1
|
Qin Z, Zhang H, Zhang J, Li T, Kuca K, Liu J, Wu W. Deoxynivalenol induces pyroptosis and IL-1β secretion via P2X7R signal in murine RAW264.7 macrophages. Toxicon 2025; 263:108418. [PMID: 40381923 DOI: 10.1016/j.toxicon.2025.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin, exerts pro-inflammatory and immunomodulatory activity. Interleukin (IL)-1β serves a crucial part as a gate keeper of inflammation in DON-induced macrophages, but an overview of how DON exposure elicits IL-1β secretion from RAW264.7 cells has not been fully illustrated. Here we found that the cellular phenomenon, involved with a type of programmed cell death known as pyroptosis, contains: 1) increase of pro-IL-1β expression, 2) motivation of caspase-1, 3) caspase-1-dependent maturement of IL-1β, 4) caspase-1 fragmentation of gasdermin D (GSDMD), and 5) IL-1β secretion through GSDMD pore. Mechanistically, the present study certified that DON both as first and second signals engaged in IL-1β release is mediated by purinergic P2X7 receptor (P2X7R)-Src signaling. During this process, P2X7R signal is required for GSDMD pore forming course in ASC-independent manner. Moreover, blocking of K+ efflux, ROS formation, as well as cathepsin B activity decreases IL-1β export. Our data show that exposure to DON does cause pyroptosis and IL-1β secretion via P2X7R signal in RAW264.7 macrophages. Overall, these results provide new mechanistic clue for DON as a pro-inflammatory factor in innate immune signaling events.
Collapse
Affiliation(s)
- Zihui Qin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huayue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Tushuai Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| |
Collapse
|
2
|
Oyedele OA, Akinyemi MO, Sulyok M, Okoth S, Krska R, Ezekiel CN. Fungal and multi-metabolite contamination of retailed rice in open markets in two Nigerian States. Mycotoxin Res 2025:10.1007/s12550-025-00593-2. [PMID: 40343616 DOI: 10.1007/s12550-025-00593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
ABTRACT Rice is a significant source of both nutritional and economic sustenance in Nigeria, but contamination by fungi and their toxic metabolites in addition to naturally occurring phytotoxins may pose significant challenges to grain quality and consumer health. This study assessed the safety of 80 rice samples retailed in open markets in two Nigerian states by identifying fungal contaminants using phenotypic and molecular techniques and quantifying the secondary metabolites present in the grains through liquid chromatography tandem mass spectrometry. A total of 101 distinct colonies were recovered and identified as nine species belonging to six genera: Aspergillus, Cladosporium, Fusarium, Monascus, Penicillium and Talaromyces. At least one third (30.4%) of the identified species were Aspergillus flavus, while A. montevidensis, Cladosporium halotolerans, Monascus purpureus, Talaromyces islandicus and T. purpureogenus recorded the least incidences of 4.3%. Sixteen mycotoxins and 48 other secondary metabolites including diverse fungal and lichen metabolites, plant toxins and phytoestrogenic phenols were detected in the rice samples. Moniliformin (MON) and beauvericin were the most common mycotoxins, present in 43% of samples, with MON reaching a maximum concentration of 19,391 µg/kg. Aflatoxins contaminated 18% of samples, generally below Nigeria's 10 µg/kg regulatory limit but in one case exceeding the European Union's threshold of 4 µg/kg. This study emphasizes the need to expand chemical contaminant monitoring in foods beyond the regular aflatoxin detection to include a wider spectrum of secondary metabolites and also to comprehensively review and enhance grain handling and retail practices in local/open markets to protect consumer health.
Collapse
Affiliation(s)
| | - Muiz O Akinyemi
- Nuffield Centre for International Health and Development, Leeds Institute of Health Sciences, University of Leeds, Woodhouse, Leeds, LS2 9 JT, UK
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Michael Sulyok
- BOKU University, Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Shiela Okoth
- Department of Biology, University of Nairobi, P.O. Box 30197, Nairobi, Kenya
| | - Rudolf Krska
- BOKU University, Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, Northern Ireland, BT7 1 NN, UK
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
- BOKU University, Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
| |
Collapse
|
3
|
Dai C, Hao Z, Liu D, Wang Z, Conti GO, Velkov T, Shen J. Deoxynivalenol exposure-related male reproductive toxicity in mammals: Molecular mechanisms, detoxification and future directions. ENVIRONMENT INTERNATIONAL 2025; 199:109478. [PMID: 40252554 DOI: 10.1016/j.envint.2025.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
An increasing body of evidence indicates that exposure to widespread, environmental and food contaminants such as mycotoxins may cause endocrine disorders and infertility. Deoxynivalenol (DON), which is a toxic secondary metabolite produced by Fusarium fungi, can lead to multiple harmful effects in humans and animals, such as hepatotoxicity, nephrotoxicity, immunotoxicity, gastrointestinal toxicity, neurotoxicity, genetic toxicity and carcinogenicity. Recently, there has been growing concern about DON-induced male infertility. Exposure to DON and its metabolites can damage the structure and function of male reproductive organs, resulting in impairment of gametogenesis and thus impaired fertility. Potential molecular mechanisms involve oxidative stress, inflammatory response, mitochondrial dysfunction, apoptosis, cell cycle arrest, pyroptosis, and ferroptosis. Moreover, several signaling pathways, including nuclear factor-kappa B, mitogen-activated protein kinase, NLR family pyrin domain containing 3, nuclear factor erythroid 2-related factor 2, AMP-activated protein kinase, mitochondrial apoptotic pathways, and microRNAs are involved in these detrimental biological processes. Research has shown that several antioxidants, small-molecule inhibitors, or proteins (such as lactoferrin) supplementation can potentially offer protective effects by targeting these signaling pathways. This review comprehensively summarizes the harmful effects of DON exposure on male reproductive function in mammals, the underlying molecular mechanisms and emphasizes the potential of several small molecules as protective therapeutics. In the further, the systematic risk assessment when DON at environmental exposure doses to human reproductive health, the in-depth and precise molecular mechanism investigation using emerging technologies, and the development of more effective intervention strategies warrant urgent investigation.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Victoria 3800, Australia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
4
|
Nie X, Chen X, Lu X, Yang S, Wang X, Liu F, Yang J, Guo Y, Shi H, Xu H, Zhang X, Fang M, Tao Y, Liu C. Metagenomics Insights into the Role of Microbial Communities in Mycotoxin Accumulation During Maize Ripening and Storage. Foods 2025; 14:1378. [PMID: 40282779 PMCID: PMC12027128 DOI: 10.3390/foods14081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Mycotoxins are among the primary factors compromising food quality and safety. To investigate mycotoxin contamination, microbial diversity, and functional profiles in maize across distinct geographic regions, this study analyzed samples from Xuanwei, Fuyuan, and Zhanyi. Mycotoxin concentrations were quantified through standardized assays, while microbial community structures were characterized using metagenomics sequencing. Metabolic pathways, functional genes, and enzymatic activities were systematically annotated with the KEGG, eggNOG, and CAZy databases. The results demonstrated an absence of detectable aflatoxin (AF) levels. Deoxynivalenol (DON) concentrations varied significantly among experimental cohorts, although all values remained within regulatory thresholds. Zearalenone (ZEN) contamination exceeded permissible limits by 40%. The metagenomic profiling identified 85 phyla, 1219 classes, 277 orders, 590 families, 1171 genera, and 2130 species of microorganisms, including six mycotoxigenic fungal species. The abundance and diversity of microorganisms were similar among different treatment groups. Among 32,333 annotated KEGG pathways, primary metabolic processes predominated (43.99%), while glycoside hydrolases (GH) and glycosyltransferases (GT) constituted 76.67% of the 40,202 carbohydrate-active enzymes. These empirical findings establish a scientific framework for optimizing agronomic practices, harvest scheduling, and post-harvest management in maize cultivation.
Collapse
Affiliation(s)
- Xuheng Nie
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Xuefeng Chen
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Xianli Lu
- Sinograin Yunnan Depot Co., Ltd., Kunming 650228, China;
| | - Shuiyan Yang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Xin Wang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Fuying Liu
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Jin Yang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Ying Guo
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Huirong Shi
- Sinograin Qujing Depot Co., Ltd., Qujing 655000, China; (H.S.); (H.X.); (X.Z.)
| | - Hui Xu
- Sinograin Qujing Depot Co., Ltd., Qujing 655000, China; (H.S.); (H.X.); (X.Z.)
| | - Xiang Zhang
- Sinograin Qujing Depot Co., Ltd., Qujing 655000, China; (H.S.); (H.X.); (X.Z.)
| | - Maoliang Fang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Yin Tao
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Chao Liu
- Research Center of Fruit Wine, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
5
|
Fehér P, Molnár Z, Pálfi MP, Pálfiné Lábadi A, Plank P, Lakatos I, Heltai M, Szemethy L, Stéger V, Szőke Z. The Initial Detection of Mycotoxins Released and Accumulated in the Golden Jackal ( Canis aureus): Investigating the Potential of Carnivores as Environmental Bioindicators. Int J Mol Sci 2025; 26:3755. [PMID: 40332407 PMCID: PMC12027561 DOI: 10.3390/ijms26083755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
This study investigated the presence and levels of five key mycotoxins-aflatoxins (AFs), deoxynivalenol (DON), fumonisin B1 (FB1), ochratoxin-A (OTA), and zearalenone (ZEN) and its metabolite alpha-zearalenol (α-ZOL)-in liver samples from 19 golden jackals (Canis aureus) in southern Hungary. Golden jackals, as apex predators with a diverse diet encompassing both plant and animal matter, can serve as valuable bioindicators of environmental mycotoxin contamination. Genetic analysis confirmed the canid samples as coming from golden jackals, excluding the possibility of domestic dogs or hybrid individuals. All samples tested positive for at least three mycotoxins, with multiple mycotoxins frequently co-occurring. DON was detected in 95% of the samples, followed by FB1 (79%) and ZEN (42%). ZOL, AFs, and OTA were present in all samples. Significant differences in mycotoxin concentrations were observed between age groups and sexes for some mycotoxins. Specifically, adult males exhibited higher ZEN concentrations, adult females had higher OTA levels, and females generally showed significantly higher DON concentrations than males. For all investigated individuals, we found significantly higher concentrations of ZEN, alpha-ZOL, and OTA in adult samples. Malondialdehyde (MDA), an indicator of oxidative stress, was also measured and correlated with mycotoxin levels. Pareto analysis suggested a correlation between MDA and OTA/ZEN. These findings highlight the exposure of golden jackals to a range of mycotoxins in their natural environments, potentially through both plant and animal food sources, and underscore the potential of these canids as sentinels for mycotoxin contamination in ecosystems.
Collapse
Affiliation(s)
- Péter Fehér
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Zsófia Molnár
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (Z.M.); (P.P.); (I.L.)
| | | | | | - Patrik Plank
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (Z.M.); (P.P.); (I.L.)
| | - István Lakatos
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (Z.M.); (P.P.); (I.L.)
