1
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
El Khayari A, Hakam SM, Malka G, Rochette L, El Fatimy R. New insights into the cardio-renal benefits of SGLT2 inhibitors and the coordinated role of miR-30 family. Genes Dis 2024; 11:101174. [PMID: 39224109 PMCID: PMC11367061 DOI: 10.1016/j.gendis.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 09/04/2024] Open
Abstract
Sodium-glucose co-transporter inhibitors (SGLTis) are the latest class of anti-hyperglycemic agents. In addition to inhibiting the absorption of glucose by the kidney causing glycosuria, these drugs also demonstrate cardio-renal benefits in diabetic subjects. miR-30 family, one of the most abundant microRNAs in the heart, has recently been linked to a setting of cardiovascular diseases and has been proposed as novel biomarkers in kidney dysfunctions as well; their expression is consistently dysregulated in a variety of cardio-renal dysfunctions. The mechanistic involvement and the potential interplay between miR-30 and SGLT2i effects have yet to be thoroughly elucidated. Recent research has stressed the relevance of this cluster of microRNAs as modulators of several pathological processes in the heart and kidneys, raising the possibility of these small ncRNAs playing a central role in various cardiovascular complications, notably, endothelial dysfunction and pathological remodeling. Here, we review current evidence supporting the pleiotropic effects of SGLT2is in cardiovascular and renal outcomes and investigate the link and the coordinated implication of the miR-30 family in endothelial dysfunction and cardiac remodeling. We also discuss the emerging role of circulating miR-30 as non-invasive biomarkers and attractive therapeutic targets for cardiovascular diseases and kidney diseases. Clinical evidence, as well as metabolic, cellular, and molecular aspects, are comprehensively covered.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Soukaina Miya Hakam
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Gabriel Malka
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne – Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon 21000, France
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| |
Collapse
|
3
|
Liu Z, Fu Y, Yan M, Zhang S, Cai J, Chen G, Dong Z. microRNAs in kidney diseases: Regulation, therapeutics, and biomarker potential. Pharmacol Ther 2024; 262:108709. [PMID: 39181246 DOI: 10.1016/j.pharmthera.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression by inhibiting the translation of their specific target messenger RNAs. To date, numerous studies have demonstrated changes in the expression of miRNAs in the kidneys throughout the progression of both acute kidney injury (AKI) and chronic kidney disease (CKD) in both human patients and experimental models. The role of specific microRNAs in the pathogenesis of kidney diseases has also been demonstrated. Further studies have elucidated the regulation of these microRNAs in diseased kidneys. Besides, certain miRNAs are detected in plasma and/or urine in kidney diseases and are potential diagnostic biomarkers. In this review, we provide an overview of recent developments in our understanding of how miRNAs contribute to kidney diseases. We also explore the potential of miRNAs as both biomarkers and therapeutic targets for these conditions, and highlight future research directions.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Ying Fu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mingjuan Yan
- Changde Hospital, Xiangya School of Medicine, Central South University, China
| | - Subing Zhang
- Youxian People's Hospital, Youxian, Hunan 412300, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
| |
Collapse
|
4
|
Nalbant E, Akkaya-Ulum YZ. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin Exp Med 2024; 24:142. [PMID: 38958690 PMCID: PMC11222192 DOI: 10.1007/s10238-024-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 07/04/2024]
Abstract
This comprehensive exploration delves into the pivotal role of microRNAs (miRNAs) within the intricate tapestry of cellular regulation. As potent orchestrators of gene expression, miRNAs exhibit diverse functions in cellular processes, extending their influence from the nucleus to the cytoplasm. The complex journey of miRNA biogenesis, involving transcription, processing, and integration into the RNA-induced silencing complex, showcases their versatility. In the cytoplasm, mature miRNAs finely tune cellular functions by modulating target mRNA expression, while their reach extends into the nucleus, influencing transcriptional regulation and epigenetic modifications. Dysregulation of miRNAs becomes apparent in various pathologies, such as cancer, autoimmune diseases, and inflammatory conditions. The adaptability of miRNAs to environmental signals, interactions with transcription factors, and involvement in intricate regulatory networks underscore their significance. DNA methylation and histone modifications adds depth to understanding the dynamic regulation of miRNAs. Mechanisms like competition with RNA-binding proteins, sponging, and the control of miRNA levels through degradation and editing contribute to this complex regulation process. In this review, we mainly focus on how dysregulation of miRNA expression can be related with skin-related autoimmune and autoinflammatory diseases, arthritis, cardiovascular diseases, inflammatory bowel disease, autoimmune and autoinflammatory diseases, and neurodegenerative disorders. We also emphasize the multifaceted roles of miRNAs, urging continued research to unravel their complexities. The mechanisms governing miRNA functions promise advancements in therapeutic interventions and enhanced insights into cellular dynamics in health and disease.
Collapse
Affiliation(s)
- Emre Nalbant
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye.
| |
Collapse
|
5
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
6
|
Zhang L, Chen F, Dong J, Wang R, Bi G, Xu D, Zhang Y, Deng Y, Lin W, Yang Z, Cao W. HDAC3 aberration-incurred GPX4 suppression drives renal ferroptosis and AKI-CKD progression. Redox Biol 2023; 68:102939. [PMID: 37890360 PMCID: PMC10638610 DOI: 10.1016/j.redox.2023.102939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Acute kidney injury (AKI) progression to chronic kidney disease (CKD) represents a unique renal disease setting characterized by early renal cellular injury and regulated cell death, and later renal fibrosis, of which the critical role and nature of ferroptosis are only partially understood. Here, we report that renal tubular epithelial ferroptosis caused by HDAC3 (histone deacetylase 3) aberration and the resultant GPX4 suppression drives AKI-CKD progression. In mouse models of AKI-CKD transition induced by nephrotoxic aristolochic acid (AA) and folic acid (FA), renal tubular epithelial ferroptosis occurred early that coincided with preferential HDAC3 elevation and marked suppression of a core anti-ferroptosis enzyme GPX4 (glutathione peroxidase 4). Intriguingly, genetic Hdac3 knockout or administration of a HDAC3-selective inhibitor RGFP966 effectively mitigated the GPX4 suppression, ferroptosis and the fibrosis-associated renal functional loss. In cultured tubular epithelial cells, HDAC3 over-expression or inhibition inversely affected GPX4 abundances. Further analysis revealed that Gpx4 promoter contains a typical binding motif of transcription factor KLF5 (Kruppel-like factor 5). HDAC3 and KLF5 inducibly associated and bound to Gpx4 promoter upon AA treatment, leading to local histone hypoacetylation and GPX4 transactivation inhibition, which was blocked by RGFP966 and a KLF5 inhibitor ML264, respectively, suggesting that KLF5 co-regulated the HDAC3-incurred Gpx4 transcription inhibition. More importantly, in AKI-CKD mice receiving a GPX4 inactivator RSL3, the anti-ferroptosis and renoprotective effects of RGFP966 were largely abrogated, indicating that GPX4 is an essential downstream mediator of the HDAC3 aberration and renal ferroptosis during AKI-CKD transition. Together, our study identified a critical epigenetic pathway of ferroptosis during AKI-CKD transition and suggested that the strategies preserving GPX4 by HDAC3 inhibition are potentially effective to reduce renal ferroptosis and slow AKI-CKD progression.
