1
|
Kang BM, Ahn JM, Kim J, Paik K, Kim BR, Lee DH, Youn SW, Eom KY, Choi CW. Electrical Stimulation Using a Low-Frequency and Low-Intensity Alternating Current Modulates Type I Procollagen Production and MMP-1 Expression in Dermal Fibroblasts. Ann Dermatol 2025; 37:152-161. [PMID: 40432364 PMCID: PMC12117547 DOI: 10.5021/ad.25.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Despite various therapeutic modalities for keloids have been introduced; however, their therapeutic effects are limited. Therefore, the development of a new approach for inhibiting collagen production by scar fibroblasts is needed. OBJECTIVE To investigate the effect of electrical stimulation using a low-frequency and low-intensity alternating current on collagen and MMP-1 levels in human dermal fibroblasts. METHODS Low-frequency (20 kHz) and low-intensity (1 V/cm) electrical stimulations were applied to primary dermal fibroblasts. The production of type I procollagen and expression of matrix metalloproteinase-1 were evaluated. Transcriptomic analyses were conducted to explore the possible modes of action of electrical stimulation. RESULTS Electrical stimulation effectively suppressed type I procollagen production and increased MMP-1 expression. In addition, transcriptomic analyses revealed that electrical stimulation altered the gene expression associated with membrane permeability and the structure of cellular membranes. Validation using real-time polymerase chain reaction revealed that electrical stimulation significantly altered the expression of mechanosensitive ion channels (PIEZO2) and membrane-bound protein organizing caveolae (CAVIN2). CONCLUSION Electrical stimulation using low-frequency and low-intensity alternating currents effectively modulates extracellular matrix homeostasis by altering the cellular membrane structure and function. Our findings suggest a promising therapeutic approach for the management of keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Bo Mi Kang
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ahn
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Kim
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Kyungho Paik
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Bo Ri Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hun Lee
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Sang Woong Youn
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Keun-Yong Eom
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Chong Won Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Edwick DO, Burns KL, Buonvecchi LN, Wang X, Lim AM, Edgar DW. Enhancing Burn Recovery: A Systematic Review on the Benefits of Electrical Stimulation in Accelerating Healing. EUROPEAN BURN JOURNAL 2025; 6:21. [PMID: 40407677 PMCID: PMC12101274 DOI: 10.3390/ebj6020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
Prolonged healing time of acute burn wounds is associated with increased pain, infection, risk of scarring, poorer mobility and higher financial and emotional burden. Electrical stimulation (ES) reduces healing time in chronic wounds; however, its reported use on acute burn wounds is limited. This systematic review (SR) aimed to evaluate the relative benefit of ES compared to routine wound care on the healing time of acute burn wounds in adults. The online databases queried included Cochrane Database of SR's, MEDLINE, EMBASE, PUBMED and CINAHL. The search criteria included RCTs involving the application of ES of varying voltage, duration and modality in acute burn patients aged ≥18 years. The primary outcome investigated was days to burn wound closure, while the secondary outcomes included edema and infection. Four RCTs were discovered, involving a total of 143 participants with a mean age 35.5 years. Two RCTs demonstrated (a) 36% (2.6 days) reduction in time to wound closure with ES (p < 0.001); and (b) significant reduction in wound area with ES (11.2 ± 3.2 cm2, p < 0.001) compared to controls at 21 days. Two RCTs found ES promoted better wound-healing environments, reducing edema, bacterial infection, and biofilm. This review highlighted low-risk wound-healing benefits with ES as a feasible adjunct to routine burn care.
Collapse
Affiliation(s)
- Dale O. Edwick
- School of Allied Health, Faculty of Health Science, Curtin University, Bentley, WA 6102, Australia
- State Adult Burn Unit, Level 4, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Physiotherapy Department, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Kerry L. Burns
- School of Allied Health, Faculty of Health Science, Curtin University, Bentley, WA 6102, Australia
| | - Lara N. Buonvecchi
- School of Allied Health, Faculty of Health Science, Curtin University, Bentley, WA 6102, Australia
| | - Xiaolu Wang
- School of Allied Health, Faculty of Health Science, Curtin University, Bentley, WA 6102, Australia
| | - Audrey M. Lim
- School of Allied Health, Faculty of Health Science, Curtin University, Bentley, WA 6102, Australia
| | - Dale W. Edgar
- State Adult Burn Unit, Level 4, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- School of Health Sciences and Physiotherapy, Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA 6160, Australia
- Fiona Wood Foundation, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Institute for Health Research, The University of Notre Dame Australia, Fremantle, WA 6160, Australia
- Burn Injury Research Unit, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Zhang Y, Zheng Z, Zhu S, Xu L, Zhang Q, Gao J, Ye M, Shen S, Xing J, Wu M, Xu RX. Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416267. [PMID: 40190057 PMCID: PMC12079356 DOI: 10.1002/advs.202416267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 05/16/2025]
Abstract
The incidence and burden of skin wounds, especially chronic and complex wounds, have a profound impact on healthcare. Effective wound healing strategies require a multidisciplinary approach, and advances in materials science and bioengineering have paved the way for the development of novel wound healing dressing. In this context, electrospun nanofibers can mimic the architecture of the natural extracellular matrix and provide new opportunities for wound healing. Inspired by the bioelectric phenomena in the human body, electrospun nanofibrous scaffolds with electroactive characteristics are gaining widespread attention and gradually emerging. To this end, this review first summarizes the basic process of wound healing, the causes of chronic wounds, and the current status of clinical treatment, highlighting the urgency and importance of wound dressings. Then, the biological effects of electric fields, the preparation materials, and manufacturing techniques of electroactive electrospun nanofibrous (EEN) scaffolds are discussed. The latest progress of EEN scaffolds in enhancing skin wound healing is systematically reviewed, mainly including treatment and monitoring. Finally, the importance of EEN scaffold strategies to enhance wound healing is emphasized, and the challenges and prospects of EEN scaffolds are summarized.
Collapse
Affiliation(s)
- Yang Zhang
- Department of RehabilitationThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhiyuan Zheng
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Shilu Zhu
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Liang Xu
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Qingdong Zhang
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Jie Gao
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Min Ye
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Shuwei Shen
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Jinyu Xing
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ming Wu
- Department of RehabilitationThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ronald X. Xu
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| |
Collapse
|
4
|
Mao K, Yue M, Ma H, Li Z, Liu Y. Electro- and Magneto-Active Biomaterials for Diabetic Tissue Repair: Advantages and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501817. [PMID: 40159915 DOI: 10.1002/adma.202501817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/02/2025]
Abstract
The diabetic tissue repair process is frequently hindered by persistent inflammation, infection risks, and a compromised tissue microenvironment, which lead to delayed wound healing and significantly impact the quality of life for diabetic patients. Electromagnetic biomaterials offer a promising solution by enabling the intelligent detection of diabetic wounds through electric and magnetic effects, while simultaneously improving the pathological microenvironment by reducing oxidative stress, modulating immune responses, and exhibiting antibacterial action. Additionally, these materials inherently promote tissue regeneration by regulating cellular behavior and facilitating vascular and neural repair. Compared to traditional biomaterials, electromagnetic biomaterials provide advantages such as noninvasiveness, deep tissue penetration, intelligent responsiveness, and multi-stimuli synergy, demonstrating significant potential to overcome the challenges of diabetic tissue repair. This review comprehensively examines the superiority of electromagnetic biomaterials in diabetic tissue repair, elucidates the underlying biological mechanisms, and discusses specific design strategies and applications tailored to the pathological characteristics of diabetic wounds, with a focus on skin wound healing and bone defect repair. By addressing current limitations and pursuing multi-faceted strategies, electromagnetic biomaterials hold significant potential to improve clinical outcomes and enhance the quality of life for diabetic patients.
Collapse
Affiliation(s)
- Kai Mao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huiping Ma
- Department of Stomatology, Zhengzhou Shuqing Medical College, 6 Gongming Road, Erqi District, Zhengzhou, 450064, P. R. China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Qin Y, Jia S, Shi XL, Gao S, Zhao J, Ma H, Wei Y, Huang Q, Yang L, Chen ZG, Sun Q. Self-Powered Thermoelectric Hydrogels Accelerate Wound Healing. ACS NANO 2025; 19:15924-15940. [PMID: 40241245 DOI: 10.1021/acsnano.5c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Electrical stimulation (ES) serves as a biological cue that regulates critical cellular processes, including proliferation and migration, offering an effective approach to accelerating wound healing. Thermoelectrics, capable of generating electricity by exploiting the temperature difference between skin and the surrounding environment without external energy input, present a promising avenue for ES-based therapies. Herein, we developed Ag2Se@gelatin methacrylate (Ag2Se@GelMA) thermoelectric hydrogels with high room-temperature thermoelectric performance and employed them as self-powered ES devices for wound repair. Systematic in vivo and in vitro investigations elucidated their biological mechanisms for enhancing wound healing. Our findings reveal that the Ag2Se@GelMA thermoelectric hydrogels can significantly accelerate the wound closure by amplifying the endogenous electric field, thereby promoting cell proliferation, migration, and angiogenesis. Comprehensive in vitro experiments demonstrated that ES generated by the hydrogels activates voltage-gated calcium ion channels, elevating intracellular Ca2+ levels and enhancing mitochondrial functions through the Ca2+/CaMKKβ/AMPK/Nrf2 pathway. This cascade improves mitochondrial dynamics and angiogenesis, thereby accelerating tissue regeneration. The newly developed Ag2Se@GelMA thermoelectric hydrogels represent a marked progress in wound dressing technology with the potential to improve clinical strategies in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yuandong Qin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiangqi Zhao
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanxing Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qinlin Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Yang
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Qiang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Qiu X, Xiang F, Liu H, Zhan F, Liu X, Bu P, Zhou B, Duan Q, Ji M, Feng Q. Electrical hydrogel: electrophysiological-based strategy for wound healing. Biomater Sci 2025; 13:2274-2296. [PMID: 40131331 DOI: 10.1039/d4bm01734j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Wound healing remains a significant challenge in clinical practice, driving ongoing exploration of innovative therapeutic approaches. In recent years, electrophysiological-based wound healing strategies have gained considerable attention. Specifically, electrical hydrogels combine the synergistic effects of electrical stimulation and hydrogel properties, offering a range of functional benefits for wound healing, including antibacterial activity, real-time wound monitoring, controlled drug release, and electrical treatment. Despite significant progress made in electrical hydrogel research for wound healing, there is a lack of comprehensive, systematic reviews summarizing this field. In this review, we survey the latest advancements in electrical hydrogel technology. After analyzing the mechanisms of electrical stimulation in promoting wound healing, we establish a novel classification framework for electrical hydrogels based on their operational principles. The review further provides an in-depth evaluation of the therapeutic efficacy of these hydrogels in various types of wounds. Finally, we propose future directions and challenges for the development of electrical hydrogels for wound healing.
