6-h exposure to 12% O2 normobaric hypoxia in 24-day-old mice activates FOXO1 signaling in M. gastrocnemius, resulting in decreased protein synthesis and increased protein degradation most likely via reduced energy availability, which may be relevant for infant air or high altitude traveling.NEW & NOTEWORTHY We newly investigated an acute (6 h) hypoxic exposure (12% O2) in developing and growing M. gastrocnemius of 24-day-old mice. This acute hypoxia significantly enhanced muscle protein breakdown via the activation of FOXO1 and subsequently FBXO32, whereas also suppressing protein synthesis via the reduced p-S6K/S6K and p-4E-BP1/4E-BP1 and thus AKT-mTORC1 pathway. Together these changes observed could potentially hamper the muscle development of young mice.
Collapse
Affiliation(s)
- Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Jaklofsky
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Claudia Carmone
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Vincent de Boer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Niels Wever
- Animal Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Zou H, Zheng L, Zeng C. Polyunsaturated Fatty Acids and Reduced Risk of Low Muscle Mass in Adults. Nutrients 2025; 17:858. [PMID: 40077720 PMCID: PMC11902165 DOI: 10.3390/nu17050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background: We aimed to evaluate the effects of both joint and individual types of fatty acids on low muscle mass in adults. Methods: We enrolled 8842 adults selected from the National Health and Nutrition Examination Survey (NHANES). Multivariate adjusted weighted logistic regression models were employed to evaluate the connection between fatty acids and low muscle mass. We used restricted cubic splines (RCSs) to determine whether the relationship is linear or non-linear, while stratified analyses and interaction effects were also assessed. Weighted quantile sum (WQS) analysis assessed the impact of joint and individual types of fatty acids on low muscle mass. Additionally, mediation analysis determined the direct and indirect implications of polyunsaturated fatty acids on low muscle mass. Results: A total of 8842 participants were included in this study, of which 705 were identified as having low muscle mass. The logistic regression analyses identified a significant linear correlation between all three types of fatty acids and low-muscle-mass risk. Additionally, the WQS analysis demonstrated that a fatty acid mixture was inversely associated with low-muscle-mass risk, with polyunsaturated fatty acids being recognized as the principal component. Moreover, inflammation may mediate the relationship between polyunsaturated fatty acids and low muscle mass, accounting for 3.75% of the effect size (p < 0.001) through white blood cell count. We further examined linoleic acid (LA) and alpha-linolenic acid (ALA), and each unit increase in LA and ALA intake was linked to a decrease in low-muscle-mass risk by 0.29 (95% CI: 0.64-0.79, p < 0.001) and 0.27 (95% CI: 0.66-0.81, p < 0.001), respectively. Conclusions: These findings indicate that polyunsaturated fatty acids (especially LA and ALA) may effectively mitigate low-muscle-mass risk.
Collapse
Affiliation(s)
| | - Liangrong Zheng
- School of Medicine, Zhejiang University, Hangzhou 310000, China;
| | - Chunlai Zeng
- School of Medicine, Zhejiang University, Hangzhou 310000, China;
| |
Collapse
|
8
|
Yadav A, Dabur R. Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy. Appl Biochem Biotechnol 2025; 197:1152-1173. [PMID: 39361198 DOI: 10.1007/s12010-024-05059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 02/13/2025]
Abstract
Skeletal muscle (SkM) atrophy results from metabolic disorders causing body and muscle mass loss, affecting morbidity and mortality. Increased oxidative stress, inflammation, and poor prognosis are the leading causes of involuntary weight loss. Ursolic acid (UA), known for its antioxidant and anti-inflammatory properties, can potentially reduce oxidative stress and inflammation in muscles, but its effects on muscle mass regulation are still unknown. Therefore, the present study investigated the medicinal efficacy of UA and its mode of action against the murine model of SkM atrophy over 7 days of UA supplementation. Denervation-induced SkM atrophy significantly impacts overall body weight and the weight of individual muscles (p < 0.05). However, supplementation with UA can effectively counteract these effects by promoting the synthesis of the slow-myosin heavy chain, thereby restoring body weight and myotube diameter. Moreover, UA also plays a crucial role in reducing the production levels of reactive oxygen species (ROS), lipid peroxidation (LPO), and caspase-3-like activity in atrophied muscles. UA also prevents the leakage of creatine kinase (CK) through the upregulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) expression. Furthermore, the results obtained from qRT-PCR demonstrated a significant decrease in the levels of pro-inflammatory markers, namely IL-1β, IL-6, TNF-α, and TWEAK, up to four-fold after the third day of the UA intervention. UA also upregulated PGC-1α, Bcl2, and p-Aktser473 expression towards the regulation of redox homeostasis.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
9
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 PMCID: PMC11849978 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
10
|
Acheson J, Joanisse S, Sale C, Hodson N. Recycle, repair, recover: the role of autophagy in modulating skeletal muscle repair and post-exercise recovery. Biosci Rep 2025; 45:1-30. [PMID: 39670455 DOI: 10.1042/bsr20240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The mechanisms that underpin this remodeling are believed to be a combination of cellular processes including ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell proliferation/differentiation. A relatively understudied system that has the potential to be a significant contributing mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new organelles and cellular structures. This review summarizes our current understanding of the autophagolysosomal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models of how this system may interact with other processes involved in skeletal muscle remodeling and provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.
Collapse
Affiliation(s)
- Jordan Acheson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Sophie Joanisse
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Nathan Hodson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Guan G, Chen Y, Dong Y. Unraveling the AMPK-SIRT1-FOXO Pathway: The In-Depth Analysis and Breakthrough Prospects of Oxidative Stress-Induced Diseases. Antioxidants (Basel) 2025; 14:70. [PMID: 39857404 PMCID: PMC11763278 DOI: 10.3390/antiox14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS) refers to the production of a substantial amount of reactive oxygen species (ROS), leading to cellular and organ damage. This imbalance between oxidant and antioxidant activity contributes to various diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative conditions. The body's antioxidant system, mediated by various signaling pathways, includes the AMPK-SIRT1-FOXO pathway. In oxidative stress conditions, AMPK, an energy sensor, activates SIRT1, which in turn stimulates the FOXO transcription factor. This cascade enhances mitochondrial function, reduces mitochondrial damage, and mitigates OS-induced cellular injury. This review provides a comprehensive analysis of the biological roles, regulatory mechanisms, and functions of the AMPK-SIRT1-FOXO pathway in diseases influenced by OS, offering new insights and methods for understanding OS pathogenesis and its therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; (G.G.); (Y.C.)
| |
Collapse
|
12
|
Zeng C, Guo M, Xiao K, Li C. Autophagy mediated by ROS-AKT-FoxO pathway is required for intestinal regeneration in echinoderms. Cell Commun Signal 2025; 23:8. [PMID: 39762855 PMCID: PMC11705696 DOI: 10.1186/s12964-024-01993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Autophagy is essential for maintaining material balance and energy circulation and plays a critical role as a regulatory mechanism in tissue regeneration. However, current studies primarily describe this phenotype, with limited exploration of its molecular mechanisms. In this study, we provided the first evidence that autophagy is required for intestinal regeneration in Apostichopus japonicus and identified a previously unrecognized regulatory mechanism involved in this process. We observed that autophagy activation was significantly associated with enhanced regeneration, and its upregulation was shown to be regulated by reactive oxygen species (ROS) bursts. Mechanistically, ROS induced the dephosphorylation of Forkhead box protein O (FoxO) through AjAKT dephosphorylation. The dephosphorylated AjFoxO translocated to the nucleus, where it bound to the promoters of AjLC3 and AjATG4, inducing their transcription. This study highlights the ROS-AjAKT-AjFoxO-AjATG4/AjLC3 pathway as a novel regulatory mechanism underlying autophagy-mediated intestinal regeneration in echinoderms, providing a reference for studying regenerative processes and cytological mechanisms in economically important echinoderms.
Collapse
Affiliation(s)
- Chuili Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
- Ningbo University, Zhejiang Province, Ningbo, 315211, P. R. China.
| |
Collapse
|
13
|
Zhan S, Jiang R, An Z, Zhang Y, Zhong T, Wang L, Guo J, Cao J, Li L, Zhang H. CircRNA profiling of skeletal muscle satellite cells in goats reveals circTGFβ2 promotes myoblast differentiation. BMC Genomics 2024; 25:1075. [PMID: 39533172 PMCID: PMC11555921 DOI: 10.1186/s12864-024-11008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) function as essential regulatory elements with pivotal roles in various biological processes. However, their expression profiles and functional regulation during the differentiation of goat myoblasts have not been thoroughly explored. This study conducts an analysis of circRNA expression profiles during the proliferation phase (cultured in growth medium, GM) and differentiation phase (cultured in differentiation medium, DM1/DM5) of skeletal muscle satellite cells (MuSCs) in goats. RESULTS A total of 2,094 circRNAs were identified, among which 84 were differentially expressed as determined by pairwise comparisons across three distinct groups. Validation of the expression levels of six randomly selected circRNAs was performed using reverse transcription PCR (RT-PCR) and quantitative RT-PCR (qRT-PCR), with confirmation of their back-splicing junction sites. Enrichment analysis of the host genes associated with differentially expressed circRNAs (DEcircRNAs) indicated significant involvement in biological processes such as muscle contraction, muscle hypertrophy, and muscle tissue development. Additionally, these host genes were implicated in key signaling pathways, including Hippo, TGF-beta, and MAPK pathways. Subsequently, employing Cytoscape, we developed a circRNA-miRNA interaction network to elucidate the complex regulatory mechanisms underlying goat muscle development, encompassing 21 circRNAs and 47 miRNAs. Functional assays demonstrated that circTGFβ2 enhances myogenic differentiation in goats, potentially through a miRNA sponge mechanism. CONCLUSION In conclusion, we identified the genome-wide expression profiles of circRNAs in goat MuSCs during both proliferation and differentiation phases, and established that circTGFβ2 plays a role in the regulation of myogenesis. This study offers a significant resource for the advanced exploration of the biological functions and mechanisms of circRNAs in the myogenesis of goats.