Collapse
Affiliation(s)
- Lijun Zhang
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China
| | - Fang Chen
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China
| | - Jian Dong
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China
| | - Rong Wang
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Guangyu Bi
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Daoliang Xu
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yingwei Zhang
- Department of Respirology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Deng
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China
| | - Wenjun Lin
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhongzhou Yang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China.
| | - Wangsen Cao
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China; Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
7
|
He R, Liu B, Geng B, Li N, Geng Q. The role of HDAC3 and its inhibitors in regulation of oxidative stress and chronic diseases. Cell Death Discov 2023; 9:131. [PMID: 37072432 PMCID: PMC10113195 DOI: 10.1038/s41420-023-01399-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023] Open
Abstract
HDAC3 is a specific and crucial member of the HDAC family. It is required for embryonic growth, development, and physiological function. The regulation of oxidative stress is an important factor in intracellular homeostasis and signal transduction. Currently, HDAC3 has been found to regulate several oxidative stress-related processes and molecules dependent on its deacetylase and non-enzymatic activities. In this review, we comprehensively summarize the knowledge of the relationship of HDAC3 with mitochondria function and metabolism, ROS-produced enzymes, antioxidant enzymes, and oxidative stress-associated transcription factors. We also discuss the role of HDAC3 and its inhibitors in some chronic cardiovascular, kidney, and neurodegenerative diseases. Due to the simultaneous existence of enzyme activity and non-enzyme activity, HDAC3 and the development of its selective inhibitors still need further exploration in the future.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boxin Geng
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Xu N, Liu J, Li X. Lupus nephritis: The regulatory interplay between epigenetic and MicroRNAs. Front Physiol 2022; 13:925416. [PMID: 36187762 PMCID: PMC9523357 DOI: 10.3389/fphys.2022.925416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, non-coding RNA molecules that act as epigenetic modifiers to regulate the protein levels of target messenger RNAs without altering their genetic sequences. The highly complex role of miRNAs in the epigenetics of lupus nephritis (LN) is increasingly being recognized. DNA methylation and histone modifications are focal points of epigenetic research. miRNAs play a critical role in renal development and physiology, and dysregulation may result in abnormal renal cell proliferation, inflammation, and fibrosis of the kidneys in LN. However, epigenetic and miRNA-mediated regulation are not mutually exclusive. Further research has established a link between miRNA expression and epigenetic regulation in various disorders, including LN. This review summarizes the most recent evidence regarding the interaction between miRNAs and epigenetics in LN and highlights potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Ning Xu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Xiangling Li,
| |
Collapse
|
9
|
Wang J, Li J, Zhang X, Zhang M, Hu X, Yin H. Molecular mechanisms of histone deacetylases and inhibitors in renal fibrosis progression. Front Mol Biosci 2022; 9:986405. [PMID: 36148005 PMCID: PMC9485629 DOI: 10.3389/fmolb.2022.986405] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common progressive manifestation of chronic kidney disease. This phenomenon of self-repair in response to kidney damage seriously affects the normal filtration function of the kidney. Yet, there are no specific treatments for the condition, which marks fibrosis as an irreversible pathological sequela. As such, there is a pressing need to improve our understanding of how fibrosis develops at the cellular and molecular levels and explore specific targeted therapies for these pathogenic mechanisms. It is now generally accepted that renal fibrosis is a pathological transition mediated by extracellular matrix (ECM) deposition, abnormal activation of myofibroblasts, and epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells under the regulation of TGF-β. Histone deacetylases (HDACs) appear to play an essential role in promoting renal fibrosis through non-histone epigenetic modifications. In this review, we summarize the mechanisms of renal fibrosis and the signaling pathways that might be involved in HDACs in renal fibrosis, and the specific mechanisms of action of various HDAC inhibitors (HDACi) in the anti-fibrotic process to elucidate HDACi as a novel therapeutic tool to slow down the progression of renal fibrosis.
Collapse
|
10
|
Zheng Q, Lei Y, Hui S, Tong M, Liang L. HDAC3 promotes pulmonary fibrosis by activating NOTCH1 and STAT1 signaling and up-regulating inflammasome components AIM2 and ASC. Cytokine 2022; 153:155842. [DOI: 10.1016/j.cyto.2022.155842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
|
11
|
Shen F, Zhuang S. Histone Acetylation and Modifiers in Renal Fibrosis. Front Pharmacol 2022; 13:760308. [PMID: 35559244 PMCID: PMC9086452 DOI: 10.3389/fphar.2022.760308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Histones are the most abundant proteins bound to DNA in eukaryotic cells and frequently subjected to post-modifications such as acetylation, methylation, phosphorylation and ubiquitination. Many studies have shown that histone modifications, especially histone acetylation, play an important role in the development and progression of renal fibrosis. Histone acetylation is regulated by three families of proteins, including histone acetyltransferases (HATs), histone deacetylases (HDACs) and bromodomain and extraterminal (BET) proteins. These acetylation modifiers are involved in a variety of pathophysiological processes leading to the development of renal fibrosis, including partial epithelial-mesenchymal transition, renal fibroblast activation, inflammatory response, and the expression of pro-fibrosis factors. In this review, we summarize the role and regulatory mechanisms of HATs, HDACs and BET proteins in renal fibrosis and provide evidence for targeting these modifiers to treat various chronic fibrotic kidney diseases in animal models.
Collapse
Affiliation(s)
- Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
12
|
Guo A, Sun Y, Xu X, Xing Q. MicroRNA-30a Targets Notch1 to Alleviate Podocyte Injury in Lupus Nephritis. Immunol Invest 2022; 51:1694-1706. [PMID: 35023444 DOI: 10.1080/08820139.2022.2027440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The microRNA miR-30a has been reported to mitigate podocyte damage and resist injurious factors in lupus nephritis (LN), but the precise molecular mechanisms underlying these effects remain elusive. We hypothesized that miR-30a can ameliorate podocyte injury by downregulating the Notch1 signaling pathway and investigated the role of miR-30a in the pathogenesis of podocyte-treated with Immunoglobulin G from patients with LN (IgG-LN). The study enrolled 30 patients from new-onset systemic lupus erythematosus and 28 healthy individuals, then evaluated the levels of their serum miR-30a using RT-qPCR. Additionally, MPC5 cells were transfected with NICD-vector to overexpress Notch1, then with miR-30a mimics or inhibitors to determine miR-30a effects on Notch1. Analysis of function and regulatory mechanisms were performed with RT-qPCR, Western blotting, and CCK8 assays. Furthermore, we verified the candidate sequence targeted by miR-30a using a luciferase reporter gene assay. We observed a significant decrease in the serum miR-30a levels in patients with LN. Also, in IgG-LN-treated podocytes, miR-30a decreased and Notch1 expression was elevated. Bioinformatic analysis and transfection experiments revealed that Notch1 is a direct target of miR-30a. Further supporting this finding, miR-30a upregulation appeared to alleviate IgG-LN-treated podocyte injury, and Notch1 overexpression reversed this effect. To conclude, miR-30a can ameliorate podocyte injury via suppression of the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Aoyang Guo
- Department of Immune Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Yadi Sun
- Department of Immune Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Xiaona Xu
- Department of Immune Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Qian Xing
- Department of Immune Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Zhang L, Cao W. Histone deacetylase 3 (HDAC3) as an important epigenetic regulator of kidney diseases. J Mol Med (Berl) 2021; 100:43-51. [PMID: 34698870 DOI: 10.1007/s00109-021-02141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Development and progression of many kidney diseases are substantially influenced by aberrant protein acetylation modifications of gene expression crucial for kidney functions. Histone deacetylase (HDAC) expression alterations are detected from renal samples of patients and animal models of various kidney diseases, and the administrations of HDAC inhibitors display impressive renal protective effects in vitro and in vivo. However, when the expression alterations of multiple HDACs occur, not all the HDACs causally affect the disease onset or progression. Identification of a single HDAC as a disease-causing factor will allow subtype-targeted intervention with less side effect. HDAC3 is a unique HDAC with distinct structural and subcellular distribution features and co-repressor dependency. HDAC3 is required for kidney development and its aberrations actively participate in many pathological processes, such as cancer, cardiovascular diseases, diabetes, and neurodegenerative disorders, and contribute significantly to the pathogenesis of kidney diseases. This review will discuss the recent studies that investigate the critical roles of HDAC3 aberrations in kidney development, renal aging, renal cell carcinoma, renal fibrosis, chronic kidney disease, polycystic kidney disease, glomerular podocyte injury, and diabetic nephropathy. These studies reveal the distinct characters of HDAC3 aberrations that act on different molecules/signaling pathways under various renal pathological conditions, which might shed lights into the epigenetic mechanisms of renal diseases and the potentially therapeutic strategies.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Nephrology, Northern Jiangsu People's Hospital, Nanjing University School of Medicine, Yangzhou, 225001, China
- Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Wangsen Cao
- Department of Nephrology, Northern Jiangsu People's Hospital, Nanjing University School of Medicine, Yangzhou, 225001, China.
- Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.
| |
Collapse
|
14
|
Yao W, Wang S, Du X, Lin C, Zhang J, Pan Z, Li Q. SMAD4 Inhibits Granulosa Cell Apoptosis via the miR-183-96-182 Cluster and FoxO1 Axis. Reprod Sci 2021; 29:1577-1585. [PMID: 34287793 DOI: 10.1007/s43032-021-00690-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022]
Abstract
The miR-183-96-182 cluster is a polycistronic miRNA cluster necessary for ovarian functions in mammals. However, its transcriptional regulation in the ovary is largely unclear. In this study, we characterized the promoter region of the porcine miR-183-96-182 cluster, and showed that SMAD4 may function as a transcriptional activator of the miR-183-96-182 cluster in GCs through direct binding to SBE motifs in its promoter. SMAD4 may inhibit GC apoptosis via suppression of FoxO1, an effector of GC apoptosis and a direct target of the miR-183-96-182 cluster, by inducing the miR-183-96-182 cluster, and this process may be regulated by the TGF-β/SMAD signaling pathway. Our findings uncovered the regulatory mechanism of miR-183-96-182 cluster expression in GCs and demonstrated that TGF-β1/SMAD4/miR-183-96-182 cluster/FoxO1 may be a potential pathway for regulating follicular atresia and female reproduction.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenggang Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Zhang F, Qi L, Feng Q, Zhang B, Li X, Liu C, Li W, Liu Q, Yang D, Yin Y, Peng C, Wu H, Tang ZH, Zhou X, Xiang Z, Zhang Z, Wang H, Wei B. HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci U S A 2021; 118:e2021798118. [PMID: 34244427 PMCID: PMC8285910 DOI: 10.1073/pnas.2021798118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although inflammation is critical for the clearance of pathogens, uncontrolled inflammation also contributes to the development of multiple diseases such as cancer and sepsis. Since NF-κB-mediated transactivation in the nucleus is pivotal downstream of various stimuli to induce inflammation, searching the nuclear-localized targets specifically regulating NF-κB activation will provide important therapeutic application. Here, we have identified that homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, increases its expression in inflammatory macrophages. Importantly, HIPK2 deficiency or overexpression could enhance or inhibit inflammatory responses in LPS-stimulated macrophages, respectively. HIPK2-deficient mice were more susceptible to LPS-induced endotoxemia and CLP-induced sepsis. Adoptive transfer of Hipk2+/- bone marrow cells (BMs) also aggravated AOM/DSS-induced colorectal cancer. Mechanistically, HIPK2 bound and phosphorylated histone deacetylase 3 (HDAC3) at serine 374 to inhibit its enzymatic activity, thus reducing the deacetylation of p65 at lysine 218 to suppress NF-κB activation. Notably, the HDAC3 inhibitors protected wild-type or Hipk2-/- BMs-reconstituted mice from LPS-induced endotoxemia. Our findings suggest that the HIPK2-HDAC3-p65 module in macrophages restrains excessive inflammation, which may represent a new layer of therapeutic mechanism for colitis-associated colorectal cancer and sepsis.
Collapse
Affiliation(s)
- Fang Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- School of Communication & Information Engineering, Shanghai University, Shanghai 200444, China
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiuyun Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Baokai Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyue Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chang Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaojie Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Han Wu
- Division of Trauma Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhao-Hui Tang
- Division of Trauma Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Zhijiang Zhang
- School of Communication & Information Engineering, Shanghai University, Shanghai 200444, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of the Chinese Academy of Sciences, Shanghai 200031, China;
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bin Wei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
16
|
Potential role of extracellular vesicles in the pathophysiology of glomerular diseases. Clin Sci (Lond) 2021; 134:2741-2754. [PMID: 33111949 DOI: 10.1042/cs20200766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles released by most cells and are found in diverse biological fluids. The release of EVs provides a new mechanism for intercellular communication, allowing cells to transfer their functional cargoes to target cells. Glomerular diseases account for a large proportion of end-stage renal disease (ESRD) worldwide. In recent years, an increasing number of research groups have focused their effort on identifying the functional role of EVs in renal diseases. However, the involvement of EVs in the pathophysiology of glomerular diseases has not been comprehensively described and discussed. In this review, we first briefly introduce the characteristics of EVs. Then, we describe the involvement of EVs in the mechanisms underlying glomerular diseases, including immunological and fibrotic processes. We also discuss what functions EVs derived from different kidney cells have in glomerular diseases and how EVs exert their effects through different signaling pathways. Furthermore, we summarize recent advances in the knowledge of EV involvement in the pathogenesis of various glomerular diseases. Finally, we propose future research directions for identifying better management strategies for glomerular diseases.
Collapse
|
17
|
Chen F, Gao Q, Wei A, Chen X, Shi Y, Wang H, Cao W. Histone deacetylase 3 aberration inhibits Klotho transcription and promotes renal fibrosis. Cell Death Differ 2021; 28:1001-1012. [PMID: 33024274 PMCID: PMC7937860 DOI: 10.1038/s41418-020-00631-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Development of renal fibrosis is a hallmark of renal aging and chronic kidney disease of all etiologies and characterized by extensive renal cell injuries and subsequent myofibroblast transdifferentiations (MTDs), which are significantly influenced by aberrant histone deacetylase (HDAC) activities. However, the key HDAC isoforms and effectors that are causally involved in the processes remain poorly understood. Here, we report that aberrant HDAC3 induction and its inhibition of Klotho, a renal epithelium-enriched aging suppressor, contribute significantly to renal fibrogenesis. HDAC3 was preferentially elevated with concomitant Klotho suppression in fibrotic kidneys incurred by unilateral ureter obstruction (UUO) and aristolochic acid nephropathy (AAN), whereas Hdac3 knockout resisted the fibrotic pathologies. The HDAC3 elevation is substantially blocked by the inhibitors of TGFβ receptor and Smad3 phosphorylation, suggesting that TGFβ/Smad signal activates Hdac3 transcription. Consistently, an HDAC3-selective inhibitor RGFP966 derepressed Klotho and mitigated the renal fibrotic injuries in both UUO and AAN mice. Further, HDAC3 overexpression or inhibition in renal epithelia inversely affected Klotho abundances and HDAC3 was inducibly associated with transcription regulators NCoR and NF-kB and bound to Klotho promoter in fibrotic kidney, supporting that aberrant HDAC3 targets and transcriptionally inhibits Klotho under renal fibrotic conditions. More importantly, the antirenal fibrosis effects of RGFP966 were largely compromised in mice with siRNA-mediated Klotho knockdown. Hence, HDAC3 aberration and the subsequent Klotho suppression constitute an important regulatory loop that promotes MTD and renal fibrosis and uses of HDAC3-selective inhibitors are potentially effective in treating renal fibrotic disorders.
