1
|
Schnurr C, Buckett L, Bitenc J, Rychlik M. Quantification of mulberrin and morusin in mulberry and other food plants via stable isotope dilution analysis using LC-MS/MS. Food Chem 2025; 473:143061. [PMID: 39892347 DOI: 10.1016/j.foodchem.2025.143061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Mulberry (Morus) is an important food and medicinal plant primarily used in sericulture. It is rich in prenylated flavonoids like morusin and mulberrin, which have shown promising bioactivities in vitro and in vivo but so far rely on HPLC methods for their quantification in plant material. Hence, a more sensitive LC-MS/MS stable isotope dilution assay for morusin and mulberrin was developed and validated. The analytes were quantified in 17 plant samples, with up to three plant compartments investigated (branches, leaves, fruits). The highest amounts were found in branches of a German mulberry tree (43 μg/g morusin, 910 μg/g mulberrin). Limits of detection reached 0.02 μg/g for morusin and 0.06 μg/g for mulberrin, which is significantly lower than existing methods, allowing for the detection and quantification of the analytes in leaves and fruits of mulberry, as well as common snowball (Viburnum opulus), a common food and medicine plant.
Collapse
Affiliation(s)
- Christian Schnurr
- Technical University of Munich, Chair of Analytical Food Chemistry, Freising, Germany.
| | - Lance Buckett
- Helmholtz Munich, Research Unit Analytical Biogeochemistry, Oberschleißheim, Germany
| | - Jana Bitenc
- Technical University of Munich, Chair of Analytical Food Chemistry, Freising, Germany
| | - Michael Rychlik
- Technical University of Munich, Chair of Analytical Food Chemistry, Freising, Germany; The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Fröhlich SM, Jünger M, Mittermeier-Kleßinger VK, Dawid C, Hofmann TF, Somoza V, Dunkel A. Towards prediction of maturation-dependent kokumi taste in cheese by comprehensive high throughput quantitation of glutamyl dipeptides. Food Chem 2025; 463:141130. [PMID: 39243621 DOI: 10.1016/j.foodchem.2024.141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The study focuses on the comprehensive analysis of glutamyl dipeptides in cheese, particularly their formation during the cheese ripening process and the influence of various factors, such as origin, the use of various mold cultures, and cheese types. For the first time, all three subgroups of glutamyl dipeptides, namely α-Glu-X, X-Glu, and γ-Glu-X, are covered in a comprehensive analytical LC-MS/MS method offering robust quantitation of all 56 glutamyl dipeptides. The workflow includes a simplified extraction protocol and an optimized separation of the analytes on the stationary phase. Validation experiments demonstrate the method's reliability, including repeatability, detection limits, and recovery. The comprehensive analysis of all glutamyl dipeptides in 122 cheese samples with ripening times between 2 weeks and 15 years shows a strong increase in all peptide classes with prolonged ripening and particularly in the presence of mold.
Collapse
Affiliation(s)
- Sonja Maria Fröhlich
- TUM Graduate School, School of Life Sciences, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Manon Jünger
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Verena Karolin Mittermeier-Kleßinger
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany.
| | - Thomas F Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; Chair of Nutritional Systems Biology, School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| |
Collapse
|
3
|
Habler K, Rexhaj A, Adling-Ehrhardt M, Vogeser M. Understanding isotopes, isomers, and isobars in mass spectrometry. J Mass Spectrom Adv Clin Lab 2024; 33:49-54. [PMID: 39279892 PMCID: PMC11402307 DOI: 10.1016/j.jmsacl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Mass spectrometry (MS) is a versatile analytical tool used in various fields such as biochemistry, pharmacology, omics, and clinical analysis for determining and quantifying compounds based on their molecular mass and structure through the mass-to-charge ratio. While MS offers high specificity and selectivity, it encounters challenges including matrix effects, in-source fragmentation, and other interferences caused by natural isotopic abundance, as well as isomeric and isobaric compounds. These challenges can impede accurate qualitative and quantitative analysis. Visual aids such as graphical illustrations can help elucidate the chemical differences and similarities among isotopes, isomers, and isobaric compounds.
Collapse
Affiliation(s)
- Katharina Habler
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Germany
| | - Arber Rexhaj
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Germany
| | | | - Michael Vogeser
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
4
|
Zhang K, Zhang L. Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS. Toxins (Basel) 2024; 16:238. [PMID: 38922133 PMCID: PMC11209136 DOI: 10.3390/toxins16060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Patulin, a toxic mycotoxin, can contaminate apple-derived products. The FDA has established an action level of 50 ppb (ng/g) for patulin in apple juice and apple juice products. To effectively monitor this mycotoxin, there is a need for adequate analytical methods that can reliably and efficiently determine patulin levels. In this work, we developed an automated sample preparation workflow followed by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) detection to identify and quantify patulin in a single method, further expanding testing capabilities for monitoring patulin in foods compared to traditional optical methods. Using a robotic sample preparation system, apple juice, apple cider, apple puree, apple-based baby food, applesauce, fruit rolls, and fruit jam were fortified with 13C-patulin and extracted using dichloromethane (DCM) without human intervention, followed by an LC-APCI-MS/MS analysis in negative ionization mode. The method achieved a limit of quantification of 4.0 ng/g and linearity ranging from 2 to 1000 ng/mL (r2 > 0.99). Quantitation was performed with isotope dilution using 13C-patulin as an internal standard and solvent calibration standards. Average recoveries (relative standard deviations, RSD%) in seven spike matrices were 95% (9%) at 10 ng/g, 110% (5%) at 50 ng/g, 101% (7%) at 200 ng/g, and 104% (4%) at 1000 ng/g (n = 28). The ranges of within-matrix and between-matrix variability (RSD) were 3-8% and 4-9%, respectively. In incurred samples, the identity of patulin was further confirmed with a comparison of the information-dependent acquisition-enhanced product ion (IDA-EPI) MS/MS spectra to a reference standard. The metrological traceability of the patulin measurements in an incurred apple cider (21.1 ± 8.0 µg/g) and apple juice concentrate (56.6 ± 15.6 µg/g) was established using a certified reference material and calibration data to demonstrate data confidence intervals (k = 2, 95% confidence interval).