Collapse
Affiliation(s)
- Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Rui Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Zongqi An
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yang Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
| |
Collapse
|
14
|
Ma H, Jing Y, Zeng J, Ge J, Sun S, Cui R, Qian C, Qu S, Sheng H. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate muscle atrophy via the miR-132-3p/FoxO3 axis. J Orthop Translat 2024; 49:23-36. [PMID: 39420945 PMCID: PMC11483279 DOI: 10.1016/j.jot.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/19/2024] Open
Abstract
Background Muscle atrophy or sarcopenia is the loss of muscle mass and strength and leads to an increased risk of disability and death including osteoporotic fractures. Currently, there are no available clinical biologic agents for the treatment of sarcopenia. Since exosomes have become increasingly attractive as a novel therapeutic approach due to their ability to facilitate cell-cell transfer of proteins and RNAs, promoting cell repair and function recovery, we hypothesized that human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Exos) might benefit muscle atrophy in age-related and dexamethasone-induced sarcopenia animal models. Methods HucMSC-Exos were harvested by ultrafast centrifugation and identified by transmission electron microscopy, particle size analysis, and Western blot analysis. The effects of hucMSC-Exos on muscle atrophy were evaluated using age-related and dexamethasone-induced muscle atrophy mice models. Body weight, grip strength, muscle weight, and muscle histology of these mice were assessed. The expression levels of muscle RING finger 1 (MuRF1) and muscle atrophy F-box (atrogin-1) were measured by Western blot. Dexamethasone-induced C2C12 myotube atrophy was used to establish the cell model of muscle atrophy. Myotube diameter was evaluated by immunofluorescence staining. Bioinformatic analysis, RNA sequencing analysis, and Western blot analysis were performed to explore the underlying mechanisms. Results In vivo experiments, hucMSC-Exos demonstrated a remarkable capacity to improve grip strength, increase muscle mass, and muscle fiber cross-sectional area, while concurrently reducing the expression of MuRF1 and atrogin-1 in age-related and dexamethasone-induced muscle atrophy mice. In vitro experiments, hucMSC-Exos can promote the proliferation of C2C12 cells, and rescue the dexamethasone-induced decline in the viability of C2C12 myotubes. In addition, hucMSC-Exos can increase the diameter of C2C12 myotubes, and reduce dexamethasone-induced upregulation of MuRF1 and atrogin-1. Combined with bioinformatics analysis and RNA sequencing analysis, we further showed that miR-132-3p was one of the essential miRNAs in hucMSC-Exos and played an important role by targeting FoxO3. Conclusion Our findings suggested that hucMSC-Exos can improve age-related and dexamethasone-induced muscle atrophy in mice models. This study first demonstrated that hucMSC-Exos may ameliorate muscle atrophy via the miR-132-3p/FoxO3 axis. These data may provide novel and valuable insights into the clinical transformation of hucMSC-Exos for the treatment of sarcopenia. The translational potential of this article HucMSC-Exos are easily available for clinical application, this study further consolidates the evidence for the clinical transformation potential of hucMSC-Exos for sarcopenia and provides its new target pathway.
Collapse
Affiliation(s)
- Huihui Ma
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yujie Jing
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jiangping Zeng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jiaying Ge
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Siqi Sun
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ran Cui
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chunhua Qian
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Hui Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Endocrinology and Metabolism, Anqing Traditional Chinese Medicine Hospital, Anqing Medical College, Anqing, 246052, China
| |
Collapse
|
15
|
Xiao W, Guo B, Tan J, Liu C, Jiang D, Yu H, Geng Z. Transcriptomic Analysis of Hippocampus abdominalis Larvae Under High Temperature Stress. Genes (Basel) 2024; 15:1345. [PMID: 39457469 PMCID: PMC11507362 DOI: 10.3390/genes15101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES Acute temperature stress was explored in Hippocampus abdominalis through a comprehensive RNA-seq analysis. METHODS RNA-seq was conducted on 20-day-old H. abdominalis after 24 h of temperature stress. Four experimental conditions were established: a control group (18 °C) and three temperature treatment groups (21, 24, and 27 °C). RESULTS Seahorse larvae were found to be unaffected by 21 °C and 24 °C and were able to survive for short periods of time during 24 h of incubation, whereas mortality approached 50% at 27 °C. The sequencing process produced 75.63 Gb of high-quality clean data, with Q20 and Q30 base percentages surpassing 98% and 96%, respectively. A total of 141, 333, and 1598 differentially expressed genes were identified in the 21, 24, and 27 °C groups vs. a control comparison group, respectively. Notably, the number of up-regulated genes was consistently higher than that of down-regulated genes across all comparisons. Gene Ontology functional annotation revealed that differentially expressed genes were predominantly associated with metabolic processes, redox reactions, and biosynthetic functions. In-depth KEGG pathway enrichment analysis demonstrated that down-regulated genes were significantly enriched in pathways related to steroid biosynthesis, terpenoid backbone biosynthesis, spliceosome function, and DNA replication. Up-regulated genes were enriched in pathways associated with the FoxO signaling pathway and mitophagy (animal). The results indicated that temperature stress induced extensive changes in gene expression in H. abdominalis, involving crucial biological processes such as growth, biosynthesis, and energy metabolism. CONCLUSIONS This study provided key molecular mechanisms in the response of H. abdominalis to temperature stress, offering a strong basis for future research aimed at understanding and mitigating the effects of environmental stressors on marine species.
Collapse
Affiliation(s)
- Wenjie Xiao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Baoying Guo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Jie Tan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Changlin Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Da Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Hao Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Zhen Geng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| |
Collapse
|
16
|
Tarum J, Ball G, Gustafsson T, Altun M, Santos L. Artificial neural network inference analysis identified novel genes and gene interactions associated with skeletal muscle aging. J Cachexia Sarcopenia Muscle 2024; 15:2143-2155. [PMID: 39210538 PMCID: PMC11446686 DOI: 10.1002/jcsm.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related muscle disease that increases the risk of falls, disabilities, and death. It is associated with increased muscle protein degradation driven by molecular signalling pathways including Akt and FOXO1. This study aims to identify genes, gene interactions, and molecular pathways and processes associated with muscle aging and exercise in older adults that remained undiscovered until now leveraging on an artificial intelligence approach called artificial neural network inference (ANNi). METHODS Four datasets reporting the profile of muscle transcriptome obtained by RNA-seq of young (21-43 years) and older adults (63-79 years) were selected and retrieved from the Gene Expression Omnibus (GEO) data repository. Two datasets contained the transcriptome profiles associated to muscle aging and two the transcriptome linked to resistant exercise in older adults, the latter before and after 6 months of exercise training. Each dataset was individually analysed by ANNi based on a swarm neural network approach integrated into a deep learning model (Intelligent Omics). This allowed us to identify top 200 genes influencing (drivers) or being influenced (targets) by aging or exercise and the strongest interactions between such genes. Downstream gene ontology (GO) analysis of these 200 genes was performed using Metacore (Clarivate™) and the open-source software, Metascape. To confirm the differential expression of the genes showing the strongest interactions, real-time quantitative PCR (RT-qPCR) was employed on human muscle biopsies obtained from eight young (25 ± 4 years) and eight older men (78 ± 7.6 years), partaking in a 6-month resistance exercise training programme. RESULTS CHAD, ZDBF2, USP54, and JAK2 were identified as the genes with the strongest interactions predicting aging, while SCFD1, KDM5D, EIF4A2, and NIPAL3 were the main interacting genes associated with long-term exercise in older adults. RT-qPCR confirmed significant upregulation of USP54 (P = 0.005), CHAD (P = 0.03), and ZDBF2 (P = 0.008) in the aging muscle, while exercise-related genes were not differentially expressed (EIF4A2 P = 0.99, NIPAL3 P = 0.94, SCFD1 P = 0.94, and KDM5D P = 0.64). GO analysis related to skeletal muscle aging suggests enrichment of pathways linked to bone development (adj P-value 0.006), immune response (adj P-value <0.001), and apoptosis (adj P-value 0.01). In older exercising adults, these were ECM remodelling (adj P-value <0.001), protein folding (adj P-value <0.001), and proteolysis (adj P-value <0.001). CONCLUSIONS Using ANNi and RT-qPCR, we identified three strongly interacting genes predicting muscle aging, ZDBF2, USP54, and CHAD. These findings can help to inform the design of nonpharmacological and pharmacological interventions that prevent or mitigate sarcopenia.