Collapse
Affiliation(s)
- Fang Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Qi Gao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Ai Wei
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xingren Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Wang
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| | - Wangsen Cao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
18
|
Yuan H, Jiao L, Yu N, Duan H, Yu Y, Bai Y. Histone Deacetylase 3-Mediated Inhibition of microRNA-19a-3p Facilitates the Development of Rheumatoid Arthritis-Associated Interstitial Lung Disease. Front Physiol 2020; 11:549656. [PMID: 33343379 PMCID: PMC7746846 DOI: 10.3389/fphys.2020.549656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022] Open
Abstract
Histone deacetylase (HDAC) has been implicated in rheumatoid arthritis (RA) progression. We investigated the roles of histone deacetylase 3 (HDAC3) involved in RA-associated interstitial lung disease (ILD) fibrosis. Firstly, we measured the expression of HDAC3 and interleukin 17 receptor A (IL17RA) in lung tissue samples from normal controls, idiopathic pulmonary fibrosis (IPF) patients, and RA-ILD patients. Next, chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay were employed to detect the interaction between HDAC3 and microRNA-19a-3p (miR-19a-3p) and between miR-19a-3p and IL17RA. Further, immunohistochemistry was used to localize HDAC3 and IL17RA expression in lung tissues. Additionally, functional assays were conducted followed by expression determination of HDAC3, miR-19a-3p, and IL17RA with reverse transcription quantitative PCR (RT-qPCR) and Western blot analysis. The effect of HDAC3 on RA-ILD in the constructed RA-ILD mouse model was also studied based on arthritis assessment. We found overexpressed HDAC3 and IL17RA as well as silenced miR-19a-3p in RA-ILD mouse model and RA-ILD patients. In the mouse model, HDAC3 downregulated miR-19a-3p in lung fibroblasts to promote the progression of RA-ILD fibrosis. In lung fibroblasts of RA-ILD mice, IL17RA was a target gene of miR-19a-3p. miR-19a-3p negatively regulated IL17RA, thereby increasing the expression of fibrosis markers, COL1A1, COL3A1, and FN, in lung fibroblasts of mice. Taken together, HDAC3 upregulated IL17RA expression by targeting miR-19a-3p to facilitate the RA-ILD fibrosis development, which sheds light on a new HDAC3/miR-19a-3p/IL17RA axis functioning in RA-ILD fibrosis.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Rheumatic Nephropathy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li Jiao
- Yanching Institute of Technology, Langfang, China
| | - Nan Yu
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haifeng Duan
- Department of Imaging, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yong Yu
- Department of Imaging, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanrong Bai
- Department of Rheumatic Nephropathy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
19
|
Christofides A, Papagregoriou G, Dweep H, Makrides N, Gretz N, Felekkis K, Deltas C. Evidence for miR-548c-5p regulation of FOXC2 transcription through a distal genomic target site in human podocytes. Cell Mol Life Sci 2020; 77:2441-2459. [PMID: 31531679 PMCID: PMC11105105 DOI: 10.1007/s00018-019-03294-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022]
Abstract
Podocytes are highly differentiated epithelial cells outlining the glomerular vessels. FOXC2 is a transcription factor essential for inducing podocyte differentiation, development and maturation, and is considered to be the earliest podocyte marker. miRNA prediction analysis revealed a full-length target site for the primate-specific miR-548c-5p at a genomic region > 8 kb upstream of FOXC2. We hypothesised that the transcription rates of FOXC2 during podocyte differentiation might be tuned by miR-548c-5p through this target site. Experiments were performed with cultured human podocytes, transfected with luciferase reporter constructs bearing this target site region within an enhancer element of the native plasmid. The results confirmed a seed region-driven targeting potential by the miRNA, with mimics downregulating and inhibitors enhancing luciferase activity. Introducing mutations into the miRNA target seed region abolished the expected response. In cultured podocytes, FOXC2 mRNA and protein levels responded to miR-548c-5p abundance in a coordinated manner before and after induction of differentiation, with high statistical significance. Ago-ChIP experiments revealed occupancy of the miRNA target site by miRNA/RISC in undifferentiated cells and its release when differentiation is initiated, allowing its interaction with the gene's promoter region to amplify FOXC2 expression, as shown by chromosome conformation capture and qRT-PCR. Moreover, the expression pattern of FOXC2 during podocyte differentiation seems to be affected by miR-548c-5p, as removal of either endogenous or mimic miR-548c-5p results in increased FOXC2 protein levels and cells resembling those undergoing differentiation. Collectively, results indicate a well-orchestrated regulatory model of FOXC2 expression by a remote upstream target site for miR-548c-5p.
Collapse
Affiliation(s)
- Andrea Christofides
- Molecular Medicine Research Center and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Gregory Papagregoriou
- Molecular Medicine Research Center and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St, Philadelphia, PA, 19104, USA
| | - Neoklis Makrides
- Developmental and Functional Genetics Group, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Norbert Gretz
- Medical Research Center, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kyriacos Felekkis
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
20
|
Jiang L, Cui H, Ding J. Smad3 signalling affects high glucose-induced podocyte injury via regulation of the cytoskeletal protein transgelin. Nephrology (Carlton) 2020; 25:659-666. [PMID: 32034833 PMCID: PMC7496067 DOI: 10.1111/nep.13701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Aim The aim of the present study was to characterize the role of Smad3 signalling on high glucose‐induced podocyte injury. Methods Synchronized conditionally immortalized mouse podocyte cell line (MPC5) cells were treated with either D‐glucose alone or D‐glucose plus the Smad3 inhibitor SIS3. The distribution of F‐actin and transgelin in a high glucose‐induced model of podocyte injury were examined by immunofluorescence. Levels of transgelin and Smad3 signalling proteins in MPC5 cells were determined by Western blot. Results A disordered distribution of F‐actin, as well as co‐localization of F‐actin and transgelin, was observed in podocytes exposed to high glucose. Increased levels of transgelin were first observed 10 minutes after treatment with glucose, suggesting that this protein is sensitive to hyperglycaemic injury. Levels of phosphorylated Smad3 and cleaved caspase 3 increased significantly with glucose stimulation. Moreover, expression of the downstream protein c‐Myc, but not JAK1/STAT3, was induced in conditions of high glucose. The Smad3‐specific inhibitor SIS3 prevented the effects of high glucose on Smad3 phosphorylation, expression of transgelin and c‐Myc, caspase 3 cleavage and cytoskeletal organization. Expression of the tumour suppressor protein p15INK4B increased after podocyte injury but was unaffected by Smad3 inhibition, suggesting that Smad3 regulation of high glucose‐induced podocyte injury occurs through a p15INK4B‐independent mechanism. Conclusion Smad3 signalling plays a critical role in the modulation of hyperglycaemic injury. Targeted inhibition of the Smad3 pathway may offer a novel route for treatment of podocyte damage, especially in cases of diabetic nephropathy. Podocyte damage is characteristic of diabetic kidney disease. This study showed that inhibition of Smad‐3 signalling using the specific inhibitor SIS3 in vitro, could alleviate podocyte abnormalities induced by high glucose including actin cytoskeletal rearrangement and actviation of cell death pathways.
Collapse
Affiliation(s)
- Lina Jiang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Hong Cui
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Jie Ding
- Pediatric Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
He QL, Qin SY, Tao L, Ning HJ, Jiang HX. Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett 2019; 18:6126-6142. [PMID: 31788087 PMCID: PMC6865135 DOI: 10.3892/ol.2019.10962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The prognostic value and molecular mechanism of microRNA-100-5p (miR-100-5p) in hepatocellular carcinoma (HCC) are still unclear. To explore the prognostic value and the mechanism of miR-100-5p in HCC, the present study analyzed the results of 18 previous studies and bioinformatic datasets. The clinical significance of miR-100-5p and its targets in HCC were investigated using The Cancer Genome Atlas and the Gene Expression Omnibus, as well as relevant literature. In total, 12 online tools were used to predict the target genes of miR-100-5p. Bioinformatics analysis and Spearman correlation analysis were performed, and genomic alterations of the hub genes were evaluated. A meta-analysis with 1,258 samples revealed that miR-100-5p was significantly downregulated in HCC [standard mean difference (SMD), -0.94; 95% confidence interval (CI), -1.14 to -0.74; I2, 35.2%]. Lower miR-100-5p expression was associated with poorer clinical characteristics and a poorer prognosis for patients with HCC. Additionally, bioinformatics analysis revealed that the 'regulation of transcription', 'chromatin remodeling complex', 'transcription regulator activity', 'pathways in cancer' and 'heparan sulfate biosynthesis' were the most enriched terms. Furthermore, expression of histone deacetylase (HDAC)2, HDAC3, SHC-transforming protein 1 (SHC1), Ras-related protein Rac1 (RAC1) and E3 ubiquitin-protein ligase CBL (CBL) was negatively correlated with miR-100-5p expression. Among these, upregulated HDAC2 [hazard ratio (HR), 1.910; 95% CI, 1.309-2.787; P=0.0007], HDAC3 (HR, 1.474; 95% CI, 1.012-2.146; P=0.0435), SHC1 (HR, 1.52; 95% CI, 1.043-2.215; P=0.0281) and RAC1 (HR, 1.817; 95% CI, 1.248-2.645; P=0.0022) were associated with shorter survival. Alterations in HDAC2, SHC1, RAC1 and IGF1R were linked with a poorer outcome for HCC, and alternative splicing of SHC and RAC1 were significantly decreased and increased in HCC, respectively. In summary, the downregulation of miR-100-5p may be involved in the progression and prognosis of HCC. The upregulation of HDAC2, HDAC3, SHC1 and RAC1 may indicate a poorer survival rate for patients with HCC. Thus, miR-100-5p and these 4 potential target genes may provide novel therapeutic targets and prognostic predictors for patients with HCC.