Collapse
Affiliation(s)
- Xingan Qiu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Feng Xiang
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Hong Liu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Xuezhe Liu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Pengzhen Bu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Bikun Zhou
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qiaojian Duan
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ming Ji
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Qian Feng
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Wang H, Guo J, Zhang Y, Fu Z, Yao Y. Closed-loop rehabilitation of upper-limb dyskinesia after stroke: from natural motion to neuronal microfluidics. J Neuroeng Rehabil 2025; 22:87. [PMID: 40253334 PMCID: PMC12008995 DOI: 10.1186/s12984-025-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/21/2025] Open
Abstract
This review proposes an innovative closed-loop rehabilitation strategy that integrates multiple subdomains of stroke science to address the global challenge of upper-limb dyskinesia post-stroke. Despite advancements in neural remodeling and rehabilitation research, the compartmentalization of subdomains has limited the effectiveness of current rehabilitation strategies. Our approach unites key areas-including the post-stroke brain, upper-limb rehabilitation robotics, motion sensing, metrics, neural microfluidics, and neuroelectronics-into a cohesive framework designed to enhance upper-limb motion rehabilitation outcomes. By leveraging cutting-edge technologies such as lightweight rehabilitation robotics, advanced motion sensing, and neural microfluidic models, this strategy enables real-time monitoring, adaptive interventions, and personalized rehabilitation plans. Furthermore, we explore the potential of closed-loop systems to drive neural plasticity and functional recovery, offering a transformative perspective on stroke rehabilitation. Finally, we discuss future directions, emphasizing the integration of emerging technologies and interdisciplinary collaboration to advance the field. This review highlights the promise of closed-loop strategies in achieving unprecedented integration of subdomains and improving post-stroke upper-limb rehabilitation outcomes.
Collapse
Affiliation(s)
- Honggang Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Junlong Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Yangqi Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Ze Fu
- Institute of Biological and Medical Technology, Harbin Institute of Technology (Weihai), Weihai, 264200, China
| | - Yufeng Yao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
8
|
Neuman K, Zhang X, Schellberg B, Lewis LH, Koppes A, Koppes R. Electrical and magnetic stimulation separately modulates the extent and direction of neurite outgrowth in an ionically conductive hydrogel. J Neural Eng 2025; 22:026041. [PMID: 40014876 PMCID: PMC11962742 DOI: 10.1088/1741-2552/adbb1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Objective. The use of conductive materials for aiding peripheral nerve regeneration is a promising method to recapitulate native conductance of nerve tissue and facilitate the delivery of exogeneous stimulation for enhanced recovery. This study systematically investigated the effects of applying electrical (ES) or magnetic stimulation (MS) to neurons within new ionically conductive hydrogels.Approach. The material properties of ionically conductive Gel-Amin hydrogels (Gelatin methacryloyl (GelMA) + Choline acrylate) were compared to those of GelMA hydrogels. Neonatal rat dorsal root ganglia (DRG) were encapsulated in both hydrogel formulations, subjected to ES or MS, and evaluated for differences in neuronal extension. Peripheral glia, Schwann cells (SCs), were subjected to the same stimuli and their secretion of various neurotrophic analytes were investigated.Main results. Gel-Amin hydrogels are 4x more ionically conductive than GelMA hydrogels. The application of electrical stimulation to the encapsulated cells led to a significant decrease (76%) in DRG outgrowth when encapsulated in GelMA versus the Gel-Amin hydrogel. In contrast, MS led to directional neurite extension in a direction perpendicular to the magnetic field gradient.Significance. We present here the first report of a controlled, direct comparison of ES and MS on whole DRG in synthetic materials. The combination of ES and MS decreased total neurite outgrowth but led to more directional growth. Aspects of the material and type of stimuli were noted to reduce several cytokine secretion levels from primary SC cultures. These results highlight the importance of understanding material and biophysical interactions to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Katelyn Neuman
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| | - Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States of America
| | - Bryan Schellberg
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| | - Laura H Lewis
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States of America
| | - Abigail Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
- Department of Biology, Northeastern University, Boston, MA, United States of America
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
| | - Ryan Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
9
|
Yan R, Chen S, Wang B, Liu C, Chen X. Magnetic field-oriented conductive decellularized extracellular matrix hydrogel synergizes with electrical stimulation to promote spinal cord injury repair and electrophysiological function restoration. BIOMATERIALS ADVANCES 2025; 169:214169. [PMID: 39754869 DOI: 10.1016/j.bioadv.2024.214169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy. In this study, we used ultrasound to composite conductive reduced graphene oxide (rGO) and magnetic Fe3O4 nanoparticles and encapsulated them into gelatin methacryloyl (GelMA) along with decellularized extracellular matrix (dECM) to form a conductive composite hydrogel, rGO/Fe3O4/dECM@GelMA. The rGO/Fe3O4 complexes were able to orientate themselves in the hydrogel with a magnetic field, conferring an orientated electrical conduction function to the hydrogel. The implantation of this composite hydrogel re-established the electrical conduction in the damaged spinal cord and synergized with ES to promote the regeneration of neurons and myelinated axons at the injury site, resulting in the restoration of electrophysiological function of the spinal cord and motor function of the hind limbs of mice. Our study combines a conductive tissue-engineered scaffold with ES therapy to improve the efficacy of ES in severe spinal cord injuries and promote the restoration of spinal cord function.
Collapse
Affiliation(s)
- Ruijia Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shu Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bixue Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Lan B, Liu C, Wang S, Jin Y, Yadav AK, Srivastava P, Yuan S, Hu C, Zhu G. Enhanced electron transfer for the improvement of nitrogen removal efficiency and N 2O reduction at low temperatures. WATER RESEARCH 2025; 272:122993. [PMID: 39708380 DOI: 10.1016/j.watres.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Low temperature generally restricts biological activity, slowing down electron transfer in biogeochemical cycles and causing a series of environmental problems such as nitrogen pollution. We present a strategy to boost electron transfer in microbial cell at low temperatures via stimulation with low current. It is demonstrated by establishing a constructed wetland system coupled with solar powered microbial electrolysis cell, which enhances microbial activity through external micro currents (18.9 ± 5.5 μA) for removing nitrogen pollution in winter (average temperature from -6.6 to 4.5 °C). We investigated the efficiency of pollutants removal, microbial activity, N2O production and its mechanisms using complexes activity detection, RT-qPCR, incubation, and 15N-18O dual-isotope labeling techniques. The activity of complexes I, II, III, and IV collectively represent the microbial electron transfer rate. Results indicated that the microcurrents increased the activity of complexes II, III and IV by 96 %, 172 %, and 313 %, respectively. The transcription abundance of amoA genes in ammonia oxidation and nirS/K genes in denitrification by 263 % and 51 %, respectively. Consequently, NH4+-N removal efficiency improved from 23 % to 35 %, and NO3--N removal efficiency from 21 % to 31 %. Moreover, microcurrents reduced N2O emission by 44 %. However, external microcurrent stimulation did not alter the microbial production pathway of N2O as determined by the 15N-18O dual isotope labeling technique. The relative abundance of the nitrifying bacteria Nitrosomonas, Nitrosospira, and Nitrospira, as well as the denitrifying bacteria Methylotenera, significantly increased due to microcurrent stimulation. Specifically, Nitrospira exhibited the highest increase of 156 %. Our findings provide a novel way to enhance N removal efficiency and simultaneously reduce N2O emission of biological system like constructed wetlands in winter conditions.
Collapse
Affiliation(s)
- Bangrui Lan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yucheng Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratiksha Srivastava
- Department of Chemical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, 3010, VIC, Australia
| | - Shengguang Yuan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengzhi Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
11
|
Ferreira F, Moreira S, Zhao M, Barriga EH. Stretch-induced endogenous electric fields drive directed collective cell migration in vivo. NATURE MATERIALS 2025; 24:462-470. [PMID: 39824963 PMCID: PMC11879868 DOI: 10.1038/s41563-024-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/24/2024] [Indexed: 01/20/2025]
Abstract
Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo. Finally, we propose that endogenous electric fields are mechanically established by the convergent extension movements of the ectoderm, which generate a membrane tension gradient that opens stretch-activated ion channels. Overall, these findings establish a role for electrotaxis in tissue morphogenesis, highlighting the functions of endogenous bioelectrical stimuli in non-neural contexts.
