1
|
Wang W, Shi X, Feng J, Le Y, Jin L, Lu D, Zhang Q, Wang C. Perinatal exposure to PBEB aggravates liver injury via macrophage-derived TWEAK in male adult offspring mice under western diet. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135735. [PMID: 39241360 DOI: 10.1016/j.jhazmat.2024.135735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Liver injury and inflammation are the most commonly observed adverse outcomes following exposure to penta-brominated flame retardants (penta-BFRs). However, the role of inflammation in the development of liver injury in their alternatives has not yet been explored. Our study aimed to investigate the effects and the underlying mechanism of perinatal exposure to pentabromoethylbenzene (PBEB), a penta-BDE alternative, on liver injury in adult offspring mice under both chow and western diet in later life. Results showed that perinatal exposure to PBEB at 0.2 mg/kg or above led to liver injury in male offspring upon challenge with a western diet, but not in females. Utilizing the Olink immunology panel, our study specifically revealed an upregulation of tumor necrosis factor-related weak inducer of apoptosis (TWEAK) within the livers of male mice. This cytokine was further demonstrated to derive from the secretion by infiltrating macrophages in livers both in vivo and in vitro, which facilitated a shift towards M1 macrophage polarization. TWEAK further activated the hepatic NF-κB and NLRP3 inflammasome pathways, subsequently leading to hepatic pyroptosis in male mice of maternal PBEB exposure. Inhibition of TWEAK signaling mitigated macrophage polarization and inflammasome induction in a co-culture system of macrophages and liver cells. Our findings revealed that perinatal exposure to PBEB precipitated liver injury, partially through an inflammatory pathway mediated by macrophage-derived TWEAK, in male mice offspring under western diet.
Collapse
Affiliation(s)
- Wanyue Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaoliu Shi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lingbing Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
2
|
More SJ, Benford D, Hougaard Bennekou S, Bampidis V, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Naska A, Poulsen M, Ranta J, Sand S, Wallace H, Bastaki M, Liem D, Smith A, Ververis E, Zamariola G, Younes M. Guidance on risk-benefit assessment of foods. EFSA J 2024; 22:e8875. [PMID: 39015302 PMCID: PMC11250173 DOI: 10.2903/j.efsa.2024.8875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The EFSA Scientific Committee has updated its 2010 Guidance on risk-benefit assessment (RBA) of foods. The update addresses methodological developments and regulatory needs. While it retains the stepwise RBA approach, it provides additional methods for complex assessments, such as multiple chemical hazards and all relevant health effects impacting different population subgroups. The updated guidance includes approaches for systematic identification, prioritisation and selection of hazardous and beneficial food components. It also offers updates relevant to characterising adverse and beneficial effects, such as measures of effect size and dose-response modelling. The guidance expands options for characterising risks and benefits, incorporating variability, uncertainty, severity categorisation and ranking of different (beneficial or adverse) effects. The impact of different types of health effects is assessed qualitatively or quantitatively, depending on the problem formulation, scope of the RBA question and data availability. The integration of risks and benefits often involves value-based judgements and should ideally be performed with the risk-benefit manager. Metrics such as Disability-Adjusted Life Years (DALYs) and Quality-Adjusted Life Years (QALYs) can be used. Additional approaches are presented, such as probability of all relevant effects and/or effects of given severities and their integration using severity weight functions. The update includes practical guidance on reporting results, interpreting outcomes and communicating the outcome of an RBA, considering consumer perspectives and responses to advice.
Collapse
|
3
|
Xia B, Yu R, Liu J, Liu D, Li S, Yang L, Liu N, Liang B, Zeng J, Wei J, Lin G. BDE-47 induces metabolic dysfunction-associated steatotic liver disease (MASLD) through CD36-mediated increased fatty acid uptake and PPARα-induced abnormal fatty acid oxidation in BALB/c mice. Toxicol Lett 2024; 391:100-110. [PMID: 38040069 DOI: 10.1016/j.toxlet.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
The widespread existence of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) in the environment has aroused great concern. BDE-47 induces the occurrence of metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanism has not been fully elucidated. Here, we further investigate the underlying mechanism using BALB/c mice. After BDE-47 exposure, the livers of mice enlarged, the serum levels of ALT, ALP, TG and TC enhanced, and hepatic steatosis occurred. Transcriptome sequencing identifies 2250 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis reveals that down-regulated DEGs are mainly enriched in pathways associated with lipid metabolism, particularly in fatty acid (FA) degradation. And up-regulated DEGs are mainly enriched in pathways related to lipid and FA transport. The expression levels of AhR, Pparγ and Cd36 involved in FA uptake are up-regulated, and those of PPARα and target genes including Cpt1 and Cyp4a1 related to β and ω-oxidation are inhibited. These results reveal BDE-47 could lead to metabolic dysfunction-associated steatotic liver disease (MASLD) by promoting FA uptake via upregulating Cd36 and hindering oxidative utilization by downregulating PPARα.
Collapse
Affiliation(s)
- Beibei Xia
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Rongfei Yu
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Junxiong Liu
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Dongmeng Liu
- Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shasha Li
- Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Liu Yang
- Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Bosen Liang
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jiajing Zeng
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinhua Wei
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Guimiao Lin
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
5
|
Robledo DAR, Prudente MS, Aguja SE, Iwata H. A meta-analysis of randomized controlled studies on the hepatoxicity induced by polybrominated diphenyl ethers (PBDEs) in rats and mice. Curr Res Toxicol 2023; 5:100131. [PMID: 37841056 PMCID: PMC10570958 DOI: 10.1016/j.crtox.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Several toxicological studies were conducted to evaluate the hepatoxicity of PBDEs using different animal models, congeners, duration of exposure, and other parameters. These variations in different animal models and conditions might have an impact on extrapolating experimental results to humans. Hence, by the meta-analysis, we aimed to clarify and elucidate the species differences in hepatoxicity induced by PBDE exposure in rats and mice across different conditions and moderators. Fourteen in vivo studies that utilized rats and mice models were identified, and data such as author names, year of publication, type of PBDE congeners, rodent species, life stage of exposure, dosage, duration, and hepatoxicity indicators were extracted. The pooled standard mean difference (SMD) with a 95% confidence interval (95% CI) was used to evaluate the association between hepatoxicity and PBDE exposure across multiple approaches of measurement. Subgroup analysis, meta-regression, and interaction analysis were utilized to elucidate the species-related differences among the results of the involved studies. The pooled SMD of hepatoxicity of PBDE exposure in the involved in vivo studies was 1.82 (p = 0.016), indicating exposure to PBDE congeners and mixtures is associated with a significant increase in liver toxicity in rodents. Moreover, findings showed that rats were more sensitive to PBDEs than mice with the BDE-209 had the highest SMD value. Among the life stages of exposure, embryonic stage was found to be the most sensitive to hepatoxicity induced by PBDE congeners. Positive relationships were found between the incidence of hepatoxicity with dosage and duration of exposure to PBDE. Interaction analyses showed significant interactions between rodent species (rats or mice), dosage, length of exposure, and hepatotoxicity endpoints. Rats demonstrated an increased susceptibility to variations in organ weight, histopathological changes, mitochondrial dysfunction, and oxidative stress markers. Conversely, mice showed pronounced lipid accumulation and modifications in liver enzyme expression levels. However, significant differences were not found in terms of endoplasmic reticular stress as a mechanistic endpoint for hepatotoxicity. In conclusion, this meta-analysis showed that there might be some species-related differences in hepatoxicity induced by PBDE exposure in rats and mice depending on the parameters used. This study highlights the importance of cross-species extrapolation of results from animal models to accurately assess the potential risks to human health from exposure to PBDEs.