Collapse
Affiliation(s)
- Janelle Tarum
- Department of Sport Science, Sport, Health and Performance Enhancement Research Centre (SHAPE), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Graham Ball
- Medical Technology Research CentreAnglia Ruskin UniversityEssexUK
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Section of Clinical PhysiologyKarolinska Institutet HuddingeHuddingeSweden
- Department of Clinical PhysiologyKarolinska University HospitalHuddingeSweden
| | - Mikael Altun
- Department of Laboratory Medicine, Section of Clinical PhysiologyKarolinska Institutet HuddingeHuddingeSweden
- Department of Clinical PhysiologyKarolinska University HospitalHuddingeSweden
| | - Lívia Santos
- Department of Sport Science, Sport, Health and Performance Enhancement Research Centre (SHAPE), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| |
Collapse
|
17
|
Zufiría M, Pikatza-Menoio O, Garciandia-Arcelus M, Bengoetxea X, Jiménez A, Elicegui A, Levchuk M, Arnold-García O, Ondaro J, Iruzubieta P, Rodríguez-Gómez L, Fernández-Pelayo U, Muñoz-Oreja M, Aiastui A, García-Verdugo JM, Herranz-Pérez V, Zulaica M, Poza JJ, Ruiz-Onandi R, Fernández-Torrón R, Espinal JB, Bonilla M, Lersundi A, Fernández-Eulate G, Riancho J, Vallejo-Illarramendi A, Holt IJ, Sáenz A, Malfatti E, Duguez S, Blázquez L, López de Munain A, Gerenu G, Gil-Bea F, Alonso-Martín S. Dysregulated FOXO1 activity drives skeletal muscle intrinsic dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 2024; 148:43. [PMID: 39283487 PMCID: PMC11405449 DOI: 10.1007/s00401-024-02794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a multisystemic neurodegenerative disorder, with accumulating evidence indicating metabolic disruptions in the skeletal muscle preceding disease symptoms, rather than them manifesting as a secondary consequence of motor neuron (MN) degeneration. Hence, energy homeostasis is deeply implicated in the complex physiopathology of ALS and skeletal muscle has emerged as a key therapeutic target. Here, we describe intrinsic abnormalities in ALS skeletal muscle, both in patient-derived muscle cells and in muscle cell lines with genetic knockdown of genes related to familial ALS, such as TARDBP (TDP-43) and FUS. We found a functional impairment of myogenesis that parallels defects of glucose oxidation in ALS muscle cells. We identified FOXO1 transcription factor as a key mediator of these metabolic and functional features in ALS muscle, via gene expression profiling and biochemical surveys in TDP-43 and FUS-silenced muscle progenitors. Strikingly, inhibition of FOXO1 mitigated the impaired myogenesis in both the genetically modified and the primary ALS myoblasts. In addition, specific in vivo conditional knockdown of TDP-43 or FUS orthologs (TBPH or caz) in Drosophila muscle precursor cells resulted in decreased innervation and profound dysfunction of motor nerve terminals and neuromuscular synapses, accompanied by motor abnormalities and reduced lifespan. Remarkably, these phenotypes were partially corrected by foxo inhibition, bolstering the potential pharmacological management of muscle intrinsic abnormalities associated with ALS. The findings demonstrate an intrinsic muscle dysfunction in ALS, which can be modulated by targeting FOXO factors, paving the way for novel therapeutic approaches that focus on the skeletal muscle as complementary target tissue.
Collapse
Grants
- CB06/05/1126 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas
- PI2020/08-1 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas
- P18/01066 Instituto de Salud Carlos III
- PI19/00175 Instituto de Salud Carlos III
- PI21/00153 Instituto de Salud Carlos III
- PI22/00433 Instituto de Salud Carlos III
- IJC2019-039965-I Instituto de Salud Carlos III
- 2020-CIEN-000057-01 Diputación Foral de Gipuzkoa
- 2021-CIEN-000020-01 Diputación Foral de Gipuzkoa
- 2019-FELL-000010-01 Diputación Foral de Gipuzkoa
- 2020-FELL-000016-02-01 Diputación Foral de Gipuzkoa
- 2021-FELL-000013-02-01 Diputación Foral de Gipuzkoa
- BIO17/ND/023/BD EiTB Maratoia
- 2015111122 Osasun Saila, Eusko Jaurlaritzako
- 2017222027 Osasun Saila, Eusko Jaurlaritzako
- 2018111042 Osasun Saila, Eusko Jaurlaritzako
- 2019222020 Osasun Saila, Eusko Jaurlaritzako
- 2020111032 Osasun Saila, Eusko Jaurlaritzako
- 2020333043 Osasun Saila, Eusko Jaurlaritzako
- 2021333050 Osasun Saila, Eusko Jaurlaritzako
- PRE_2015_1_0023 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2019_1_0339 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2020_1_0122 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2020_1_0191 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2020_1_0119 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2018_1_0095 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2021_1_0125 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2018_1_0253 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- NEURODEGENPROT Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PIF18/317 Euskal Herriko Unibertsitatea
- RYC2018-024397-I Spanish National Plan for Scientific and Technical Research and Innovation
- RF/2019/001 Ikerbasque, Basque Foundation for Science
- RF/2023/010 Ikerbasque, Basque Foundation for Science
- PP/2022/003 Ikerbasque, Basque Foundation for Science
- BIO19/ROCHE/017/BD Roche España
Collapse
Affiliation(s)
- Mónica Zufiría
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Oihane Pikatza-Menoio
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | | | - Xabier Bengoetxea
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Andrés Jiménez
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Amaia Elicegui
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - María Levchuk
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Olatz Arnold-García
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Jon Ondaro
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Pablo Iruzubieta
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Laura Rodríguez-Gómez
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Uxoa Fernández-Pelayo
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Mikel Muñoz-Oreja
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastian, Spain
| | - Ana Aiastui
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Cell Culture Platform, Biodonostia Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - José Manuel García-Verdugo
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Vicente Herranz-Pérez
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Miren Zulaica
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Juan José Poza
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Rebeca Ruiz-Onandi
- Department of Pathological Anatomy, Galdakao-Usansolo University Hospital, Osakidetza Basque Health Service, 48960, Galdakao, Spain
- Department of Medical-Surgical Specialties, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Roberto Fernández-Torrón
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Juan Bautista Espinal
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Mario Bonilla
- Department of Traumatology and Orthopedic Surgery, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Ana Lersundi
- Department of Traumatology and Orthopedic Surgery, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
- Department of Surgery, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastián, Spain
| | - Gorka Fernández-Eulate
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institut de Myologie, Pitié-Salpêtrière Hospital, 75012, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, BioSPC (ED562), Université Paris Cité, 75015, Paris, France
| | - Javier Riancho
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Hospital de Sierrallana-IDIVAL, 39300, Torrelavega, Cantabria, Spain
- Department of Psychiatry and Medicine, Faculty of Medicine, University of Cantabria, 39011, Santander, Spain
| | - Ainara Vallejo-Illarramendi
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastian, Spain
| | - Ian James Holt
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Amets Sáenz
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Edoardo Malfatti
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France
- Hôpital Henri-Mondor, 94010, Créteil, France
- Paris Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, 94010, Créteil, France
| | - Stéphanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry, BT47 6SB, UK
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Lorea Blázquez
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastian, Spain
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao, Spain
- Biodonostia Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Gorka Gerenu
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Francisco Gil-Bea
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Health Sciences, Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Sonia Alonso-Martín
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain.
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain.
- Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain.
| |
Collapse
|
18
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
19
|
Geiger C, Needhamsen M, Emanuelsson EB, Norrbom J, Steindorf K, Sundberg CJ, Reitzner SM, Lindholm ME. DNA methylation of exercise-responsive genes differs between trained and untrained men. BMC Biol 2024; 22:147. [PMID: 38965555 PMCID: PMC11225400 DOI: 10.1186/s12915-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Physical activity is well known for its multiple health benefits and although the knowledge of the underlying molecular mechanisms is increasing, our understanding of the role of epigenetics in long-term training adaptation remains incomplete. In this intervention study, we included individuals with a history of > 15 years of regular endurance or resistance training compared to age-matched untrained controls performing endurance or resistance exercise. We examined skeletal muscle DNA methylation of genes involved in key adaptation processes, including myogenesis, gene regulation, angiogenesis and metabolism. RESULTS A greater number of differentially methylated regions and differentially expressed genes were identified when comparing the endurance group with the control group than in the comparison between the strength group and the control group at baseline. Although the cellular composition of skeletal muscle samples was generally consistent across groups, variations were observed in the distribution of muscle fiber types. Slow-twitch fiber type genes MYH7 and MYL3 exhibited lower promoter methylation and elevated expression in endurance-trained athletes, while the same group showed higher methylation in transcription factors such as FOXO3, CREB5, and PGC-1α. The baseline DNA methylation state of those genes was associated with the transcriptional response to an acute bout of exercise. Acute exercise altered very few of the investigated CpG sites. CONCLUSIONS Endurance- compared to resistance-trained athletes and untrained individuals demonstrated a different DNA methylation signature of selected skeletal muscle genes, which may influence transcriptional dynamics following a bout of acute exercise. Skeletal muscle fiber type distribution is associated with methylation of fiber type specific genes. Our results suggest that the baseline DNA methylation landscape in skeletal muscle influences the transcription of regulatory genes in response to an acute exercise bout.