Collapse
Affiliation(s)
- Fernando Ferreira
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
- Mechanisms of Morphogenesis Lab, Cluster of Excellence Physics of Life (PoL), TU Dresden, Dresden, Germany
| | - Sofia Moreira
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
- Mechanisms of Morphogenesis Lab, Cluster of Excellence Physics of Life (PoL), TU Dresden, Dresden, Germany
| | - Min Zhao
- Department of Ophthalmology and Vision Science, and Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, USA
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
- Mechanisms of Morphogenesis Lab, Cluster of Excellence Physics of Life (PoL), TU Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Diego-Santiago MDP, González MU, Zamora Sánchez EM, Cortes-Carrillo N, Dotti C, Guix FX, Mobini S. Bioelectric stimulation outperforms brain derived neurotrophic factor in promoting neuronal maturation. Sci Rep 2025; 15:4772. [PMID: 39922942 PMCID: PMC11807145 DOI: 10.1038/s41598-025-89330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Neuronal differentiation and maturation are crucial for developing research models and therapeutic applications. Brain-derived neurotrophic factor (BDNF) is a widely used biochemical stimulus for promoting neuronal maturation. However, the broad effects of biochemical stimuli on multiple cellular functions limit their applicability in both in vitro models and clinical settings. Electrical stimulation (ES) offers a promising physical method to control cell fate and function, but it is hampered by lack of standard and optimised protocols. In this study, we demonstrate that ES outperforms BDNF in promoting neuronal maturation in human neuroblastoma SH-SY5Y. Additionally, we address the question regarding which ES parameters regulate biological responses. The neuronal differentiation and maturation of SH-SY5Y cells were tested under several pulsed ES regimes. We identified accumulated charge and effective electric field time as novel criteria for determining optimal ES regimes. ES parameters were obtained using electrochemical characterisation and equivalent circuit modelling. Our findings show that neuronal maturation in SH-SY5Y cells correlates with the amount of accumulated charge during ES. Higher charge accumulation (~ 50 mC/h) significantly promotes extensive neurite outgrowth and ramification, and enhances the expression of synaptophysin, yielding effects exceeding those of BDNF. In contrast, fewer charge injection to the culture (~ 0.1 mC/h) minimally induces maturation but significantly increases cell proliferation. Moreover, ES altered the concentration and protein cargo of secreted extracellular vesicles (EV). ES with large enough accumulated charge significantly enriched EV proteome associated with neural development and function. These results demonstrate that each ES regime induces distinct cellular responses. Increased accumulated charge facilitates the development of complex neuronal morphologies and axonal ramification, outperforming exogenous neurotrophic factors. Controlled ES methods are immediately applicable in creating mature neuronal cultures in vitro with minimal chemical intervention.
Collapse
Affiliation(s)
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain
| | | | | | - Carlos Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Francesc Xavier Guix
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain.
| |
Collapse
|
13
|
Richard W, Moga A, Genain G, Amalric N, Eveillard M, Shourick J, Le Tanneur S, Funck-Brentano E, Skayem C, Vandier S, Duong TA. Electrochemistry to Monitor Skin Barrier: A Proof-of-Concept Study on Skin Differentiation Compared with Corneometry, Transepidermal Water Loss Measurement, and High-Performance Liquid Chromatography. J Invest Dermatol 2025:S0022-202X(25)00091-0. [PMID: 39922454 DOI: 10.1016/j.jid.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 02/10/2025]
Affiliation(s)
- William Richard
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | - Alain Moga
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | | | - Nicolas Amalric
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | - Mélissa Eveillard
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France
| | - Jason Shourick
- Department of Clinical Epidemiology and Public Health, Toulouse University Hospital, Toulouse, France
| | | | - Elisa Funck-Brentano
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France; Research Unit EA4340 "Biomarkers in cancerology and in hemato-oncology," Université Versailles-St-Quentin-en -Yvelines-Paris-Saclay, Versailles, France
| | - Charbel Skayem
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France
| | | | - Tu Anh Duong
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France; Laboratoire de Génie Industriel, CentraleSupelec, Université Paris-Saclay, Gif-sur-Yvette, France; Chaire Avenir Santé Numérique, Equipe 8 IMRB, Inserm, Paris-East Créteil University, Créteil, France.
| |
Collapse
|
14
|
Liao Z, Liu T, Yao Z, Hu T, Ji X, Yao B. Harnessing stimuli-responsive biomaterials for advanced biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230133. [PMID: 40040822 PMCID: PMC11875454 DOI: 10.1002/exp.20230133] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 03/06/2025]
Abstract
Cell behavior is intricately intertwined with the in vivo microenvironment and endogenous pathways. The ability to guide cellular behavior toward specific goals can be achieved by external stimuli, notably electricity, light, ultrasound, and magnetism, simultaneously harnessed through biomaterial-mediated responses. These external triggers become focal points within the body due to interactions with biomaterials, facilitating a range of cellular pathways: electrical signal transmission, biochemical cues, drug release, cell loading, and modulation of mechanical stress. Stimulus-responsive biomaterials hold immense potential in biomedical research, establishing themselves as a pivotal focal point in interdisciplinary pursuits. This comprehensive review systematically elucidates prevalent physical stimuli and their corresponding biomaterial response mechanisms. Moreover, it delves deeply into the application of biomaterials within the domain of biomedicine. A balanced assessment of distinct physical stimulation techniques is provided, along with a discussion of their merits and limitations. The review aims to shed light on the future trajectory of physical stimulus-responsive biomaterials in disease treatment and outline their application prospects and potential for future development. This review is poised to spark novel concepts for advancing intelligent, stimulus-responsive biomaterials.
Collapse
Affiliation(s)
- Ziming Liao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Tingting Liu
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMassachusettsUSA
- Research Center for Nano‐Biomaterials and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanShanxiP. R. China
- Department of Laboratory DiagnosisThe 971th HospitalQingdaoP. R. China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingP. R. China
| | - Zhimin Yao
- Sichuan Preschool Educators' CollegeMianyangP. R. China
| | - Tian Hu
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordJohn Radcliffe HospitalOxfordUK
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| |
Collapse
|
15
|
Borah R, Diez Clarke D, Upadhyay J, Monaghan MG. From innovation to clinic: Emerging strategies harnessing electrically conductive polymers to enhance electrically stimulated peripheral nerve repair. Mater Today Bio 2025; 30:101415. [PMID: 39816667 PMCID: PMC11733191 DOI: 10.1016/j.mtbio.2024.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function. Electrical stimulation (ES) has the ability to enhance nerve regeneration rate by modulating the innate bioelectrical microenvironment of nerve tissue while simultaneously fostering a reparative environment through immunoregulation. In this context, electrically conductive polymer (ECP)-based biomaterials offer unique advantages for nerve repair combining their flexibility, akin to traditional plastics, and mixed ionic-electronic conductivity, similar to ionically conductive nerve tissue, as well as their biocompatibility and ease of fabrication. This review focuses on the progress, challenges, and emerging techniques for integrating ECP based NGCs with ES for functional nerve regeneration. It critically evaluates the various approaches using ECP based scaffolds, identifying gaps that have hindered clinical translation. Key challenges discussed include designing effective 3D NGCs with high electroactivity, optimizing ES modules, and better understanding of immunoregulation during nerve repair. The review also explores innovative strategies in material development and wireless, self-powered ES methods. Furthermore, it emphasizes the need for non-invasive ES delivery methods combined with hybrid ECP based neural scaffolds, highlighting future directions for advancing preclinical and clinical translation. Together, ECP based NGCs combined with ES represent a promising avenue for advancing PNR and improving patient outcomes.
Collapse
Affiliation(s)
- Rajiv Borah
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel Diez Clarke
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Jnanendra Upadhyay
- Department of Physics, Dakshin Kamrup College, Kamrup, Assam, 781125, India
| | - Michael G. Monaghan
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Research in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
16
|
Zihao W, Kaifeng L, Shengmin Z, Yongzhan G, Pengjie L. Accurate diagnosis and effective treatment of abnormal meridians in erectile dysfunction patients based on infrared thermography: an electrophysiological technique study. Int J Impot Res 2025; 37:126-132. [PMID: 38509346 PMCID: PMC11860228 DOI: 10.1038/s41443-024-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
An increasing body of research has demonstrated that appropriate stimulation of the meridians and acupoints in the human body can play a preventative and therapeutic role in diseases. This study combines the use of infrared thermography with intelligent electrophysiological diagnostic system (iEDS) to accurately diagnose and apply transdermal low-frequency electrical stimulation to treat abnormal meridians in patients with erectile dysfunction (ED). The treatment protocol included 6 treatments (each lasting 30 min and performed twice a week). The International Index of Erectile Function-5 (IIEF-5), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), and Erection Hardness Scale were used to assess treatment results. A total of 62 patients were included in this study, with 31 patients in the treatment group and 31 patients in the sham therapy group. After six treatments, the treatment group improved significantly in IIEF-5 (15.52 ± 2.06 vs. 18.84 ± 2.67, p < 0.001), PHQ-9 (8.32 ± 6.33 vs. 4.87 ± 4.41, p < 0.001), GAD-7 (5.32 ± 5.08 vs. 2.94 ± 3.31, p = 0.003), and EHS (2.48 (2.00, 3.00) vs. 2.90 (2.00, 3.00), p = 0.007). After six sham treatment sessions, no improvements in any of the scores were reported in the sham therapy group. Following that, this group had an additional six treatments of regular therapy, which resulted in statistically significant improvements in IIEF-5 (16.65 ± 1.96 VS. 19.16 ± 2.40, p < 0.001), PHQ-9 (8.81 ± 6.25 VS. 4.97 ± 4.36, p < 0.001), GAD-7 (5.74 ± 5.18 VS. 3.68 ± 3.42, p < 0.001), and EHS (2.61 (2.00, 3.00) VS. 3.03 (2.00, 4.00), p = 0.003). No adverse events were reported regarding penile discomfort, pain, injury, or deformity. CLINICAL TRIALS: The study protocol is registered in the Clinical Trials Registry with the identification number ChiCTR2300070262.