Collapse
Affiliation(s)
- Kai Zhang
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA;
| | | |
Collapse
|
5
|
Bates J, Bahadoor A, Tittlemier SA, Melanson JE. Comparison of calibration strategies for accurate quantitation by isotope dilution mass spectrometry: a case study of ochratoxin A in flour. Anal Bioanal Chem 2024; 416:487-496. [PMID: 38047937 PMCID: PMC10761375 DOI: 10.1007/s00216-023-05053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
Analysis of low-level organic contaminants in complex matrices is essential for monitoring global food safety. However, balancing sample throughput with complex experimental designs and/or sample clean-up to best reduce matrix effects is a constant challenge. Multiple strategies exist to mitigate these effects, with internal standard-based methods such as isotope dilution mass spectrometry (IDMS) being the most advantageous. Here, multiple internal calibration strategies were investigated for the quantification of ochratoxin A (OTA) in wheat samples by liquid chromatography-mass spectrometry (LC-MS). Internal standard-based quantitation methods such as single (ID1MS), double (ID2MS), and quintuple (ID5MS) isotope dilution mass spectrometry, as well as external standard calibration, were explored and compared. A certified reference material (CRM) of OTA in flour, MYCO-1, was used to evaluate the accuracy of each method. External calibration generated results 18-38% lower than the certified value for MYCO-1, largely due to matrix suppression effects. Concurrently, consistently lower OTA mass fractions were obtained for the wheat samples upon quantitation by external calibration as opposed to ID1MS, ID2MS, and ID5MS. All isotope dilution methods produced results that fell within the expected range for MYCO-1 (3.17-4.93 µg/kg), validating their accuracy. However, an average 6% decrease in the OTA mass fraction was observed from results obtained by ID1MS compared to those by ID2MS and ID5MS. Upon scrutiny, these differences were attributed to an isotopic enrichment bias in the isotopically labelled internal standard [13C6]-OTA that was used for ID1MS, the OTAL-1 CRM. The advantages and limitations of each isotopic method are illustrated.
Collapse
Affiliation(s)
- Jennifer Bates
- National Research Council Canada, Metrology, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Adilah Bahadoor
- National Research Council Canada, Metrology, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Sheryl A Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB, R3C 3G8, Canada
| | - Jeremy E Melanson
- National Research Council Canada, Metrology, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
6
|
Bates TL, Sacks GL. Rapid headspace solid-phase microextraction sheets with direct analysis in real time mass spectrometry (SPMESH-DART-MS) of derivatized volatile phenols in grape juices and wines. Anal Chim Acta 2023; 1275:341577. [PMID: 37524464 DOI: 10.1016/j.aca.2023.341577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Volatile phenols possess "smoky, spicy" aromas and are routinely measured in grapes, wines and other foodstuffs for quality control. Routine analyses of volatile phenols rely on gas chromatography - mass spectrometry (GC-MS), but slow throughput of GC-MS can cause challenges during times of surge demand, i.e. following 'smoke taint' events involving forest fires near vineyards. Parallel extraction of headspace volatiles onto sorbent sheets (HS-SPMESH) followed by direct analysis in real time mass spectrometry (DART-MS) is a rapid alternative to conventional GC-MS approaches. However, HS-SPMESH extraction is poorly suited for lower volatility odorants, including volatile phenols. This work reports development and validation of an HS-SPMESH-DART-MS approach for five volatile phenols (4-ethylphenol, 4-ethylguiacol, guaiacol, 4-methylguaiacol, and cresols). Prior to HS-SPMESH extraction, volatile phenols were acetylated to facilitate their extraction. A unique feature of this work was the use of d6-Ac2O as a derivatizing agent to overcome issues with isobaric interferences inherent to chromatography-free MS techniques. The use of alkaline conditions during derivatization resulted in cumulative measurement of both free and bound forms of volatile phenols. The validated HS-SPMESH-DART-MS method achieved a throughput of 24 samples in ∼60 min (including derivatization and extraction time) with low limits of detection (<1 μg L-1) and good repeatability (3-6% RSD) in grape and wine matrices. Validation experiments with smoke-tainted grape samples indicated good correlation between total (free + bound) volatile phenols measured by HS-SPMESH-DART-MS and a gold standard GC-MS method.