Collapse
Affiliation(s)
- Qing-Lin He
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shan-Yu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin Tao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong-Jian Ning
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Xing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
22
|
Liu Y, Dai E, Yang J. Quercetin suppresses glomerulosclerosis and TGF‑β signaling in a rat model. Mol Med Rep 2019; 19:4589-4596. [PMID: 30942399 PMCID: PMC6522826 DOI: 10.3892/mmr.2019.10118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is an important regulatory pathway in renal fibrosis and is abnormally activated in glomerulosclerosis. Quercetin is a common Chinese herbal medicine and has been reported to inhibit TGF-β signaling pathway activation. In the present study a glomerulosclerosis rat model was constructed and mice were treated with different concentrations of quercetin. Biochemical parameters, pathological indices and expression levels of TGF-β signaling pathway-associated proteins were detected using immunohistochemistry and western blotting. It was demonstrated that quercetin significantly improved physiological indices and altered the expression levels of TGF-β signaling pathway-associated proteins in rats with glomerulosclerosis. In conclusion, quercetin can regulate the TGF-β signaling pathway and reduce the progression of glomerulosclerosis.
Collapse
Affiliation(s)
- Yifan Liu
- Cooperation of Chinese and Western Medicine Department, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Enlai Dai
- Cooperation of Chinese and Western Medicine Department, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jing Yang
- Department of Children Glomerular Disease, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
23
|
Yuan B, Wu W, Zhang H, Gu H, Guo D, Jiang J, Wang X. Adenomatous polyposis coli as a predictor of environmental chemical-induced transgenerational effects related to male infertility. J Biochem Mol Toxicol 2019; 33:e22331. [PMID: 30934153 DOI: 10.1002/jbt.22331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 11/10/2022]
Abstract
Exposure to toxic environmental chemicals during pregnancy is a ubiquitous threat to health with potentially transgenerational consequences. However, the underlying mechanism of how transgenerational effects occur as part of environmental chemical exposure are not well understood. We investigated the potential molecular changes associated with dibutyl phthalate exposure that induced transgenerational effects, using a rat model. Through the analysis of the Gene Expression Omnibus database, we found some similar studies of environmental exposure induced transgenerational effects. Then, we analyzed one of the studies and our results to identify the adenomatous polyposis coli (APC) gene. This gene participated the most of the pathways and was upregulated in both studies. We used the miRWALK data set to predict the microRNAs which targeted the APC gene. We confirmed the miR-30 family were significantly downregulated in F3 testis tissues and targeted the APC gene. In conclusion, the miR-30 family/APC interaction is a potential mechanism for the transgenerational effects induced by the environmental chemical.
Collapse
Affiliation(s)
- Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huazhong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Gu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Guo
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Jiang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Xinru Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
The distinct role of CD73 in the progression of pancreatic cancer. J Mol Med (Berl) 2019; 97:803-815. [PMID: 30927045 PMCID: PMC6525710 DOI: 10.1007/s00109-018-01742-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/09/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Abstract Recent studies have shown that the non-enzymatic function of CD73 plays a key role in tumor progression, but this function of CD73 in pancreatic cancer cells has not been studied. Furthermore, little is known about the mechanism involved in CD73 regulation in tumors. Here, we found that CD73 expression was upregulated in pancreatic ductal adenocarcinoma (PDAC) and that its expression correlated with poor prognosis. CD73 knockdown inhibited cell growth and induced G1 phase arrest via the AKT/ERK/cyclin D signaling pathway. We also found that tumor necrosis factor receptor (TNFR) 2 was involved in CD73-induced AKT and ERK signaling pathway activation in PDAC. Further, miR-30a-5p overexpression significantly increased the cytotoxic effect of gemcitabine in pancreatic cancer by directly targeting CD73 messenger RNA (mRNA), suggesting that regulation of the miR-30a-5p/CD73 axis may play an important role in the development of gemcitabine resistance in pancreatic cancer. In summary, this regulatory network of CD73 appears to represent a new molecular mechanism underlying PDAC progression, and the mechanistic interaction between miR-30a-5p, CD73, and TNFR2 may provide new insights into therapeutic strategies for pancreatic cancer. Key messages CD73 was upregulated in PDAC and correlated with poor prognosis. CD73 knockdown inhibited cell growth and induced G1 phase arrest. TNFR2 was involved in CD73-induced AKT and ERK signaling pathway. miR-30a-5p targeted CD73 and increased the sensitivity to gemcitabine.
Electronic supplementary material The online version of this article (10.1007/s00109-018-01742-0) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice. J Mol Med (Berl) 2019; 97:541-552. [PMID: 30806715 DOI: 10.1007/s00109-019-01759-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/16/2018] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Renal fibrosis is a common histomorphological feature of renal aging and chronic kidney diseases of all etiologies, and its initiation and progression are substantially influenced by aberrant epigenetic modifications of fibrosis-susceptible genes, yet without effective therapy. "Epigenetic diets" exhibit tissue-protective and epigenetic-modulating properties; however, their anti-renal fibrosis functions and the underlying mechanisms are less understood. In this study, we show that genistein, a phytoestrogenic isoflavone enriched in dietary soy products, exhibits impressive anti-renal fibrosis activities by recovering epigenetic loss of Klotho, a kidney-enriched anti-aging and fibrosis-suppressing protein. Mouse fibrotic kidneys induced by UUO (unilateral ureteral occlusion) displayed severer Klotho suppression and adverse expression of renal fibrosis-associated proteins, but genistein administration markedly recovered the Klotho loss and attenuated renal fibrosis and the protein expression abnormalities. The examination of possible causes of the Klotho recovery revealed that genistein simultaneously inhibited histone 3 deacetylation of Klotho promoter and normalized the promoter DNA hypermethylation by suppressing elevated DNA methyltransferase DNMT1 and DNMT3a. More importantly, genistein's anti-renal fibrosis effects on the renal fibrotic lesions and the abnormal expressions of fibrosis-associated proteins were abrogated when Klotho is knockdown by RNA interferences in UUO mice. Thus, our results identify Klotho restoration via epigenetic histone acetylation and DNA demethylation as a critical mechanism of genistein's anti-fibrosis function and shed new lights on the potentials of epigenetic diets in preventing or treating aging or renal fibrosis-associated kidney diseases. KEY MESSAGES: Genistein prevents renal fibrosis and the associated Klotho suppression in UUO mice. Genistein upregulates Klotho in part by reversing the promoter histone 3 hypoacetylation. Genistein also preserves Klotho via relieving Klotho promoter hypermethylation. Genistein demethylates Klotho promoter by inhibiting aberrant DNMT1/3a expression. Genistein restoration of Klotho is essential for its anti-renal fibrosis function.