Collapse
Affiliation(s)
- Wang Zihao
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Liu Kaifeng
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China.
- Northern Jiangsu People's Hospital of Jiangsu Province, Yangzhou, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
| | - Zhang Shengmin
- Northern Jiangsu People's Hospital of Jiangsu Province, Yangzhou, China
| | - Gong Yongzhan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Lu Pengjie
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| |
Collapse
|
17
|
Han Z, Wang F, Xiong W, Meng C, Yao Y, Cui W, Zhang M. Precise Cell Type Electrical Stimulation Therapy Via Force-electric Hydrogel Microspheres for Cartilage Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414555. [PMID: 39659121 DOI: 10.1002/adma.202414555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Electrical stimulation enhances cellular activity, promoting tissue regeneration and repair. However, specific cells and maintaining a stable energy supply are challenges for precise cell electrical stimulation therapy. Here, force-electric conversion hydrogel microspheres (Piezo@CR MPs) is devloped to induce specific stem cell aggregation and promote chondrogenic differentiation through localized electrical stimulation. These MPs contain barium titanate (BT) nanoparticles embedded in hyaluronic acid methacrylate hydrogel MPs, with a polydopamine (pDA) coating bound to stem cell recruitment peptides (CR) via π-π conjugation and electrostatic forces. Piezo@CR MPs convert pressure (ultrasound) into electrical stimulation, directing BMSCs for colonization and chondrogenesis. In vitro, directionally migrated stem cells almost covered the Piezo@CR MP surface, generating up to 451 mV of electrical output that enhanced chondrogenic differentiation. In a rabbit osteochondral defect model, Piezo@CR MPs promoted cartilage regeneration, nearly resembling native cartilage. In a rat osteoarthritis model, they reduced cartilage degeneration and improved behavioral outcomes. Additionally, Piezo@CR MPs promoted cartilage regeneration by driving the influx of extracellular calcium and activating the p38 mitogen-activated protein kinase (MAPK) pathway. In conclusion, Piezo@CR MPs offer a new approach for precise cell type electrical stimulation therapy in treating of cartilage injuries and degeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Fan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei Xiong
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Chen Meng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yubin Yao
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
18
|
Parafati M, Thwin Z, Malany LK, Coen PM, Malany S. Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634580. [PMID: 39974935 PMCID: PMC11838239 DOI: 10.1101/2025.01.26.634580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microgravity accelerates skeletal muscle degeneration, mimicking aging, yet its effects on human muscle cell function and signaling remain underexplored. Using a muscle lab-on-chip model onboard the International Space Station, we examined how microgravity and electrically stimulated contractions influence muscle biology and age-related muscle changes. Our 3D bioengineered muscle model, cultured for 21 days (12 days in microgravity), included myobundles from young, active and older, sedentary individuals, with and without electrically stimulated contraction. Real-time data collected within an autonomous Space Tango CubeLab™ showed reduced contraction magnitude in microgravity. Global transcriptomic analysis revealed increased gene expression and particularly mitochondrial-related gene expression in microgravity for the electrically stimulated younger myobundles, while the older myobundles were less responsive. Moreover, a comparative analysis using a skeletal muscle aging gene expression database revealed that certain age-induced genes showed changes in expression in myobundles from the younger cohort when exposed to microgravity, whereas these genes remained unchanged in myobundles from the older cohort. Younger, electrically stimulated myobundles in microgravity exhibited higher expression of 45 aging genes involved in key aging pathways related to inflammation and immune function, mitochondrial dysfunction, and cellular stress; and decreased expression of 41 aging genes associated with inflammation, and cell growth. This study highlights a unique age-related molecular signature in muscle cells exposed to microgravity and underscores electrical stimulation as a potential countermeasure. These insights advance understanding of skeletal muscle aging and microgravity-induced degeneration, informing strategies for mitigating age-related muscle atrophy in space and on Earth.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Zon Thwin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | | | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
19
|
Yang Y, Qiu Y, Lin C, Chen X, Zhao F. Stimulus-responsive smart bioactive glass composites for repair of complex tissue defects. Theranostics 2025; 15:1760-1786. [PMID: 39897548 PMCID: PMC11780539 DOI: 10.7150/thno.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Smart biomaterials with active environmental responsiveness have attracted widespread attention in recent years. Previous studies on bioactive glass (BG) have mainly focused on the property of bioactivity, while little attention has been paid to the property of smart response of BG. Herein, we propose the concept of Smart Bioactive Glass Composites (SBGC) which are capable of actively responding to the endogenous disease microenvironment or exogenous physical stimuli, thereby enabling active treatment of tissue defect sites and ultimately promoting tissue regeneration. In this review, the response characteristics of SBGC to different internal and external environments are described. Subsequently, the applications of SBGC in complex tissue defect repair of tumors, infections, and diabetes are reviewed. By deeply analyzing the recent progress of SBGC in different fields, this review will point out the direction for the research of next-generation BG.
Collapse
Affiliation(s)
- Yulian Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China
| | - Cai Lin
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaofeng Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, PR China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China
| |
Collapse
|
20
|
Mehta AS, Zhang SL, Xie X, Khanna S, Tropp J, Ji X, Daso RE, Franz CK, Jordan SW, Rivnay J. Decellularized Biohybrid Nerve Promotes Motor Axon Projections. Adv Healthc Mater 2024; 13:e2401875. [PMID: 39219219 PMCID: PMC11616264 DOI: 10.1002/adhm.202401875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3 oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2 mS cm-1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Sophia L. Zhang
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
- Section for Injury Repair and Regeneration ResearchStanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIL60611USA
- Department of PediatricsDivision of Critical CareNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Xinran Xie
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Shreyaa Khanna
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
| | - Joshua Tropp
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Xudong Ji
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rachel E. Daso
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Colin K. Franz
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Sumannas W. Jordan
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
| | - Jonathan Rivnay
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
21
|
Zhou L, Zhang Y, Yi X, Chen Y, Li Y. Advances in proteins, polysaccharides, and composite biomaterials for enhanced wound healing via microenvironment management: A review. Int J Biol Macromol 2024; 282:136788. [PMID: 39490870 DOI: 10.1016/j.ijbiomac.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Wound management is crucial yet imposes substantial social and economic burdens on patients and healthcare systems. The recent rapid advancements in biomaterials and manufacturing technology have created favorable conditions for expediting wound healing. This review examines the latest developments in biomacromolecule-based wound dressings, with a particular focus on proteins and polysaccharides, and their role in modulating the wound microenvironment. The importance of extracellular matrix (ECM)-inspired materials, such as hydrogels and biomimetic dressings, is emphasized. Additionally, this review explores the functionalization of wound dressings, emphasizing properties such as hemostatic capabilities, pain relief, antimicrobial activity, and innovative smart functions like electroceuticals and wound condition monitoring. The study integrates discussions on both the macroscopic healing outcomes and the microscopic pathophysiological mechanisms, highlighting recent advances in managing wound environments to expedite healing. Finally, the review critically assesses the challenges associated with the clinical translation of these wound-healing materials in the future.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Ma X, Zhou Y, Xin M, Yuan H, Chao D, Liu F, Jia X, Sun P, Wang C, Lu G, Wallace G. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410205. [PMID: 39361260 DOI: 10.1002/adma.202410205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Indexed: 11/29/2024]
Abstract
Bioelectronic patches hold promise for patient-comfort wound healing providing simplified clinical operation. Currently, they face paramount challenges in establishing long-term effective electronic interfaces with targeted cells and tissues due to the inconsistent energy output and high bio interface impedance. Here a new electrochemical stimulation technology is reported, using a simple wound patch, which integrates the efficient generation and delivery of stimulation. This is realized by employing a hydrogel bioelectronic interface as an active component in an integrated power source (i.e., Mg battery). The Mg battery enhances fibroblast functions (proliferation, migration, and growth factor secretion) and regulates macrophage phenotype (promoting regenerative polarization and down-regulating pro-inflammatory cytokines), by providing an electric field and the ability to control the cellular microenvironment through chemical release. This bioelectronic patch shows an effective and accelerated wound closure by guiding epithelial migration, mediating immune response, and promoting vasculogenesis. This new electrochemical-mediated therapy may provide a new avenue for user-friendly wound management as well as a platform for fundamental insights into cell stimulation.
Collapse
Affiliation(s)
- Xuenan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
23
|
Hashim HT, Varney J, Qais Z, Reda A, Qaderi S, Chowdhury NS, Murry K, Shah J, Alhaideri A, Ahmad S, Hashim AT, Rehman R, Ahmed N, Al-Jorani MS, Skuk M, Abdalhusain M, Khalafalla K. Direct and Gradual Electrical Testicular Shocks Stimulate Spermatogenesis and Activate Sperms in Infertile Men: A Randomized Controlled Trial. Am J Mens Health 2024; 18:15579883241296881. [PMID: 39601214 PMCID: PMC11603473 DOI: 10.1177/15579883241296881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 10/13/2024] [Indexed: 11/29/2024] Open
Abstract
Infertility was reported in approximately 15% of all heterozygous couples, with the male factor accounting for nearly half of the cases. This typically occurs due to low sperm production, sperm dysfunction, and sperm delivery obstruction. In this randomized controlled single-blind clinical trial, 90 infertile male subjects diagnosed with oligospermia, hypospermia, asthenozoospermia, or necrozoospermia were recruited. Semen samples were obtained with the masturbation method and an assessment of semen volume, sperm count, and motility was performed. Five milliamps of electrical shock was delivered to the participants through the fertility improvement device. Semen analysis was collected 4 months post-intervention from all subjects. Data were collected and an analysis of pre- and post-intervention results was performed. There was an improvement in the count, volume, and motility of the patient's sperm after electrical shock treatment compared with the control group. By using the analysis of variance (ANOVA) test, there were statistically significant differences between the first and the second seminal analysis results (<.05). All other results were found to be independently correlated. This study demonstrated that using a painless, convenient at-home device, which is designed to contain all the testis tissue as a cup and then extend to include the scrotal roots reaching the penile root to include the epididymis, could significantly improve sperm motility and count. This device can be utilized to tackle the significant issue of infertility in a cost-effective, safe, and efficacious manner. An ultrasound was done before and after using the device as well as years after with no changes noted.Clinical Trial's Registration Number: NCT04173052.