Collapse
Affiliation(s)
- Terry L Bates
- Department of Food Science, Cornell University, 251 Stocking Hall, Ithaca, NY, USA
| | - Gavin L Sacks
- Department of Food Science, Cornell University, 251 Stocking Hall, Ithaca, NY, USA.
| |
Collapse
|
7
|
Hartl DM, Frank O, Dawid C, Hofmann TF. A New Inert Natural Deep Eutectic Solvent (NADES) as a Reaction Medium for Food-Grade Maillard-Type Model Reactions. Foods 2023; 12:foods12091877. [PMID: 37174415 PMCID: PMC10178046 DOI: 10.3390/foods12091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Sustainability, low toxicity, and high solute potential are the fundamental reasons for focusing green chemistry on natural deep eutectic solvents (NADES). The application of NADES ranges from organic chemistry to the agricultural sector and the food industry. In the food industry, the desired food quality can be achieved by the extraction of small molecules, macromolecules, and even heavy metals. The compound yield in Maillard-type model reactions can also be increased using NADES. To extend the so-called "kitchen-type chemistry" field, an inert, food-grade NADES system based on sucrose/D-sorbitol was developed, characterized, and examined for its ability as a reaction medium by evaluating its temperature and pH stability. Reaction boundary conditions were determined at 100 °C for three hours with a pH range of 3.7-9.0. As proof of principle, two Maillard-type model reactions were implemented to generate the taste-modulating compounds N2-(1-carboxyethyl)guanosine 5'-monophosphate) (161.8 µmol/mmol) and N2-(furfuryl thiomethyl)guanosine 5'-monophosphate (95.7 µmol/g). Since the yields of both compounds are higher than their respective taste-modulating thresholds, the newly developed NADES is well-suited for these types of "kitchen-type chemistry" and, therefore, a potential solvent candidate for a wide range of applications in the food industry.
Collapse
Affiliation(s)
- Daniela Marianne Hartl
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Oliver Frank
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Thomas Frank Hofmann
- Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
8
|
Bowman BA, Ejzak EA, Reese CM, Blount BC, Bhandari D. Mitigating Matrix Effects in LC-ESI-MS-MS Analysis of a Urinary Biomarker of Xylenes Exposure. J Anal Toxicol 2023; 47:129-135. [PMID: 35766875 PMCID: PMC10949524 DOI: 10.1093/jat/bkac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) with stable isotope-labeled internal standards (SIL-ISs) is the gold standard for quantitative analysis of drugs and metabolites in complex biological samples. Significant isotopic effects associated with deuterium labeling often cause the deuterated IS to elute at a different retention time from the target analyte, diminishing its capability to compensate for matrix effects. In this study, we systematically compared the analytical performance of deuterated (2H) SIL-IS to non-deuterated (13C and 15N) SIL-ISs for quantifying urinary 2-methylhippuric acid (2MHA) and 4-methylhippuric acid (4MHA), biomarkers of xylenes exposure, with an LC-ESI-MS-MS assay. Analytical method comparison between ISs demonstrated a quantitative bias for urinary 2MHA results, with concentrations generated with 2MHA-[2H7] on average 59.2% lower than concentrations generated with 2MHA-[13C6]. Spike accuracy, measured by quantifying the analyte-spiked urine matrix and comparing the result to the known spike concentration, determined that 2MHA-[2H7] generated negatively biased urinary results of -38.4%, whereas no significant bias was observed for 2MHA-[13C6]. Post-column infusion demonstrated that ion suppression experienced by 2MHA and 2MHA-[13C6] was not equally experienced by 2MHA-[2H7], explaining the negatively biased 2MHA results. The quantitation of urinary 4MHA results between ISs exhibited no significant quantitative bias. These results underscore the importance of the careful selection of ISs for targeted quantitative analysis in complex biological samples.
Collapse
Affiliation(s)
- Brett A. Bowman
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
- Life Sciences Research, Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA
| | - Elizabeth A. Ejzak
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
- Life Sciences Research, Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA
| | - Christopher M. Reese
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Benjamin C. Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Deepak Bhandari
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| |
Collapse
|
9
|
Sebald MA, Gebauer J, Koch M. Concise Syntheses of Alternariol, Alternariol-9-monomethyl Ether and Their D3-Isotopologues. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1698-8328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAlternariol (AOH) and alternariol-9-monomethyl ether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuffs like tomatoes, nuts, and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH and AME levels is of increasing interest. As the availability of both native and labeled AOH and AME analytical standards is very limited, we herein present a novel and concise approach towards their synthesis by employing a ruthenium-catalyzed ortho-arylation as the key step. Finally, we demonstrate their suitability as internal standards in stable-isotope dilution assay (SIDA)-HPLC-MS/MS analysis, a technique commonly used for the quantification of natural products in food and feed.
Collapse
Affiliation(s)
| | | | - Matthias Koch
- Bundesanstalt für Materialforschung und -prüfung, Abteilung Analytische Chemie, Referenzmaterialien
| |
Collapse
|
10
|
Liu Y, Jin Y, Guo Q, Wang X, Luo S, Yang W, Li J, Chen Y. Immunoaffinity Cleanup and Isotope Dilution-Based Liquid Chromatography Tandem Mass Spectrometry for the Determination of Six Major Mycotoxins in Feed and Feedstuff. Toxins (Basel) 2022; 14:toxins14090631. [PMID: 36136569 PMCID: PMC9503004 DOI: 10.3390/toxins14090631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of deoxynivalenol, aflatoxin B1, zearalenone, ochratoxin A, T-2 toxin and fumonisin B1 in feed and feedstuff was established. The sample was extracted with an acetonitrile–water mixture (60:40, v/v), purified by an immunoaffinity column, eluted with a methanol–acetic acid mixture (98:2, v/v), and reconstituted with a methanol–water mixture (50:50, v/v) after drying with nitrogen. Finally, the reconstituted solution was detected by LC-MS/MS and quantified by isotope internal standard method. The six mycotoxins had a good linear relationship in a certain concentration range, the correlation coefficients were all greater than 0.99, the limits of detection were between 0.075 and 1.5 µg·kg−1, and the limits of quantification were between 0.5 and 5 µg·kg−1. The average spike recoveries in the four feed matrices ranged from 84.2% to 117.1% with relative standard deviations less than 11.6%. Thirty-six actual feed samples were analyzed for mycotoxins, and at least one mycotoxin was detected in each sample. The proposed method is reliable and suitable for detecting common mycotoxins in feed samples.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi Guo
- Clover Technology Group Inc., Beijing 100044, China
| | - Xiong Wang
- Clover Technology Group Inc., Beijing 100044, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (J.L.); (Y.C.)