Collapse
Affiliation(s)
- Carla Geiger
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical School, Heidelberg University, Heidelberg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malene E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Inherited Cardiovascular Disease, School of Medicine, Stanford University, 870 Quarry Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Stouth DW, vanLieshout TL, Mikhail AI, Ng SY, Raziee R, Edgett BA, Vasam G, Webb EK, Gilotra KS, Markou M, Pineda HC, Bettencourt-Mora BG, Noor H, Moll Z, Bittner ME, Gurd BJ, Menzies KJ, Ljubicic V. CARM1 drives mitophagy and autophagy flux during fasting-induced skeletal muscle atrophy. Autophagy 2024; 20:1247-1269. [PMID: 38018843 PMCID: PMC11210918 DOI: 10.1080/15548627.2023.2288528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, carm1 skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253). In addition to lower mitophagy and autophagy flux in skeletal muscle, carm1 mKO led to increased mitochondrial PRKN/parkin accumulation, which suggests that CARM1 is required for basal mitochondrial turnover and autophagic clearance. carm1 deletion also elicited PPARGC1A (PPARG coactivator 1 alpha) activity and a slower, more oxidative muscle phenotype. As such, these carm1 mKO-evoked adaptations disrupted mitophagy and autophagy induction during food deprivation and collectively served to mitigate fasting-induced muscle atrophy. Furthermore, at the threshold of muscle atrophy during food deprivation experiments in humans, skeletal muscle CARM1 activity decreased similarly to our observations in mice, and was accompanied by site-specific activation of ULK1 (Ser757), highlighting the translational impact of the methyltransferase in human skeletal muscle. Taken together, our results indicate that CARM1 governs mitophagic, autophagic, and atrophic processes fundamental to the maintenance and remodeling of muscle mass. Targeting the enzyme may provide new therapeutic approaches for mitigating skeletal muscle atrophy.Abbreviation: ADMA: asymmetric dimethylarginine; AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CARM1: coactivator associated arginine methyltransferase 1; Col: colchicine; CSA: cross-sectional area; CTNS: cystinosin, lysosomal cystine transporter; EDL: extensor digitorum longus; FBXO32/MAFbx: F-box protein 32; FOXO: forkhead box O; GAST: gastrocnemius; H2O2: hydrogen peroxide; IMF: intermyofibrillar; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; mKO: skeletal muscle-specific knockout; MMA: monomethylarginine; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OXPHOS: oxidative phosphorylation; PABPC1/PABP1: poly(A) binding protein cytoplasmic 1; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PRMT: protein arginine methyltransferase; Sal: saline; SDMA: symmetric dimethylarginine; SIRT1: sirtuin 1; SKP2: S-phase kinase associated protein 2; SMARCC1/BAF155: SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1; SOL: soleus; SQSTM1/p62: sequestosome 1; SS: subsarcolemmal; TA: tibialis anterior; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; TRIM63/MuRF1: tripartite motif containing 63; ULK1: unc-51 like autophagy activating kinase 1; VPS11: VPS11 core subunit of CORVET and HOPS complexes; WT: wild-type.
Collapse
Affiliation(s)
- Derek W. Stouth
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew I. Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y. Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Rozhin Raziee
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K. Webb
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin S. Gilotra
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Markou
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Hannah C. Pineda
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Haleema Noor
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Moll
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Megan E. Bittner
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Yamamoto H, Shimomura N, Hasegawa Y. Oral Administration of Nacre Extract from Pearl Oyster Shells Has Anti-Aging Effects on Skin and Muscle, and Extends the Lifespan in SAMP8 Mice. Pharmaceuticals (Basel) 2024; 17:713. [PMID: 38931380 PMCID: PMC11206907 DOI: 10.3390/ph17060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Pearl oysters have been extensively utilized in pearl production; however, most pearl oyster shells are discarded as industrial waste. In a previous study, we demonstrated that the intraperitoneal administration of pearl oyster shell-derived nacre extract (NE) prevented d-galactose-induced brain and skin aging. In this study, we examined the anti-aging effects of orally administered NE in senescence-accelerated mice (SAMP8). Feeding SAMP8 mice NE prevented the development of aging-related characteristics, such as coarse and dull hair, which are commonly observed in aged mice. Additionally, the NE mitigated muscle aging in SAMP8 mice, such as a decline in grip strength. Histological analysis of skeletal muscle revealed that the NE suppressed the expression of aging markers, cyclin-dependent kinase inhibitor 2A (p16) and cyclin-dependent kinase inhibitor 1 (p21), and increased the expression of sirtuin1 and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)- α, which are involved in muscle synthesis. These findings suggest that the oral administration of NE suppresses skeletal muscle aging. Moreover, NE administration suppressed skin aging, including a decline in water content. Interestingly, oral administration of NE significantly extended the lifespan of SAMP8 mice, suggesting that its effectiveness as an anti-aging agent of various tissues including skeletal muscle, skin, and adipose tissue.
Collapse
Affiliation(s)
| | | | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan; (H.Y.); (N.S.)
| |
Collapse
|
22
|
Li C, Cao H, Ren Y, Jia J, Yang G, Jin J, Shi X. Eicosapentaenoic acid-mediated activation of PGAM2 regulates skeletal muscle growth and development via the PI3K/AKT pathway. Int J Biol Macromol 2024; 268:131547. [PMID: 38641281 DOI: 10.1016/j.ijbiomac.2024.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingchun Ren
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
23
|
Takahashi A, Honda Y, Tanaka N, Miyake J, Maeda S, Kataoka H, Sakamoto J, Okita M. Skeletal Muscle Electrical Stimulation Prevents Progression of Disuse Muscle Atrophy via Forkhead Box O Dynamics Mediated by Phosphorylated Protein Kinase B and Peroxisome Proliferator-Activated Receptor gamma Coactivator-1alpha. Physiol Res 2024; 73:105-115. [PMID: 38466009 PMCID: PMC11019614 DOI: 10.33549/physiolres.935157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/12/2023] [Indexed: 04/26/2024] Open
Abstract
Although electrical muscle stimulation (EMS) of skeletal muscle effectively prevents muscle atrophy, its effect on the breakdown of muscle component proteins is unknown. In this study, we investigated the biological mechanisms by which EMS-induced muscle contraction inhibits disuse muscle atrophy progression. Experimental animals were divided into a control group and three experimental groups: immobilized (Im; immobilization treatment), low-frequency (LF; immobilization treatment and low-frequency muscle contraction exercise), and high-frequency (HF; immobilization treatment and high-frequency muscle contraction exercise). Following the experimental period, bilateral soleus muscles were collected and analyzed. Atrogin-1 and Muscle RING finger 1 (MuRF-1) mRNA expression levels were significantly higher for the experimental groups than for the control group but were significantly lower for the HF group than for the Im group. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNA and protein expression levels in the HF group were significantly higher than those in the Im group, with no significant differences compared to the Con group. Both the Forkhead box O (FoxO)/phosphorylated FoxO and protein kinase B (AKT)/phosphorylated AKT ratios were significantly lower for the Im group than for the control group and significantly higher for the HF group than for the Im group. These results, the suppression of atrogin-1 and MuRF-1 expression for the HF group may be due to decreased nuclear expression of FoxO by AKT phosphorylation and suppression of FoxO transcriptional activity by PGC-1alpha. Furthermore, the number of muscle contractions might be important for effective EMS.
Collapse
Affiliation(s)
- A Takahashi
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
25
|
Guo L, Li L, Zhou S, Xiao P, Zhang L. Metabolomic insight into regulatory mechanism of heterotrophic bacteria nitrification-aerobic denitrification bacteria to high-strength ammonium wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130278. [PMID: 38168563 DOI: 10.1016/j.biortech.2023.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
This work aimed to elucidate the metabolic mechanism of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria influenced by varying concentrations of ammonium nitrogen (NH4+-N) in high-strength synthetic wastewater treatment. The results showed that the removal rates of NH4+-N and total nitrogen, along with enzymatic activities related to nitrification and denitrification, increased with rising NH4+-N concentrations (N500:500 mg/L, N1000:1000 mg/L and N2000:2000 mg/L). The relative abundances of HN-AD bacteria were 50 %, 62 % and 82 % in the three groups. In the N2000 group, the cAMP signaling pathway, glycerophospholipid metabolites, purines and pyrimidines related to DNA/RNA synthesis, electron donor NAD+-related energy, the tricarboxylic acid (TCA) cycle and glutamate metabolism were upregulated. Therefore, influent NH4+-N at 2000 mg/L promoted glutamate metabolism to accelerate the TCA cycle, and enhanced cellular energy and advanced denitrification activity of bacteria for HN-AD. This mechanism, in turn, enhanced microbial growth and the carbon and nitrogen metabolism of bacteria for HN-AD.
Collapse
Affiliation(s)
- Lei Guo
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; School of Chemical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Longshan Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shibo Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - PengYing Xiao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
26
|
Lin Z, Xie F, He X, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Zhang Y, Sun J. A novel protein encoded by circKANSL1L regulates skeletal myogenesis via the Akt-FoxO3 signaling axis. Int J Biol Macromol 2024; 257:128609. [PMID: 38056741 DOI: 10.1016/j.ijbiomac.2023.128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.