Collapse
Affiliation(s)
| | - Joseph Varney
- American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten
| | - Zanyar Qais
- Medical University of Lublin, Lublin, Poland
| | - Abdallah Reda
- Faculty of General Medicine, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Shohra Qaderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | | | - Jaffer Shah
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Adil Alhaideri
- College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | | | | | | | | | - Moatamn Skuk
- Al-Kindy Teaching Hospital, Al-Kindy College of Medicine, Baghdad, Iraq
| | | | - Kareim Khalafalla
- Urology Department, McGovern Medical School, University of Texas, Houston, TX, USA
- Urology Department, MD Anderson Cancer Center, Houston, TX, USA
- Urology Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
24
|
Abdullahi A, Wong TWL, Ng SSM. Effects of home-based neurostimulation on outcomes after stroke: a systematic review and meta-analysis. Neurol Sci 2024; 45:5157-5179. [PMID: 38940876 PMCID: PMC11470900 DOI: 10.1007/s10072-024-07633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Home-based rehabilitation is a cost-effective means of making services available for patients. The aim of this study is to determine the evidence in the literature on the effects of home-based neurostimulation in patients with stroke. METHOD We searched PubMED, Embase, Web of Science, Scopus, and CENTRAL for randomized controlled trials on the subject matter using keywords such as stroke, electrical stimulation and transcranial direct current stimulation. Information on participants' characteristics and mean scores on the outcomes of interest were extracted. Risks of bias and methodological quality of the included studies were assessed using Cochrane Risks of bias tool and PEDro scale respectively. The data was analyzed using both narrative and quantitative syntheses. In the quantitative synthesis, meta-analysis was carried out using random effect model analysis. RESULT The results showed that, home-based neurostimulation is superior to the control at improving upper limb muscle strength (SMD = 0.72, 95% CI = 0.08 to 1.32, p = 0.03), functional mobility (SMD = -0.39, 95% CI = -0.65 to 0.14, p = 0.003) and walking endurance (SMD = 0.33, 95% CI = 0.08 to 0.59, p = 0.01) post intervention; and upper limb motor function (SMD = 0.9, 95% CI = 0.10 to 1.70, p = 0.03), functional mobility (SMD = -0.30, 95% CI = -0.56 to -0.05, p = 0.02) and walking endurance (SMD = 0.33, 95% CI = 0.08 to 0.59, p = 0.01) at follow-up. CONCLUSIONS Home-based neurostimulation can be used to improve upper and lower limb function after stroke.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Formerly, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China.
| |
Collapse
|
25
|
Xia Z, Zhang H, Li Q, Yi C, Xing Z, Qin Z, Zhao H, Jing J, Zhao C, Cai K. The Biomimetic Electrical Stimulation System Inducing Osteogenic Differentiations of BMSCs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56730-56743. [PMID: 39394985 DOI: 10.1021/acsami.4c11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Electrical stimulation has been used clinically as an adjunct therapy to accelerate the healing of bone defects, and its mechanism requires further investigations. The complexity of the physiological microenvironment makes it challenging to study the effect of electrical signal on cells alone. Therefore, an artificial system mimicking cell microenvironment in vitro was developed to address this issue. In this work, a novel electrical stimulation system was constructed based on polypyrrole nanowires (ppyNWs) with a high aspect ratio. Synthesized ppyNWs formed a conductive network in the composited hydrogel which contained modified gelatin with methacrylate, providing a conductive cell culture matrix for bone marrow mesenchymal stem cells. The dual-network conductive hydrogel had improved mechanical, electrical, and hydrophilic properties. It was able to imitate the three-dimensional structure of the cell microenvironment and allowed adjustable electrical stimulations in the following system. This hydrogel was integrated with cell culture plates, platinum electrodes, copper wires, and external power sources to construct the artificial electrical stimulation system. The optimum voltage of the electrical stimulation system was determined to be 2 V, which exhibited remarkable biocompatibility. Moreover, this system had significant promotion in cell spreading, osteogenic makers, and bone-related gene expression of stem cells. RNA-seq analysis revealed that osteogenesis was correlated to Notch, BMP/Smad, and calcium signal pathways. It was proven that this biomimetic system could regulate the osteogenesis procedure, and it provided further information about how the electrical signal regulates osteogenic differentiations.
Collapse
Affiliation(s)
- Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Huiwen Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chao Yi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhijian Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zizhen Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Huilin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jing Jing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chuanrong Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
26
|
Zimmermann J, Farooqi AR, van Rienen U. Electrical stimulation for cartilage tissue engineering - A critical review from an engineer's perspective. Heliyon 2024; 10:e38112. [PMID: 39416819 PMCID: PMC11481755 DOI: 10.1016/j.heliyon.2024.e38112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cartilage has a limited intrinsic healing capacity. Hence, cartilage degradation and lesions pose a huge clinical challenge, particularly in an ageing society. Osteoarthritis impacts a significant number of the population and requires the development of repair and tissue engineering methods for hyaline articular cartilage. In this context, electrical stimulation has been investigated for more than 50 years already. Yet, no well-established clinical therapy to treat osteoarthritis by means of electrical stimulation exists. We argue that one reason is the lack of replicability of electrical stimulation devices from a technical perspective together with lacking hypotheses of the biophysical mechanism. Hence, first, the electrical stimulation studies reported in the context of cartilage tissue engineering with a special focus on technical details are summarized. Then, an experimental and numerical approach is discussed to make the electrical stimulation experiments replicable. Finally, biophysical hypotheses have been reviewed on the interaction of electric fields and cells that are relevant for cartilage tissue engineering. With that, the aim is to inspire future research to enable clinical electrical stimulation therapies to fight osteoarthritis.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
| | - Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
27
|
Asefifeyzabadi N, Nguyen T, Li H, Zhu K, Yang HY, Baniya P, Medina Lopez A, Gallegos A, Hsieh HC, Dechiraju H, Hernandez C, Schorger K, Recendez C, Tebyani M, Selberg J, Luo L, Muzzy E, Hsieh C, Barbee A, Orozco J, Alhamo MA, Levin M, Aslankoohi E, Gomez M, Zhao M, Teodorescu M, Isseroff RR, Rolandi M. A pro-reparative bioelectronic device for controlled delivery of ions and biomolecules. Wound Repair Regen 2024; 32:709-719. [PMID: 38794912 DOI: 10.1111/wrr.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Wound healing is a complex physiological process that requires precise control and modulation of many parameters. Therapeutic ion and biomolecule delivery has the capability to regulate the wound healing process beneficially. However, achieving controlled delivery through a compact device with the ability to deliver multiple therapeutic species can be a challenge. Bioelectronic devices have emerged as a promising approach for therapeutic delivery. Here, we present a pro-reparative bioelectronic device designed to deliver ions and biomolecules for wound healing applications. The device incorporates ion pumps for the targeted delivery of H+ and zolmitriptan to the wound site. In vivo studies using a mouse model further validated the device's potential for modulating the wound environment via H+ delivery that decreased M1/M2 macrophage ratios. Overall, this bioelectronic ion pump demonstrates potential for accelerating wound healing via targeted and controlled delivery of therapeutic agents to wounds. Continued optimization and development of this device could not only lead to significant advancements in tissue repair and wound healing strategies but also reveal new physiological information about the dynamic wound environment.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kan Zhu
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hsin-Ya Yang
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Andrea Medina Lopez
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Anthony Gallegos
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cristian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Kaelan Schorger
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cynthia Recendez
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Le Luo
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Elana Muzzy
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cathleen Hsieh
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Chemistry and Biochemistry, University of California Santa Cruz, California, Santa Cruz, USA
| | - Alexie Barbee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jonathan Orozco
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Department of Economics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Moyasar A Alhamo
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Marcella Gomez
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, California, USA
| | - Min Zhao
- Department of Ophthalmology, School of Medicine, University of California Davis, Davis, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California Davis, Davis, California, USA
- Dermatology Section, VA Northern California Health Care System, Mather, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
28
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Kaveti R, Jakus MA, Chen H, Jain B, Kennedy DG, Caso EA, Mishra N, Sharma N, Uzunoğlu BE, Han WB, Jang TM, Hwang SW, Theocharidis G, Sumpio BJ, Veves A, Sia SK, Bandodkar AJ. Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure. SCIENCE ADVANCES 2024; 10:eado7538. [PMID: 39110791 PMCID: PMC11305378 DOI: 10.1126/sciadv.ado7538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Chronic wounds affect ~2% of the U.S. population and increase risks of amputation and mortality. Unfortunately, treatments for such wounds are often expensive, complex, and only moderately effective. Electrotherapy represents a cost-effective treatment; however, its reliance on bulky equipment limits its clinical use. Here, we introduce water-powered, electronics-free dressings (WPEDs) that offer a unique solution to this issue. The WPED performs even under harsh conditions-situations wherein many present treatments fail. It uses a flexible, biocompatible magnesium-silver/silver chloride battery and a pair of stimulation electrodes; upon the addition of water, the battery creates a radial electric field. Experiments in diabetic mice confirm the WPED's ability to accelerate wound closure and promote healing by increasing epidermal thickness, modulating inflammation, and promoting angiogenesis. Across preclinical wound models, the WPED-treated group heals faster than the control with wound closure rates comparable to treatments requiring expensive biologics and/or complex electronics. The results demonstrate the WPED's potential as an effective and more practical wound treatment dressing.