| |
Collapse
|
11
|
Gützkow KL, Al Ayoubi C, Vasco LS, Rohn S, Maul R. Analysis of ochratoxin A, aflatoxin B1 and its biosynthetic precursors in cheese – Method development and market sample screening. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Jünger M, Mittermeier-Kleßinger VK, Farrenkopf A, Dunkel A, Stark T, Fröhlich S, Somoza V, Dawid C, Hofmann T. Sensoproteomic Discovery of Taste-Modulating Peptides and Taste Re-engineering of Soy Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6503-6518. [PMID: 35593506 DOI: 10.1021/acs.jafc.2c01688] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soy sauce, one of the most common Asian fermented foods, exhibits a distinctive savory taste profile. In the present study, targeted quantitation of literature-known taste compounds, calculation of dose-over-threshold factors, and taste re-engineering experiments enabled the identification of 34 key tastants. Following the sensoproteomics approach, 14 umami-, kokumi-, and salt-enhancing peptides were identified for the first time, with intrinsic taste threshold concentrations in the range of 166-939 μmol/L and taste-modulating threshold concentrations ranging from 42 to 420 μmol/L. The lowest taste-modulating threshold concentrations were found for the leucyl peptide LDYY with an umami- and salt-enhancing threshold of 42 μmol/L. Addition of the 14 newly identified peptides to the taste recombinate (aRecDipeptides) increased the overall taste intensity and mouthfulness of the recombinate, and comparison with the authentic soy sauce confirmed the identification of all key tastants. Finally, these data as well as the quantitative profiling of several (non)-fermented foods highlight the importance of fermentation with respect to taste formation. On the basis of this knowledge, microorganisms with specific digestion patterns may be used to tailor the taste profile and especially the salt taste sensation of soy sauces.
Collapse
Affiliation(s)
- Manon Jünger
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Verena Karolin Mittermeier-Kleßinger
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Anastasia Farrenkopf
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Timo Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Sonja Fröhlich
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
13
|
Zhang K, Tan S, Xu D. Determination of Mycotoxins in Dried Fruits Using LC-MS/MS-A Sample Homogeneity, Troubleshooting and Confirmation of Identity Study. Foods 2022; 11:foods11060894. [PMID: 35327316 PMCID: PMC8954288 DOI: 10.3390/foods11060894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
To monitor co-exposure to toxic mycotoxins in dried fruits, it is advantageous to simultaneously determine multiple mycotoxins using a single extraction and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. In this study, we applied a stable isotope dilution and LC-MS/MS method to multi-mycotoxin analysis in dried fruits, selecting raisins, plums, figs, and cranberries for matrix extension. Samples were prepared using cryogenic grinding, followed by the fortification of carbon-13 (13C) uniformly labeled internal standards for twelve mycotoxins, and extraction using 50% acetonitrile. Homogeneity of prepared samples, defined as particle size Dv90 < 850 µm for the tested matrices, was characterized using a laser diffraction particle size analyzer, and reached using cryogenic grinding procedures. The majority of recoveries in the four matrices for aflatoxins and ochratoxin A spiked at 1−100 ng/g; fumonisins, T-2 toxin, HT-2 toxin, and zearalenone spiked at 10−1000 ng/g, ranged from 80 to 120% with relative standard deviations (RSDs) of <20%. Deoxynivalenol was not detected at 10 and 100 ng/g in plums, and additional troubleshooting procedures using liquid-liquid extraction (LLE), solid phase extraction (SPE), and elution gradient were evaluated to improve the detectability of the mycotoxin. Furthermore, we confirmed the identity of detected mycotoxins, ochratoxin A and deoxynivalenol, in incurred samples using enhanced product ion scans and spectral library matching.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, HFS-717. 5001 Campus Drive, College Park, MD 20740, USA;
- Correspondence: ; Tel.: +1-240-402-2318
| | - Steven Tan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, HFS-717. 5001 Campus Drive, College Park, MD 20740, USA;
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, 2134 Patapsco Building, 5145 Campus Drive, College Park, MD 20740, USA;
| | - David Xu
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, 2134 Patapsco Building, 5145 Campus Drive, College Park, MD 20740, USA;
| |
Collapse
|
14
|
Maspero M, Gilardoni E, Bonfanti C, Messina G, Regazzoni L, De Amici M, Carini M, Aldini G, Dallanoce C. Synthesis and characterization of 13C labeled carnosine derivatives for isotope dilution mass spectrometry measurements in biological matrices. Talanta 2021; 235:122742. [PMID: 34517610 DOI: 10.1016/j.talanta.2021.122742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Due to the physiological properties of l-carnosine (l-1), supplementation of this dipeptide has both a nutritional ergogenic application and a therapeutic potential for the treatment of numerous diseases in which ischemic or oxidative stress are involved. Quantitation of carnosine and its analogs in biological matrices results to be crucial for these applications and HPLC-MS procedures with isotope-labeled internal standards are the state-of-the-art approach for this analytical need. The use of these standards allows to account for variations during the sample preparation process, between-sample matrix effects, and variations in instrument performance over analysis time. Although literature reports a number of studies involving carnosine, isotope-labeled derivatives of the dipeptide are not commercially available. In this work we present a fast, flexible, and convenient strategy for the synthesis of the 13C-labeled carnosine analogs and their application as internal standards for the quantitation of carnosine and anserine in a biological matrix.