Collapse
|
26
|
Liu Y, Bi X, Xiong J, Han W, Xiao T, Xu X, Yang K, Liu C, Jiang W, He T, Yu Y, Li Y, Zhang J, Zhang B, Zhao J. MicroRNA-34a Promotes Renal Fibrosis by Downregulation of Klotho in Tubular Epithelial Cells. Mol Ther 2019; 27:1051-1065. [PMID: 30853453 DOI: 10.1016/j.ymthe.2019.02.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Renal fibrosis is the main pathological characteristic of chronic kidney disease (CKD), whereas the underlying mechanisms of renal fibrosis are not clear yet. Herein, we found an increased expression of microRNA-34a (miR-34a) in renal tubular epithelial cells of patients with renal fibrosis and mice undergoing unilateral ureteral obstruction (UUO). In miR-34a-/- mice, miR-34a deficiency attenuated the progression of renal fibrosis following UUO surgery. The miR-34a overexpression promoted epithelial-to-mesenchymal transition (EMT) in cultured human renal tubular epithelial HK-2 cells, which was accompanied by sharp downregulation of Klotho, an endogenous inhibitor of renal fibrosis. Luciferase reporter assay revealed that miR-34a downregulated Klotho expression though direct binding with the 3' UTR of Klotho. Conversely, overexpression of Klotho prevented miR-34a-induced EMT in HK-2 cells. Furthermore, results showed that miR-34a was induced by transforming growth factor β1 (TGF-β1) through p53 activation, whereas dihydromyricetin could inhibit TGF-β1-induced miR-34a overexpression. Accordingly, dihydromyricetin administration dramatically restored the aberrant upregulation of miR-34a and Klotho reduction in obstructed kidney, and markedly ameliorated renal fibrosis in the Adriamycin nephropathy and UUO model mice. These findings suggested that miR-34a plays an important role in the progression of renal fibrosis, which provides new insights into the pathogenesis and treatment of CKD.
Collapse
Affiliation(s)
- Yong Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xianjin Bi
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jiachuan Xiong
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wenhao Han
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Tangli Xiao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xinli Xu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ke Yang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Chi Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wei Jiang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ting He
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yanlin Yu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yan Li
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jingbo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
27
|
Saleh AD, Cheng H, Martin SE, Si H, Ormanoglu P, Carlson S, Clavijo PE, Yang X, Das R, Cornelius S, Couper J, Chepeha D, Danilova L, Harris TM, Prystowsky MB, Childs GJ, Smith RV, Robertson AG, Jones SJM, Cherniack AD, Kim SS, Rait A, Pirollo KF, Chang EH, Chen Z, Van Waes C. Integrated Genomic and Functional microRNA Analysis Identifies miR-30-5p as a Tumor Suppressor and Potential Therapeutic Nanomedicine in Head and Neck Cancer. Clin Cancer Res 2019; 25:2860-2873. [PMID: 30723145 DOI: 10.1158/1078-0432.ccr-18-0716] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/02/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify deregulated and inhibitory miRNAs and generate novel mimics for replacement nanomedicine for head and neck squamous cell carcinomas (HNSCC). EXPERIMENTAL DESIGN We integrated miRNA and mRNA expression, copy number variation, and DNA methylation results from The Cancer Genome Atlas (TCGA), with a functional genome-wide screen. RESULTS We reveal that the miR-30 family is commonly repressed, and all 5 members sharing these seed sequence similarly inhibit HNSCC proliferation in vitro. We uncover a previously unrecognized inverse relationship with overexpression of a network of important predicted target mRNAs deregulated in HNSCC, that includes key molecules involved in proliferation (EGFR, MET, IGF1R, IRS1, E2F7), differentiation (WNT7B, FZD2), adhesion, and invasion (ITGA6, SERPINE1). Reexpression of the most differentially repressed family member, miR-30a-5p, suppressed this mRNA program, selected signaling proteins and pathways, and inhibited cell proliferation, migration, and invasion in vitro. Furthermore, a novel miR-30a-5p mimic formulated into a targeted nanomedicine significantly inhibited HNSCC xenograft tumor growth and target growth receptors EGFR and MET in vivo. Significantly decreased miR-30a/e family expression was related to DNA promoter hypermethylation and/or copy loss in TCGA data, and clinically with decreased disease-specific survival in a validation dataset. Strikingly, decreased miR-30e-5p distinguished oropharyngeal HNSCC with poor prognosis in TCGA (P = 0.002) and validation (P = 0.007) datasets, identifying a novel candidate biomarker and target for this HNSCC subset. CONCLUSIONS We identify the miR-30 family as an important regulator of signal networks and tumor suppressor in a subset of HNSCC patients, which may benefit from miRNA replacement nanomedicine therapy.
Collapse
Affiliation(s)
- Anthony D Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.,miRecule, Inc. Rockville, Maryland
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Scott E Martin
- RNAi Screening Facility, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Han Si
- Molecular Characterization & Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Pinar Ormanoglu
- RNAi Screening Facility, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Sophie Carlson
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Paul E Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Rita Das
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Jamie Couper
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Douglas Chepeha
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ludmila Danilova
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Vavilov Institute of General Genetics Russian Academy of Science, Moscow, Russia
| | - Thomas M Harris
- Department of Pathology, Einstein School of Medicine, Bronx, New York
| | | | - Geoffrey J Childs
- Department of Pathology, Einstein School of Medicine, Bronx, New York
| | - Richard V Smith
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Bronx, New York
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew D Cherniack
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sang S Kim
- Departments of Oncology and Otolaryngology at the Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown, Washington DC
| | - Antonina Rait
- Departments of Oncology and Otolaryngology at the Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown, Washington DC
| | - Kathleen F Pirollo
- Departments of Oncology and Otolaryngology at the Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown, Washington DC
| | - Esther H Chang
- Departments of Oncology and Otolaryngology at the Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown, Washington DC
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| |
Collapse
|
28
|
Sankrityayan H, Kulkarni YA, Gaikwad AB. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs. Pharmacol Res 2019; 141:574-585. [PMID: 30695734 DOI: 10.1016/j.phrs.2019.01.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is still one of the leading causes of end-stage renal disease despite the emergence of different therapies to counter the metabolic, hemodynamic and fibrotic pathways, implicating a prominent role of genetic and epigenetic factors in its progression. Epigenetics is the study of changes in the expression of genes which may be inheritable and does not involve a change in the genome sequence. Thrust areas of epigenetic research are DNA methylation and histone modifications. Noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs) control the expression of genes via post-transcriptional mechanisms. However, the regulation by epigenetic mechanisms and miRNAs are not completely distinct. A number of emerging reports have revealed the interplay between epigenetic machinery and miRNA expression, particularly in cancer. Further research has proved that a feedback loop exists between miRNA expression and epigenetic regulation in disorders including DN. Studies showed that different miRNAs (miR-200, miR-29 etc.) were found to be regulated by epigenetic mechanisms viz. DNA methylation and histone modifications. Conversely, miRNAs (miR-301, miR-449 etc.) themselves modulated levels of DNA methyltranferases (DNMTs) and Histone deacetylases (HDACs), enzymes vital to epigenetic modifications. With already few FDA approved epigenetic -modulating drugs (Vorinostat, Decitabine) in the market and miRNA therapeutic drugs under clinical trial it becomes imperative to analyze the possible interaction between the two classes of drugs in the modulation of a disease process. The purpose of this review is to articulate the interplay between miRNA expression and epigenetic modifications with a particular focus on its impact on the development and progression of DN.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
29
|
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2018; 234:42-50. [DOI: 10.1002/jcp.26895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Mafi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | | | - Moein Mobini
- Kinesiology Department University of Calgary Calgary Alberta Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
30
|
miR-30 Family: A Promising Regulator in Development and Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9623412. [PMID: 30003109 PMCID: PMC5996469 DOI: 10.1155/2018/9623412] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate posttranscriptional expression of target genes. Accumulating evidences have demonstrated that the miR-30 family, as a member of microRNAs, played a crucial regulating role in the development of tissues and organs and the pathogenesis of clinical diseases, which indicated that it may be a promising regulator in development and disease. This review aims to clarify the current progress on the regulating role of miR-30 family in tissues and organs development and related disease and highlight their research prospective in the future.
Collapse
|
31
|
Pasricha SR, Lim PJ, Duarte TL, Casu C, Oosterhuis D, Mleczko-Sanecka K, Suciu M, Da Silva AR, Al-Hourani K, Arezes J, McHugh K, Gooding S, Frost JN, Wray K, Santos A, Porto G, Repapi E, Gray N, Draper SJ, Ashley N, Soilleux E, Olinga P, Muckenthaler MU, Hughes JR, Rivella S, Milne TA, Armitage AE, Drakesmith H. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nat Commun 2017; 8:403. [PMID: 28864822 PMCID: PMC5581335 DOI: 10.1038/s41467-017-00500-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency.