- Department of Regional Game Management, Ministry of Agriculture, H-1052 Budapest, Hungary
| | - Miklós Heltai
- Department of Wildlife Biology and Management, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - László Szemethy
- Institute of Biology, University of Pécs, H-7426 Pécs, Hungary;
| | - Viktor Stéger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (Z.M.); (P.P.); (I.L.)
| |
Collapse
|
6
|
Hoogstra S, Renaud JB, McMullin DR, Kelman MJ, Garnham CP, Sumarah MW. Biotransformation of Deoxynivalenol to the Novel Metabolite Deoxynivalenol-8,15-hemiketal-7-glucoside by the Bacillus subtilis Glycosyltransferase YjiC. ACS OMEGA 2025; 10:14496-14507. [PMID: 40256532 PMCID: PMC12004161 DOI: 10.1021/acsomega.5c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
The mycotoxin deoxynivalenol (DON) is a chronic problem in cereals in temperate areas worldwide. Above regulatory levels, DON contamination can result in significant economic loss both to the primary producer and the feed industry in terms of increased costs. Here we report the enzymatic biotransformation of DON to a novel stable metabolite by a soil-borne strain of Bacillus subtilis. Proteomic analysis of activity-enriched protein fractions from this B. subtilis strain identified the glycosyltransferase YjiC as the enzyme responsible for the observed DON biotransformation. Liquid chromatography high-resolution tandem mass spectrometry and NMR spectroscopic analysis demonstrated that YjiC glycosylates DON at the 7-hydroxyl position, producing the novel metabolite DON-8,15-hemiketal-7-glucoside (HKDON7G). In toxicity experiments, duckweed exposed to 20 μM HKDON7G showed no phytotoxicity when compared to DON. Stability testing of HKDON7G demonstrated that it is significantly more resistant to enzymatic and microbial hydrolysis compared to DON-3-glucoside. This study is the first to report a chemical modification to the 7-hydroxyl position of DON and presents a novel mechanism for the detoxification of DON-contaminated food and feed.
Collapse
Affiliation(s)
- Shawn
J. Hoogstra
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - Justin B. Renaud
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - David R. McMullin
- Department
of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Megan J. Kelman
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - Christopher P. Garnham
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - Mark W. Sumarah
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| |
Collapse
|
7
|
Cui Y, Okyere SK, Guan H, Hua Z, Deng Y, Deng H, Deng J. Ablation of Gut Microbiota Alleviates DON-Induced Neurobehavioral Abnormalities and Brain Damage in Mice. Toxins (Basel) 2025; 17:144. [PMID: 40137917 PMCID: PMC11946315 DOI: 10.3390/toxins17030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Deoxynivalenol (DON) poses a threat to animal and human health, particularly causing damage to the nervous system. Intestinal flora can regulate the nervous system through the gut-brain axis; however, there is currently a lack of evidence on the effect of changing the intestinal flora on the damage to the nervous system caused by DON. Therefore, this study aims to investigate the effect of gut microbiota ablation on neurotoxicity induced by exposure to deoxynivalenol. METHODS One hundred-twenty (120) specific pathogen-free (SPF) male C57BL/6j mice were randomly divided into four groups (control group, microbiota-uncleaned group + 5 mg/kg/BW DON, microbiota-cleared group, and microbiota-cleared group + 5 mg/kg/BW DON). The open field and Morris behavior tests were used to evaluate behavior changes after DON exposure. After 14 days of treatment, the mice were euthanized and brain tissues were collected for further analysis. RESULTS The tests showed that DON exposure led to anxiety and decreased learning ability in mice with no gut microbiota ablation. We also observed pathological changes including neuronal shrinkage, degeneration, and cortical edema in the mice with no microbiota ablation after DON exposure. In addition, the protein and mRNA levels of tight junction proteins and anti-inflammatory factors were decreased in the mice with no microbiota ablation after DON exposure compared with mice with ablated microbiota. CONCLUSIONS We concluded that the presence of microbiota plays a key role in the neurotoxicity induced by DON; thus, ablation of the intestinal microbiota can effectively improve brain damage caused by DON.
Collapse
Affiliation(s)
- Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Haoyue Guan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Zixuan Hua
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Youtian Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (S.K.O.); (H.G.); (Z.H.); (Y.D.); (H.D.)
| |
Collapse
|
8
|
Guan H, Cui Y, Hua Z, Deng Y, Deng H, Deng J. Disorders of Iron Metabolism: A "Sharp Edge" of Deoxynivalenol-Induced Hepatotoxicity. Metabolites 2025; 15:165. [PMID: 40137129 PMCID: PMC11943501 DOI: 10.3390/metabo15030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Deoxynivalenol (DON), known as vomitoxin, is one of the most common mycotoxins produced by Fusarium graminearum, with high detection rates in feed worldwide. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation and the accumulation of reactive oxygen species. Although it has been demonstrated that DON can induce ferroptosis in the liver, the specific mechanisms and pathways are still unknown. The aim of this experiment was to investigate that DON can induce iron metabolism disorders in the livers of mice, thereby triggering ferroptosis and causing toxic damage to the liver. METHODS Male C57 mice were treated with DON at a 5 mg/kg BW concentration as an in vivo model. After sampling, organ coefficient monitoring, liver function test, histopathological analysis, liver Fe2+ content test, and oxidative stress-related indexes were performed. The mRNA and protein expression of Nrf2 and its downstream genes were also detected using a series of methods including quantitative real-time PCR, immunofluorescence double-labeling, and Western blotting analysis. RESULTS DON can cause damage to the liver of a mouse. Specifically, we found that mouse livers in the DON group exhibited pathological damage in cell necrosis, inflammatory infiltration, cytoplasmic vacuolization, elevated relative liver weight, and significant changes in liver function indexes. Meanwhile, the substantial reduction in the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the DON group indicated that DON also caused oxidative stress in the liver. Notably, DON exposure increased the levels of Fe2+ and Malondialdehyde (MDA) in the liver, which provides strong evidence for the occurrence of iron metabolism and ferroptosis disorders. Most importantly, mRNA and protein expression of Nrf2, an important pathway for iron metabolism and ferroptosis, along with its downstream genes, heme oxygenase (HO-1), quinone oxidoreductase (NQO1), glutathione peroxidase (GPX4), and solute carrier gene (SLC7a11), were significantly inhibited in the DON group. CONCLUSIONS Based on our results, the Nrf2 pathway is closely associated with DON-induced iron metabolism disorders and ferroptosis in mouse livers, suggesting that maintaining hepatic iron homeostasis and activating the Nrf2 pathway may be a potential target for mitigating DON hepatotoxicity in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (H.G.); (Y.C.); (Z.H.); (Y.D.); (H.D.)
| |
Collapse
|
9
|
Lipps S, Bohn M, Rutkoski J, Butts-Wilmsmeyer C, Mideros S, Jamann T. Comparative Review of Fusarium graminearum Infection in Maize and Wheat: Similarities in Resistance Mechanisms and Future Directions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:142-159. [PMID: 39700336 DOI: 10.1094/mpmi-08-24-0083-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fusarium graminearum is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities to FHB. In this review, we synthesize existing literature on the colonization strategies, toxin accumulation, genetic architecture, and potential mechanisms of resistance to GER in maize and compare it with what is known regarding FHB in wheat. There are several similarities in the infection and colonization strategies of F. graminearum in maize and wheat. We describe multiple types of GER resistance in maize and identify distinct genetic regions for each resistance type. We discuss the potential of phenylpropanoids for biochemical resistance to F. graminearum. Phenylpropanoids are well characterized, and there are many similarities in their functional roles for resistance between wheat and maize. These insights can be utilized to improve maize germplasm for GER resistance and are also useful for FHB resistance breeding and management. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sarah Lipps
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Martin Bohn
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Jessica Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Carolyn Butts-Wilmsmeyer
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, U.S.A
- Center for Predictive Analytics, Southern Illinois University Edwardsville, Edwardsville, IL, U.S.A
| | - Santiago Mideros
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| | - Tiffany Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A
| |
Collapse
|
10
|
Cui Y, Guan H, Okyere SK, Hua Z, Deng Y, Deng H, Ren Z, Deng J. Microbial Guardians or Foes? Metagenomics Reveal Association of Gut Microbiota in Intestinal Toxicity Caused by DON in Mice. Int J Mol Sci 2025; 26:1712. [PMID: 40004174 PMCID: PMC11855166 DOI: 10.3390/ijms26041712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The role of gut microbiota has become a research hotspot in recent years; however, whether the gut microbiota are involved in the alleviation or exacerbation of Deoxynivalenol (DON) toxicity has not been fully studied. Therefore, the objective of this study was to investigate whether the gut microbiota are involved in reducing or aggravating the intestinal damage induced by DON in mice. Mice that received or did not receive antibiotic-induced intestinal flora clearance were orally given DON (5 mg kg/bw/day) for 14 days. At the end of the experiment, serum, intestinal tissue samples and colon contents were collected for further analysis. DON caused development of severe histopathological damage, such as necrosis and inflammation of the jejunum and colon in mice without gut microbiota clearance. The levels of tight junction proteins ZO-1 and occludin were reduced in the jejunum and colon of mice without gut microbiota clearance. In addition, the mRNA and protein levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were increased in mice without gut microbiota clearance. The presence of microbiota exacerbate the intestinal damage induced by DON via changes in gut microbiota abundance and production of gut damaging metabolites.
Collapse
Affiliation(s)
- Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Haoyue Guan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Zixuan Hua
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Youtian Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Zhihua Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| |
Collapse
|
11
|
Pieczul K, Świerczyńska I, Wójtowicz A. Advanced rDNA-Based Detection of Wheat Pathogens in Grain Samples Using Next-Generation Sequencing (NGS). Pathogens 2025; 14:164. [PMID: 40005539 PMCID: PMC11858152 DOI: 10.3390/pathogens14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
High-throughput sequencing (HTS) has revolutionized phytopathology by overcoming many limitations of traditional diagnostic methods, as it permits precise pathogen monitoring, identification, and control, with ribosomal DNA (rDNA) regions serving as reliable markers for fungal classification. In this study, next-generation sequencing (NGS) was used, targeting the ITS1 and ITS2 regions to explore fungal diversity and pathogen presence in winter wheat grain samples and identifying 183 OTU sequences across 115 taxa. The ITS1 analysis yielded 249,743 reads, with Fusarium sp. (61%) as the dominant pathogenic taxon, followed by Sporobolomyces sp. (14%), Cladosporium sp. (3%), and other yeast-like or saprotrophic fungi, such as Cryptoccocus spp., F. wieringae, and B. alba. Sequencing of ITS1 also permitted the detection of F. acuminatum and the quarantine-regulated pathogens T. caries and T. triticoides. The ITS2 analysis produced 179,675 reads, with F. culmorum (47%) as the most abundant taxon, confirming significant grain contamination with this pathogen. Other frequently detected taxa included yeast-like fungi such as C. tephrensis (21%) and V. victoriae (13%), along with saprotrophic species like S. roseus and Davidella sp. ITS2 provided better resolution for the identification of Fusarium species by the detection of more pathogenic taxa associated with cereal diseases, including F. culmorum, as well as F. cerealis, F. poae, and F. tricinctum. The analysis revealed a diverse fungal community, including other pathogens such as A. porri, B. cinerea, and C. herbarum, as well as various non-pathogenic and saprotrophic fungal taxa. These findings underscore the complementary utility of ITS1 and ITS2 in profiling fungal diversity and detecting critical pathogens using HTS, highlighting the potential of these DNA regions for monitoring and managing cereal crop health.