Collapse
Affiliation(s)
- Marco Maspero
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Chiara Bonfanti
- Department of BioSciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of BioSciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
15
|
Wang M, Asam S, Chen J, Rychlik M. Development of Stable Isotope Dilution Assays for the Analysis of Natural Forms of Vitamin B12 in Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10722-10730. [PMID: 34478287 DOI: 10.1021/acs.jafc.1c03803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The first multiple stable isotope dilution assay method was developed for the simultaneous determination of four cobalamins, namely, hydroxocobalamin (OHCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), and cyanocobalamin (CNCbl), in their native forms. The sample preparation was optimized with enzyme treatment and immunoaffinity purification. The analysis was performed by LC-MS/MS using respective 15N-labeled cobalamins as internal standards. Method validation resulted in limits of detection ranging from 0.19 to 0.58 ng/g and limits of quantification ranging from 0.68 to 1.73 ng/g. Recoveries at three levels were between 82 and 121%. Intra-day and inter-day precisions were below 6% and 11% RSD, respectively. The analysis of a reference material resulted in a variance of <1% from the certified value. The newly developed method demonstrated excellent sensitivity, recovery, accuracy, and reproducibility and was further applied to quantitate the four cobalamins in various meats.
Collapse
Affiliation(s)
- Mengle Wang
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Jianqi Chen
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
16
|
Nochetto CB, Hui L. A Dilute-and-Shoot UHPLC-MS/MS Isotope Dilution Method for Simultaneous Determination and Confirmation of Eleven Mycotoxins in Dried Distillers Grains with Solubles. J AOAC Int 2021; 105:95-106. [PMID: 34459902 DOI: 10.1093/jaoacint/qsab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Natural contamination of mycotoxins in dried distiller's grains with solubles (DDGS) as a mainstream animal feed ingredient poses risk to animal health. OBJECTIVE A regulatory method was needed for the agency to simultaneously detect eleven mycotoxins of high regulatory priority in DDGS. METHODS Ten grams of DDGS sample were extracted twice with acetonitrile/water under mildly acidic condition. Two aliquots from the combined crude extract were taken and processed separately: (1) diluted 400-fold with solvent for analysis of deoxynivalenol and fumonisins B1 and B2; (2) pH adjusted to 7.5, then diluted 15.7-fold for analysis of aflatoxins B1, B2, G1, G2, ochratoxin A, zearalenone, and T-2 and HT-2 toxins. Uniformly-labelled 13C-isotopologues of these mycotoxins were added as internal standards to the diluted extracts for quantitative analysis by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Results. The linear quantitation ranges (µg/kg) were: aflatoxin B1, B2, G1, and G2, 1.57 to 105; zearalenone, 16.3 to 1090; T-2 toxin, 3.14 to 208; HT-2 toxin, 48.2 to 3220; ochratoxin A, 0.47 to 31.4; deoxynivalenol, 240 to 16000; fumonisin B1 and B2, 320 to 21200. Accuracies for these analytes at each of three fortification levels range from 70.7% to 100%, with corresponding relative standard deviations between 1.4% to 10.5%. True recoveries were all higher than 83%. CONCLUSIONS This method was successfully validated to meet the agency's performance guidelines for regulatory methods. HIGHLIGHTS This method is easy, quick and robust to simultaneously quantify and confirm presence of eleven regulated mycotoxins in DDGS.
Collapse
Affiliation(s)
- Cristina B Nochetto
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, 8401 Muirkirk Rd, Laurel, Maryland 20708
| | - Li Hui
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, 8401 Muirkirk Rd, Laurel, Maryland 20708
| |
Collapse
|
17
|
Albert J, More CA, Dahlke NRP, Steinmetz Z, Schaumann GE, Muñoz K. Validation of a Simple and Reliable Method for the Determination of Aflatoxins in Soil and Food Matrices. ACS OMEGA 2021; 6:18684-18693. [PMID: 34337207 PMCID: PMC8319938 DOI: 10.1021/acsomega.1c01451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Aflatoxins (AFs) are toxic fungal secondary metabolites that are commonly detected in food commodities. Currently, there is a lack of generic methods capable of determining AFs both at postharvest stages in agricultural products and preharvest stages, namely, the agricultural soil. Here, we present a simple and reliable method for quantitative analysis of AFs in soil and food matrices at environmentally relevant concentrations for the first time, using the same extraction procedure and chromatography, either by HPLC-FLD or LC-MS. AFs were extracted from matrices by ultrasonication using an acetonitrile/water mixture (84:16, v + v) without extensive and time-consuming cleanup procedures. Food extracts were defatted with n-hexane. Matrix effects in terms of signal suppression/enhancement (SSE) for HPLC-FLD were within ±20% for all matrices tested. For LC-MS, the SSE values were mostly within ±20% for soil matrices but outside ±20% for all food matrices. The sensitivity of the method allowed quantitative analysis even at trace levels with quantification limits (LOQs) between 0.04 and 0.23 μg kg-1 for HPLC-FLD and 0.06-0.23 μg kg-1 for LC-MS. The recoveries ranged from 64 to 92, 74 to 101, and 78 to 103% for fortification levels of 0.5, 5, and 20 μg kg-1, respectively, with repeatability values of 2-18%. The validation results are in accordance with the quality criteria and limits for mycotoxins set by the European Commission, thus confirming a satisfactory performance of the analytical method. Although reliable analysis is possible with both instruments, the HPLC-FLD method may be more suitable for routine analysis because it does not require consideration of the matrix.