Collapse
Affiliation(s)
- Dave Arthur R. Robledo
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
6
|
Xue J, Xiao Q, Zhang M, Li D, Wang X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int J Mol Sci 2023; 24:13487. [PMID: 37686292 PMCID: PMC10487835 DOI: 10.3390/ijms241713487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| | | | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| |
Collapse
|
7
|
Renzelli V, Gallo M, Morviducci L, Marino G, Ragni A, Tuveri E, Faggiano A, Mazzilli R, Natalicchio A, Zatelli MC, Montagnani M, Fogli S, Giuffrida D, Argentiero A, Danesi R, D’Oronzo S, Gori S, Franchina T, Russo A, Monami M, Sciacca L, Cinieri S, Colao A, Avogaro A, Di Cianni G, Giorgino F, Silvestris N. Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer. Cancers (Basel) 2023; 15:4237. [PMID: 37686512 PMCID: PMC10486428 DOI: 10.3390/cancers15174237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
There is increasing evidence of the role of endocrine disruptors (EDs) derived from commonly employed compounds for manufacturing and processing in altering hormonal signaling and function. Due to their prolonged half-life and persistence, EDs can usually be found not only in industrial products but also in households and in the environment, creating the premises for long-lasting exposure. Polybrominated diphenyl ethers (PBDEs) are common EDs used in industrial products such as flame retardants, and recent studies are increasingly showing that they may interfere with both metabolic and oncogenic pathways. In this article, a multidisciplinary panel of experts of the Italian Association of Medical Diabetologists (AMD), the Italian Society of Diabetology (SID), the Italian Association of Medical Oncology (AIOM), the Italian Society of Endocrinology (SIE) and the Italian Society of Pharmacology (SIF) provides a review on the potential role of PBDEs in human health and disease, exploring both molecular and clinical aspects and focusing on metabolic and oncogenic pathways.
Collapse
Affiliation(s)
- Valerio Renzelli
- Italian Association of Clinical Diabetologists, 00192 Rome, Italy;
| | - Marco Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, 15121 Alessandria, Italy;
| | - Lelio Morviducci
- Diabetology and Nutrition Unit, Department of Medical Specialities, ASL Roma 1, S. Spirito Hospital, 00193 Rome, Italy;
| | - Giampiero Marino
- Internal Medicine Department, Ospedale dei Castelli, Asl Roma 6, 00040 Ariccia, Italy;
| | - Alberto Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, 15121 Alessandria, Italy;
| | - Enzo Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, 09016 Iglesias, Italy;
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (R.M.)
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (R.M.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy; (A.N.); (F.G.)
| | - Maria Chiara Zatelli
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.F.); (R.D.)
| | - Dario Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, 95029 Catania, Italy;
| | - Antonella Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.F.); (R.D.)
| | - Stella D’Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, 37024 Verona, Italy;
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (T.F.); (N.S.)
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90133 Palermo, Italy;
| | - Matteo Monami
- Diabetology, Careggi University Hospital, University of Florence, 50134 Florence, Italy;
| | - Laura Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, 95124 Catania, Italy;
| | - Saverio Cinieri
- Medical Oncology Division, Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, 72100 Brindisi, Italy;
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80138 Naples, Italy;
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Angelo Avogaro
- Department of Medicine, Section of Diabetes and Metabolic Diseases, University of Padova, 35122 Padova, Italy;
| | | | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy; (A.N.); (F.G.)
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (T.F.); (N.S.)