Collapse
Affiliation(s)
| | | | - Andrzej Wójtowicz
- Institute of Plant Protection—National Research Institute, 60-318 Poznan, Poland; (K.P.); (I.Ś.)
| |
Collapse
|
12
|
Wan MLY, Co VA, Turner PC, Nagendra SP, El‐Nezami H. Deoxynivalenol modulated mucin expression and proinflammatory cytokine production, affecting susceptibility to enteroinvasive Escherichia coli infection in intestinal epithelial cells. J Food Sci 2025; 90:e70079. [PMID: 39980277 PMCID: PMC11842951 DOI: 10.1111/1750-3841.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Deoxynivalenol (DON) is a common mycotoxin in crops that could induce intestinal inflammation, affecting the susceptibility of intestinal epithelial cells (IECs) to pathogen infection. This study aimed to investigate DON's effects on mucin and cytokine production as part of the local immune system and how it affected intestinal susceptibility to pathogen infection. Caco-2 cells were exposed to DON followed by acute enteroinvasive Escherichia coli (EIEC) infection. An increase in EIEC attachment to DON-exposed cells was observed, probably in part, mediated by secretory MUC5AC mucins and membrane-bound MUC4 and MUC17 mucins. Additionally, DON with EIEC posttreatment led to significant changes in the gene expression of several proinflammatory cytokines (IL1α, IL1β, IL6, IL8, TNFα, and MCP-1), which may be in part, mediated by NK-κB and/or MAPK signaling pathways. These data suggested DON may exert immunomodulatory effects on IECs, altering the IEC susceptibility to bacterial infection. PRACTICAL APPLICATION: The results suggested that DON might modulate immune responses by affecting mucus and cytokine production, which may affect the susceptibility of intestinal epithelial cells to pathogen infection.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Department of Laboratory Medicine, Division of MicrobiologyImmunology and Glycobiology, Lund UniversityLundSweden
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and HealthUniversity of PortsmouthPortsmouthUK
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Paul C Turner
- Maryland Institute for Applied Environmental Health, School of Public HealthUniversity of MarylandCollege ParkMarylandUSA
| | - Shah P Nagendra
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Hani El‐Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
13
|
Singh L, Drott MT, Kim HS, Proctor RH, McCormick SP, Elmore JM. A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes. Sci Rep 2024; 14:31680. [PMID: 39738214 PMCID: PMC11685414 DOI: 10.1038/s41598-024-81131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F. graminearum can differ in trichothecene production phenotypes (chemotypes), with individuals producing predominantly one of four toxins: 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, nivalenol, or NX-2. Molecular tools to diagnose chemotypes remain inefficient. This study aimed to develop a single-tube, multiplex molecular assay that can predict the four F. graminearum chemotypes. Conserved functional regions of three trichothecene biosynthetic genes (TRI1, TRI8, and TRI13) were targeted to develop a high-resolution melting (HRM) assay. Multiplex HRM analysis produced unique melting profiles for each chemotype, and was validated on a panel of 80 isolates. We applied machine learning-based linear discriminant analysis (LDA) to automate the classification of chemotypes from the HRM data, achieving a prediction accuracy of over 99%. The assay is sensitive, with a limit of detection below 0.02 ng of fungal DNA. The HRM analysis also differentiated chemotypes from a small sample of F. gerlachii, F. asiaticum, and F. vorosii isolates. Together, our results demonstrate that this simple, rapid, and accurate assay can be applied to F. graminearum molecular diagnostics and population surveillance programs.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Milton T Drott
- Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, 61604, USA
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, 61604, USA
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, 61604, USA
| | - J Mitch Elmore
- Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
14
|
Lee MG, Lee BR, Lee P, Choi S, Kim JH, Oh MH, Yoo JG. Apical-out intestinal organoids as an alternative model for evaluating deoxynivalenol toxicity and Lactobacillus detoxification in bovine. Sci Rep 2024; 14:31373. [PMID: 39733018 PMCID: PMC11682149 DOI: 10.1038/s41598-024-82928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel. Therefore, we sought to investigate the possibility of replacing animal testing with bovine apical-out small intestinal organoids (Apo-IOs) by confirming the toxicity of mycotoxins and effectiveness of L. plantarum as mycotoxin-reducing agents. The characteristics and functions of Apo-IOs were first confirmed. The gene and protein expression of stem cell, proliferation, mucous, and adherence markers were detected, and the absorption capacity of amino and fatty acids was also confirmed. FITC-4 kDa dextran, a marker of intestinal barrier function, did not penetrate the Apo-IOs, confirming the role of the organoids as a barrier. However, when co-treated with deoxynivalenol (DON), FITC-4 kDa dextran was detected deep within the organoids. Moreover, qPCR and immunofluorescence staining confirmed a decrease in the expression of key markers, such as LGR5, Ki67, Mucin2, Villin2, and E-cadherin. In addition, when Apo-IOs were treated with Lactobacillus plantarum ATCC14917 culture supernatant (LCS) and DON together, cell death was reduced compared to when treated with DON alone, and FITC-4 kDa dextran was confirmed to flow only to the peripheral part of the organoid. The qPCR and immunofluorescence staining results of LCS and DON co-treatment group showed that LGR5, Ki67, Mucin2, Villin2, and E-cadherin were expressed at significant higher levels than those in the DON treatment group alone. In this study, we found that the characteristics and functions of bovine Apo-IOs were similar to those of the intestinal structure in vivo. Additionally, the effects of mycotoxins and effectiveness of L. plantarum as mycotoxin-reducing agents were confirmed using bovine Apo-IOs. Therefore, bovine Apo-IOs could be applied in toxicity studies of mycotoxins and could also be used as in vitro models to replace animal testing and improve animal welfare.
Collapse
Affiliation(s)
- Min Gook Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Poongyeon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Soyoung Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jong-Hui Kim
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mi-Hwa Oh
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jae Gyu Yoo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea.
| |
Collapse
|
15
|
Namorado S, Martins C, Ogura J, Assunção R, Vasco E, Appenzeller B, I Halldorsson T, Janasik B, Kolossa-Gehring M, Van Nieuwenhuyse A, Ólafsdóttir K, Rambaud L, Riou M, Silva S, Wasowicz W, Weber T, Esteban-López M, Castaño A, Gilles L, Rodríguez Martin L, Govarts E, Schoeters G, Viegas S, Silva MJ, Alvito P. Exposure assessment of the European adult population to deoxynivalenol - Results from the HBM4EU Aligned Studies. Food Res Int 2024; 198:115281. [PMID: 39643334 DOI: 10.1016/j.foodres.2024.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Mycotoxins are natural toxins produced by fungi that may cause adverse health effects thus constituting a public health concern. Deoxynivalenol (DON), a mycotoxin affecting the immune system and causing intestinal disorders, was selected as a priority under the European Human Biomonitoring Initiative (HBM4EU). Urinary total DON levels (tDON) of 1270 participants from six countries were used to characterize the internal exposure of the adult European population and identify the most relevant determinants of exposure. tDON concentrations' P50 and P95 were in the range of 0.41-10.16 µg/L (0.39-9.05 µg/g crt) and 3.25-46.58 µg/L (2.12-33.50 µg/g crt) respectively. Higher tDON levels were observed for (i) male participants from France and Germany, (ii) samples collected in spring and summer, (iii) participants with a lower educational level, (iv) participants living in rural areas, (v) individuals without a job in France and Luxembourg, while in Portugal higher exposure was observed in working individuals, (vi) individuals with higher consumption of cereals and bread. The proportion of individuals with exposure levels exceeding the HBM-GV of 23 µg/L was 12.3 %, ranging from 0.8 % to 20.7 % in the individual countries. This study on mycotoxins exposure has used post harmonized questionnaire data and validated analytical methodologies for analysis and covered countries representing the four geographical regions of Europe, having produced much needed knowledge on the exposure of the European adult population to deoxynivalenol.
Collapse
Affiliation(s)
- Sónia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal.