Collapse
Affiliation(s)
- Zekun Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
27
|
Kopecky C, Haug M, Reischl B, Deshpande N, Manandhar B, King TW, Lee V, Wilkins MR, Morris M, Polly P, Friedrich O, Rye KA, Cochran BJ. Effect of insulin insufficiency on ultrastructure and function in skeletal muscle. J Cachexia Sarcopenia Muscle 2024; 15:112-123. [PMID: 38124345 PMCID: PMC10834341 DOI: 10.1002/jcsm.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Decreased insulin availability and high blood glucose levels, the hallmark features of poorly controlled diabetes, drive disease progression and are associated with decreased skeletal muscle mass. We have shown that mice with β-cell dysfunction and normal insulin sensitivity have decreased skeletal muscle mass. This project asks how insulin deficiency impacts on the structure and function of the remaining skeletal muscle in these animals. METHODS Skeletal muscle function was determined by measuring exercise capacity and specific muscle strength prior to and after insulin supplementation for 28 days in 12-week-old mice with conditional β-cell deletion of the ATP binding cassette transporters ABCA1 and ABCG1 (β-DKO mice). Abca1 and Abcg1 floxed (fl/fl) mice were used as controls. RNAseq was used to quantify changes in transcripts in soleus and extensor digitorum longus muscles. Skeletal muscle and mitochondrial morphology were assessed by transmission electron microscopy. Myofibrillar Ca2+ sensitivity and maximum isometric single muscle fibre force were assessed using MyoRobot biomechatronics technology. RESULTS RNA transcripts were significantly altered in β-DKO mice compared with fl/fl controls (32 in extensor digitorum longus and 412 in soleus). Exercise capacity and muscle strength were significantly decreased in β-DKO mice compared with fl/fl controls (P = 0.012), and a loss of structural integrity was also observed in skeletal muscle from the β-DKO mice. Supplementation of β-DKO mice with insulin restored muscle integrity, strength and expression of 13 and 16 of the dysregulated transcripts in and extensor digitorum longus and soleus muscles, respectively. CONCLUSIONS Insulin insufficiency due to β-cell dysfunction perturbs the structure and function of skeletal muscle. These adverse effects are rectified by insulin supplementation.
Collapse
Affiliation(s)
- Chantal Kopecky
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Michael Haug
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Reischl
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bikash Manandhar
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Thomas W King
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Victoria Lee
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Margaret Morris
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Patsie Polly
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Oliver Friedrich
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerry-Anne Rye
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Blake J Cochran
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
28
|
Hong L, Xu D, Li W, Wang Y, Cao N, Fu X, Tian Y, Li Y, Li B. Non-coding RNA regulation of Magang geese skeletal muscle maturation via the MAPK signaling pathway. Front Physiol 2024; 14:1331974. [PMID: 38314139 PMCID: PMC10834734 DOI: 10.3389/fphys.2023.1331974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 02/06/2024] Open
Abstract
Skeletal muscle is a critical component of goose meat and a significant economic trait of geese. The regulatory roles of miRNAs and lncRNAs in the maturation stage of goose skeletal muscle are still unclear. Therefore, this study conducted experiments on the leg muscles of Magang geese at two stages: 3-day post-hatch (P3) and 3 months (M3). Morphological observations revealed that from P3 to M3, muscle fibers mainly underwent hypertrophy and maturation. The muscle fibers became thicker, nuclear density decreased, and nuclei moved towards the fiber edges. Additionally, this study analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs during the skeletal muscle fiber maturation stage, identifying 1,949 differentially expressed mRNAs (DEMs), 21 differentially expressed miRNAs (DEMIs), and 172 differentially expressed lncRNAs (DELs). Furthermore, we performed enrichment analyses on DEMs, cis-regulatory genes of DELs, and target DEMs of DEMIs, revealing significant enrichment of signaling pathways including MAPK, PPAR, and mTOR signaling pathways. Among these, the MAPK signaling pathway was the only pathway enriched across all three types of differentially expressed RNAs, indicating its potentially more significant role in skeletal muscle maturation. Finally, this study integrated the targeting relationships between DELs, DEMs, and DEMIs from these two stages to construct a ceRNA regulatory network. These findings unveil the potential functions and mechanisms of lncRNAs and miRNAs in the growth and development of goose skeletal muscle and provide valuable references for further exploration of the mechanism underlying the maturation of Magang geese leg muscle.
Collapse
Affiliation(s)
- Longsheng Hong
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yifeng Wang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
29
|
He T, Li C, Chen Q, Li R, Luo J, Mao J, Yang Z. Combined analysis of lncRNA and mRNA emphasizes the potential role of tryptophan-mediated regulation of muscle development in weaned piglets by lncRNA. J Anim Sci 2024; 102:skae264. [PMID: 39276131 PMCID: PMC11465388 DOI: 10.1093/jas/skae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024] Open
Abstract
Pork is an important high-value protein source that fulfills the nutritional requirements for normal growth development, repair, and metabolism. Tryptophan (Trp), a crucial amino acid for piglet growth performance and muscle development, has an essential yet unclear regulatory mechanism. To investigate the biological basis of Trp regulation of piglet muscle development and identify the related regulatory pathways, we studied 20 weaned piglets. The piglets were divided into control (CON, 0.14% Trp) and high Trp (HT, 0.35% Trp) groups. They were fed with different Trp concentrations for 28 d, after which we collected the longissimus dorsi (LD) muscle for histomorphometric analysis and RNA extraction. Our results showed that the HT diet significantly increased the average daily weight gain, myocyte number, and muscle fiber density in weaned piglets. We then analyzed the differentially expressed (DE) genes in the LD muscle through RNA sequencing (RNA-seq). We identified 253 lncRNAs and 1,055 mRNAs mainly involved in myoblast proliferation and myofiber formation, particularly through the FoxO and AMPK signaling pathways and metabolism. Further analysis of the DE lncRNA targeting relationship and construction of a protein-protein interaction network resulted in the discovery of a novel lncRNA, XLOC_021675, or FRPMD, and elucidated its role in regulating piglet muscle development. Finally, we confirmed the RNA-seq results by reverse transcription polymerase chain reaction (RT-PCR). This study provides valuable insights into the regulatory mechanism of lncRNA-mediated Trp regulation of muscle development in weaned piglets offering a theoretical basis for optimizing piglet dietary ratios and enhancing pork production.
Collapse
Affiliation(s)
- Tianle He
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Qingyun Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruiqian Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Ju Luo
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiani Mao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhenguo Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Fang Y, Wang J, Cao Y, Liu W, Duan L, Hu J, Peng J. The Antiobesity Effects and Potential Mechanisms of Theaflavins. J Med Food 2024; 27:1-11. [PMID: 38060708 DOI: 10.1089/jmf.2023.k.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Theaflavins are the characteristic polyphenols in black tea which can be enzymatically synthesized. In this review, the effects and molecular mechanisms of theaflavins on obesity and its comorbidities, including dyslipidemia, insulin resistance, hepatic steatosis, and atherosclerosis, were summarized. Theaflavins ameliorate obesity potentially via reducing food intake, inhibiting pancreatic lipase to reduce lipid absorption, activating the adenosine monophosphate-activated protein kinase (AMPK), and regulating the gut microbiota. As to the comorbidities, theaflavins ameliorate hypercholesterolemia by inhibiting micelle formation to reduce cholesterol absorption. Theaflavins improve insulin sensitivity by increasing the signaling of protein kinase B, eliminating glucose toxicity, and inhibiting inflammation. Theaflavins ameliorate hepatic steatosis via activating AMPK. Theaflavins reduce atherosclerosis by upregulating nuclear factor erythropoietin-2-related factor 2 signaling and inhibiting plasminogen activator inhibitor 1. In randomized controlled trails, black tea extracts containing theaflavins reduced body weight in overweight people and improved glucose tolerance in healthy adults. The amelioration on the hyperlipidemia and the prevention of coronary artery disease by black tea extracts were supported by meta-analysis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Wang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cao
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenrui Liu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianxiang Duan
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education of China, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
31
|
Brennan L, Disatham J, Menko AS, Kantorow M. Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation. Dev Biol 2023; 504:25-37. [PMID: 37722500 PMCID: PMC10843493 DOI: 10.1016/j.ydbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
A classic model for identification of novel differentiation mechanisms and pathways is the eye lens that consists of a monolayer of quiescent epithelial cells that are the progenitors of a core of mature fully differentiated fiber cells. The differentiation of lens epithelial cells into fiber cells follows a coordinated program involving cell cycle exit, expression of key structural proteins and the hallmark elimination of organelles to achieve transparency. Although multiple mechanisms and pathways have been identified to play key roles in lens differentiation, the entirety of mechanisms governing lens differentiation remain to be discovered. A previous study established that specific chromatin accessibility changes were directly associated with the expression of essential lens fiber cell genes, suggesting that the activity of transcription factors needed for expression of these genes could be regulated through binding access to the identified chromatin regions. Sequence analysis of the identified chromatin accessible regions revealed enhanced representation of the binding sequence for the transcription factor FOXO4 suggesting a direct role for FOXO4 in expression of these genes. FOXO4 is known to regulate a variety of cellular processes including cellular response to metabolic and oxidative stress, cell cycle withdrawal, and homeostasis, suggesting a previously unidentified role for FOXO4 in the regulation of lens cell differentiation. To further evaluate the role of FOXO4 we employed a multiomics approach to analyze the relationship between genome-wide FOXO4 binding, the differentiation-specific expression of key genes, and chromatin accessibility. To better identify active promoters and enhancers we also examined histone modification through analysis of H3K27ac. Specific methods included CUT&RUN (FOXO4 binding and H3K27ac modification), RNA-seq (differentiation state specific gene expression), and ATAC-seq (chromatin accessibility). CUT&RUN identified 20,966 FOXO4 binding sites and 33,921 H3K27ac marked regions across the lens fiber cell genome. RNA-seq identified 956 genes with significantly greater expression levels in fiber cells compared to epithelial cells (log2FC > 0.7, q < 0.05) and 2548 genes with significantly lower expression levels (log2FC < -0.7, q < 0.05). Integrated analysis identified 1727 differentiation-state specific genes that were nearest neighbors to at least one FOXO4 binding site, including genes encoding lens gap junctions (GJA1, GJA3), lens structural proteins (BFSP1, CRYBB1, ASL1), and genes required for lens transparency (HSF4, NRCAM). Multiomics analysis comparing the identified FOXO4 binding sites in published ATAC-seq data revealed that chromatin accessibility was associated with FOXO4-dependent gene expression during lens differentiation. The results provide evidence for an important requirement for FOXO4 in the regulated expression of key genes required for lens differentiation and link epigenetic regulation of chromatin accessibility and H3K27ac histone modification with the function of FOXO4 in controlling lens gene expression during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