| |
Collapse
|
8
|
Tastet V, Le Vée M, Bruyère A, Fardel O. Interactions of human drug transporters with chemical additives present in plastics: Potential consequences for toxicokinetics and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121882. [PMID: 37236587 DOI: 10.1016/j.envpol.2023.121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics; they also handle endogenous compounds, including hormones and metabolites. Chemical additives present in plastics interact with human drug transporters, which may have consequences for the toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, to which humans are highly exposed. The present review summarizes key findings about this topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The relatively low human concentration of plastic additives from environmental or dietary exposure is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter interactions and their consequences for human toxicokinetics and toxicity of plastic additives, although even low concentrations of pollutants (in the nM range) may have clinical effects. Existing data about interactions of plastic additives with drug transporters remain somewhat sparse and incomplete. A more systematic characterization of plasticizer-transporter relationships is needed. The potential effects of chemical additive mixtures towards transporter activities and the identification of transporter substrates among plasticizers, as well as their interactions with transporters of emerging relevance deserve particular attention. A better understanding of the human toxicokinetics of plastic additives may help to fully integrate the possible contribution of transporters to the absorption, distribution, metabolism and excretion of plastics-related chemicals, as well as to their deleterious effects towards human health.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
9
|
Kozlova EV, Chinthirla BD, Bishay AE, Pérez PA, Denys ME, Krum JM, DiPatrizio NV, Currás-Collazo MC. Glucoregulatory disruption in male mice offspring induced by maternal transfer of endocrine disrupting brominated flame retardants in DE-71. Front Endocrinol (Lausanne) 2023; 14:1049708. [PMID: 37008952 PMCID: PMC10063979 DOI: 10.3389/fendo.2023.1049708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/23/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Polybrominated diphenyl ethers (PBDEs) are commercially used flame retardants that bioaccumulate in human tissues, including breast milk. PBDEs produce endocrine and metabolic disruption in experimental animals and have been associated with diabetes and metabolic syndrome (MetS) in humans, however, their sex-specific diabetogenic effects are not completely understood. Our past works show glucolipid dysregulation resulting from perinatal exposure to the commercial penta-mixture of PBDEs, DE-71, in C57BL/6 female mice. Methods As a comparison, in the current study, the effects of DE-71 on glucose homeostasis in male offspring was examined. C57BL/6N dams were exposed to DE-71 at 0.1 mg/kg/d (L-DE-71), 0.4 mg/kg/d (H-DE-71), or received corn oil vehicle (VEH/CON) for a total of 10 wks, including gestation and lactation and their male offspring were examined in adulthood. Results Compared to VEH/CON, DE-71 exposure produced hypoglycemia after a 11 h fast (H-DE-71). An increased fast duration from 9 to 11 h resulted in lower blood glucose in both DE-71 exposure groups. In vivo glucose challenge showed marked glucose intolerance (H-DE-71) and incomplete clearance (L- and H-DE-71). Moreover, L-DE-71-exposed mice showed altered glucose responses to exogenous insulin, including incomplete glucose clearance and/or utilization. In addition, L-DE-71 produced elevated levels of plasma glucagon and the incretin, active glucagon-like peptide-1 (7-36) amide (GLP-1) but no changes were detected in insulin. These alterations, which represent criteria used clinically to diagnose diabetes in humans, were accompanied with reduced hepatic glutamate dehydrogenase enzymatic activity, elevated adrenal epinephrine and decreased thermogenic brown adipose tissue (BAT) mass, indicating involvement of several organ system targets of PBDEs. Liver levels of several endocannabinoid species were not altered. Discussion Our findings demonstrate that chronic, low-level exposure to PBDEs in dams can dysregulate glucose homeostasis and glucoregulatory hormones in their male offspring. Previous findings using female siblings show altered glucose homeostasis that aligned with a contrasting diabetogenic phenotype, while their mothers displayed more subtle glucoregulatory alterations, suggesting that developing organisms are more susceptible to DE-71. We summarize the results of the current work, generated in males, considering previous findings in females. Collectively, these findings offer a comprehensive account of differential effects of environmentally relevant PBDEs on glucose homeostasis and glucoregulatory endocrine dysregulation of developmentally exposed male and female mice.
Collapse
Affiliation(s)
- Elena V. Kozlova
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Bhuvaneswari D. Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Anthony E. Bishay
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Pedro A. Pérez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Maximillian E. Denys
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Julia M. Krum
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Margarita C. Currás-Collazo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
10
|
Liang Y, Hu W, Jia C, Wang Y, Dong C, Cai Y, Xie Q, Zhu X, Han Y. Rapid screening of polybrominated diphenyl ethers in water by solid-phase microextraction coupled with ultrahigh-resolution mass spectrometry. Anal Bioanal Chem 2023; 415:1437-1444. [PMID: 36648546 DOI: 10.1007/s00216-023-04531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are considered emerging organic contaminants that attract more attention in the environment. Herein, online coupling of solid-phase microextraction and ultrahigh-resolution mass spectrometry was developed for rapid screening of eight PBDEs in water samples. This procedure was completed in 22 min, about 6 times faster than the routine workflow such as solid-phase extraction coupled with gas chromatography-mass spectrometry. Thermal desorption and solvent-assisted atmospheric pressure chemical ionization were developed for the effective coupling of solid-phase microextraction (SPME) with ultrahigh-resolution mass spectrometry (UHRMS), which contributed to the signal enhancement and made the methodology feasible for environmental screening. The limits of detection and quantification were 0.01-0.50 ng/mL and 0.05-4.00 ng/mL, respectively. The recoveries were 57.2-75.2% for quality control samples at spiking levels of 0.8-10 ng/mL (4-50 ng/mL for BDE209), with relative standard deviation less than 19.0%. Twelve water samples from different river sites near industrial areas were screened using the developed method. The results showed that BDE-209 was the dominant PBDE (1.02-1.28 ng/mL in positive samples), but its amount was lower than the human health ambient water quality criteria. Consequently, the developed method provides a rapid and reliable way of evaluating contamination status and risks of PBDEs in aqueous environment.
Collapse
Affiliation(s)
- Yuchen Liang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Changcheng Jia
- Beijing 101 Eco-Geology Detection Co., Ltd, Beijing Institute of Geological Engineering Design, Beijing, 101500, China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chenglong Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yan Cai
- Beijing 101 Eco-Geology Detection Co., Ltd, Beijing Institute of Geological Engineering Design, Beijing, 101500, China
| | - Qingqing Xie
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xiaowen Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
11
|
Shockley KR, Dunnick JK. Gene expression profiling after exposure to a chemical carcinogen, Pentabrominated Diphenyl Ether, at different life stages. FRONTIERS IN TOXICOLOGY 2023; 4:1028309. [PMID: 36687508 PMCID: PMC9847571 DOI: 10.3389/ftox.2022.1028309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to environmental hazards occurs at different stages of our lifetime-infant, child, adult. This study integrates recently published toxicogenomics data to examine how exposure to a known rat chemical carcinogen (pentabrominated diphenyl ether (PBDE)) upregulated liver transcriptomic changes at different life cycle stages (PND 4, PND 22, adult). We found that at all three life cycle stages PBDE exposure induced hepatocellular transcriptomic changes in disease pathways including cancer, metabolic, membrane function, and Nrf2 antioxidant pathways, pathways all characteristics of chemical carcinogens. In addition, in the adult rat after a 5-day exposure to the chemical carcinogen, there was upregulation of members of the Ras oncogenic pathway, a specific pathway found to be activated in the PBDE-induced tumors in rats in a previous hazard identification cancer study. The findings of liver transcript changes characteristic of carcinogenic activity after early life exposures and after short-term adult exposures provides data to support the use of transcriptomic data to predict the apical cancer endpoints in model studies. Using data from gene expression profiling studies after neonatal, young, or adult short-term chemical exposure helps to meet the 21st century toxicology goal of developing study designs to reduce, refine, and replace the use of traditional 2-year rodent cancer studies to provide hazard identification information. The studies reported here find that key transcripts associated with carcinogenesis were elevated in neonate (PND 4), young (PND 22) and adult animals after short-term exposure to PBDE, a known experimental chemical carcinogen in model systems.