| | - Carla Martins
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Joana Ogura
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ricardo Assunção
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Elsa Vasco
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | | | - Thorhallur I Halldorsson
- Department of Food and Nutrition, University of Iceland, Reykjavik, Iceland; Department of Pharmacology and Toxicology, University of Iceland, Reykjavik, Iceland
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | | | - An Van Nieuwenhuyse
- Department of Health Protection, Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg
| | | | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Susana Silva
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | - Till Weber
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Susana Viegas
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Maria João Silva
- Department of Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula Alvito
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Krausová M, Ayeni KI, Gu Y, Borutzki Y, O'Bryan J, Perley L, Silasi M, Wisgrill L, Johnson CH, Warth B. Longitudinal biomonitoring of mycotoxin exposure during pregnancy in the Yale Pregnancy Outcome Prediction Study. ENVIRONMENT INTERNATIONAL 2024; 194:109081. [PMID: 39615253 DOI: 10.1016/j.envint.2024.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 12/22/2024]
Abstract
Mycotoxins are fungal toxins that may trigger adverse health effects in pregnant women and their unborn children. Yet, data is scarce on the dynamic exposure patterns of mycotoxins in pregnant women, especially in the United States. This study assessed mycotoxin exposure profiles in women (n = 50) from the Yale Pregnancy Outcome Prediction Study (YPOPS) cohort at four distinct time points. Multi-analyte human biomonitoring assays based on liquid chromatography tandem mass spectrometry (LC-MS/MS), were developed for human serum and plasma matrices. The serum method was applied, together with an established urine method, to quantify mycotoxin levels in longitudinally collected matched serum (n = 200) and spot urine (n = 200) samples throughout pregnancy. The serum samples were mostly contaminated by the potential carcinogen ochratoxin A (detection rate: 46 %; median: 0.09 ng/mL), the hepato- and nephrotoxic citrinin (detection rate: 32 %; median: 0.02 ng/mL) and two enniatins (EnnB; detection rate: 97 %; median: 0.01 ng/mL and EnnB1; detection rate: 12 %; median: 0.003 ng/mL) which may act as immunotoxins. The most prevalent mycotoxins quantified in urine included deoxynivalenol (detection rate: 99 %; median: 23 ng/mL), alternariol monomethyl ether (detection rate: 69 %; median: 0.04 ng/mL), and zearalenone (detection rate: 63 %; median: 0.16 ng/mL). Seven other biomarkers of exposure including the highly estrogenic α-zearalenol and genotoxic Alternaria toxins, were also determined. Carcinogenic aflatoxins were not detected in any of the samples. Exposure assessment was based on the urinary data and performed by calculating probable daily intakes and comparing the human biomonitoring guidance value (HBM-GV) for deoxynivalenol. The results showed that the individuals exceeded the tolerable daily intake for deoxynivalenol and zearalenone on average at 28 % and 2 % over the different time points. Using the HBM-GV approach, the average exceedances for deoxynivalenol increased to 48 % indicating high exposure. For all the samples in which ochratoxin A was quantified, the estimated margin of exposure for neoplastic effects was below 10,000, indicating possible health concerns. Overall, this study showed that pregnant women were exposed to several regulated and emerging mycotoxins and that exposome-scale assessment should be a future priority in susceptible populations to better characterize xenobiotic exposure.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Kolawole I Ayeni
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yunyun Gu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Jane O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michelle Silasi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mercy Hospital St. Louis, St. Louis, MO 63141, USA
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, United States of America
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
17
|
Szentirmay A, Molnár Z, Plank P, Mézes M, Sajgó A, Martonos A, Buzder T, Sipos M, Hruby L, Szőke Z, Sára L. The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes. Toxins (Basel) 2024; 16:509. [PMID: 39728767 PMCID: PMC11728479 DOI: 10.3390/toxins16120509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1. Mycotoxin presence: All examined mycotoxins were detected in follicular fluid. Follicular fluid (ff) levels: Deoxynivalenol (DON), alfa-Zearalenol (α-ZOL), Zearalenone (ZEN), and total aflatoxin (AFs) were significantly higher in follicular fluid than in serum. 2. Follicular fluid and reproductive outcomes: A positive correlation was observed between the ratio of oocytes to total follicles and the follicular Fumonisin B1 (FB1) levels. Multiple linear regression analysis revealed a significant relationship between DON and T-2/HT-2 toxins (T2/HT2) levels in the follicular fluid. 3. Hormone levels: Follicular 17-beta estradiol (E2) and progesterone (P4) levels were higher than the serum levels. Follicular P4 correlated with serum P4 and Anti-Müllerian hormone (AMH) levels. In contrast, follicular E2 did not correlate with plasma E2 levels. 4. Mycotoxin-hormone interactions: A positive correlation was observed between follicular P4 and T2/HT2 toxin levels, whereas a negative correlation was found between ffE2 and ffT2/HT2, and a positive correlation was found between ZEN and E2. Conclusion: This study elucidated the presence of various mycotoxins in the follicular fluid and their potential influence on reproductive outcomes. Further research is warranted to clarify the specific mechanisms underlying these effects and develop strategies for detecting mycotoxin exposure in women undergoing IVF.
Collapse
Affiliation(s)
- Apolka Szentirmay
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zsófia Molnár
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Patrik Plank
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Attila Sajgó
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Attila Martonos
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Tímea Buzder
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Miklós Sipos
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Lili Hruby
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany;
| | - Zsuzsanna Szőke
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Levente Sára
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary;
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| |
Collapse
|
18
|
Zhu X, Wu J, Chen X, Shi D, Hui P, Wang H, Wu Z, Wu S, Bao W, Fan H. DNA ligase III mediates deoxynivalenol exposure-induced DNA damage in intestinal epithelial cells by regulating oxidative stress and interaction with PCNA. Int J Biol Macromol 2024; 282:137137. [PMID: 39505167 DOI: 10.1016/j.ijbiomac.2024.137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Deoxynivalenol (DON) is a widely distributed mycotoxin that is severely cytotoxic and genotoxic to animals and humans. The gut is the initial site of DON exposure and absorption, which can cause severe intestinal damage. However, the underlying mechanisms and effective therapeutic approaches remain unknown. Here, the study indicated that DON exposure caused significant DNA damage in intestinal porcine epithelial cells (IPEC-J2), enhanced significantly the expression of γ-H2AX and 8-hydroxy-2'-deoxyguanosine, and altered the mRNA expression of key genes in the DNA repair pathway. Among them, ligases3 (LIG3) is the key DNA damage/repair gene and the only ligase responsible for the replication and maintenance of mitochondrial DNA. The expression of LIG3 was significantly decreased after DON exposure and showed a dose-dependent effect, decreased expression of LIG3 exacerbates DON-induced cytotoxicity and genotoxicity, decreased cell viability, induced apoptosis and cell cycle arrest, activation of inflammatory factors and MAPK pathway. Furthermore, LIG3 directly binds and regulates PCNA and play a positive regulatory role in the cellular cytotoxicity and genotoxicity upon DON exposure. Collectively, the findings elucidate the regulatory function of LIG3 in DON-induced DNA damage, providing valuable insights into identifying molecular targets for the comprehensive prevention and control of DON contamination.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayun Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Xiaolei Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dongfeng Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peng Hui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint international Research Laboratory of Agriculture & Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou 225009, China
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, college of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
19
|
Oluwakayode A, Greer B, He Q, Sulyok M, Meneely J, Krska R, Medina A. The influence of different abiotic conditions on the concentrations of free and conjugated deoxynivalenol and zearalenone in stored wheat. Mycotoxin Res 2024; 40:591-603. [PMID: 39028531 PMCID: PMC11480129 DOI: 10.1007/s12550-024-00541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Environmental factors influence fungal growth and mycotoxin production in stored grains. However, the concentrations of free mycotoxins and their conjugates and how they are impacted by different interacting environment conditions have not been previously examined. The objectives of this study were to examine the impact of storage conditions (0.93-0.98 aw) and temperature (20-25 °C) on (a) the concentrations of deoxynivalenol and zearalenone and their respective glucosides/conjugates and (b) the concentrations of emerging mycotoxins in both naturally contaminated and irradiated wheat grains inoculated with Fusarium graminearum. Contaminated samples were analysed for multiple mycotoxins using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Method validation was performed according to the acceptable performance criteria set and updated by the European Commission regulations No. 2021/808/EC. As an important conjugate of deoxynivalenol, the concentrations of deoxynivalenol-3-glucoside were significantly different from its precursor deoxynivalenol at 0.93 aw (22% moisture content- MC) at 25 °C in the naturally contaminated wheat with a ratio proportion of 56:44% respectively. The high concentrations of deoxynivalenol-3-glucoside could be influenced by the wheat's variety and/or harvested season/fungal strain type/location. Zeralenone-14-sulfate concentrations were surprisingly three times higher than Zearalenone in the naturally contaminated wheat at 0.98 aw (26% MC) at both temperatures. Emerging mycotoxins such as moniliformin increased with temperature rise with the highest concentrations at 0.95 aw and 25 °C. These findings highlight the influence and importance of storage aw x temperature conditions on the relative presence of free vs conjugated mycotoxins which can have implications for food safety.
Collapse
Affiliation(s)
- Abimbola Oluwakayode
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Rd, Wharley End, Bedford, MK43 0AL, UK
| | - Brett Greer
- Institute for Global Food Security, Centre of Excellence in Agriculture and Food Integrity, National Measurement Laboratory, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- The International Joint Research Centre On Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Qiqi He
- Institute for Global Food Security, Centre of Excellence in Agriculture and Food Integrity, National Measurement Laboratory, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Michael Sulyok
- Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430, ViennaTulln, Austria
| | - Julie Meneely
- Institute for Global Food Security, Centre of Excellence in Agriculture and Food Integrity, National Measurement Laboratory, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- The International Joint Research Centre On Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Rudolf Krska
- Institute for Global Food Security, Centre of Excellence in Agriculture and Food Integrity, National Measurement Laboratory, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430, ViennaTulln, Austria
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Rd, Wharley End, Bedford, MK43 0AL, UK.
| |
Collapse
|
20
|
Zhou G, Hu S, Xie L, Huang H, Huang W, Zheng Q, Zhang N. Individual and combined occurrences of the prevalent mycotoxins in commercial feline and canine food. Mycotoxin Res 2024; 40:547-558. [PMID: 38990416 DOI: 10.1007/s12550-024-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mycotoxins, such as aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisins (FBs), ochratoxin A (OTA), T-2 toxin (T-2), and zearalenone (ZEN), can contaminate animal feeds and pose risks to animal health and production performance. These mycotoxins are commonly found in cereals and grains, with the increased use of cereals in pet food, there is a rising concern about mycotoxin contamination among pet owners. To address this, we analyzed imported brands of feline and canine food from the Chinese market produced in 2021-2022. Ninety-three samples were analyzed, comprising 45 feline food and 48 canine food samples. Among them, 14 were canned food and 79 were dry food. The results indicate that AFB1, DON, FBs, OTA, T-2, and ZEN occurred in 32.26%, 98.92%, 22.58%, 73.12%, 55.91%, and 7.53% of the samples, respectively. The most prevalent mycotoxin was DON, followed by OTA, T-2, AFB1, and FBs, whereas ZEN was less frequently detected. The mean concentrations of the six mycotoxins in pet feed samples were 3.17 μg/kg for AFB1, 0.65 mg/kg for DON, 2.15 mg/kg for FBs, 6.27 μg/kg for OTA, 20.00 μg/kg for T-2, and 30.00 μg/kg for ZEN. The levels of mycotoxins were generally below the limits of the Pet Feed Hygiene Regulations of China and the EU. Notably, a substantial majority of the pet food samples (88 out of 93) were contaminated by two or more mycotoxins. AFB1, FBs, OTA, and ZEN occurred slightly more often in feline food than in canine food. Except for OTA, the contamination rates for the other five mycotoxins in canned food were lower than those in dry food. Moreover, except for AFB1, the levels of the other five mycotoxins in canned foods were lower than those in dry foods. This study highlights the widespread contamination of pet foods with mycotoxins, which poses a significant risk to pets from continuous exposure to multiple mycotoxins.
Collapse
Affiliation(s)
- Guangteng Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Shen Hu
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Hao Huang
- Department of Animal Genetics, Breeding and Reproduction Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Qiang Zheng
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
21
|
Tibola CS, Eichelberger L, Fernandes JMC, Simões D, Fontes MRV, da Rosa Zavareze E, Dias ARG. Wheat debranning: effects on mycotoxins, phenolic content, and antioxidant activity. Mycotoxin Res 2024; 40:631-639. [PMID: 39078561 DOI: 10.1007/s12550-024-00550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
The debranning process, at an industrial scale, was applied to grains of two wheat cultivars to determine its effect on Fusarium mycotoxin content and antioxidant activity. Grain samples from the BRS Marcante and BRS Reponte wheat cultivars, naturally contaminated by Fusarium, were used in the study. The dry wheat samples were processed on the polisher once or twice and evaluated by hardness index, chemical composition (moisture, protein, and ash), deoxynivalenol (DON) and zearalenone (ZON) levels, phenolic content, and antioxidant activity. In the BRS Marcante cultivar, the debranning process only slightly reduced the DON and ZON contents in whole-wheat flours compared with the previous cleaning treatment (no-debranned). In the BRS Reponte cultivar, the DON concentration decreased by 36% at a debranning ratio of 5%, obtained by polishing, compared with prior cleaning treatment (no-debranned). In addition, the polishing reduced the ZON level by 56% compared with the cleaned wheat. The debranning process did not reduce the antioxidant capacity. Therefore, debranning is a suitable technology to obtain safer and healthier food by minimizing the mycotoxin content and retaining antioxidant capacity.