32
|
Jiang H, Xu Y, Jiang Y, Li Y. FOXO3 Activation Prevents Cellular Senescence in Emphysema Induced by Cigarette Smoke. COPD 2023; 20:80-91. [PMID: 36656684 DOI: 10.1080/15412555.2022.2164262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Because cigarette smoke can induce COPD/emphysema through accelerating senescence with or without an incomplete repair system. However, the pathogenesis of COPD following lung senescence induced by CS is not fully understood. Airspace enlargement and airway epithelial cell senescence are common finding during the COPD development. We investigated the lung tress response to CS and demonstrated that a stress-responsive transcription factor, FOXO3, was regulated by deacetylase. SIRT1 inhibited FOXO3 acetylation and FOXO3 degradation, leading to FOXO3 accumulation and activation in airway epithelial cells. CS exposure activated SIRT1 contributed to FOXO3 activation and functioned to protect lungs, as deletion of SIRT1 decreased CS-induced FOXO3 activation and resulted in more severe airway epithelial cells senescence airspace enlargement. Strikingly, deletion of FOXO3 during the development of COPD aggravated lung structural and functional damage, leading to a much more profound COPD phenotype. We show that deletion of FOXO3 resulted in decreased autophagic response and increased senescence, which may explain lung protection by FOXO3. Our study indicates that in the COPD, stress-responsive transcription factors can be activated for adaptions to counteract senescence insults, thus attenuating COPD development.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanrui Xu
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaona Jiang
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
33
|
Das JK, Banskota N, Candia J, Griswold ME, Orenduff M, de Cabo R, Corcoran DL, Das SK, De S, Huffman KM, Kraus VB, Kraus WE, Martin C, Racette SB, Redman LM, Schilling B, Belsky D, Ferrucci L. Calorie restriction modulates the transcription of genes related to stress response and longevity in human muscle: The CALERIE study. Aging Cell 2023; 22:e13963. [PMID: 37823711 PMCID: PMC10726900 DOI: 10.1111/acel.13963] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023] Open
Abstract
The lifespan extension induced by 40% caloric restriction (CR) in rodents is accompanied by postponement of disease, preservation of function, and increased stress resistance. Whether CR elicits the same physiological and molecular responses in humans remains mostly unexplored. In the CALERIE study, 12% CR for 2 years in healthy humans induced minor losses of muscle mass (leg lean mass) without changes of muscle strength, but mechanisms for muscle quality preservation remained unclear. We performed high-depth RNA-Seq (387-618 million paired reads) on human vastus lateralis muscle biopsies collected from the CALERIE participants at baseline, 12- and 24-month follow-up from the 90 CALERIE participants randomized to CR and "ad libitum" control. Using linear mixed effect model, we identified protein-coding genes and splicing variants whose expression was significantly changed in the CR group compared to controls, including genes related to proteostasis, circadian rhythm regulation, DNA repair, mitochondrial biogenesis, mRNA processing/splicing, FOXO3 metabolism, apoptosis, and inflammation. Changes in some of these biological pathways mediated part of the positive effect of CR on muscle quality. Differentially expressed splicing variants were associated with change in pathways shown to be affected by CR in model organisms. Two years of sustained CR in humans positively affected skeletal muscle quality, and impacted gene expression and splicing profiles of biological pathways affected by CR in model organisms, suggesting that attainable levels of CR in a lifestyle intervention can benefit muscle health in humans.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Nirad Banskota
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Julián Candia
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | | | - Melissa Orenduff
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Rafael de Cabo
- Translation Gerontology Branch, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - David L. Corcoran
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sai Krupa Das
- Energy Metabolism, Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Supriyo De
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Kim Marie Huffman
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - William E. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Corby K. Martin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Susan B. Racette
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | - Leanne M. Redman
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | | | - Daniel W. Belsky
- Department of Epidemiology & Butler Columbia Aging CenterColumbia University Mailman School of Public HealthNew York CityNew YorkUSA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
34
|
Sun J, Zhou H, Chen Z, Zhang H, Cao Y, Yao X, Chen X, Liu B, Gao Z, Shen Y, Qi L, Sun H. Altered m6A RNA methylation governs denervation-induced muscle atrophy by regulating ubiquitin proteasome pathway. J Transl Med 2023; 21:845. [PMID: 37996930 PMCID: PMC10668433 DOI: 10.1186/s12967-023-04694-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Denervation-induced muscle atrophy is complex disease involving multiple biological processes with unknown mechanisms. N6-methyladenosine (m6A) participates in skeletal muscle physiology by regulating multiple levels of RNA metabolism, but its impact on denervation-induced muscle atrophy is still unclear. Here, we aimed to explore the changes, functions, and molecular mechanisms of m6A RNA methylation during denervation-induced muscle atrophy. METHODS During denervation-induced muscle atrophy, the m6A immunoprecipitation sequencing (MeRIP-seq) as well as enzyme-linked immunosorbent assay analysis were used to detect the changes of m6A modified RNAs and the involved biological processes. 3-deazidenosine (Daa) and R-2-hydroxyglutarate (R-2HG) were used to verify the roles of m6A RNA methylation. Through bioinformatics analysis combined with experimental verification, the regulatory roles and mechanisms of m6A RNA methylation had been explored. RESULTS There were many m6A modified RNAs with differences during denervation-induced muscle atrophy, and overall, they were mainly downregulated. After 72 h of denervation, the biological processes involved in the altered mRNA with m6A modification were mainly related to zinc ion binding, ubiquitin protein ligase activity, ATP binding and sequence-specific DNA binding and transcription coactivator activity. Daa reduced overall m6A levels in healthy skeletal muscles, which reduced skeletal muscle mass. On the contrary, the increase in m6A levels mediated by R-2HG alleviated denervation induced muscle atrophy. The m6A RNA methylation regulated skeletal muscle mass through ubiquitin-proteasome pathway. CONCLUSION This study indicated that decrease in m6A RNA methylation was a new symptom of denervation-induced muscle atrophy, and confirmed that targeting m6A alleviated denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Hai Zhou
- Department of Neurosurgery, Binhai County People's Hospital, Yancheng, 224500, Jiangsu, People's Republic of China
| | - Zehao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Han Zhang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, China
| | - Yanzhe Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Song J, Duivenvoorde LPM, Grefte S, Kuda O, Martínez-Ramírez F, van der Stelt I, Mastorakou D, van Schothorst EM, Keijer J. Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation. Pflugers Arch 2023; 475:1265-1281. [PMID: 37656229 PMCID: PMC10567817 DOI: 10.1007/s00424-023-02854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.
Collapse
Affiliation(s)
- Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Felipe Martínez-Ramírez
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Dimitra Mastorakou
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
36
|
Romero-Herrera I, Nogales F, Diaz-Castro J, Moreno-Fernandez J, Gallego-Lopez MDC, Ochoa JJ, Carreras O, Ojeda ML. Binge drinking leads to an oxidative and metabolic imbalance in skeletal muscle during adolescence in rats: endocrine repercussion. J Physiol Biochem 2023; 79:799-810. [PMID: 37676577 PMCID: PMC10635949 DOI: 10.1007/s13105-023-00983-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant model of alcohol consumption, mainly used by adolescents. It has recently been related to the hepatic IR-process. Skeletal muscle is known to be involved in insulin action and modulation through myokine secretion. However, there is no information on muscle metabolism and myokine secretion after BD exposure in adolescents. Two experimental groups of adolescent rats have been used: control and BD-exposed one. Oxidative balance, energy status and lipid, and protein metabolism have been analyzed in muscle, together with myokine serum levels (IL-6, myostatin, LIF, IL-5, fractalkine, FGF21, irisin, BDNF, FSTL1, apelin, FABP3, osteocrin, osteonectin (SPARC), and oncostatin). In muscle, BD affects the antioxidant enzyme balance leading to lipid and protein oxidation. Besides, it also increases the activation of AMPK and thus contributes to decrease SREBP1 and pmTOR and to increase FOXO3a expressions, promoting lipid and protein degradation. These alterations deeply affect the myokine secretion pattern. This is the first study to examine a general myokine response after exposure to BD. BD not only caused a detrimental imbalance in myokines related to muscle turnover, decreased those contributing to increase IR-process, decreased FST-1 and apelin and their cardioprotective function but also reduced the neuroprotective BDNF. Consequently, BD leads to an important metabolic and energetic disequilibrium in skeletal muscle, which contributes to exacerbate a general IR-process.