Collapse
Affiliation(s)
- Keith R. Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - June K. Dunnick
- Systems Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
12
|
Kozlova EV, Denys ME, Benedum J, Valdez MC, Enriquez D, Bishay AE, Chinthirla BD, Truong E, Krum JM, DiPatrizio NV, Deol P, Martins-Green M, Curras-Collazo MC. Developmental exposure to indoor flame retardants and hypothalamic molecular signatures: Sex-dependent reprogramming of lipid homeostasis. Front Endocrinol (Lausanne) 2022; 13:997304. [PMID: 36277707 PMCID: PMC9580103 DOI: 10.3389/fendo.2022.997304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardant organohalogen pollutants that act as endocrine/neuroendocrine disrupting chemicals (EDCs). In humans, exposure to brominated flame retardants (BFR) or other environmentally persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and novel organophosphate flame retardants has been associated with increasing trends of diabetes and metabolic disease. However, the effects of PBDEs on metabolic processes and their associated sex-dependent features are poorly understood. The metabolic-disrupting effects of perinatal exposure to industrial penta-PBDE mixture, DE-71, on male and female progeny of C57BL/6N mouse dams were examined in adulthood. Dams were exposed to environmentally relevant doses of PBDEs daily for 10 weeks (p.o.): 0.1 (L-DE-71) and 0.4 mg/kg/d (H-DE-71) and offspring parameters were compared to corn oil vehicle controls (VEH/CON). The following lipid metabolism indices were measured: plasma cholesterol, triglycerides, adiponectin, leptin, and liver lipids. L-DE-71 female offspring were particularly affected, showing hypercholesterolemia, elevated liver lipids and fasting plasma leptin as compared to same-sex VEH/CON, while L- and H-DE-71 male F1 only showed reduced plasma adiponectin. Using the quantitative Folch method, we found that mean liver lipid content was significantly elevated in L-DE-71 female offspring compared to controls. Oil Red O staining revealed fatty liver in female offspring and dams. General measures of adiposity, body weight, white and brown adipose tissue (BAT), and lean and fat mass were weighed or measured using EchoMRI. DE-71 did not produce abnormal adiposity, but decreased BAT depots in L-DE-71 females and males relative to same-sex VEH/CON. To begin to address potential central mechanisms of deregulated lipid metabolism, we used RT-qPCR to quantitate expression of hypothalamic genes in energy-regulating circuits that control lipid homeostasis. Both doses of DE-71 sex-dependently downregulated hypothalamic expression of Lepr, Stat3, Mc4r, Agrp, Gshr in female offspring while H-DE-71 downregulated Npy in exposed females relative to VEH/CON. In contrast, exposed male offspring displayed upregulated Stat3 and Mc4r. Intestinal barrier integrity was measured using FITC-dextran since it can lead to systemic inflammation that leads to liver damage and metabolic disease, but was not affected by DE-71 exposure. These findings indicate that maternal transfer of PBDEs disproportionately endangers female offspring to lipid metabolic reprogramming that may exaggerate risk for adult metabolic disease.
Collapse
Affiliation(s)
- Elena V. Kozlova
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Maximillian E. Denys
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Jonathan Benedum
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew C. Valdez
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Dave Enriquez
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Anthony E. Bishay
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Bhuvaneswari D. Chinthirla
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Edward Truong
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Julia M. Krum
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicholas V. DiPatrizio
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Poonamjot Deol
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Manuela Martins-Green
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Margarita C. Curras-Collazo
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
13
|
Wu X, Chen L, Li X, Cao X, Zheng X, Li R, Zhang J, Luo X, Mai B. Trophic transfer of methylmercury and brominated flame retardants in adjacent riparian and aquatic food webs: 13C indicates biotransport of contaminants through food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119433. [PMID: 35550129 DOI: 10.1016/j.envpol.2022.119433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Biomagnification of persistent toxic substances (PTSs) in food chains is of environmental concern, but studies on biotransport of PTSs across aquatic and riparian food chains are still incomplete. In this study, biomagnification of several PTSs including methylmercury (MeHg), polybrominated diphenyl ethers (PBDEs), and 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) was investigated in adjacent aquatic and riparian food webs. Concentrations of MeHg and PBDEs ranged from 2.37 to 353 ng/g dry weight (dw) and not detected (Nd) to 65.1 ng/g lipid weight (lw) in riparian samples, respectively, and ranged from Nd to 705 ng/g dw and Nd to 187 ng/g lw in aquatic samples, respectively. Concentrations of MeHg were significantly correlated with δ13C (p < 0.01) rather than δ15N (p > 0.05) values in riparian organisms, while a significant correlation was observed between concentrations of MeHg and δ15N (p < 0.01) in aquatic organisms. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) of PBDE congeners were similar in riparian and aquatic food webs, while BMFs and TMFs of MeHg were much higher in aquatic food web than those in riparian food web. The results indicate the biotransport of MeHg from aquatic insects to terrestrial birds, and δ13C can be a promising ecological indicator for biotransport of pollutants across ecosystems.