Collapse
Affiliation(s)
- Casiane Salete Tibola
- Embrapa Trigo, Rodovia BR-285, km 294-C.P. 3081, Passo Fundo, RS, 99050-970, Brazil.
| | - Luiz Eichelberger
- Embrapa Trigo, Rodovia BR-285, km 294-C.P. 3081, Passo Fundo, RS, 99050-970, Brazil
| | | | - Daiane Simões
- Grupo Idugel, Avenida Adolfo Zigueli, 2160-Nossa Sra. Lourdes, Joaçaba, SC, 89600-000, Brazil
| | - Milena Ramos Vaz Fontes
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil
| |
Collapse
|
22
|
Hou B, Xu Y, Wang D, Dong C, Yan F, Cheng X, Sun S, Bo C, Liu Z, Qin Y, Wang H, Kong L. A novel strategy for detoxification of deoxynivalenol via modification of both toxic groups. Food Chem 2024; 456:139886. [PMID: 38870804 DOI: 10.1016/j.foodchem.2024.139886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Deoxynivalenol (DON) is the most abundant mycotoxin in cereal crops and derived foods and is of great concern in agriculture. Bioremediation strategies have long been sought to minimize the impact of mycotoxin contamination, but few direct and effective enzyme-catalyzed detoxification methods are currently available. In this study, we established a multi-enzymatic cascade reaction and successfully achieved detoxification at double sites: glutathionylation for the C-12,13 epoxide group and epimerization for the C-3 hydroxyl group. This yielded novel derivatives of DON, 3-epi-DON-13-glutathione (3-epi-DON-13-GSH) as well as its by-product, 3-keto-DON-13-GSH, for which precise structures were validated via liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Both cell viability and DNA synthesis assays demonstrated dramatically decreased cytotoxicity of the double-site modified product 3-epi-DON-13-GSH. These findings provide a promising and urgently needed novel method for addressing the problem of DON contamination in agricultural and industrial settings.
Collapse
Affiliation(s)
- Bingqian Hou
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yongchang Xu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Dawei Wang
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Chunmei Dong
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fangfang Yan
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xinxin Cheng
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Silong Sun
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Cunyao Bo
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhangwei Liu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yao Qin
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Hongwei Wang
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lingrang Kong
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| |
Collapse
|
23
|
Zhang Q, Liu M, Zhang J, Jiang H, Ma C, Jian Y, Chen Y, Liu H, Chen H, Chen J, Sun X, Wang JS, Zhao X, Geng X, Song F, Zhou J. Macrophage MAPK7/AhR/STAT3 Signaling Mediates Mitochondrial ROS Burst and Enterohepatic Inflammatory Responses Induced by Deoxynivalenol Relevant to Low-Dose Exposure in Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18589-18602. [PMID: 39376183 DOI: 10.1021/acs.est.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Deoxynivalenol (DON) can induce endoplasmic reticulum (ER) stress, mitochondrial ROS burst, and macrophage polarization. Here, we investigated the mechanism linking the above three aspects with the dose range relevant to low-level exposure in children. At 0.5 μg/kg bw/day, we found remarkable liver and gut inflammatory responses after 6-week exposure in mice age comparable to humans 7-12 years old. Through antioxidant intervention, we found that ROS played a driver role in macrophage polarization and inflammatory responses induced by DON in the liver and gut. Further bioinformatics analysis uncovered that ER stress-associated protein MAPK7 (ERK5) may bind with AhR to initiate a mitochondrial ROS burst and macrophage M1 polarization. The downstream cellular events of MAPK7-AhR interaction may be mediated by the AhR/STAT3/p-STAT(Ser727) pathway. This mechanism was further supported by DON toxicity mitigation using cyanidin-3-glucoside (C-3-G), which docks to MAPK7 oligomerization region 200-400 aa and disrupts MAPK7-AhR interaction. Overall, our study provides novel evidence and mechanism for DON-induced inflammatory responses in the liver and gut system. Our findings call attention to the health risks associated with low-level DON exposure in the prepuberty children population.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Ming Liu
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Jing Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Huiyu Jiang
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Chuanmin Ma
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Yuanzhi Jian
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Yongchang Chen
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Hui Liu
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Hanri Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Jiaqi Chen
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-Sheng Wang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Xiulan Zhao
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Xingyi Geng
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Jun Zhou
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
24
|
Lian S, Li X, Lv X. A Novel SERS Label-Free Sensing Strategy for DON and NIV: A DFT Study on the Interaction between DON/NIV and Ag/Au. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20954-20965. [PMID: 39344816 DOI: 10.1021/acs.langmuir.4c02191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In this study, we propose a novel label-free detection strategy based on surface-enhanced Raman spectroscopy (SERS) for detecting deoxynivalenol (DON) and nivalenol (NIV), analyzing the interactions between these fungal toxins and Ag/Au substrates using density functional theory (DFT). The DFT calculation results indicate that the oxygen atoms in DON and NIV molecules exhibit high electronegativity, suggesting that they can serve as active sites in interaction with the metal surfaces in the SERS effect. By constructing DON/NIV-Ag6/Au6 complex models and evaluating their binding energies, we demonstrate the formation of stable complexes, showing characteristic frequency shifts, broadening, and selective enhancement in theoretical Raman spectra. The results indicate that the structural differences between DON and NIV lead to significant variations in the characteristic frequencies of their theoretical SERS spectra, providing a reproducible and interference-resistant method for the label-free detection of these fungal toxins. This work enhances the understanding of molecular-substrate interactions in SERS effects and provides a theoretical basis for the application of label-free SERS sensing strategies based on characteristic frequency shifts.
Collapse
Affiliation(s)
- Shuai Lian
- School of Medical Technology, Beijing Institute of Technology, Beijing 100000, China
| | - Xiaoqiong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100000, China
| | - Xuefei Lv
- School of Medical Technology, Beijing Institute of Technology, Beijing 100000, China
| |
Collapse
|
25
|
Fu Z, Chen Y, Cai G, Peng H, Wang X, Li P, Gu A, Li Y, Ma D. An Antisense Long Non-Coding RNA, LncRsn, Is Involved in Sexual Reproduction and Full Virulence in Fusarium graminearum. J Fungi (Basel) 2024; 10:692. [PMID: 39452644 PMCID: PMC11508260 DOI: 10.3390/jof10100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating crop disease that leads to significant declines in wheat yield and quality worldwide. Long non-coding RNAs (lncRNAs) are found to play significant functions in various biological processes, but their regulatory functions in the sexual reproduction and pathogenicity of F. graminearum have not been studied extensively. This study identified an antisense lncRNA, named lncRsn, located in the transcription initiation site region between the 5'-flanking gene FgSna and the 3'-flanking gene FgPta. A deletion mutant of lncRsn (ΔlncRsn) was constructed through homologous recombination. ΔlncRsn exhibited huge reductions in pathogen and sexual reproduction. Additionally, the deletion of lncRsn disrupted the biosynthesis of deoxynivalenol (DON) and impaired the formation of infection structures. RT-qPCR analysis reveals that lncRsn may negatively regulate the transcription of the target gene FgSna. This study found that lncRsn plays an important role in sexual and asexual reproduction, pathogenicity, virulence, osmotic stress, and cell wall integrity (CWI) in F. graminearum. Further characterization of pathogenesis-related genes and the reaction between lncRsn and protein-coding genes will aid in developing novel approaches for controlling F. graminearum diseases.
Collapse
Affiliation(s)
- Zhizhen Fu
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Yanjie Chen
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Gaolei Cai
- Shiyan Academy of Agricultural Sciences, Shiyan 442000, China;
| | - Huijuan Peng
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Xiaoyu Wang
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Ping Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Aiguo Gu
- Jiangsu Product Quality Testing & Inspection Institute, 5 Guanghua Street, Nanjing 210007, China;
| | - Yanli Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| |
Collapse
|
26
|
Nie D, Zhu X, Liu M, Cheng M, Fan K, Zhao Z, Huang Q, Zhang X, Han Z. Molecularly imprinted polymer-based electrochemical sensor for rapid detection of masked deoxynivalenol with Mn-doped CeO 2 nanozyme as signal amplifier. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135366. [PMID: 39088943 DOI: 10.1016/j.jhazmat.2024.135366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.
Collapse
Affiliation(s)
- Dongxia Nie
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xueting Zhu
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Minghui Liu
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Meng Cheng
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Kai Fan
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Zhihui Zhao
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Qingwen Huang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaolin Zhang
- COFCO Nutrition and Health Research Institute, Future Science and Technology Park, South Road No.4 Beiqijia, ChangPing, Beijing 102209, China
| | - Zheng Han
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
| |
Collapse
|
27
|
Pierron A, Balbo LC, Soler L, Pinton P, Puel S, Laffitte J, Albin M, Bracarense APFRL, Rodriguez MA, Oswald IP. Deoxynivalenol Induces Local Inflammation and Lesions in Tissues at Doses Recommended by the EU. Int J Mol Sci 2024; 25:9790. [PMID: 39337277 PMCID: PMC11432646 DOI: 10.3390/ijms25189790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The mycotoxin deoxynivalenol (DON) is frequently present in cereals at low levels, resulting in its occurrence in food and feed. DON has been proven to alter the immune response and induce inflammation in all species, with pigs exhibiting heightened sensitivity and exposure. However, no study has yet evaluated the effects of exposure to DON at the recommended levels in pig feed. In two separate trials, piglets were subjected to control feed or feed contaminated with a low level of purified DON (0.83 mg/kg feed in trial 1 and 0.85 mg/kg feed in trial 2) for either three weeks (trial 1) or two weeks (trial 2). Additionally, a group of animals exposed to 2.85 mg/kg feed of DON was included as a positive control in Trial 1. The impact of DON on porcine tissues (intestine, liver, and spleen) was evaluated through histological and qPCR analyses of immune-related genes. Additionally, biochemical analyses and acute-phase proteins were examined in plasma samples. Lesions were identified in the intestine (jejunum and ileum), the liver, and the spleen of pigs receiving diets contaminated with low and high concentrations of DON. The low level of DON also resulted in impaired expression of genes associated with intestinal barrier integrity, intestinal immune responses, and liver function. In conclusion, the results of the two trials demonstrate the impact of DON exposure even at doses below the recommended level of 0.9 mg/kg feed set by the European Union. This suggests that the current recommended level should be reconsidered to ensure the optimal health and well-being of pigs.