Collapse
Affiliation(s)
- Julius Albert
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Camilla A. More
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Niklaus R. P. Dahlke
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Zacharias Steinmetz
- iES
Landau, Institute for Environmental Sciences, Group of Environmental
and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Gabriele E. Schaumann
- iES
Landau, Institute for Environmental Sciences, Group of Environmental
and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Katherine Muñoz
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| |
Collapse
|
18
|
Evaluation of gas chromatography for the separation of a broad range of isotopic compounds. Anal Chim Acta 2021; 1165:338490. [PMID: 33975706 DOI: 10.1016/j.aca.2021.338490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022]
Abstract
The separation of deuterated compounds from their protiated counterparts is essential in areas of drug discovery and development, investigating kinetic isotope effects and quantitative methods of non-mass spectrometry-based stable isotope dilution assay (non-MS SIDA). The separations of 47 isotopologue pairs of common compounds and drugs were achieved by gas-liquid chromatography, employing twelve different stationary phases. Polydimethylsiloxane phase, phenyl substituted polydimethylsiloxane phases, wax phases, ionic liquid phases, and chiral stationary phases were selected to encompass a wide polarity range and diverse chemical interactions. The best-performing stationary phases are presented for separation of protic-polar, aprotic-dipolar, nonpolar analytes. Overall, the IL111i, SPB-20, and PAG stationary phases were remarkable in their ability to separate the isotopologues. The isotope effect was also evaluated. It was observed that nonpolar stationary phases often exhibit an inverse isotope effect in which heavier isotopic compounds elute earlier than their lighter counterparts. Conversely, polar stationary phases often show a normal isotope effect, while those of intermediate polarities can show both effects depending on the isotopologues. The location of deuterium atoms, however, affects isotopologue retention times. Deuterium substituted aliphatic groups appear to have a greater inverse isotope effect on retention than aromatic substituents.
Collapse
|
19
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Silva LJG, Pereira AMPT, Pena A, Lino CM. Citrinin in Foods and Supplements: A Review of Occurrence and Analytical Methodologies. Foods 2020; 10:E14. [PMID: 33374559 PMCID: PMC7822436 DOI: 10.3390/foods10010014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
Citrinin (CIT) deserves attention due to its known toxic effects in mammalian species and its widespread occurrence in food commodities, often along with ochratoxin A, another nephrotoxic mycotoxin. Human exposure, a key element in assessing risk related to food contaminants, depends upon mycotoxin contamination levels in food and on food consumption. Commercial supplements, commonly designated as red rice, usually used in daily diets in Asiatic countries due to their medicinal properties, may pose a health problem as a result of high CIT levels. In addition to the worldwide occurrence of CIT in foods and supplements, a wide range of several analytical and detection techniques with high sensitivity, used for evaluation of CIT, are reviewed and discussed in this manuscript. This review addresses the scientific literature regarding the presence of CIT in foods of either vegetable or animal origin, as well as in supplements. On what concerns analytical methodologies, sample extraction methods, such as shaking extraction and ultrasonic assisted extraction (UAE), clean-up methods, such as liquid-liquid extraction (LLE), solid phase extraction (SPE) and Quick, Easy, Cheap, Effective, Rugged and Safe (QuECHERS), and detection and quantification methods, such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), biosensors, and ELISA, are also reviewed.
Collapse
Affiliation(s)
- Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.M.P.T.P.); (A.P.); (C.M.L.)
| | | | | | | |
Collapse
|
21
|
Ćeranić A, Bueschl C, Doppler M, Parich A, Xu K, Lemmens M, Buerstmayr H, Schuhmacher R. Enhanced Metabolome Coverage and Evaluation of Matrix Effects by the Use of Experimental-Condition-Matched 13C-Labeled Biological Samples in Isotope-Assisted LC-HRMS Metabolomics. Metabolites 2020; 10:metabo10110434. [PMID: 33121096 PMCID: PMC7692853 DOI: 10.3390/metabo10110434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
Stable isotope-assisted approaches can improve untargeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) metabolomics studies. Here, we demonstrate at the example of chemically stressed wheat that metabolome-wide internal standardization by globally 13C-labeled metabolite extract (GLMe-IS) of experimental-condition-matched biological samples can help to improve the detection of treatment-relevant metabolites and can aid in the post-acquisition assessment of putative matrix effects in samples obtained upon different treatments. For this, native extracts of toxin- and mock-treated (control) wheat ears were standardized by the addition of uniformly 13C-labeled wheat ear extracts that were cultivated under similar experimental conditions (toxin-treatment and control) and measured with LC-HRMS. The results show that 996 wheat-derived metabolites were detected with the non-condition-matched 13C-labeled metabolite extract, while another 68 were only covered by the experimental-condition-matched GLMe-IS. Additional testing is performed with the assumption that GLMe-IS enables compensation for matrix effects. Although on average no severe matrix differences between both experimental conditions were found, individual metabolites may be affected as is demonstrated by wrong decisions with respect to the classification of significantly altered metabolites. When GLMe-IS was applied to compensate for matrix effects, 272 metabolites showed significantly altered levels between treated and control samples, 42 of which would not have been classified as such without GLMe-IS.