Collapse
Affiliation(s)
- Xiaodan Wu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Laiguo Chen
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, MEE, Guangzhou, 510655, PR China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jia'en Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
14
|
Determination of polybrominated diphenyl ethers in serum using isotope internal standard-gas chromatography-high resolution dual-focus magnetic mass spectrometry. Se Pu 2022; 40:354-363. [PMID: 35362683 PMCID: PMC9404144 DOI: 10.3724/sp.j.1123.2021.10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
建立了同位素内标-气相色谱-高分辨双聚焦磁质谱(GC-HRMS)同时测定人体血清中14种多溴联苯醚(PBDEs)的方法。血清样品解冻后,取0.5 mL与13C标记的内标物进行混合,加入甲醇沉淀样品中的蛋白质,比较了3种酸化条件下的去脂效果和回收率,结果显示硫酸去脂效果最好;使用液液萃取法提取样品中的目标物,比较了不同萃取溶剂对回收率的影响,结果显示以正己烷(6 mL)-甲基叔丁基醚(6 mL)作为萃取溶剂效果最好;提取液经固相萃取柱净化和洗脱,比较了不同固相萃取柱和洗脱溶剂的净化效果和回收率,结果显示采用硅胶柱净化和用正己烷-二氯甲烷(1:1, v/v)洗脱时效果最好;洗脱液经氮吹近干后用正己烷复溶,经GC-HRMS测定。目标物经Rtx-1614色谱柱(30 m×0.25 mm×0.1 μm)分离,电压选择离子检测(VSIR)模式测定。BDE-209在0.40~25 μg/L、其他13种多溴联苯醚在0.08~5 μg/L范围内线性关系良好,相关系数>0.995,方法检出限为0.01~0.51 μg/L,定量限为0.04~1.70 μg/L,加标回收率为75.5%~120.7%,日内精密度为3.8%~10.9%(n=6),日间精密度为4.2%~12.4%(n=6)。应用该方法对采集的某地区15份青少年血清样本进行检测,结果显示14种PBDEs中,BDE-47检出率为100%,其他组分均未检出,说明该人群存在一定的PBDEs暴露。与现有文献报道方法相比,本方法样本需求量少,灵敏度、准确度较高,可对人血清中包括BDE-209在内的14种PBDEs同时测定,有效提高检测效率。本方法的建立可为我国开展多溴联苯醚对人群健康的影响提供技术支撑。
Collapse
|
15
|
Li S, Yuan J, Che S, Zhang L, Ruan Z, Sun X. Decabromodiphenyl ether induces ROS-mediated intestinal toxicity through the Keap1-Nrf2 pathway. J Biochem Mol Toxicol 2022; 36:e22995. [PMID: 35266255 DOI: 10.1002/jbt.22995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants as commercial products. PBDEs have been demonstrated to induce hepatic, reproductive, neural, and thyroid toxicity effects. This study aimed to clarify the potential intestinal toxicity effects of decabrominated diphenyl ether (PBDE-209) in vivo and in vitro. First, we investigated the change of PBDE-209 on oxidative stress in the intestine of mice. Subsequently, the potential toxicity mechanism of PBDE-209 in vitro was investigated. Caco-2 cells were treated with different concentrations of PBDE-209 (1, 5, and 25 μmol/L) for 24 and 48 h. We determined the cell viability, reactive oxygen species (ROS) level, multiple cellular parameters, and relative mRNA expressions. The results showed that PBDE-209 significantly injured the colon of mice, increased the intestinal levels of malondialdehyde (MDA), and changed the antioxidant enzyme activities. PBDE-209 inhibited the proliferation and induced cytotoxicity of Caco-2 cells. The change in ROS production and mitochondrial membrane potential (MMP) revealed that PBDE-209 caused oxidative stress in Caco-2 cells. The real-time PCR assays revealed that PBDE-209 inhibited the mRNA expression level of antioxidative defense factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the FAS and Cytochrome P450 1A1 (CYP1A1) mRNA expression levels were increased in Caco-2 cells. These results suggested that PBDE-209 exerts intestinal toxicity effects in vivo and in vitro and inhibits the antioxidative defense gene expression in Caco-2 cells. This study provides an opportunity to advance the understanding of toxicity by the persistent environmental pollutant PBDE-209 to the intestine.
Collapse
Affiliation(s)
- Shiqi Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Yuan J, Sun X, Che S, Zhang L, Ruan Z, Li X, Yang J. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209). Toxicol Lett 2021; 352:26-33. [PMID: 34571075 DOI: 10.1016/j.toxlet.2021.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants. They are constantly detected in terrestrial, ocean, and atmospheric systems, and it is of particular concern that these fat-soluble xenobiotics may have a negative impact on human health. This study aimed to evaluate the toxic effect and underlying mechanism of decabromodiphenyl ether (BDE-209) on human liver in a HepG2 cell model. The results showed that BDE-209 significantly induced HepG2 cells apoptosis, increased intracellular reactive oxygen species (ROS), disturbed [Ca 2+] homeostasis and mitochondrial membrane potential (MMP), and caused nuclear shrinkage and DNA double-strand breaks. BDE-209 also significantly decreased the activities of antioxidant parameters, superoxide dismutase (SOD), total antioxygenic capacity (T-AOC), glutathione (GSH), and total glutathione (T-GSH). The up-regulation of the Aryl hydrocarbon receptor (AhR)/cytochrome P4501A1 (CYP1A1) signaling pathway indicates that after long-term and high-dose exposure, BDE-209 may be a liver carcinogen. Interestingly, HepG2 cells attempt to metabolize BDE-209 through the Nrf2-mediated antioxidant pathway. These findings help elucidate the mechanisms of BDE-209-induced hepatotoxicity in humans.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
17
|
Lim JJ, Dutta M, Dempsey JL, Lehmler HJ, MacDonald J, Bammler T, Walker C, Kavanagh TJ, Gu H, Mani S, Cui JY. Neonatal Exposure to BPA, BDE-99, and PCB Produces Persistent Changes in Hepatic Transcriptome Associated With Gut Dysbiosis in Adult Mouse Livers. Toxicol Sci 2021; 184:83-103. [PMID: 34453844 PMCID: PMC8557404 DOI: 10.1093/toxsci/kfab104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent evidence suggests that complex diseases can result from early life exposure to environmental toxicants. Polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and remain a continuing risk to human health despite being banned from production. Developmental BPA exposure mediated-adult onset of liver cancer via epigenetic reprogramming mechanisms has been identified. Here, we investigated whether the gut microbiome and liver can be persistently reprogrammed following neonatal exposure to POPs, and the associations between microbial biomarkers and disease-prone changes in the hepatic transcriptome in adulthood, compared with BPA. C57BL/6 male and female mouse pups were orally administered vehicle, BPA, BDE-99 (a breast milk-enriched PBDE congener), or the Fox River PCB mixture (PCBs), once daily for three consecutive days (postnatal days [PND] 2-4). Tissues were collected at PND5 and PND60. Among the three chemicals investigated, early life exposure to BDE-99 produced the most prominent developmental reprogramming of the gut-liver axis, including hepatic inflammatory and cancer-prone signatures. In adulthood, neonatal BDE-99 exposure resulted in a persistent increase in Akkermansia muciniphila throughout the intestine, accompanied by increased hepatic levels of acetate and succinate, the known products of A. muciniphila. In males, this was positively associated with permissive epigenetic marks H3K4me1 and H3K27, which were enriched in loci near liver cancer-related genes that were dysregulated following neonatal exposure to BDE-99. Our findings provide novel insights that early life exposure to POPs can have a life-long impact on disease risk, which may partly be regulated by the gut microbiome.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, USA,Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Cheryl Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030, USA,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Pheonix, Arizona 85004, USA
| | - Sridhar Mani
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA,To whom correspondence should be addressed at Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA. E-mail:
| |
Collapse
|
18
|
Johanson SM, Ropstad E, Østby GC, Aleksandersen M, Zamaratskaia G, Boge GS, Halsne R, Trangerud C, Lyche JL, Berntsen HF, Zimmer KE, Verhaegen S. Perinatal exposure to a human relevant mixture of persistent organic pollutants: Effects on mammary gland development, ovarian folliculogenesis and liver in CD-1 mice. PLoS One 2021; 16:e0252954. [PMID: 34111182 PMCID: PMC8191980 DOI: 10.1371/journal.pone.0252954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of persistent organic pollutants (POPs) with endocrine disrupting properties to interfere with the developing reproductive system is of increasing concern. POPs are transferred from dams to offspring and the high sensitivity of neonates to endocrine disturbances may be caused by underdeveloped systems of metabolism and excretion. The present study aimed to characterize the effect of in utero and lactational exposure to a human relevant mixture of POPs on the female mammary gland, ovarian folliculogenesis and liver function in CD-1 offspring mice. Dams were exposed to the mixture through the diet at Control, Low or High doses (representing 0x, 5000x and 100 000x human estimated daily intake levels, respectively) from weaning and throughout mating, gestation, and lactation. Perinatally exposed female offspring exhibited altered mammary gland development and a suppressed ovarian follicle maturation. Increased hepatic cytochrome P450 enzymatic activities indirectly indicated activation of nuclear receptors and potential generation of reactive products. Hepatocellular hypertrophy was observed from weaning until 30 weeks of age and could potentially lead to hepatotoxicity. Further studies should investigate the effects of human relevant mixtures of POPs on several hormones combined with female reproductive ability and liver function.