Collapse
Affiliation(s)
- Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Department of Medicine, The Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Pei Jin Lim
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Tiago L Duarte
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
| | - Carla Casu
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Dorenda Oosterhuis
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9700-AD, Groningen, The Netherlands
| | - Katarzyna Mleczko-Sanecka
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Maria Suciu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Rita Da Silva
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
| | - Kinda Al-Hourani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - João Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Kirsty McHugh
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sarah Gooding
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Katherine Wray
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Santos
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
| | - Graça Porto
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto Portugal, 4050-313, Porto, Portugal
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Nicki Gray
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Neil Ashley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Elizabeth Soilleux
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU, UK
- Division of Cellular and Molecular Pathology, Department of Pathology, Cambridge University, Cambridge, CB2 0QQ, UK
| | - Peter Olinga
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9700-AD, Groningen, The Netherlands
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
32
|
Lin W, Zhang Q, Liu L, Yin S, Liu Z, Cao W. Klotho restoration via acetylation of Peroxisome Proliferation-Activated Receptor γ reduces the progression of chronic kidney disease. Kidney Int 2017; 92:669-679. [PMID: 28416226 DOI: 10.1016/j.kint.2017.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Klotho is an anti-aging protein mainly expressed in the kidney. Reduced Klotho expression closely correlates with the development and progression of chronic kidney disease (CKD). Klotho is also a downstream gene of Peroxisome Proliferation-Activated Receptor γ (PPARγ), a major transcription factor whose functions are significantly affected by post-translational modifications including acetylation. However, whether PPARγ acetylation regulates renal Klotho expression and function in CKD is unknown. Here we test whether renal damage and reduced Klotho expression in the adenine CKD mouse model can be attenuated by the pan histone deacetylase (HDAC) inhibitor trichostatin A. This inhibition up-regulated Klotho mainly through an enhancement of PPARγ acetylation, stimulation of PPARγ binding to Klotho promoter, and PPARγ-dependent increase in Klotho transcription, with a substantial control of the regulation occurring via PPARγ acetylations on K240 and K265. Consistently trichostatin A-induced reversal of Klotho loss and renoprotective effects were abrogated in PPARγ knockout mice, supporting that PPARγ is an essential acetylation target for Klotho restoration and renal protection. Intriguingly, the kidneys of adenine-fed CKD mice displayed deregulated HDAC3 up-regulation. Selective HDAC3 inhibition effectively alleviated Klotho loss and kidney injury, whereas the protective effects were largely abolished when Klotho was knocked down by siRNA, suggesting that aberrant HDAC3 and Klotho loss are crucial components involved in the renal damage of mice with CKD. Our study identified an important signaling cascade and key components contributing to the pathogenesis of CKD. Thus, targeting Klotho loss by HDAC3 inhibition has promising therapeutic potential for the reduction of CKD progression.
Collapse
Affiliation(s)
- Wenjun Lin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qin Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lin Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shasha Yin
- Department of Basic Medical Science and Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Wangsen Cao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; Department of Basic Medical Science and Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
33
|
Klotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice. Sci Rep 2017; 7:46195. [PMID: 28387374 PMCID: PMC5384196 DOI: 10.1038/srep46195] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Bone loss and increased fracture are the devastating outcomes of chronic kidney disease-mineral and bone disorder (CKD-MBD) resulting from Klotho deficit-related mineral disturbance and hyperparathyroidism. Because Klotho down-regulation after renal injury is presumably affected by aberrant histone deacetylase (HDAC) activities, here we assess whether HDAC inhibition prevents Klotho loss and attenuates the CKD-associated bone complication in a mouse model of CKD-MBD. Mice fed adenine-containing diet developed the expected renal damage, a substantial Klotho loss and the deregulated key factors causally affecting bone remodeling, which were accompanied by a marked reduction of bone mineral density. Intriguingly, administration of a potent HDAC inhibitor trichostatin A (TSA) impressively alleviated the Klotho deficit and the observed alterations of serum, kidney and bone. TSA prevented Klotho loss by increasing the promoter-associated histone acetylation, therefore increasing Klotho transcription. More importantly the mice lacking Klotho by siRNA interference largely abolished the TSA protections against the serum and renal abnormalities, and the deranged bone micro-architectures. Thus, our study identified Klotho loss as a key event linking HDAC deregulation to the renal and bone injuries in CKD-MBD mice and demonstrated the therapeutic potentials of endogenous Klotho restoration by HDAC inhibition in treating CKD and the associated extrarenal complications.
Collapse
|
34
|
Yin S, Zhang Q, Yang J, Lin W, Li Y, Chen F, Cao W. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1207-1216. [PMID: 28285987 DOI: 10.1016/j.bbamcr.2017.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD) and its development and progression are significantly affected by epigenetic modifications such as aberrant miRNA and DNA methylation. Klotho is an anti-aging and anti-fibrotic protein and its early decline after renal injury is reportedly associated with aberrant DNA methylation. However, the key upstream pathological mediators and the molecular cascade leading to epigenetic Klotho suppression are not exclusively established. Here we investigate the epigenetic mechanism of Klotho deficiency and its functional relevance in renal fibrogenesis. Fibrotic kidneys induced by unilateral ureteral occlusion (UUO) displayed marked Klotho suppression and the promoter hypermethylation. These abnormalities were likely due to deregulated transforming growth factor-beta (TGFβ) since TGFβ alone caused the similar epigenetic aberrations in cultured renal cells and TGFβ blockade prevented the alterations in UUO kidney. Further investigation revealed that TGFβ enhanced DNA methyltransferase (DNMT) 1 and DNMT3a via inhibiting miR-152 and miR-30a in both renal cells and fibrotic kidneys. Accordingly the blockade of either TGFβ signaling or DNMT1/3a activities significantly recovered the Klotho loss and attenuated pro-fibrotic protein expression and renal fibrosis. Moreover, Klotho knockdown by RNA interferences abolished the anti-fibrotic effects of DNMT inhibition in both TGFβ-treated renal cell and UUO kidney, indicating that TGFβ-mediated miR-152/30a inhibitions, DNMT1/3a aberrations and subsequent Klotho loss constitute a critical regulatory loop that eliminates Klotho's anti-fibrotic activities and potentiates renal fibrogenesis. Thus, our study elaborates a novel epigenetic cascade of renal fibrogenesis and reveals the potential therapeutic targets for treating the renal fibrosis-associated kidney diseases.
Collapse
Affiliation(s)
- Shasha Yin
- Nanjing University School of Medicine, Jiangsu, Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Qin Zhang
- Nanjing University School of Medicine, Jiangsu, Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Jun Yang
- Nanjing University School of Medicine, Jiangsu, Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Wenjun Lin
- Nanjing University School of Medicine, Jiangsu, Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Yanning Li
- Nanjing University School of Medicine, Jiangsu, Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Fang Chen
- Nanjing University School of Medicine, Jiangsu, Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Wangsen Cao
- Nanjing University School of Medicine, Jiangsu, Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| |
Collapse
|
35
|
Gu LZ, Sun H, Chen JH. Histone deacetylases 3 deletion restrains PM2.5-induced mice lung injury by regulating NF-κB and TGF-β/Smad2/3 signaling pathways. Biomed Pharmacother 2016; 85:756-762. [PMID: 27919737 DOI: 10.1016/j.biopha.2016.11.094] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/22/2023] Open
Abstract
Acute lung injury (ALI) as a serious disease with high mortality has been emphasized as a threat to human health and life. Accumulating studies demonstrated that PM2.5 plays a significant role in metabolic and lung diseases. Histone deacetylases 3 (HDAC3) is an important regulator in control of gene transcription, required in up-regulation of inflammation-related signaling, and has been known as a key hotpot in treating a lot of chronic inflammatory diseases. TGF-β/Smad signaling pathway has been proven to be of significance in fibrosis development. Our results found that PM2.5 induced lung function injury in WT mice with a inflammatory responses through the activation of TGF-β/Smad signaling pathways, resulting in lung injury. Of note, HDAC3-deficient mice after PM2.5 administration further promoted TGF-β/Smad signaling pathways activation. In addition, TLR4, p-NF-κB and p-IκBα indicated that HDAC3 knockout mice have a higher inflammation-related signals expression in lung tissue than WT mice after PM2.5 administration, resulting in pro-inflammatory cytokines releasing. Moreover, in vitro experiment of lung epithelial cells challenged with PM2.5, further indicated that TGF-β/Smad2/3 was involved in fibrosis development, leading to inflammation response. Also, the activation of TLR4/NF-κB could be observed in PM2.5-induced lung epithelial cells, leading to inflammation infiltration. These results indicate a new therapeutic target to protect against lung injury caused by PM2.5.