Collapse
Affiliation(s)
- Alix Pierron
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (A.P.); (L.S.); (P.P.); (S.P.); (J.L.); (M.A.)
| | - Luciana C. Balbo
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (L.C.B.); (A.-P.F.R.L.B.)
| | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (A.P.); (L.S.); (P.P.); (S.P.); (J.L.); (M.A.)
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (A.P.); (L.S.); (P.P.); (S.P.); (J.L.); (M.A.)
| | - Sylvie Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (A.P.); (L.S.); (P.P.); (S.P.); (J.L.); (M.A.)
| | - Joëlle Laffitte
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (A.P.); (L.S.); (P.P.); (S.P.); (J.L.); (M.A.)
| | - Mickaël Albin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (A.P.); (L.S.); (P.P.); (S.P.); (J.L.); (M.A.)
| | | | | | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (A.P.); (L.S.); (P.P.); (S.P.); (J.L.); (M.A.)
| |
Collapse
|
28
|
Muhmood A, Liu J, Liu D, Liu S, Azzam MM, Junaid MB, Hou L, Le G, Huang K. Mitigation of Deoxynivalenol (DON)- and Aflatoxin B1 (AFB1)-Induced Immune Dysfunction and Apoptosis in Mouse Spleen by Curcumin. Toxins (Basel) 2024; 16:356. [PMID: 39195766 PMCID: PMC11359138 DOI: 10.3390/toxins16080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
In the context of the potential immunomodulatory properties of curcumin in counteracting the detrimental effects of concurrent exposure to Deoxynivalenol (DON) and Aflatoxin B1 (AFB1), a comprehensive 28-days trial was conducted utilizing 60 randomly allocated mice divided into four groups. Administration of curcumin at a dosage of 5 mg/kg body weight in conjunction with DON at 0.1 mg/kg and AFB1 at 0.01 mg/kg body weight was undertaken to assess its efficacy. Results indicated that curcumin intervention demonstrated mitigation of splenic structural damage, augmentation of serum immunoglobulin A (IgA) and immunoglobulin G (IgG) levels, elevation in T lymphocyte subset levels, and enhancement in the mRNA expression levels of pro-inflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-6. Furthermore, curcumin exhibited a suppressive effect on apoptosis in mice, as evidenced by decreased activity of caspase-3 and caspase-9, reduced expression levels of pro-apoptotic markers Bax and Cytochrome-c (Cyt-c) at both the protein and mRNA levels, and the maintenance of a balanced expression ratio of mitochondrial apoptotic regulators Bax and Bcl-2. Collectively, these findings offer novel insights into the therapeutic promise of curcumin in mitigating immunosuppression and apoptotic events triggered by mycotoxin co-exposure.
Collapse
Affiliation(s)
- Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mahmoud M. Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Bilawal Junaid
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Zhou B, Xiao K, Guo J, Xu Q, Xu Q, Lv Q, Zhu H, Zhao J, Liu Y. Necroptosis contributes to the intestinal toxicity of deoxynivalenol and is mediated by methyltransferase SETDB1. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134601. [PMID: 38823098 DOI: 10.1016/j.jhazmat.2024.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.
Collapse
Affiliation(s)
- Bei Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
30
|
Mishra S, Kapoor R, Sushma, Kanchan S, Jha G, Sharma D, Tomar B, Rath SK. Deoxynivalenol Induces Drp-1-Mediated Mitochondrial Dysfunction via Elevating Oxidative Stress. Chem Res Toxicol 2024; 37:1139-1154. [PMID: 38875017 DOI: 10.1021/acs.chemrestox.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sushma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawna Tomar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
31
|
Gonya S, Kallmerten P, Dinapoli P. Are Infants and Children at Risk of Adverse Health Effects from Dietary Deoxynivalenol Exposure? An Integrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:808. [PMID: 38929054 PMCID: PMC11204095 DOI: 10.3390/ijerph21060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans' gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant.
Collapse
Affiliation(s)
- Susan Gonya
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| | | | - Pamela Dinapoli
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
32
|
Li K, Wang S, Qu W, Ahmed AA, Enneb W, Obeidat MD, Liu HY, Dessie T, Kim IH, Adam SY, Cai D. Natural products for Gut-X axis: pharmacology, toxicology and microbiology in mycotoxin-caused diseases. Front Pharmacol 2024; 15:1419844. [PMID: 38978980 PMCID: PMC11228701 DOI: 10.3389/fphar.2024.1419844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction: The gastrointestinal tract is integral to defending against external contaminants, featuring a complex array of immunological, physical, chemical, and microbial barriers. Mycotoxins, which are toxic metabolites from fungi, are pervasive in both animal feed and human food, presenting substantial health risks. Methods: This review examines the pharmacological, toxicological, and microbiological impacts of natural products on mycotoxicosis, with a particular focus on the gut-x axis. The analysis synthesizes current understanding and explores the role of natural products rich in polysaccharides, polyphenols, flavonoids, and saponins. Results: The review highlights that mycotoxins can disrupt intestinal integrity, alter inflammatory responses, damage the mucus layer, and disturb the bacterial balance. The toxins' effects are extensive, potentially harming the immune system, liver, kidneys, and skin, and are associated with serious conditions such as cancer, hormonal changes, genetic mutations, bleeding, birth defects, and neurological issues. Natural products have shown potential anticancer, anti-tumor, antioxidant, immunomodulatory, and antitoxic properties. Discussion: The review underscores the emerging therapeutic strategy of targeting gut microbial modulation. It identifies knowledge gaps and suggests future research directions to deepen our understanding of natural products' role in gut-x axis health and to mitigate the global health impact of mycotoxin-induced diseases.
Collapse
Affiliation(s)
- Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wuyi Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Wael Enneb
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mohammad Diya’ Obeidat
- Department of Animal Production, Jordan University of Science and Technology, Irbid, Jordan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Saber Y. Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Armer VJ, Urban M, Ashfield T, Deeks MJ, Hammond-Kosack KE. The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13485. [PMID: 38877764 PMCID: PMC11178975 DOI: 10.1111/mpp.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.
Collapse
Affiliation(s)
- Victoria J Armer
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Biosciences, University of Exeter, Exeter, UK
| | - Martin Urban
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Tom Ashfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden, UK
| | | | | |
Collapse
|
34
|
Maragos CM, Vaughan MM, McCormick SP. Monoclonal-Antibody-Based Immunoassays for the Mycotoxins NX-2 and NX-3 in Wheat. Toxins (Basel) 2024; 16:231. [PMID: 38787083 PMCID: PMC11126132 DOI: 10.3390/toxins16050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The fungal infestation of crops can cause major economic losses. Toxins produced by the causative fungi (mycotoxins) represent a potential safety hazard to people and livestock consuming them. One such mycotoxin is deoxynivalenol (DON, also known as vomitoxin), a trichothecene associated with Fusarium Head Blight of wheat. DON is commonly found in cereal crops worldwide. A group of trichothecene mycotoxins closely related to DON, the NX toxins, have been reported to occur in the northeastern United States and southern Canada. While many commercial immunoassays are available to detect DON, there are no rapid screening assays for the NX toxins. We describe the development and isolation of three monoclonal antibodies (mAbs) specific towards two NX toxins: NX-2 and NX-3. The mAbs did not recognize DON or several other closely related trichothecenes. One of the mAbs was selected for development of an enzyme-linked immunosorbent assay (ELISA) for NX-2 and NX-3 in wheat. The dynamic ranges for the assay were 7.7 to 127 μg/kg for NX-2 and 59 μg/kg to 1540 μg/kg for NX-3 in wheat. Recoveries from spiked wheat averaged 84.4% for NX-2 and 99.3% for NX-3, with RSDs of 10.4% and 11.3%, respectively (n = 24). The results suggest that this assay can be used to screen for NX toxins in wheat at levels relevant to human food and animal feed safety.
Collapse
Affiliation(s)
- Chris M. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N University, Peoria, IL 61604, USA; (M.M.V.); (S.P.M.)
| | | | | |
Collapse
|
35
|
He Y, Yang X, Xia X, Wang Y, Dong Y, Wu L, Jiang P, Zhang X, Jiang C, Ma H, Ma W, Liu C, Whitford R, Tucker MR, Zhang Z, Li G. A phase-separated protein hub modulates resistance to Fusarium head blight in wheat. Cell Host Microbe 2024; 32:710-726.e10. [PMID: 38657607 DOI: 10.1016/j.chom.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 06/05/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Fusarium head blight (FHB) is a devastating wheat disease. Fhb1, the most widely applied genetic locus for FHB resistance, is conferred by TaHRC of an unknown mode of action. Here, we show that TaHRC alleles distinctly drive liquid-liquid phase separation (LLPS) within a proteinaceous complex, determining FHB susceptibility or resistance. TaHRC-S (susceptible) exhibits stronger LLPS ability than TaHRC-R (resistant), and this distinction is further intensified by fungal mycotoxin deoxynivalenol, leading to opposing FHB symptoms. TaHRC recruits a protein class with intrinsic LLPS potentials, referred to as an "HRC-containing hub." TaHRC-S drives condensation of hub components, while TaHRC-R comparatively suppresses hub condensate formation. The function of TaSR45a splicing factor, a hub member, depends on TaHRC-driven condensate state, which in turn differentially directs alternative splicing, switching between susceptibility and resistance to wheat FHB. These findings reveal a mechanism for FHB spread within a spike and shed light on the roles of complex condensates in controlling plant disease.
Collapse
Affiliation(s)
- Yi He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Zhongshan Biological Breeding Laboratory, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Xiaobo Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Zhongshan Biological Breeding Laboratory, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Peng Jiang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Zhongshan Biological Breeding Laboratory, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Zhongshan Biological Breeding Laboratory, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cong Jiang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Ma
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266000, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ryan Whitford
- Centre for Crop and Food Innovation (CCFI), State Agricultural Biotechnology Centre (SABC), Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
He W, Zhang T, Zheng M, Tabl KM, Huang T, Liao Y, Wu A, Zhang J. Utilization of a Novel Soil-Isolated Strain Devosia insulae FS10-7 for Deoxynivalenol Degradation and Biocontrol of Fusarium Crown Rot in Wheat. PHYTOPATHOLOGY 2024; 114:1057-1067. [PMID: 38451497 DOI: 10.1094/phyto-10-23-0412-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Deoxynivalenol (DON) is the most widespread mycotoxin contaminant hazardous to human and animal health globally. It acts as a crucial virulence factor to stimulate the spread of pathogenic Fusarium within wheat plants. Control of DON and Fusarium disease contributes enormously to food safety, which relies on chemical fungicides. Here, we report the biodegradation of DON using a novel soil bacterium, Devosia insulae FS10-7, and its biocontrol effect against Fusarium crown rot. We demonstrated that strain FS10-7 degraded DON to 3-epi-DON by forming a 3-keto-DON intermediate. Such degradation activity can be maintained at a wide range of pH (4 to 10) and temperature (16 to 42°C) values under aerobic conditions. Notably, strain FS10-7 exhibited practical inhibitory effects on Fusarium crown rot disease caused by F. graminearum and F. pseudograminearum in the in vitro Petri dish test under laboratory conditions and the pot experiment under greenhouse conditions. The mechanisms underlying the biocontrol ability of strain FS10-7 were preliminarily investigated to be associated with its high DON-degrading activity rather than direct antagonism. These results establish the foundation to develop further bioagents capable of biodegrading mycotoxins in cereals and derived products and, accordingly, biocontrol plant diseases caused by DON-producing pathogens.