Collapse
Affiliation(s)
- Asja Ćeranić
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (A.Ć.); (C.B.); (M.D.); (A.P.); (K.X.)
| | - Christoph Bueschl
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (A.Ć.); (C.B.); (M.D.); (A.P.); (K.X.)
| | - Maria Doppler
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (A.Ć.); (C.B.); (M.D.); (A.P.); (K.X.)
| | - Alexandra Parich
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (A.Ć.); (C.B.); (M.D.); (A.P.); (K.X.)
| | - Kangkang Xu
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (A.Ć.); (C.B.); (M.D.); (A.P.); (K.X.)
| | - Marc Lemmens
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (M.L.); (H.B.)
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (M.L.); (H.B.)
| | - Rainer Schuhmacher
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Upper Austria, Austria; (A.Ć.); (C.B.); (M.D.); (A.P.); (K.X.)
- Correspondence: ; Tel.: +43-1-47654-97307
| |
Collapse
|
22
|
Zhang K, Banerjee K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins (Basel) 2020; 12:E539. [PMID: 32825718 PMCID: PMC7551558 DOI: 10.3390/toxins12090539] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
As a class of mycotoxins with regulatory and public health significance, aflatoxins (e.g., aflatoxin B1, B2, G1 and G2) have attracted unparalleled attention from government, academia and industry due to their chronic and acute toxicity. Aflatoxins are secondary metabolites of various Aspergillus species, which are ubiquitous in the environment and can grow on a variety of crops whereby accumulation is impacted by climate influences. Consumption of foods and feeds contaminated by aflatoxins are hazardous to human and animal health, hence the detection and quantification of aflatoxins in foods and feeds is a priority from the viewpoint of food safety. Since the first purification and identification of aflatoxins from feeds in the 1960s, there have been continuous efforts to develop sensitive and rapid methods for the determination of aflatoxins. This review aims to provide a comprehensive overview on advances in aflatoxins analysis and highlights the importance of sample pretreatments, homogenization and various cleanup strategies used in the determination of aflatoxins. The use of liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE) and immunoaffinity column clean-up (IAC) and dilute and shoot for enhancing extraction efficiency and clean-up are discussed. Furthermore, the analytical techniques such as gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), capillary electrophoresis (CE) and thin-layer chromatography (TLC) are compared in terms of identification, quantitation and throughput. Lastly, with the emergence of new techniques, the review culminates with prospects of promising technologies for aflatoxin analysis in the foreseeable future.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration/Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune 412307, India;
| |
Collapse
|
23
|
Bachmann T, Schnurr C, Zainer L, Rychlik M. Chemical synthesis of 5'-β-glycoconjugates of vitamin B 6. Carbohydr Res 2020; 489:107940. [PMID: 32062177 DOI: 10.1016/j.carres.2020.107940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Various 5'-β-saccharides of pyridoxine, namely the mannoside, galactoside, arabinoside, maltoside, cellobioside and glucuronide, were synthesized chemically according to Koenigs-Knorr conditions using α4,3-O-isopropylidene pyridoxine and the respective acetobromo glycosyl donors with AgOTf (3.0 eq.) and NIS (3.0 eq.) as promoters at 0 °C. Furthermore, 5'-β-[13C6]-labeled pyridoxine glucoside (PNG) was prepared starting from [13C6]-glucose and pyridoxine. Additionally, two strategies were examined for the synthesis of 5'-β-pyridoxal glucoside (PLG).
Collapse
Affiliation(s)
- Thomas Bachmann
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Christian Schnurr
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Laura Zainer
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| |
Collapse
|
24
|
Kunz BM, Wanko F, Kemmlein S, Bahlmann A, Rohn S, Maul R. Development of a rapid multi-mycotoxin LC-MS/MS stable isotope dilution analysis for grain legumes and its application on 66 market samples. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106949] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Potouridis T, Knauz A, Berger E, Püttmann W. Examination of paraben release from baby teethers through migration tests and GC-MS analysis using a stable isotope dilution assay. BMC Chem 2019; 13:70. [PMID: 31384817 PMCID: PMC6661842 DOI: 10.1186/s13065-019-0587-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 05/07/2019] [Indexed: 11/10/2022] Open
Abstract
Parabens and sorbic acid are commonly used as food preservatives due to their antimicrobial effect. However, their use in foods for infants and young children is not permitted in the European Union. Previous studies found these compounds in some gel-filled baby teethers, whereby parabens, which are well-known as endocrine disruptors, were identified in the polymer-based chewing surface consisting of ethylene-vinyl acetate (EVA). To assess the exposure of infants and young children to these products, the application of parabens in teethers should be thoroughly investigated. Therefore, the present study aimed to apply a representative migration test procedure combined with an accurate analytical method to examine gel-filled baby teethers without elaborate sample preparation, high costs, and long processing times. Accordingly, solid-phase extraction (SPE), in combination with a stable isotope dilution assay (SIDA) and subsequent gas chromatography-mass spectrometry (GC-MS) for analysis of methyl-, ethyl-, and n-propylparaben (MeP, EtP, and n-PrP), was found to be well-suited, with recoveries ranging from 93 to 99%. The study compared the release of these parabens from intact teether surfaces into water and saliva simulant under real-life conditions, with total amounts of detected parabens found to be in the range of 101-162 µg 100 mL-1 and 57-148 µg 100 mL-1, respectively. Furthermore, as a worst-case scenario, the release into water was examined using a long-term migration study.