Collapse
Affiliation(s)
- Li-Zhi Gu
- Department of Emergency Medicine, Huai'an First People's Hospital, Nanjing Medical University, Jiangsu 223002, China.
| | - Hong Sun
- Department of Emergency Medicine, Huai'an First People's Hospital, Nanjing Medical University, Jiangsu 223002, China
| | - Jian-Hui Chen
- Department of Respiratory Medicine, Huai'an Second People's Hospital, Nanjing Medical University, Jiangsu 223002, China
| |
Collapse
|
36
|
Yang J, Yin S, Bi F, Liu L, Qin T, Wang H, Cao W. TIMAP repression by TGFβ and HDAC3-associated Smad signaling regulates macrophage M2 phenotypic phagocytosis. J Mol Med (Berl) 2016; 95:273-285. [PMID: 27709267 DOI: 10.1007/s00109-016-1479-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022]
Abstract
TIMAP (TGFβ-inhibited membrane-associated protein) is an endothelium-enriched TGFβ downstream protein and structurally belongs to the targeting subunit of myosin phosphatase; however, the mechanism of TGFβ repressing TIMAP and its functional relevance to TGFβ bioactivity remain largely unknown. Here, we report that TIMAP is reduced in TGFβ-elevated mouse fibrotic kidney and highly expressed in macrophages. TGFβ repression of TIMAP is associated with HDAC3 upregulation and its recruitment by Smad2/3 at the Smad binding element on TIMAP promoter, whereas specific HDAC3 inhibition reversed the TIMAP repression, suggesting that TGFβ transcriptionally downregulates TIMAP through HDAC3-associated Smad signaling. Further investigation showed that TIMAP over-expression interrupted TGFβ-associated Smad signaling and TIMAP repression by TGFβ correlated with TGFβ-induced macrophage M2 polarization markers, migration, and phagocytosis-the processes promoted by phosphorylation of the putative TIMAP substrate myosin light chain (MLC). Consistently, TIMAP dephosphorylated MLC in macrophages and TGFβ induced macrophage migration and phagocytosis in TIMAP- and MLC phosphorylation-dependent manners, suggesting that TIMAP dephosphorylation of MLC constitutes an essential regulatory loop mitigating TGFβ-associated macrophage M2 phenotypic activities. Given that hyperactive TGFβ often causes excessive macrophage phagocytic activities potentially leading to various chronic disorders, the strategies targeting HDAC3/TIMAP axis might improve TGFβ-associated pathological processes. KEY MESSAGE TIMAP is enriched in the endothelium and highly expressed in macrophages. TIMAP is suppressed by TGFβ via HDAC3-associated Smad signaling. TIMAP inhibits TGFβ signaling and TGFβ-associated macrophage M2 polarization. TIMAP dephosphorylation of MLC counteracts TGFβ-induced macrophage phagocytosis.
Collapse
Affiliation(s)
- Jun Yang
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Shasha Yin
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Fangfang Bi
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Lin Liu
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Tian Qin
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Hongwei Wang
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Wangsen Cao
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China.
| |
Collapse
|
37
|
Xu Y, Lin H, Zheng W, Ye X, Yu L, Zhuang J, Yang Q, Wang D. Matrine ameliorates adriamycin-induced nephropathy in rats by enhancing renal function and modulating Th17/Treg balance. Eur J Pharmacol 2016; 791:491-501. [PMID: 27640745 DOI: 10.1016/j.ejphar.2016.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Matrine (MAT) is an active alkaloid extracted from Radix Sophora flavescens. The present study was to investigate whether MAT could effectively treat Adriamycin-induced nephropathy (AIN). AIN was induced in rats using a single injection of Adriamycin (ADR). Renal interleukin-6 (IL-6), IL-10, IL-17 and transforming growth factor-β (TGF-β) levels, and the expression of forkhead box protein 3 (Foxp3) and retinoid-related orphan nuclear receptor γt (Rorγt) was measured. AIN rats developed severe albuminuria, hypoalbuminaemia, hyperlipidaemia and podocyte injury. Daily administration of MAT (100mg/kg or 200mg/kg) significantly prevented ADR-induced podocyte injury, decreased AIN symptoms and improved renal pathology manifestations. Of note, treatment with MAT (100mg/kg) plus prednisone (Pre, 5mg/kg) had equivalent efficacy to that of Pre alone (10mg/kg). Additional findings showed that ADR triggered a disordered cytokine network and abnormal expression of Foxp3 and Rorγt in rats, as reflected by increased levels of IL-6, IL-10, TGF-β, Rorγt and decreased levels of IL-10 and Foxp3. Interestingly, MAT weakened the disordered cytokine network and normalized the expression of Foxp3 and Rorγt. In addition, a significant negative correlation was observed between the values of Foxp3/Rorγt and renal pathology scores. Finally, MAT normalized regulatory T cells (Treg)/ T-helper17 cells (Th17) ratio in peripheral blood mononuclear cells of AIN rats. These data indicate MAT prevents AIN through the modification of disordered plasma lipids and recovery of renal function, and this bioactivity is at least partly attributed to the suppression of renal inflammation and the regulation of the Treg/Th17 imbalance.
Collapse
Affiliation(s)
- Yixiao Xu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongzhou Lin
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjie Zheng
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohua Ye
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lingfang Yu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jieqiu Zhuang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing Yang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dexuan Wang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
38
|
Bockmeyer CL, Säuberlich K, Wittig J, Eßer M, Roeder SS, Vester U, Hoyer PF, Agustian PA, Zeuschner P, Amann K, Daniel C, Becker JU. Comparison of different normalization strategies for the analysis of glomerular microRNAs in IgA nephropathy. Sci Rep 2016; 6:31992. [PMID: 27553688 PMCID: PMC4995590 DOI: 10.1038/srep31992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 01/10/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) have been used for normalization in glomerular microRNA (miRNA) quantification without confirmation of validity. Our aim was to identify glomerular reference miRNAs in IgA nephropathy. We compared miRNAs in human paraffin-embedded renal biopsies from patients with cellular-crescentic IgA-GN (n = 5; crescentic IgA-GN) and non-crescentic IgA-GN (n = 5; IgA-GN) to mild interstitial nephritis without glomerular abnormalities (controls, n = 5). Laser-microdissected glomeruli were used for expression profiling of 762 miRNAs by low-density TaqMan arrays (cards A and B). The comparison of different normalization methods (GeNormPlus, NormFinder, global mean and snoRNAs) in crescentic IgA-GN, IgA-GN and controls yielded similar results. However, levels of significance and the range of relative expression differed. In median, two normalization methods demonstrated similar results. GeNormPlus and NormFinder gave different top ranked reference miRNAs. Stability ranking for snoRNAs varied between cards A and B. In conclusion, we suggest the geometric mean of the most stable reference miRNAs found in GeNormPlus (miR-26b-5p), NormFinder (miR-28-5p) and snoRNAs (RNU44) as reference. It should be considered that significant differences could be missed using one particular normalization method. As a starting point for glomerular miRNA studies in IgA nephropathy we provide a library of miRNAs.
Collapse
Affiliation(s)
- Clemens L Bockmeyer
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Karen Säuberlich
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Juliane Wittig
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Marc Eßer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Sebastian S Roeder
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Udo Vester
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Peter F Hoyer
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Putri A Agustian
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Philip Zeuschner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|