Collapse
Affiliation(s)
- Weijie He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tiantian Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengru Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Karim M Tabl
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531, Alexandria, Egypt
| | - Tao Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Jingbo Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
37
|
Qiu Y, Yan J, Yue A, Lu Z, Tan J, Guo H, Ding Y, Lyu F, Fu Y. A comprehensive review of biodetoxification of trichothecenes: Mechanisms, limitations and novel strategies. Food Res Int 2024; 184:114275. [PMID: 38609252 DOI: 10.1016/j.foodres.2024.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Trichothecenes are Fusarium mycotoxins with sesquiterpenoid structure, which are widely occurred in grains. Due to high efficiency and environmental friendliness, biological detoxification methods have been of great interest to treat this global food and feed safety concern. This review summarized the biological detoxification methods of trichothecenes from three aspects, biosorption, biotransformation and biotherapy. The detoxification efficiency, characteristics, mechanisms and limitations of different strategies were discussed in detail. Computer-aided design will bring a new research paradigm for more efficient discovery of biodetoxifier. Integrating different detoxification approaches assisted with computational tools will become a promising research direction in the future, which will help to maximize the detoxification effect, or provide precise detoxification programs for the coexistence of various toxins at different levels in actual production. In addition, technical and regulatory issues in practical application were also discussed. These findings contribute to the exploration of efficient, applicable and sustainable methods for trichothecenes detoxification, ensuring the safety of food and feed to reduce the deleterious effects of trichothecenes on humans and animals.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| | - Jiaping Yan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianzhuang Tan
- Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| | - Hong Guo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yan Fu
- Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| |
Collapse
|
38
|
Zhang Y, Gao Z, Lei Y, Song L, He W, Liu J, Song M, Dai Y, Yang G, Gong A. FgFAD12 Regulates Vegetative Growth, Pathogenicity and Linoleic Acid Biosynthesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:288. [PMID: 38667959 PMCID: PMC11051453 DOI: 10.3390/jof10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs), as important components of lipids, play indispensable roles in the development of all organisms. ∆12 fatty acid desaturase (FAD12) is a speed-determining step in the biosynthesis of PUFAs. Here, we report the characterization of FAD12 in Fusarium graminearum, which is the prevalent agent of Fusarium head blight, a destructive plant disease worldwide. The results demonstrated that deletion of the FgFAD12 gene resulted in defects in vegetative growth, conidial germination and plant pathogenesis but not sexual reproduction. A fatty acid analysis further proved that the deletion of FgFAD12 restrained the reaction of oleic acid to linoleic acid, and a large amount of oleic acid was detected in the cells. Moreover, the ∆Fgfad12 mutant showed increased resistance to osmotic stress and reduced tolerance to oxidative stress. The expression of FgFAD12 did show a temperature-dependent manner, which was not affected at a low temperature of 10 °C when compared to 25 °C. RNA-seq analysis further demonstrated that most genes enriched in fatty acid metabolism, the biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, fatty acid degradation, steroid biosynthesis and fatty acid elongation pathways were significantly up-regulated in the ∆Fgfad12 mutants. Overall, our results indicate that FgFAD12 is essential for linoleic acid biosynthesis and plays an important role in the infection process of F. graminearum.
Collapse
Affiliation(s)
- Yimei Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| | - Zhen Gao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yinyu Lei
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Liuye Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Weijie He
- College of Plant Science and Technology, Huazhong Agricultura University, Wuhan 430070, China;
| | - Jingrong Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Mengge Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yafeng Dai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Guang Yang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Andong Gong
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| |
Collapse
|
39
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
40
|
Yulfo-Soto G, McCormick S, Chen H, Bai G, Trick HN, Hao G. Reduction of Fusarium head blight and trichothecene contamination in transgenic wheat expressing Fusarium graminearum trichothecene 3- O-acetyltransferase. FRONTIERS IN PLANT SCIENCE 2024; 15:1389605. [PMID: 38650698 PMCID: PMC11033581 DOI: 10.3389/fpls.2024.1389605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Fusarium graminearum, the causal agent of Fusarium head blight (FHB), produces various mycotoxins that contaminate wheat grains and cause profound health problems in humans and animals. Deoxynivalenol (DON) is the most common trichothecene found in contaminated grains. Our previous study showed that Arabidopsis-expressing F. graminearum trichothecene 3-O-acetyltransferase (FgTRI101) converted DON to 3-acetyldeoxynivalenol (3-ADON) and excreted it outside of Arabidopsis cells. To determine if wheat can convert and excrete 3-ADON and reduce FHB and DON contamination, FgTRI101 was cloned and introduced into wheat cv Bobwhite. Four independent transgenic lines containing FgTRI101 were identified. Gene expression studies showed that FgTRI101 was highly expressed in wheat leaf and spike tissues in the transgenic line FgTri101-1606. The seedlings of two FgTri101 transgenic wheat lines (FgTri101-1606 and 1651) grew significantly longer roots than the controls on media containing 5 µg/mL DON; however, the 3-ADON conversion and excretion was detected inconsistently in the seedlings of FgTri101-1606. Further analyses did not detect 3-ADON or other possible DON-related products in FgTri101-1606 seedlings after adding deuterium-labeled DON into the growth media. FgTri101-transgenic wheat plants showed significantly enhanced FHB resistance and lower DON content after they were infected with F. graminearum, but 3-ADON was not detected. Our study suggests that it is promising to utilize FgTRI101, a gene that the fungus uses for self-protection, for managing FHB and mycotoxin in wheat production.
Collapse
Affiliation(s)
- Gabdiel Yulfo-Soto
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL, United States
- Oak Ridge Institute for Science and Education, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL, United States
| | - Susan McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL, United States
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- Hard Winter Wheat Genetics Research Unit, Agricultural Research Service, USDA, Manhattan, KS, United States
| | - Harold N. Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL, United States
| |
Collapse
|
41
|
Jiang J, Ruan Y, Liu X, Ma J, Chen H. Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6660-6671. [PMID: 38501926 DOI: 10.1021/acs.jafc.4c00556] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Background: Deoxynivalenol (DON) contamination, pervasive throughout all stages of food production and processing, presents a significant threat to human health. The degradation of ferritin mediated by nuclear receptor coactivator 4 (NCOA4), termed ferritinophagy, plays a crucial role in maintaining iron homeostasis and regulating ferroptosis. Aim: This study aims to elucidate the role of ferritinophagy and ferroptosis in DON-induced liver injury. Methods: Male mice and AML12 cells were subjected to varying doses of DON, serving as in vivo and in vitro models, respectively. Protein expression was assessed by using immunofluorescence and western blot techniques. Co-immunoprecipitation was employed to investigate the protein-protein interactions. Results: Our findings demonstrate that DON triggers hepatocyte ferroptosis in a ferritinophagy-dependent manner. Specifically, DON impedes the activation of the mammalian target of rapamycin complex 1 (mTORC1) by inhibiting RAC1's binding to mTOR, thereby ultimately inducing autophagy. Concurrently, DON amplifies NCOA4's affinity for ferritin by facilitating NCOA4 phosphorylation through the ataxia-telangiectasia mutated kinase (ATM), thus promoting the autophagy-dependent degradation of ferritin. Both autophagy inhibition and NCOA4 expression suppression ameliorate DON-induced ferroptosis. Conclusion: Our study concludes that DON facilitates NCOA4-mediated ferritinophagy via the ATM-NCOA4 pathway, subsequently inducing ferroptosis in the liver.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, P. R. China
| | - Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
42
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
43
|
Tang R, Ju X, Niu X, Liu X, Li Y, Yu Z, Ma X, Gao Y, Li Y, Xie H, Zhou Q, Yong Y. Protective Effects of Carbonated Chitosan Montmorillonite on Vomitoxin-Induced Intestinal Inflammation. Polymers (Basel) 2024; 16:715. [PMID: 38475397 DOI: 10.3390/polym16050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Exposure to vomitoxin (DON) can negatively impact the intestinal health of livestock and poultry, leading to compromised nutrient absorption and utilization, resulting in slowed growth and reduced production efficiency. In this study, we synthesized carbonated chitosan montmorillonite intercalation complexes (CCM) through solution precipitation. The successful formation of intercalation complexes was confirmed by examining functional groups and surface features using infrared spectroscopy and scanning electron microscopy. To assess the impact of CCM on DON-infected mice, we established an experimental mouse model of jejunal inflammation induced by DON infection. We analyzed the effects of CCM on blood biochemical and conventional indices, jejunal inflammatory factors, pathological changes, and the expression of proteins in the MAPK pathways in DON-infected mice. Our results indicate that CCM effectively mitigates the adverse effects of DON on growth performance, jejunal injury, and the inflammatory response in mice. CCM supplementation alleviated the negative effects of DON infection on growth performance and reduced intestinal inflammation in mice. Moreover, CCM supplementation successfully inhibited the activation of the mitogen-activated protein kinase (MAPK) signaling pathway induced by DON. These findings suggest that the mitigating effect of CCM on DON-induced inflammatory injury in the murine jejunum is closely linked to the regulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Ruifan Tang
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xianghong Ju
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xueting Niu
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xingbin Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Gao
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yin Li
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huili Xie
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiu Zhou
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yanhong Yong
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
44
|
Qiao Y, Ji X, Guo H, Zheng W, Yao W. Complementary transcriptomic and proteomic analyses elucidate the toxicological molecular mechanisms of deoxynivalenol-induced contractile dysfunction in enteric smooth muscle cells. Food Chem Toxicol 2024; 186:114545. [PMID: 38403181 DOI: 10.1016/j.fct.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Deoxynivalenol (DON) is one of the frequent Fusarium mycotoxins and poses a serious threat to public health worldwide. DON-induced weight loss is tightly connected with its ability to decrease feed intake by influencing gastrointestinal tract (GIT) motility. Our previous reports indicated that DON interfered with intestinal motility by injuring the contractility of enteric smooth muscle cells (SMC). Here, we further explored the potential mechanisms by employing a complementary method of transcriptomics and proteomics using the porcine enteric smooth muscle cell line (PISMC) as an experimental model. The transcriptomic and proteomic data uncover that the expression of numerous extracellular matrix (ECM) proteins and multiple integrin subunits were downregulated in PISMC under DON exposure, suppressing the ECM-integrin receptor interaction and its mediated signaling. Furthermore, DON treatment could depress actin polymerization, as reflected by the upregulated expression of Rho GTPase-activating proteins and cofilin in PISMC. Meanwhile, the expression levels of downstream contractile apparatus genes were significantly inhibited after challenge with DON. Taken together, the current results suggest that DON inhibits enteric SMC contractility by regulating the ECM-integrin-actin polymerization signaling pathway. Our findings provide novel insights into the potential mechanisms behind the DON toxicological effects in the GIT of humans and animals.