Collapse
Affiliation(s)
- Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain.
| | - Javier Diaz-Castro
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Jorge Moreno-Fernandez
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | | | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| |
Collapse
|
37
|
Santos BF, Grenho I, Martel PJ, Ferreira BI, Link W. FOXO family isoforms. Cell Death Dis 2023; 14:702. [PMID: 37891184 PMCID: PMC10611805 DOI: 10.1038/s41419-023-06177-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
FOXO family of proteins are transcription factors involved in many physiological and pathological processes including cellular homeostasis, stem cell maintenance, cancer, metabolic, and cardiovascular diseases. Genetic evidence has been accumulating to suggest a prominent role of FOXOs in lifespan regulation in animal systems from hydra, C elegans, Drosophila, and mice. Together with the observation that FOXO3 is the second most replicated gene associated with extreme human longevity suggests that pharmacological targeting of FOXO proteins can be a promising approach to treat cancer and other age-related diseases and extend life and health span. However, due to the broad range of cellular functions of the FOXO family members FOXO1, 3, 4, and 6, isoform-specific targeting of FOXOs might lead to greater benefits and cause fewer side effects. Therefore, a deeper understanding of the common and specific features of these proteins as well as their redundant and specific functions in our cells represents the basis of specific targeting strategies. In this review, we provide an overview of the evolution, structure, function, and disease-relevance of each of the FOXO family members.
Collapse
Affiliation(s)
- Bruno F Santos
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Centro Hospitalar Universitário do Algarve (CHUA). Rua Leão Penedo, 8000-386, Faro, Portugal
| | - Inês Grenho
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo J Martel
- Center for Health Technology and Services Research (CINTESIS)@RISE, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
38
|
He Y, Yang P, Yuan T, Zhang L, Yang G, Jin J, Yu T. miR-103-3p Regulates the Proliferation and Differentiation of C2C12 Myoblasts by Targeting BTG2. Int J Mol Sci 2023; 24:15318. [PMID: 37894995 PMCID: PMC10607603 DOI: 10.3390/ijms242015318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle, a vital and intricate organ, plays a pivotal role in maintaining overall body metabolism, facilitating movement, and supporting normal daily activities. An accumulating body of evidence suggests that microRNA (miRNA) holds a crucial role in orchestrating skeletal muscle growth. Therefore, the primary aim of this study was to investigate the influence of miR-103-3p on myogenesis. In our study, the overexpression of miR-103-3p was found to stimulate proliferation while suppressing differentiation in C2C12 myoblasts. Conversely, the inhibition of miR-103-3p expression yielded contrasting effects. Through bioinformatics analysis, potential binding sites of miR-103-3p with the 3'UTR region of BTG anti-proliferative factor 2 (BTG2) were predicted. Subsequently, dual luciferase assays conclusively demonstrated BTG2 as the direct target gene of miR-103-3p. Further investigation into the role of BTG2 in C2C12 myoblasts unveiled that its overexpression impeded proliferation and encouraged differentiation in these cells. Notably, co-transfection experiments showcased that the overexpression of BTG2 could counteract the effects induced by miR-103-3p. In summary, our findings elucidate that miR-103-3p promotes proliferation while inhibiting differentiation in C2C12 myoblasts by targeting BTG2.
Collapse
Affiliation(s)
- Yulin He
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Peiyu Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tiantian Yuan
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lin Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.H.); (P.Y.); (T.Y.); (L.Z.); (G.Y.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
39
|
Ibarra-Soria X, Thierion E, Mok GF, Münsterberg AE, Odom DT, Marioni JC. A transcriptional and regulatory map of mouse somite maturation. Dev Cell 2023; 58:1983-1995.e7. [PMID: 37499658 PMCID: PMC10563765 DOI: 10.1016/j.devcel.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
The mammalian body plan is shaped by rhythmic segmentation of mesoderm into somites, which are transient embryonic structures that form down each side of the neural tube. We have analyzed the genome-wide transcriptional and chromatin dynamics occurring within nascent somites, from early inception of somitogenesis to the latest stages of body plan establishment. We created matched gene expression and open chromatin maps for the three leading pairs of somites at six time points during mouse embryonic development. We show that the rate of somite differentiation accelerates as development progresses. We identified a conserved maturation program followed by all somites, but somites from more developed embryos concomitantly switch on differentiation programs from derivative cell lineages soon after segmentation. Integrated analysis of the somitic transcriptional and chromatin activities identified opposing regulatory modules controlling the onset of differentiation. Our results provide a powerful, high-resolution view of the molecular genetics underlying somitic development in mammals.
Collapse
Affiliation(s)
- Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Elodie Thierion
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrea E Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; DKFZ, Division of Regulatory Genomics and Cancer Evolution B270, Im Neunheimer Feld 280, Heidelberg, 69120, Germany.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
40
|
Fletcher E, Miserlis D, Sorokolet K, Wilburn D, Bradley C, Papoutsi E, Wilkinson T, Ring A, Ferrer L, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Diet-induced obesity augments ischemic myopathy and functional decline in a murine model of peripheral artery disease. Transl Res 2023; 260:17-31. [PMID: 37220835 PMCID: PMC11388035 DOI: 10.1016/j.trsl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Dylan Wilburn
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | | | | | | | - Andrew Ring
- Department of Biology, Baylor University, Waco, Texas
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
41
|
Zhang Y, Li C, Zhou X, Jiang W, Wu P, Liu Y, Ren H, Zhang L, Mi H, Tang J, Zhang R, Feng L. Implications of vitamin D for flesh quality of grass carp (Ctenopharyngodon idella): antioxidant ability, nutritional value, sensory quality, and myofiber characteristics. J Anim Sci Biotechnol 2023; 14:134. [PMID: 37759314 PMCID: PMC10523690 DOI: 10.1186/s40104-023-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/02/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Muscle represents a unique and complex system with many components and comprises the major edible part of animals. Vitamin D is a critical nutrient for animals and is known to enhance calcium absorption and immune response. In recent years, dietary vitamin D supplementation in livestock has received increased attention due to biological responses including improving shear force in mammalian meat. However, the vitamin D acquisition and myofiber development processes in fish differ from those in mammals, and the effect of vitamin D on fish flesh quality is poorly understood. Here, the influence of dietary vitamin D on fillet quality, antioxidant ability, and myofiber development was examined in grass carp (Ctenopharyngodon idella). METHODS A total of 540 healthy grass carp, with an initial average body weight of 257.24 ± 0.63 g, were allotted in 6 experimental groups with 3 replicates each, and respectively fed corresponding diets with 15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg vitamin D for 70 d. RESULTS Supplementation with 1,167.9 IU/kg vitamin D significantly improved nutritional value and sensory quality of fillets, enhancing crude protein, free amino acid, lipid, and collagen contents; maintaining an ideal pH; and reducing lactate content, shear force, and cooking loss relative to respective values in the control (15.2 IU/kg) group. Average myofiber diameter and the frequency of myofibers > 50 μm in diameter increased under supplementation with 782.5-1,167.9 IU/kg vitamin D. Levels of oxidative damage biomarkers decreased, and the expression of antioxidant enzymes and nuclear factor erythroid 2-related factor 2 signaling molecules was upregulated in the 1,167.9 IU/kg vitamin D treatment compared to respective values in the control group. Furthermore, vitamin D supplementation activated cell differentiation by enhancing the expression of myogenic regulatory factors and myocyte enhancer factors compared to that in the control group. In addition, supplementation with 1,167.9 IU/kg vitamin D improved protein deposition associated with protein synthesis molecule (target of rapamycin) signaling and vitamin D receptor paralogs, along with inhibition of protein degradation (forkhead box protein 1) signaling. CONCLUSIONS Overall, the results demonstrated that vitamin D strengthened antioxidant ability and myofiber development, thereby enhancing nutritional value and sensory quality of fish flesh. These findings suggest that dietary vitamin D supplementation is conducive to the production of nutrient-rich, high quality aquaculture products.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chaonan Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruinan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
42
|
Honda D, Okumura M, Chihara T. Crosstalk between the mTOR and Hippo pathways. Dev Growth Differ 2023; 65:337-347. [PMID: 37209252 DOI: 10.1111/dgd.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cell behavior changes in response to multiple stimuli, such as growth factors, nutrients, and cell density. The mechanistic target of the rapamycin (mTOR) pathway is activated by growth factors and nutrient stimuli to regulate cell growth and autophagy, whereas the Hippo pathway has negative effects on cell proliferation and tissue growth in response to cell density, DNA damage, and hormonal signals. These two signaling pathways must be precisely regulated and integrated for proper cell behavior. This integrative mechanism is not completely understood; nevertheless, recent studies have suggested that components of the mTOR and Hippo pathways interact with each other. Herein, as per contemporary knowledge, we review the molecular mechanisms of the interaction between the mTOR and Hippo pathways in mammals and Drosophila. Moreover, we discuss the advantage of this interaction in terms of tissue growth and nutrient consumption.