Collapse
Affiliation(s)
- Silje Modahl Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gudrun Seeberg Boge
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ruth Halsne
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Cathrine Trangerud
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
- National Institute of Occupational Health, Oslo, Norway
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Ma R, Li B, Zhang C, Lei R, Zhang X, Wang C, Zhang S, Wang A. Roles of endoplasmic reticulum stress in 2,2',4,4'-tetrabromodiphenylether-induced thyroid cell apoptosis and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112077. [PMID: 33647853 DOI: 10.1016/j.ecoenv.2021.112077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ethers are known to be toxic and impair thyroid function. However, the underlying molecular mechanisms are not well understood. We constructed a female Sprague-Dawley rat model to evaluate the role of endoplasmic reticulum stress, apoptosis and autophagy in 2,2',4,4'-tetrabromodiphenylether (PBDE-47) induced thyroid toxicity. In the brain development spurt period (postnatal day 10), rats were treated with PBDE-47 (0, 1, 5, 10 mg/kg bw, i.g). Two addition groups were administered with 4-Phenylbutyric acid, an endoplasmic reticulum stress modulator, to reverse PBDE-47-induced thyroid toxicity. Our results demonstrated that PBDE-47 significantly decreased serum thyroid stimulating hormone levels, induced histologic changes in thyroid tissues, increased the percentage of cell apoptosis and expression levels of C/EBP-homologous protein, caspase 3, glucose-regulated protein 78, inositol-requiring enzyme 1, and autophagy-related proteins Beclin1 and 1A/1B-light chain 3. Besides of decreased serum thyroid stimulating hormone levels, all these changes were reversed by 4-Phenylbutyric acid. Taken together, these data indicate that, PBDE-47 damages the thyroid tissues by triggering endoplasmic reticulum stress, apoptosis and autophagy.
Collapse
Affiliation(s)
- Rulin Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Department of preventive medicine, School of medicine, Shihezi University, People's Republic of China
| | - Bei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China
| | - Cheng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China
| | - Rongrong Lei
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China
| | - Xiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China
| | - Chao Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China.
| |
Collapse
|
20
|
Maddela NR, Venkateswarlu K, Kakarla D, Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115240. [PMID: 32698055 DOI: 10.1016/j.envpol.2020.115240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as flame retardants in many household materials such as electrical and electronic devices, furniture, textiles, plastics, and baby products. Though the use of PBDEs like penta-, octa- and deca-BDE greatly reduces the fire damage, indoor pollution by these toxic emissions is ever-growing. In fact, a boom in the global market projections of PBDEs threatens human health security. Therefore, efforts are made to minimize PBDEs pollution in USA and Europe by encouraging voluntary phasing out of the production or imposing compelled regulations through Stockholm Convention, but >500 kilotons of PBDEs still exist globally. Both 'environmental persistence' and 'bioaccumulation tendencies' are the hallmarks of PBDE toxicities; however, both these issues concerning household emissions of PBDEs have been least addressed theoretically or practically. Critical physiological functions, lipophilicity and toxicity, trophic transfer and tissue specificities are of utmost importance in the benefit/risk assessments of PBDEs. Since indoor debromination of deca-BDE often yields many products, a better understanding on their sorption propensity, environmental fate and human toxicities is critical in taking rigorous measures on the ever-growing global deca-BDE market. The data available in the literature on human toxicities of PBDEs have been validated following meta-analysis. In this direction, the intent of the present review was to provide a critical evaluation of the key aspects like compositional patterns/isomer ratios of PBDEs implicated in bioaccumulation, indoor PBDE emissions versus human exposure, secured technologies to deal with the toxic emissions, and human toxicity of PBDEs in relation to the number of bromine atoms. Finally, an emphasis has been made on the knowledge gaps and future research directions related to endurable flame retardants which could fit well into the benefit/risk strategy.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
21
|
Lee HK, Lee S, Lim JE, Moon HB. Legacy and novel flame retardants in water and sediment from highly industrialized bays of Korea: Occurrence, source tracking, decadal time trend, and ecological risks. MARINE POLLUTION BULLETIN 2020; 160:111639. [PMID: 32920258 DOI: 10.1016/j.marpolbul.2020.111639] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Legacy and novel flame retardants (FRs) such as polybrominated diphenyl ethers (PBDEs), novel BFRs, and organophosphate flame retardants (OPFRs) were measured in water and sediment collected from highly industrialized bays of Korea. Predominant compounds in sediment were BDE 209, DBDPE, and BTBPE for BFRs, and TCPP and TBOEP for OPFRs, respectively. Higher alternative FR concentrations were observed compared to those reported for previous studies. The highest BFR concentrations were found in locations close to industrial complexes, while the OPFR concentrations were highest in locations close to domestic regions and a wastewater treatment plant. Different contamination sources were observed for BFRs and OPFRs. The ratio of DBDPE/BDE 209 in sediment ranged from 0.84 to 28, indicating a shift in consumption of BFRs. A significant decline in PBDEs suggests the effectiveness of domestic and global regulations. Despite this, sedimentary PBDE concentrations may pose adverse health risks to benthic organisms and humans.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
22
|