Collapse
Affiliation(s)
- Yu Qiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Huiduo Guo
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
45
|
Pierron A, Kleber A, Mayer E, Gerner W. Effect of DON and ZEN and their metabolites DOM-1 and HZEN on B cell proliferation and antibody production. Front Immunol 2024; 15:1338937. [PMID: 38449861 PMCID: PMC10915041 DOI: 10.3389/fimmu.2024.1338937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.
Collapse
Affiliation(s)
- Alix Pierron
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Alexandra Kleber
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Elisabeth Mayer
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
46
|
Zhang S, Song W, Hua Z, Du J, Lucena RB, Wang X, Zhang C, Yang X. Overview of T-2 Toxin Enterotoxicity: From Toxic Mechanisms and Detoxification to Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3314-3324. [PMID: 38331717 DOI: 10.1021/acs.jafc.3c09416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fusarium species produce a secondary metabolite known as T-2 toxin, which is the primary and most harmful toxin found in type A trichothecenes. T-2 toxin is widely found in food and grain-based animal feed and endangers the health of both humans and animals. T-2 toxin exposure in humans and animals occurs primarily through food administration; therefore, the first organ that T-2 toxin targets is the gut. In this overview, the research progress, toxicity mechanism, and detoxification of the toxin T-2 were reviewed, and future research directions were proposed. T-2 toxin damages the intestinal mucosa and destroys intestinal structure and intestinal barrier function; furthermore, T-2 toxin disrupts the intestinal microbiota, causes intestinal flora disorders, affects normal intestinal metabolic function, and kills intestinal epidermal cells by inducing oxidative stress, inflammatory responses, and apoptosis. The primary harmful mechanism of T-2 toxin in the intestine is oxidative stress. Currently, selenium and plant extracts are mainly used to exert antioxidant effects to alleviate the enterotoxicity of T-2 toxin. In future studies, the use of genomic techniques to find upstream signaling molecules associated with T-2 enterotoxin toxicity will provide new ideas for the prevention of this toxicity. The purpose of this paper is to review the progress of research on the intestinal toxicity of T-2 toxin and propose new research directions for the prevention and treatment of T-2 toxin toxicity.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, Henan, P. R. China
| | - Wenxi Song
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Zeao Hua
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Juanjuan Du
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Ricardo Barbosa Lucena
- Laboratory of Veterinary Pathology, Department of Veterinary Sciences, Federal University of Paraiba, Areia 58397-000, Paraiba Brazil
| | - Xuebing Wang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, Henan, P. R. China
| | - Xu Yang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, Henan, P. R. China
| |
Collapse
|
47
|
Zhu M, Lu EQ, Fang YX, Liu GW, Cheng YJ, Huang K, Xu E, Zhang YY, Wang XJ. Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway. Molecules 2024; 29:855. [PMID: 38398607 PMCID: PMC10891758 DOI: 10.3390/molecules29040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine intestinal epithelial cells (IPEC-J2 cells) and the underlying mechanism. The results showed that PIC promotes IPEC-J2 cell proliferation in a dose-dependent manner. Moreover, it not only significantly relieved DON-induced decreases in cell viability and proliferation but also reduced intracellular reactive oxygen species (ROS) production. Further studies demonstrated that PIC alleviated DON-induced oxidative stress damage by increasing the protein expression levels of the antioxidant factors NAD(P)H quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase modifier subunit (GCLM), and the mRNA expression of catalase (CAT), Superoxide Dismutase 1 (SOD1), peroxiredoxin 3 (PRX3), and glutathione S-transferase alpha 4 (GSTα4). In addition, PIC inhibited the activation of the nuclear factor-B (NF-κB) pathway, downregulated the mRNA expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) to attenuate DON-induced inflammatory responses, and further mitigated DON-induced cellular intestinal barrier injury by regulating the protein expression of Occludin. These findings indicated that PIC had a significant protective effect against DON-induced damage. This study provides more understanding to support PIC as a feed additive for pig production.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yong-Xia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Guo-Wei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Ke Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yi-Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
48
|
Hou S, Ma J, Cheng Y, Wang Z, Wang G, Jia A, Wang H, Sun J, Yan Y. DON induced DNA damage triggers absence of p53-mediated G2 arrest and apoptosis in IPEC-1 cells. Toxicology 2024; 501:153707. [PMID: 38104654 DOI: 10.1016/j.tox.2023.153707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Deoxynivalenol (DON) stands among the prevalent mycotoxins, and usually contaminates cereal foods and animal feed, leading to human and animal clinical poisoning symptoms such as abdominal pain, diarrhea, and vomiting. To date, the mechanism of toxicity of DON in different mammalian cells is not fully elucidated. In this study, we explored the detrimental impacts of DON on porcine intestinal epithelial cells (IPEC-1), serving as a representative model for porcine intestinal epithelial cells. After treating cells with DON for 24 h, DON can significantly inhibit the activity of cells, induce the production of reactive oxygen species (ROS), significantly reduce the content of glutathione and the activity of catalase, and increase the activity of superoxide dismutase and malondialdehyde, leading to an imbalance in intracellular redox status. In addition, DON can induce DNA double-strand breaks, and decrease mitochondrial membrane potential. Furthermore, DON can promote the release of Cyt C through changes in mitochondrial permeability through inhibit the expression of B-cell lymphoma 2 (Bcl-2) proteins, leading to apoptosis through the mitochondrial pathway. On the other hand, we found that DON can cause IPEC-1 cells G2 phase cycle arrest. Different with our pervious study, DON induces cell cycle arrest in the G2 phase only by activating the ATM-Chk2-Cdc 25 C pathway, but cannot regulate the cell cycle arrest via the ATM-p53 pathway. These results indicate that DON can induce the same toxic phenotype in different cells, but its toxic mechanism is different. All these provide a rationale for revealing DON induced cytotoxicity and intestinal diseases.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Demonstration Center of Food Quality and Safety Testing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Guiping Wang
- Guangdong Haid Group Co. Limited., Guangzhou, Guangdong 511400, China
| | - Aiqing Jia
- Guangdong Haid Group Co. Limited., Guangzhou, Guangdong 511400, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
49
|
Wang M, Wu N, Wang H, Liu C, Chen Q, Xu T, Chen Y, Zhao Y, Ma Z. Overproduction of mycotoxin biosynthetic enzymes triggers Fusarium toxisome-shaped structure formation via endoplasmic reticulum remodeling. PLoS Pathog 2024; 20:e1011913. [PMID: 38166144 PMCID: PMC10786393 DOI: 10.1371/journal.ppat.1011913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
Mycotoxin deoxynivalenol (DON) produced by the Fusarium graminearum complex is highly toxic to animal and human health. During DON synthesis, the endoplasmic reticulum (ER) of F. graminearum is intensively reorganized, from thin reticular structure to thickened spherical and crescent structure, which was referred to as "DON toxisome". However, the underlying mechanism of how the ER is reorganized into toxisome remains unknown. In this study, we discovered that overproduction of ER-localized DON biosynthetic enzyme Tri4 or Tri1, or intrinsic ER-resident membrane proteins FgHmr1 and FgCnx was sufficient to induce toxisome-shaped structure (TSS) formation under non-toxin-inducing conditions. Moreover, heterologous overexpression of Tri1 and Tri4 proteins in non-DON-producing fungi F. oxysporum f. sp. lycopersici and F. fujikuroi also led to TSS formation. In addition, we found that the high osmolarity glycerol (HOG), but not the unfolded protein response (UPR) signaling pathway was involved in the assembly of ER into TSS. By using toxisome as a biomarker, we screened and identified a novel chemical which exhibited high inhibitory activity against toxisome formation and DON biosynthesis, and inhibited Fusarium growth species-specifically. Taken together, this study demonstrated that the essence of ER remodeling into toxisome structure is a response to the overproduction of ER-localized DON biosynthetic enzymes, providing a novel pathway for management of mycotoxin contamination.
Collapse
Affiliation(s)
- Minhui Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ningjie Wu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, People’s Republic of China
| | - Huiyuan Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chang Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qiaowan Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tianming Xu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, People’s Republic of China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Youfu Zhao
- Irrigated Agriculture Research and Extension Center, Department of Plant Pathology, Washington State University, Prosser, Washington, United States of America
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
50
|
Alberge J, Mussard E, Al-Ayoubi C, Lencina C, Marrauld C, Cauquil L, Achard CS, Mateos I, Alassane-Kpembi I, Oswald IP, Soler L, Combes S, Beaumont M. Butyrate reduces epithelial barrier dysfunction induced by the foodborne mycotoxin deoxynivalenol in cell monolayers derived from pig jejunum organoids. Gut Microbes 2024; 16:2430424. [PMID: 39572558 PMCID: PMC11587856 DOI: 10.1080/19490976.2024.2430424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The foodborne mycotoxin deoxynivalenol (DON) produced by Fusarium species threats animal and human health through disruption of the intestinal barrier. Targeting the gut microbiota and its products appears as a promising strategy to mitigate DON intestinal toxicity. In this study, we investigated whether the bacterial metabolite butyrate could alleviate epithelial barrier disruption induced by DON. We used a model of cell monolayers derived from porcine jejunum organoids allowing to reproduce the cellular complexity of the intestinal epithelium. Our results show that DON dose-dependently disrupted the epithelial barrier integrity, reduced epithelial differentiation, and altered innate immune defenses. Butyrate attenuated the DON-induced increase in paracellular permeability. Butyrate also prevented epithelial barrier dysfunction triggered by anisomycin, a ribosome inhibitor like DON. Moreover, butyrate partially counteracted the effects of DON on tight junctions (TJP1, OCLN), innate epithelial defenses (PTGS2, CD14, TLR4, TLR5), and absorptive cell functions (CA2, VIL1, NHE3, CFTR). In contrast, butyrate did not prevent the toxic effects of DON on mitochondrial metabolism, proliferation and goblet cell functions. Taken together, our results demonstrate that the bacterial metabolite butyrate is able to reduce DON-induced epithelial barrier disruption.
Collapse
Affiliation(s)
- Julie Alberge
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Eloïse Mussard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
| | - Carine Al-Ayoubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Ivan Mateos
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
- Departamento de Producción Animal, Universidad de León, León, Spain
| | - Imourana Alassane-Kpembi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Isabelle P. Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Laura Soler
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|