Collapse
Affiliation(s)
- Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Chen
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| | - Bhavya Jain
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Darragh G. Kennedy
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth A. Caso
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Navya Mishra
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Nivesh Sharma
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Baha Erim Uzunoğlu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brandon J. Sumpio
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| |
Collapse
|
30
|
Couppey T, Regnacq L, Giraud R, Romain O, Bornat Y, Kolbl F. NRV: An open framework for in silico evaluation of peripheral nerve electrical stimulation strategies. PLoS Comput Biol 2024; 20:e1011826. [PMID: 38995970 PMCID: PMC11268605 DOI: 10.1371/journal.pcbi.1011826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/24/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Electrical stimulation of peripheral nerves has been used in various pathological contexts for rehabilitation purposes or to alleviate the symptoms of neuropathologies, thus improving the overall quality of life of patients. However, the development of novel therapeutic strategies is still a challenging issue requiring extensive in vivo experimental campaigns and technical development. To facilitate the design of new stimulation strategies, we provide a fully open source and self-contained software framework for the in silico evaluation of peripheral nerve electrical stimulation. Our modeling approach, developed in the popular and well-established Python language, uses an object-oriented paradigm to map the physiological and electrical context. The framework is designed to facilitate multi-scale analysis, from single fiber stimulation to whole multifascicular nerves. It also allows the simulation of complex strategies such as multiple electrode combinations and waveforms ranging from conventional biphasic pulses to more complex modulated kHz stimuli. In addition, we provide automated support for stimulation strategy optimization and handle the computational backend transparently to the user. Our framework has been extensively tested and validated with several existing results in the literature.
Collapse
Affiliation(s)
- Thomas Couppey
- Laboratoire ETIS, Cergy Paris Université, ENSEA, CNRS UMR 8051, Cergy, France
| | - Louis Regnacq
- Laboratoire ETIS, Cergy Paris Université, ENSEA, CNRS UMR 8051, Cergy, France
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Roland Giraud
- Laboratoire ETIS, Cergy Paris Université, ENSEA, CNRS UMR 8051, Cergy, France
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Olivier Romain
- Laboratoire ETIS, Cergy Paris Université, ENSEA, CNRS UMR 8051, Cergy, France
| | - Yannick Bornat
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Florian Kolbl
- Laboratoire ETIS, Cergy Paris Université, ENSEA, CNRS UMR 8051, Cergy, France
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| |
Collapse
|
31
|
Zhou Y, Ma X, Yu C, Tian Y, Liang Q, Xin M, Sun P, Liu F, Chao D, Jia X, Wang C, Lu G. A Wearable Self-Charging Electroceutical Device for Bacteria-Infected Wound Healing. ACS NANO 2024; 18:15681-15694. [PMID: 38848285 DOI: 10.1021/acsnano.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The prolonged wound-healing process caused by pathogen infection remains a major public health challenge. The developed electrical antibiotic administration typically requires metal electrodes wired to a continuous power supply, restricting their use beyond clinical environments. To obviate the necessity for antibiotics and an external power source, we have developed a wearable synergistic electroceutical device composed of an air self-charging Zn battery. This battery integrates sustained tissue regeneration and antibacterial modalities while maintaining more than half of the initial capacity after ten cycles of chemical charging. In vitro bacterial/cell coculture with the self-charging battery demonstrates inhibited bacterial activity and enhanced cell function by simulating the endogenous electric field and dynamically engineering the microenvironment with released chemicals. This electroceutical device provides accelerated healing of a bacteria-infected wound by stimulating angiogenesis and modulating inflammation, while effectively inhibiting bacterial growth at the wound site. Considering the simple structure and easy operation for long-term treatment, this self-charging electroceutical device offers great potential for personalized wound care.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xuenan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Changchun Yu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China
| | - Qin Liang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
32
|
Nascimento ATD, Mendes AX, Duchi S, Duc D, Aguilar LC, Quigley AF, Kapsa RMI, Nisbet DR, Stoddart PR, Silva SM, Moulton SE. Wired for Success: Probing the Effect of Tissue-Engineered Neural Interface Substrates on Cell Viability. ACS Biomater Sci Eng 2024; 10:3775-3791. [PMID: 38722625 DOI: 10.1021/acsbiomaterials.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.
Collapse
Affiliation(s)
- Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Alexandre X Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Serena Duchi
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Daniela Duc
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Lilith C Aguilar
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - David R Nisbet
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saimon M Silva
- Department of Chemistry and Biochemistry, La Trobe Institute for Molecular Science, The Biomedical and Environmental Sensor Technology Research Centre, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
33
|
Ende K, Santos F, Guasch J, Kemkemer R. Migration of human T cells can be differentially directed by electric fields depending on the extracellular microenvironment. iScience 2024; 27:109746. [PMID: 38706849 PMCID: PMC11067362 DOI: 10.1016/j.isci.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
T cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare. In this in vitro study, we show that direct current EFs with strengths of physiologically occurring EFs (25-200 mV/mm) can guide the migration of primary human CD4+ and CD8+ T cells on 2D substrates toward the anode and in a 3D environment differentially (CD4+ T cells show cathodal and CD8+ T cells show anodal electrotaxis). Overall, we find that EFs present a potent stimulus to direct T cell migration in different microenvironments in a cell-type-, substrate-, and voltage-dependent manner, while not significantly influencing T cell differentiation or viability.
Collapse
Affiliation(s)
- Karen Ende
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Fabião Santos
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Judith Guasch
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ralf Kemkemer
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Lee H, Cho S, Kim D, Lee T, Kim HS. Bioelectric medicine: unveiling the therapeutic potential of micro-current stimulation. Biomed Eng Lett 2024; 14:367-392. [PMID: 38645592 PMCID: PMC11026362 DOI: 10.1007/s13534-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectric medicine (BEM) refers to the use of electrical signals to modulate the electrical activity of cells and tissues in the body for therapeutic purposes. In this review, we particularly focused on the microcurrent stimulation (MCS), because, this can take place at the cellular level with sub-sensory application unlike other stimuli. These extremely low-level currents mimic the body's natural electrical activity and are believed to promote various physiological processes. To date, MCS has limited use in the field of BEM with applications in several therapeutic purposes. However, recent studies provide hopeful signs that MCS is more scalable and widely applicable than what has been used so far. Therefore, this review delves into the landscape of MCS, shedding light on the multifaceted applications and untapped potential of MCS in the realm of healthcare. Particularly, we summarized the hierarchical mediation from cell to whole body responses by MCS including its physiological applications. Our final objective of this review is to contribute to the growing body of literature that unveils the captivating potential of BEM, with MCS poised at the intersection of technological innovation and the intricacies of the human body.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Seungkwan Cho
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Taehyun Lee
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| |
Collapse
|
35
|
Li X, Zhu H, Gu B, Yao C, Gu Y, Xu W, Zhang J, He J, Liu X, Li D. Advancing Intelligent Organ-on-a-Chip Systems with Comprehensive In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305268. [PMID: 37688520 DOI: 10.1002/adma.202305268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Indexed: 09/11/2023]
Abstract
In vitro models are essential to a broad range of biomedical research, such as pathological studies, drug development, and personalized medicine. As a potentially transformative paradigm for 3D in vitro models, organ-on-a-chip (OOC) technology has been extensively developed to recapitulate sophisticated architectures and dynamic microenvironments of human organs by applying the principles of life sciences and leveraging micro- and nanoscale engineering capabilities. A pivotal function of OOC devices is to support multifaceted and timely characterization of cultured cells and their microenvironments. However, in-depth analysis of OOC models typically requires biomedical assay procedures that are labor-intensive and interruptive. Herein, the latest advances toward intelligent OOC (iOOC) systems, where sensors integrated with OOC devices continuously report cellular and microenvironmental information for comprehensive in situ bioanalysis, are examined. It is proposed that the multimodal data in iOOC systems can support closed-loop control of the in vitro models and offer holistic biomedical insights for diverse applications. Essential techniques for establishing iOOC systems are surveyed, encompassing in situ sensing, data processing, and dynamic modulation. Eventually, the future development of iOOC systems featuring cross-disciplinary strategies is discussed.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bingsong Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuyang Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wangkai Xu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jia Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
36
|
Balasubramanian S, Weston DA, Levin M, Davidian DCC. Electroceuticals: emerging applications beyond the nervous system and excitable tissues. Trends Pharmacol Sci 2024; 45:391-394. [PMID: 38641490 DOI: 10.1016/j.tips.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
Electroceuticals have evolved beyond devices manipulating neuronal signaling for symptomatic treatment, becoming more precise and disease modulating and expanding beyond the nervous system. These advancements promise transformative applications in arthritis, cancer treatment, tissue regeneration, and more. Here, we discuss these recent advances and offer insights for future research.