Guo J, Zhang S, Fang L, Huang J, Wang Q, Wang C, Chen M. In utero exposure to phenanthrene induces hepatic steatosis in F1 adult female mice. CHEMOSPHERE 2020; 258:127360. [PMID: 32554016 DOI: 10.1016/j.chemosphere.2020.127360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants are thought to be a risk factor for the prevalence of hepatic steatosis. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, and human exposure is inevitable. In the present study, phenanthrene (Phe) was used as a representative PAH to investigate the effects of in utero exposure to PAH on hepatic lipid metabolism and the toxicological mechanism involved. Pregnant mice (C57BL/6J) were orally administered Phe (0, 60, 600 and 6000 μg kg-1 body weight) once every 3 days with 6 doses in total. F1 female mice aged 125 days showed significantly elevated hepatic lipid levels in the liver. The protein expression of hepatic peroxisome proliferator-activated receptors (PPARβ and PPARγ) and retinoid X receptors (RXRs) was upregulated; the transcription of genes related to lipogenesis, such as srebp1 (encoding sterol regulatory element binding proteins), acca (acetyl-CoA carboxylase), fasn (fatty acid synthase) and pcsk9 (proprotein convertase subtilisin/kexin type 9), showed an upregulation, while the mRNA levels of the lipolysis gene lcat (encoding lecithin cholesterol acyl transferase) were downregulated. These results could be responsible for lipid accumulation. The promoter methylation levels of pparγ were reduced and were the lowest in the 600 μg kg-1 group, and the promoter methylation levels of lcat were significantly increased in all the Phe treatments. These changes were matched with the alterations in their mRNA levels, suggesting that prenatal Phe exposure could induce abnormal lipid metabolism in later life via epigenetic modification.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- College of Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, PR China.
| |
Collapse
|
23
|
Shockley KR, Cora MC, Malarkey DE, Jackson-Humbles D, Vallant M, Collins BJ, Mutlu E, Robinson VG, Waidyanatha S, Zmarowski A, Machesky N, Richey J, Harbo S, Cheng E, Patton K, Sparrow B, Dunnick JK. Comparative toxicity and liver transcriptomics of legacy and emerging brominated flame retardants following 5-day exposure in the rat. Toxicol Lett 2020; 332:222-234. [PMID: 32679240 PMCID: PMC7903589 DOI: 10.1016/j.toxlet.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
The relative toxicity of three legacy and six emerging brominated flame retardants* was studied in the male Harlan Sprague Dawley rat. The hepatocellular and thyroid toxicity of each flame retardant was evaluated following five-day exposure to each of the nine flame retardants (oral gavage in corn oil) at 0.1-1000 μmol/kg body weight per day. Histopathology and transcriptomic analysis were performed on the left liver lobe. Centrilobular hypertrophy of hepatocytes and increases in liver weight were seen following exposure to two legacy (PBDE-47, HBCD) and to one emerging flame retardant (HCDBCO). Total thyroxine (TT4) concentrations were reduced to the greatest extent after PBDE-47 exposure. The PBDE-47, decaBDE, and HBCD liver transcriptomes were characterized by upregulation of liver disease-related and/or metabolic transcripts. Fewer liver disease or metabolic transcript changes were detected for the other flame retardants studied (TBB, TBPH, TBBPA-DBPE, BTBPE, DBDPE, or HCDBCO). PBDE-47 exhibited the most disruption of hepatocellular toxic endpoints, with the Nrf2 antioxidant pathway transcripts upregulated to the greatest extent, although some activation of this pathway also occurred after decaBDE, HBCD, TBB, and HCBCO exposure. These studies provide information that can be used for prioritizing the need for more in-depth brominated flame retardant toxicity studies.
Collapse
Affiliation(s)
- Keith R Shockley
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Michelle C Cora
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - David E Malarkey
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Daven Jackson-Humbles
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Molly Vallant
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Brad J Collins
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Esra Mutlu
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Veronica G Robinson
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Surayma Waidyanatha
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | | | | | | | - Sam Harbo
- Battelle, Columbus, Ohio, 43210, United States
| | - Emily Cheng
- Battelle, Columbus, Ohio, 43210, United States
| | | | | | - June K Dunnick
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States.
| |
Collapse
|
24
|
Dunnick JK, Shockley KR, Morgan DL, Travlos G, Gerrish KE, Ton TV, Wilson RE, Brar SS, Brix AE, Waidyanatha S, Mutlu E, Pandiri AR. Hepatic Transcriptomic Patterns in the Neonatal Rat After Pentabromodiphenyl Ether Exposure. Toxicol Pathol 2020; 48:338-349. [PMID: 31826744 PMCID: PMC7596650 DOI: 10.1177/0192623319888433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human exposure to pentabromodiphenyl ether (PBDE) mixture (DE-71) and its PBDE-47 congener can occur both in utero and during lactation. Here, we tested the hypothesis that PBDE-induced neonatal hepatic transcriptomic alterations in Wistar Han rat pups can inform on potential toxicity and carcinogenicity after longer term PBDE exposures. Wistar Han rat dams were exposed to either DE-71 or PBDE-47 daily from gestation day (GD 6) through postnatal day 4 (PND 4). Total plasma thyroxine (T4) was decreased in PND 4 pups. In liver, transcripts for CYPs and conjugation enzymes, Nrf2, and ABC transporters were upregulated. In general, the hepatic transcriptomic alterations after exposure to DE-71 or PBDE-47 were similar and provided early indicators of oxidative stress and metabolic alterations, key characteristics of toxicity processes. The transcriptional benchmark dose lower confidence limits of the most sensitive biological processes were lower for PBDE-47 than for the PBDE mixture. Neonatal rat liver transcriptomic data provide early indicators on molecular pathway alterations that may lead to toxicity and/or carcinogenicity if the exposures continue for longer durations. These early toxicogenomic indicators may be used to help prioritize chemicals for a more complete toxicity and cancer risk evaluation.