Collapse
Affiliation(s)
- Daichi Honda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
44
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
45
|
Cheng X, Jian D, Xing J, Liu C, Liu Y, Cui C, Li Z, Wang S, Li R, Ma X, Wang Y, Gu X, Ge Z, Tang H, Liu L. Circulating cardiac MicroRNAs safeguard against dilated cardiomyopathy. Clin Transl Med 2023; 13:e1258. [PMID: 37138538 PMCID: PMC10157268 DOI: 10.1002/ctm2.1258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Cardiac-resident or -enriched microRNAs (miRNAs) could be released into the bloodstream becoming circulating cardiac miRNAs, which are increasingly recognized as non-invasive and accessible biomarkers of multiple heart diseases. However, dilated cardiomyopathy (DCM)-associated circulating miRNAs (DACMs) and their roles in DCM pathogenesis remain largely unexplored. METHODS Two human cohorts, consisting of healthy individuals and DCM patients, were enrolled for serum miRNA sequencing (10 vs. 10) and quantitative polymerase chain reaction validation (46 vs. 54), respectively. Rigorous screening strategy was enacted to define DACMs and their potentials for diagnosis. DCM mouse model, different sources of cardiomyocytes, adeno-associated virus 9 (AAV9), gene knockout, RNAscope miRNA in situ hybridization, mRFP-GFP-LC3B reporter, echocardiography and transmission electron microscopy were adopted for mechanistic explorations. RESULTS Serum miRNA sequencing revealed a unique expression pattern for DCM circulating miRNAs. DACMs miR-26a-5p, miR-30c-5p, miR-126-5p and miR-126-3p were found to be depleted in DCM circulation as well as heart tissues. Their expressions in circulation and heart tissues were proven to be correlated significantly, and a combination of these miRNAs was suggested potential values for DCM diagnosis. FOXO3, a predicted common target, was experimentally demonstrated to be co-repressed within cardiomyocytes by these DACMs except miR-26a-5p. Delivery of a combination of miR-30c-5p, miR-126-5p and miR-126-3p into the murine myocardium via AAV9 carrying an expression cassette driven by cTnT promoter, or cardiac-specific knockout of FOXO3 (Myh6-CreERT2 , FOXO3 flox+/+ ) dramatically attenuated cardiac apoptosis and autophagy involved in DCM progression. Moreover, competitively disrupting the interplay between DACMs and FOXO3 mRNA by specifically introducing their interacting regions into murine myocardium crippled the cardioprotection of DACMs against DCM. CONCLUSIONS Circulating cardiac miRNA-FOXO3 axis plays a pivotal role in safeguarding against myocardial apoptosis and excessive autophagy in DCM development, which may provide serological cues for DCM non-invasive diagnosis and shed light on DCM pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Xiaolei Cheng
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Department of AnesthesiologyAffiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjingChina
| | - Dongdong Jian
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory of Protein Posttranslational Modifications and Cell FunctionSchool of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Henan Key Laboratory of Chronic Disease ManagementDepartment of Health Management CenterHenan Provincial People's HospitalDepartment of Health Management Center of Central China Fuwai HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouChina
| | - Cihang Liu
- Department of AnesthesiologyAffiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjingChina
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory of Protein Posttranslational Modifications and Cell FunctionSchool of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Yong Liu
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Cunying Cui
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Shixing Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Ran Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Xiaohan Ma
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Xiaoping Gu
- Department of AnesthesiologyAffiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjingChina
| | - Zhenwei Ge
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Henan Key Laboratory of Chronic Disease ManagementDepartment of Health Management CenterHenan Provincial People's HospitalDepartment of Health Management Center of Central China Fuwai HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Liu
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| |
Collapse
|
46
|
Krishna S, Spaulding HR, Koltes JE, Quindry JC, Valentine RJ, Selsby JT. Indicators of increased ER stress and UPR in aged D2-mdx and human dystrophic skeletal muscles. Front Physiol 2023; 14:1152576. [PMID: 37179835 PMCID: PMC10166835 DOI: 10.3389/fphys.2023.1152576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease that results in muscle wasting, wheelchair dependence, and eventual death due to cardiac and respiratory complications. In addition to muscle fragility, dystrophin deficiency also results in multiple secondary dysfunctions, which may lead to the accumulation of unfolded proteins causing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The purpose of this investigation was to understand how ER stress and the UPR are modified in muscle from D2-mdx mice, an emerging DMD model, and from humans with DMD. We hypothesized that markers of ER stress and the UPR are upregulated in D2-mdx and human dystrophic muscles compared to their healthy counterparts. Immunoblotting in diaphragms from 11-month-old D2-mdx and DBA mice indicated increased ER stress and UPR in dystrophic diaphragms compared to healthy, including increased relative abundance of ER stress chaperone CHOP, canonical ER stress transducers ATF6 and pIRE1α S724, and transcription factors that regulate the UPR such as ATF4, XBP1s, and peIF2α S51. The publicly available Affymetrix dataset (GSE38417) was used to analyze the expression of ER stress and UPR-related transcripts and processes. Fifty-eight upregulated genes related to ER stress and the UPR in human dystrophic muscles suggest pathway activation. Further, based on analyses using iRegulon, putative transcription factors that regulate this upregulation profile were identified, including ATF6, XBP1, ATF4, CREB3L2, and EIF2AK3. This study adds to and extends the emerging knowledge of ER stress and the UPR in dystrophin deficiency and identifies transcriptional regulators that may be responsible for these changes and be of therapeutic interest.
Collapse
Affiliation(s)
- Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Hannah R. Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James E. Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - John C. Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| | - Rudy J. Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
47
|
Zhou H, Li F, Wu M, Zhu J, Wang Y, Wei X. Regulation of glucolipid metabolism and gut microbiota by green and black teas in hyperglycemic mice. Food Funct 2023; 14:4327-4338. [PMID: 37083054 DOI: 10.1039/d3fo00355h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A high-sugar and -fat diet (HSFD) has become a primary risk factor for diabetes, and dietary intervention shows a substantial effect on the prevention and management of hyperglycemia. In this study, the chemical compositions of the aqueous extracts of stir-fried green tea (GT) and congou black tea (BT) were compared. Moreover, their potential mechanisms and regulatory effects on hepatic glycolipid metabolism and gut microbiota disorders in hyperglycemic mice were further explored. Our results show that GT or BT intervention had a prominent regulatory effect on glycolipid metabolism. Moreover, they could significantly regulate the levels of serum metabolic signatures, the activities of key enzymes in liver glucose metabolism, and the expression of genes or proteins related to glycolipid metabolism via activating the IRS-1-PI3K/AKT-GLUT2 signaling pathway. Significantly, GT or BT administration adjusted the composition and diversity of the gut microbiota, mainly reflecting a significant increase in the abundance of beneficial bacteria (including Allobaculum, Lactobacillus, and Turicibacter) and reducing the abundance of harmful or conditionally pathogenic bacteria (mainly including Clostridiales and Bacteroides). Our results suggest that dietary supplementation with GT or BT could exert a practical anti-diabetic effect. Meanwhile, BT intervention showed a better regulation effect on glycolipid metabolism. This study reveals that GT and BT have excellent potential for developing anti-diabetic food.
Collapse
Affiliation(s)
- Hui Zhou
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Fanglan Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Meirong Wu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Xinlin Wei
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
48
|
Nichols MM, Alruwaii F, Chaaban M, Cheng YW, Griffith CC. Biphenotypic Sinonasal Sarcoma with a Novel PAX3::FOXO6 Fusion: A Case Report and Review of the Literature. Head Neck Pathol 2023; 17:259-264. [PMID: 36169791 PMCID: PMC10063736 DOI: 10.1007/s12105-022-01479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Biphenotypic sinonasal sarcoma (BSS) is a low-grade, locally aggressive sarcoma unique to the sinonasal region. BSS is most common in middle aged patients and affects women more frequently than men. It is characterized by a bland spindled cell proliferation with neural and myogenic differentiation. BSS are usually associated with rearrangement t(2;4)(q35;q31.1) resulting in a PAX3::MAML3 fusion. Less commonly, other genes are found in combination with PAX3 and some cases reported in the literature have an unknown fusion partner. METHODS A 54-year-old man presented with nasal mass. Endoscopic resection showed a low-grade spindle cell neoplasm with morphologic features of BSS and immunohistochemical and next generation sequencing were performed to confirm the diagnosis. RESULTS The tumor was positive for S100 and smooth muscle actin but negative for SOX10. Next generation sequencing demonstrated a novel PAX3::FOXO6 gene fusion. CONCLUSIONS Although a PAX3::FOXO6 gene fusion has never been reported, this finding combined with the morphologic and immunophenotypic features supports the diagnosis of supports the diagnosis of BSS.
Collapse
Affiliation(s)
- Meredith M Nichols
- Department of Anatomic Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fatimah Alruwaii
- Department of Anatomic Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mohamad Chaaban
- Department of Otolaryngology, Section of Nasal and Sinus Disorders, Head and Neck Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yu-Wei Cheng
- Department of Laboratory Medicine, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher C Griffith
- Department of Anatomic Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
49
|
Abstract
BACKGROUND Metformin has good anti-hyperglycemic effectiveness, but does not induce hypoglycemia,is very safe, and has become the preferred drug for the treatment of type 2 diabetes. Recently, the other effects of metformin, such as being anti-inflammatory and delaying aging, have also attracted increased attention. METHODS AND RESULTS The relevant literatures on pubmed and other websites for reading, classification and sorting, and did not involve any animal experiments. CONCLUSION Metformin has anti-inflammatory effects through multiple routes, which provides potential therapeutic targets for certain inflammatory diseases, such as neuroinflammation and rheumatoid arthritis. In addition, inflammation is a key component of tumor occurrence and development ; thus, targeted inflammatory intervention is a significant benefit for both cancer prevention and treatment. Therefore, metformin may have further potential for inflammation-related disease prevention and treatmen. However, the inflammatory mechanism is complex; various molecules are connected and influence each other. For example, metformin significantly inhibits p65 nuclear translocation, but pretreatment with compound C, an AMPK inhibitor, abolishes this effect, and silencing of HMGB1 inhibits NF-κB activation . SIRT1 deacetylates FoxO, increasing its transcriptional activity . mTOR in dendritic cells regulates FoxO1 via AKT. The interactions among various molecules should be further explored to clarify their specific mechanisms and provide more direction for the treatment of inflammatory diseases, as well as cancer.
Collapse
|
50
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|