Collapse
Affiliation(s)
- Swarnalatha Balasubramanian
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts, USA
| | - David A Weston
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA
| | | |
Collapse
|
37
|
Wang Y, Wu H, Xiao A, Zhu J, Qiu J, Yang K, Liu Q, Hao S, Hui L, Zhou X, Hou Q, Su H, Meng Z, Chang L. Combined Amniotic Membrane and Self-Powered Electrical Stimulator Bioelectronic Dress Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15809-15818. [PMID: 38515315 DOI: 10.1021/acsami.3c18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Human amniotic membranes (hAMs) are widely used as wound management biomaterials, especially as grafts for corneal reconstruction due to the structure of the extracellular matrix and excellent biological properties. However, their fragile nature and rapid degradation rate hinder widespread clinical use. In this work, we engineered a novel self-powered electronic dress (E-dress), combining the beneficial properties of an amniotic membrane and a flexible electrical electrode to enhance wound healing. The E-dress displayed a sustained discharge capacity, leading to increased epidermal growth factor (EGF) release from amniotic mesenchymal interstitial stem cells. Live/dead staining, CCK-8, and scratch-wound-closure assays were performed in vitro. Compared with amniotic membrane treatment alone, the E-dress promoted cell proliferation and migration of mouse fibroblast cells and lower cytotoxicity. In a mouse full-skin defect model, the E-dress achieved significantly accelerated wound closure. Histological analysis revealed that E-dress treatment promoted epithelialization and neovascularization in mouse skin. The E-dress exhibited a desirable flexibility that aligned with tissue organization and displayed maximum bioactivity within a short period to overcome rapid degradation, implying great potential for clinical applications.
Collapse
Affiliation(s)
- Yupei Wang
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jing Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jie Qiu
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qing Liu
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Shengju Hao
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Ling Hui
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Xin Zhou
- Department of Integrative Medical Biology, Umeå University, Umeå 90337, Sweden
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Haixiang Su
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Zhaoyan Meng
- Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
38
|
Hu M, Li H, Zhu K, Guo L, Zhao M, Zhan H, Devreotes PN, Qing Q. Electric field modulation of ERK dynamics shows dependency on waveform and timing. Sci Rep 2024; 14:3167. [PMID: 38326365 PMCID: PMC10850077 DOI: 10.1038/s41598-024-53018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Different exogenous electric fields (EF) can guide cell migration, disrupt proliferation, and program cell development. Studies have shown that many of these processes were initiated at the cell membrane, but the mechanism has been unclear, especially for conventionally non-excitable cells. In this study, we focus on the electrostatic aspects of EF coupling with the cell membrane by eliminating Faradaic processes using dielectric-coated microelectrodes. Our data unveil a distinctive biphasic response of the ERK signaling pathway of epithelial cells (MCF10A) to alternate current (AC) EF. The ERK signal exhibits both inhibition and activation phases, with the former triggered by a lower threshold of AC EF, featuring a swifter peaking time and briefer refractory periods than the later-occurring activation phase, induced at a higher threshold. Interestingly, the biphasic ERK responses are sensitive to the waveform and timing of EF stimulation pulses, depicting the characteristics of electrostatic and dissipative interactions. Blocker tests and correlated changes of active Ras on the cell membrane with ERK signals indicated that both EGFR and Ras were involved in the rich ERK dynamics induced by EF. We propose that the frequency-dependent dielectric relaxation process could be an important mechanism to couple EF energy to the cell membrane region and modulate membrane protein-initiated signaling pathways, which can be further explored to precisely control cell behavior and fate with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Minxi Hu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Houpu Li
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Kan Zhu
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Liang Guo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, 95616, USA
- Department of Ophthalmology and Vision Science, University of California, Davis, CA, 95616, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA.
- Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
39
|
Chen C, Li X, Hu Y, Chen Y, Wang H, Li X, Li X. Electrical stimulation promoting the angiogenesis in diabetic rat perforator flap through attenuating oxidative stress-mediated inflammation and apoptosis. PeerJ 2024; 12:e16856. [PMID: 38313008 PMCID: PMC10838069 DOI: 10.7717/peerj.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background Skin flap transplantation is one of the effective methods to treat the diabetes-related foot ulceration, but the intrinsic damage to vessels in diabetes mellitus (DM) leads to the necrosis of skin flaps. Therefore, the discovery of a non-invasive and effective approach for promoting the survival of flaps is of the utmost importance. Electrical stimulation (ES) promotes angiogenesis and increases the proliferation, migration, and elongation of endothelial cells, thus being a potential effective method to improve flap survival. Objective The purpose of this study was to elucidate the mechanism used by ES to effectively restore the impaired function of endothelial cells caused by diabetes. Methods A total of 79 adult male Sprague-Dawley rats were used in this study. Gene and protein expression was assessed by PCR and western blotting, respectively. Immunohistochemistry and hematoxylin-eosin staining were performed to evaluate the morphology and density of the microvessels in the flap. Results The optimal duration for preconditioning the flap with ES was 7 days. The flap survival area percentage and microvessels density in the DMES group were markedly increased compared to the DM group. VEGF, MMP2, and MMP9 protein expression was significantly upregulated. ROS intensity was significantly decreased and GSH concentration was increased. The expression of IL-1β, MCP‑1, cleaved caspase-3, and Bax were downregulated in the DMES group, while TGF-β expression was upregulated. Conclusions ES improves the angiogenesis in diabetic ischemic skin flaps by attenuating oxidative stress-mediated inflammation and apoptosis, eventually increasing their viability.
Collapse
Affiliation(s)
- Cong Chen
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolu Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yong Hu
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Chen
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hongrui Wang
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xian Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiucun Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
40
|
Huynh QS, Holsinger RMD. Development of a Cell Culture Chamber for Investigating the Therapeutic Effects of Electrical Stimulation on Neural Growth. Biomedicines 2024; 12:289. [PMID: 38397891 PMCID: PMC10886545 DOI: 10.3390/biomedicines12020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Natural electric fields exist throughout the body during development and following injury, and, as such, EFs have the potential to be utilized to guide cell growth and regeneration. Electrical stimulation (ES) can also affect gene expression and other cellular behaviors, including cell migration and proliferation. To investigate the effects of electric fields on cells in vitro, a sterile chamber that delivers electrical stimuli is required. Here, we describe the construction of an ES chamber through the modification of an existing lid of a 6-well cell culture plate. Using human SH-SY5Y neuroblastoma cells, we tested the biocompatibility of materials, such as Araldite®, Tefgel™ and superglue, that were used to secure and maintain platinum electrodes to the cell culture plate lid, and we validated the electrical properties of the constructed ES chamber by calculating the comparable electrical conductivities of phosphate-buffered saline (PBS) and cell culture media from voltage and current measurements obtained from the ES chamber. Various electrical signals and durations of stimulation were tested on SH-SY5Y cells. Although none of the signals caused significant cell death, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that shorter stimulation times and lower currents minimized negative effects. This design can be easily replicated and can be used to further investigate the therapeutic effects of electrical stimulation on neural cells.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Liu Y, Wang S, Quan C, Luan S, Shi H, Wang L. Metal-organic framework-based platforms for implantation applications: recent advances and challenges. J Mater Chem B 2024; 12:637-649. [PMID: 38165820 DOI: 10.1039/d3tb02620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of minimally invasive technology has promoted the widespread use of implant interventional materials, which play an important role in alleviating patients' pain during and after surgery. Metal-organic frameworks (MOFs) and their related hybrids formed by bridging ligands and metal nodes via covalent bonds represent one of the smart platforms in implant interventional fields due to their large surface area, adjustable compositions and structures, biodegradability, etc. Significant progresses in the implantation application of MOF-based materials have been achieved recently, but these studies are still in the initial stage. This review highlights the recent advances of MOFs and their related hybrids in orthopedic implantation, cardio-vascular implantation, neural tissue engineering, and biochemical sensing. Each correction between the structural features of MOFs and their corresponding implanted works is highlighted. Finally, the confronting challenges and future perspectives in the implant interventional field are discussed.
Collapse
Affiliation(s)
- Yifan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuteng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhua Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
42
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
43
|
Roy Barman S, Jhunjhunwala S. Electrical Stimulation for Immunomodulation. ACS OMEGA 2024; 9:52-66. [PMID: 38222551 PMCID: PMC10785302 DOI: 10.1021/acsomega.3c06696] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
The immune system plays a key role in the development and progression of numerous diseases such as chronic wounds, autoimmune diseases, and various forms of cancer. Hence, controlling the behavior of immune cells has emerged as a promising approach for treating these diseases. Current modalities for immunomodulation focus on chemical based approaches, which while effective have the limitations of nonspecific systemic side effects or requiring invasive delivery approaches to reduce the systemic side effects. Recent advances have unraveled the significance of electrical stimulation as an attractive noninvasive approach to modulate immune cell phenotype and activity. This review provides insights on electrical stimulation strategies employed for regulating the behavior of macrophages, T and B cells, and neutrophils. For obtaining a better understanding, two major types of electrical stimulation sources, conventional and self-powered sources, that have been used for immunomodulation are extensively discussed. Next, the strategies of electrical stimulation that may be applied to cells in vitro and in vivo are discussed, with a focus on conventional and stimuli-responsive self-powered sources. A description of how these strategies influence the polarization, phagocytosis, migration, and differentiation of immune cells is also provided. Finally, recent developments in the use of highly localized and efficient platforms for electrical stimulation based immunomodulation are also highlighted.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India 560012
| | | |
Collapse
|
44
|
Chen Y, Chen Y, Xie Z, Yang Y, Chen S, Han T, Li M, Guo Z, Sun N, Wang C. A Biomimetic Nanogenerator to Enhance Bone Regeneration by Restoring Electric Microenvironments. ACS Biomater Sci Eng 2024; 10:525-536. [PMID: 38099722 DOI: 10.1021/acsbiomaterials.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Piezoelectric materials have received increasing attention in bone regeneration due to their prominent role in bioelectricity in bone homeostasis. This study aimed to develop bioactive barium titanate-chitosan-graphene oxide piezoelectric nanoparticles (BCG-NPs) to improve biocompatibility and stimulate bone repair. Butterfly loops, hysteresis loops, and in vitro microcurrent studies on BCG-NPs confirmed their good piezoelectric properties. BCG-NPs exhibited enhanced alkaline phosphatase activity, mineralized nodule formation, and expression of osteogenic-associated proteins and genes in human umbilical cord Wharton's jelly-derived mesenchymal stem cells by creating microelectric environments in response to noninvasive ultrasound stimulation. Further, BCG-NPs upregulated intracellular calcium ions via electrical stimulation. They acted synergistically with piezo-type mechanosensitive ion channel component 1 and calcium-permeable cation channel transient receptor potential vanilloid 4 to activate osteogenic differentiation. In conclusion, ultrasound-assisted BCG-NPs created a microelectric environment that putatively promoted bone repair in a noninvasive manner.