Collapse
Affiliation(s)
- J. K. Dunnick
- Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - K. R. Shockley
- Biostatistics & Computational Biology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - D. L. Morgan
- Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - G. Travlos
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - K. E. Gerrish
- Molecular Genomics Core, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - T. V. Ton
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - R. E. Wilson
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - S. S. Brar
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - A. E. Brix
- EPL, Inc., Research Triangle Park, North Carolina
| | - S. Waidyanatha
- Program Operations Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - E. Mutlu
- Program Operations Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - A. R. Pandiri
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
25
|
Suvorov A, Naumov V, Shtratnikova V, Logacheva M, Shershebnev A, Wu H, Gerasimov E, Zheludkevich A, Pilsner JR, Sergeyev O. Rat liver epigenome programing by perinatal exposure to 2,2',4'4'-tetrabromodiphenyl ether. Epigenomics 2019; 12:235-249. [PMID: 31833787 DOI: 10.2217/epi-2019-0315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Perinatal exposures to polybrominated diphenyl ethers permanently reprogram liver metabolism and induce a nonalcoholic fatty liver disease-like phenotype and insulin resistance in rodents. Aim: To test if these changes are associated with altered liver epigenome. Materials & methods: Expression of small RNA and changes in DNA methylation in livers of adult rats were analyzed following perinatal exposure to 2,2',4,4'-tetrabromodiphenyl ether, the polybrominated diphenyl ether congener most prevalent in human tissues. Results: We identified 33 differentially methylated DNA regions and 15 differentially expressed miRNAs. These changes were enriched for terms related to lipid and carbohydrate metabolism, insulin signaling, Type-2 diabetes and nonalcoholic fatty liver disease. Conclusion: Changes in the liver epigenome are a likely candidate mechanism of long-term maintenance of an aberrant metabolic phenotype.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA.,A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia
| | - Vladimir Naumov
- Kulakov National Medical Research Center of Obstetrics, Gynecology & Perinatology, Ministry of Health of the Russian Federation, Oparina 4, 117997, Moscow, Russia
| | - Victoria Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.,Center for Data-Intensive Biomedicine & Biotechnology, Skolkovo Institute of Science & Technology, 143028, Moscow, Russia
| | - Maria Logacheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.,Center for Data-Intensive Biomedicine & Biotechnology, Skolkovo Institute of Science & Technology, 143028, Moscow, Russia
| | - Alex Shershebnev
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA.,Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY 10032, USA
| | - Evgeny Gerasimov
- E.I. Martsinovsky Institute of Medical Parasitology & Tropical Medicine, I.M. Sechenov First Moscow State Medical University, 20 Malaya Pirogovskaya, 119435, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | | | - Jonathan R Pilsner
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts 686 North Pleasant Street Amherst, MA 01003, USA
| | - Oleg Sergeyev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.,Chapaevsk Medical Association, 3a Meditsinskaya St., Samara region, 446100, Chapaevsk, Russia
| |
Collapse
|
26
|
Trexler AW, Knudsen GA, Nicklisch SCT, Birnbaum LS, Cannon RE. 2,4,6-Tribromophenol Exposure Decreases P-Glycoprotein Transport at the Blood-Brain Barrier. Toxicol Sci 2019; 171:463-472. [PMID: 31368499 PMCID: PMC6760274 DOI: 10.1093/toxsci/kfz155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023] Open
Abstract
2,4,6-Tribromophenol (TBP, CAS No. 118-79-6) is a brominated chemical used in the production of flame-retardant epoxy resins and as a wood preservative. In marine environments, TBP is incorporated into shellfish and consumed by predatory fish. Food processing and water treatment facilities produce TBP as a byproduct. 2,4,6-Tribromophenol has been detected in human blood and breast milk. Biologically, TBP interferes with estrogen and thyroid hormone signaling, which regulate important transporters of the blood-brain barrier (BBB). The BBB is a selectively permeable barrier characterized by brain microvessels which are composed of endothelial cells mortared by tight-junction proteins. ATP-binding cassette (ABC) efflux transporters on the luminal membrane facilitate the removal of unwanted endobiotics and xenobiotics from the brain. In this study, we examined the in vivo and ex vivo effects of TBP on two important transporters of the BBB: P-glycoprotein (P-gp, ABCB1) and Multidrug Resistance-associated Protein 2 (MRP2, ABCC2), using male and female rats and mice. 2,4,6-Tribromophenol exposure ex vivo resulted in a time- (1-3 h) and dose- (1-100 nM) dependent decrease in P-gp transport activity. MRP2 transport activity was unchanged under identical conditions. Immunofluorescence and western blotting measured decreases in P-gp expression after TBP treatment. ATPase assays indicate that TBP is not a substrate and does not directly interact with P-gp. In vivo dosing with TBP (0.4 µmol/kg) produced decreases in P-gp transport. Co-treatment with selective protein kinase C (PKC) inhibitors prevented the TBP-mediated decreases in P-gp transport activity.
Collapse
Affiliation(s)
- Andrew W Trexler
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Sascha C T Nicklisch
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla 92093, California
- Department of Environmental Toxicology, University of California Davis 95616, Davis, California
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Ronald E Cannon
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| |
Collapse
|
27
|
Liang S, Liang S, Yin N, Faiola F. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:353-362. [PMID: 30849655 DOI: 10.1016/j.ecoenv.2019.02.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 05/25/2023]
Abstract
The liver is one of the major targets of hormones, including thyroid hormones (THs), and many industrial chemicals, such as endocrine-disrupting chemicals. Those compounds may permeate the placenta barrier and pose a risk for embryonic development. Therefore, it is necessary to assess the toxic effects of those kind of industrial chemicals during liver development. In this study, to mimic liver specification in vitro, we differentiated human embryonic stem cells (ESCs) into functional hepatocyte-like cells. We performed this differentiation process in presence of two THs, triiodothyronine (T3) and thyroxine (T4), with the purpose of identifying biomarkers for toxicity screening. TH exposure (3, 30 and 300 nM) yielded to hepatocytes with impaired glycogen storage ability and abnormal lipid droplets' accumulation. Global gene expression analysis by RNA-seq identified a number of genes responsible for hepatic differentiation and function which were affected by 30 nM T3 and T4. Those differentially expressed genes were used to assess the potential developmental liver toxicity of two famous environmental pollutants, 2, 2, 4, 4-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209), at 10 nM to 1 μM treatments. Our findings demonstrate that BDE-47 and BDE-209, dysregulated pathways such as "chemical carcinogenesis", "steroid hormone biosynthesis" and "drug metabolism-cytochrome P450". Moreover, we were able to identify a set of 17 biomarkers, very useful to predict the potential developmental hepatotoxicity of industrial chemicals.
Collapse
Affiliation(s)
- Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|