Collapse
Affiliation(s)
- Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Zhe Xie
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Yuchen Yang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Siyuan Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Miaomiao Li
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Zhengnong Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Nuo Sun
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| |
Collapse
|
45
|
Li C, Yu P, Wang Z, Long C, Xiao C, Xing J, Dong B, Zhai J, Zhou L, Zhou Z, Wang Y, Zhu W, Tan G, Ning C, Zhou Y, Mao C. Electro-mechanical coupling directs endothelial activities through intracellular calcium ion deployment. MATERIALS HORIZONS 2023; 10:4903-4913. [PMID: 37750251 DOI: 10.1039/d3mh01049j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Conversion between mechanical and electrical cues is usually considered unidirectional in cells with cardiomyocytes being an exception. Here, we discover a material-induced external electric field (Eex) triggers an electro-mechanical coupling feedback loop in cells other than cardiomyocytes, human umbilical vein endothelial cells (HUVECs), by opening their mechanosensitive Piezo1 channels. When HUVECs are cultured on patterned piezoelectric materials, the materials generate Eex (confined at the cellular scale) to polarize intracellular calcium ions ([Ca2+]i), forming a built-in electric field (Ein) opposing Eex. Furthermore, the [Ca2+]i polarization stimulates HUVECs to shrink their cytoskeletons, activating Piezo1 channels to induce influx of extracellular Ca2+ that gradually increases Ein to balance Eex. Such an electro-mechanical coupling feedback loop directs pre-angiogenic activities such as alignment, elongation, and migration of HUVECs. Activated calcium dynamics during the coupling further modulate the downstream angiogenesis-inducing eNOS/NO pathway. These findings lay a foundation for developing new ways of electrical stimulation-based disease treatment.
Collapse
Affiliation(s)
- Changhao Li
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Peng Yu
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Zhengao Wang
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cairong Xiao
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Jun Xing
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Binbin Dong
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jinxia Zhai
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Lei Zhou
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Zhengnan Zhou
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Wenjun Zhu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Material Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
- School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
46
|
Fu S, Yi S, Ke Q, Liu K, Xu H. A Self-Powered Hydrogel/Nanogenerator System Accelerates Wound Healing by Electricity-Triggered On-Demand Phosphatase and Tensin Homologue (PTEN) Inhibition. ACS NANO 2023; 17:19652-19666. [PMID: 37820299 DOI: 10.1021/acsnano.3c02561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Electrical stimulation therapy (EST) has been established as an effective strategy to accelerate wound healing by stimulating cell proliferation and migration, ultimately promoting re-epithelialization and vascularization, two key processes that significantly influence the rate of wound healing. Phosphatase and tensin homologue (PTEN), a widely expressed protein in somatic cells, works as a "brake" regulating cell differentiation, proliferation, and migration. Given that this "brake" also works in cell electrical responses, there is a hypothesis that PTEN inhibition may amplify the efficacy of EST in wound treatment. However, long-term inhibition of PTEN may result in DNA damage and reduce DNA repair, which poses a significant challenge to the safe use of PTEN inhibitors. To address this issue, we developed a system that combines PTEN inhibitor loaded electro-responsive hydrogel (BPV@PCP) with a wearable direct current pulse piezoelectric nanogenerator (PENG). The PENG converts the rat's motions into electric fields that synchronously charge the wound edge tissue and BPV@PCP. Electric field intensity was lower when the rat was quiet or anesthetized, which is insufficient to trigger an effective PTEN inhibitor release. However, when the rat was in action, the electric field intensity exceeded 625 mV/mm, resulting in a rapid drug release. This on-demand PTEN inhibition accelerated wound healing by amplifying cell electric responsiveness while avoiding negative effects associated with continuous overinhibition of PTEN. Notably, this system improves vascularization not only by improving endothelial cell electric responsiveness but also through the paracrine pathway, in which electrical stimulation and PTEN inhibition synergically promote VEGF secretion.
Collapse
Affiliation(s)
- Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shunqian Yi
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qinfei Ke
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - He Xu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
47
|
Mehta AS, Teymoori S, Recendez C, Fregoso D, Gallegos A, Yang HY, Aslankoohi E, Rolandi M, Isseroff RR, Zhao M, Gomez M. Quantifying innervation facilitated by deep learning in wound healing. Sci Rep 2023; 13:16885. [PMID: 37803028 PMCID: PMC10558471 DOI: 10.1038/s41598-023-42743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023] Open
Abstract
The peripheral nerves (PNs) innervate the dermis and epidermis, and are suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and the noise/background associated with the immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, Denoising Convolutional Neural Network (DnCNN), to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8 mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3, 7, 10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly, we found a positive correlation (R2 = 0.926) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Dermatology, University of California, Davis, CA, 95616, USA.
- Department of Ophthalmology, University of California, Davis, CA, 95616, USA.
| | - Sam Teymoori
- Department of Applied Mathematics, University of California, Santa Cruz, CA, 95064, USA
| | - Cynthia Recendez
- Department of Dermatology, University of California, Davis, CA, 95616, USA
- Department of Ophthalmology, University of California, Davis, CA, 95616, USA
| | - Daniel Fregoso
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Anthony Gallegos
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | | | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, 95616, USA.
- Department of Ophthalmology, University of California, Davis, CA, 95616, USA.
| | - Marcella Gomez
- Department of Applied Mathematics, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
48
|
Li J, Wu C, Zeng M, Zhang Y, Wei D, Sun J, Fan H. Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration. J Mater Chem B 2023; 11:9056-9083. [PMID: 37649427 DOI: 10.1039/d3tb01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nerve injuries and neurological diseases remain intractable clinical challenges. Despite the advantages of stem cell therapy in treating neurological disorders, uncontrollable cell fates and loss of cell function in vivo are still challenging. Recently, increasing attention has been given to the roles of external physical signals, such as electricity and ultrasound, in regulating stem cell fate as well as activating or inhibiting neuronal activity, which provides new insights for the treatment of neurological disorders. However, direct physical stimulations in vivo are short in accuracy and safety. Functional materials that can absorb energy from a specific physical field exerted in a wireless way and then release another localized physical signal hold great advantages in mediating noninvasive or minimally invasive accurate indirect physical stimulations to promote the therapeutic effect on neurological disorders. In this review, the mechanism by which various physical signals regulate stem cell fate and neuronal activity is summarized. Based on these concepts, the approaches of using functional materials to mediate indirect wireless physical stimulation for neuro-modulation and regeneration are systematically reviewed. We expect that this review will contribute to developing wireless platforms for neural stimulation as an assistance for the treatment of neurological diseases and injuries.
Collapse
Affiliation(s)
- Jialu Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
49
|
Lyu S, Dong Z, Xu X, Bei HP, Yuen HY, James Cheung CW, Wong MS, He Y, Zhao X. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater 2023; 27:303-326. [PMID: 37122902 PMCID: PMC10140753 DOI: 10.1016/j.bioactmat.2023.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Microneedle, as a novel drug delivery system, has attracted widespread attention due to its non-invasiveness, painless and simple administration, controllable drug delivery, and diverse cargo loading capacity. Although microneedles are initially designed to penetrate stratum corneum of skin for transdermal drug delivery, they, recently, have been used to promote wound healing and regeneration of diverse tissues and organs and the results are promising. Despite there are reviews about microneedles, few of them focus on wound healing and tissue regeneration. Here, we review the recent advances of microneedles in this field. We first give an overview of microneedle system in terms of its potential cargos (e.g., small molecules, macromolecules, nucleic acids, nanoparticles, extracellular vesicle, cells), structural designs (e.g., multidrug structures, adhesive structures), material selection, and drug release mechanisms. Then we briefly summarize different microneedle fabrication methods, including their advantages and limitations. We finally summarize the recent progress of microneedle-assisted wound healing and tissue regeneration (e.g., skin, cardiac, bone, tendon, ocular, vascular, oral, hair, spinal cord, and uterine tissues). We expect that our article would serve as a guideline for readers to design their microneedle systems according to different applications, including material selection, drug selection, and structure design, for achieving better healing and regeneration efficacy.
Collapse
Affiliation(s)
- Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Ho-Yin Yuen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Chung-Wai James Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Man-Sang Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
- Corresponding author.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| |
Collapse
|
50
|
Lagasse E, Levin M. Future medicine: from molecular pathways to the collective intelligence of the body. Trends Mol Med 2023; 29:687-710. [PMID: 37481382 PMCID: PMC10527237 DOI: 10.1016/j.molmed.2023.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
The remarkable anatomical homeostasis exhibited by complex living organisms suggests that they are inherently reprogrammable information-processing systems that offer numerous interfaces to their physiological and anatomical problem-solving capacities. We briefly review data suggesting that the multiscale competency of living forms affords a new path for biomedicine that exploits the innate collective intelligence of tissues and organs. The concept of tissue-level allostatic goal-directedness is already bearing fruit in clinical practice. We sketch a roadmap towards 'somatic psychiatry' by using advances in bioelectricity and behavioral neuroscience to design methods that induce self-repair of structure and function. Relaxing the assumption that cellular control mechanisms are static, exploiting powerful concepts from cybernetics, behavioral science, and developmental biology may spark definitive solutions to current biomedical challenges.
Collapse
Affiliation(s)
- Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|