Collapse
Affiliation(s)
- Theodoros Potouridis
- Department of Environmental Analytical Chemistry, Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Alena Knauz
- Department of Environmental Analytical Chemistry, Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Elisabeth Berger
- Faculty of Biology, Department Aquatic Ecotoxicology, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
- Department of Quantitative Landscape Ecology, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Wilhelm Püttmann
- Department of Environmental Analytical Chemistry, Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Tegzes JH, Oakley BB, Brennan G. Comparison of mycotoxin concentrations in grain versus grain-free dry and wet commercial dog foods. TOXICOLOGY COMMUNICATIONS 2019. [DOI: 10.1080/24734306.2019.1648636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- John H. Tegzes
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Greg Brennan
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
27
|
McMaster N, Acharya B, Harich K, Grothe J, Mehl HL, Schmale DG. Quantification of the Mycotoxin Deoxynivalenol (DON) in Sorghum Using GC-MS and a Stable Isotope Dilution Assay (SIDA). FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01588-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Hövelmann Y, Lewin L, Hübner F, Humpf HU. Large-Scale Screening of Foods for Glucose-Derived β-Carboline Alkaloids by Stable Isotope Dilution LC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3890-3899. [PMID: 30875225 DOI: 10.1021/acs.jafc.8b07150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The occurrence of glucose-derived β-carboline alkaloids tangutorid E (Tan E) and tangutorid F (Tan F) as well as their dehydroxy-derivatives (DH-Tan E/F) was investigated in a broad variety of foodstuffs by LC-MS/MS-based stable isotope dilution analysis (SIDA). For that purpose, the target compounds and their 13C6-stable isotope-labeled analogues were synthesized from l-tryptophan and (13C6-)d-glucose and used to develop a rapid LC-MS/MS-SIDA method. After validation for several food matrices, the method was applied to the analysis of these β-carbolines in 80 food items. Quantitative amounts were detected in 46.3, 50.0, and 42.5% of the samples regarding Tan E, Tan F, and DH-Tan E/F, respectively, with corresponding ranges of 0.01-6.75, 0.01-5.07, and 0.01-0.75 mg/kg; the highest amounts were found in processed tomato products. A combination of the obtained occurrence data in foods with average food consumption data led to the calculation of rough estimates for the chronic daily intake of those alkaloids, yielding values of 0.44, 0.36, and 0.13 μg/kg body weight/day for Tan E, Tan F, and DH-Tan E/F, respectively. Evidently, the consumption of processed tomato-based products accounts for the majority of the total daily intake of the investigated β-carbolines; the potential bioactivities of Tan E, Tan F, and DH-Tan E/F have yet to be investigated.
Collapse
Affiliation(s)
- Yannick Hövelmann
- Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , 48149 Münster , Germany
| | - Lea Lewin
- Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , 48149 Münster , Germany
| | - Florian Hübner
- Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , 48149 Münster , Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry , Westfälische Wilhelms-Universität Münster , 48149 Münster , Germany
| |
Collapse
|
29
|
Gotthardt M, Asam S, Gunkel K, Moghaddam AF, Baumann E, Kietz R, Rychlik M. Quantitation of Six Alternaria Toxins in Infant Foods Applying Stable Isotope Labeled Standards. Front Microbiol 2019; 10:109. [PMID: 30787913 PMCID: PMC6373459 DOI: 10.3389/fmicb.2019.00109] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 01/03/2023] Open
Abstract
Alternaria fungi are widely distributed saprophytes and plant pathogens. As pathogens, Alternaria fungi infect crops and vegetables and cause losses in the fields and during postharvest storage. While farmers suffer from declining yields, consumers are endangered by the formation of secondary metabolites, because some of these exhibit a pronounced toxicological potential. The evaluation of the toxicological capabilities is still ongoing and will contribute to a valid risk assessment. Additionally, data on the incidence and the quantity of Alternaria mycotoxins found in food products is necessary for dietary exposure evaluations. A sensitive LC-MS/MS method for the determination of the Alternaria mycotoxins alternariol (AOH), alternariol monomethylether (AME), tentoxin (TEN), altertoxin I (ATX I), alterperylenol (ALTP), and tenuazonic acid (TA) was developed. AOH, AME, and TA were quantified using stable-isotopically labeled standards. TEN, ATX I, and ALTP were determined using matrix matched calibration. The developed method was validated by using starch and fresh tomato matrix and resulted in limits of detection ranging from 0.05 to 1.25 μg/kg for starch (as a model for cereals) and from 0.01 to 1.36 μg/kg for fresh tomatoes. Limits of quantification were determined between 0.16 and 4.13 μg/kg for starch and between 0.02 and 5.56 μg/kg for tomatoes. Recoveries varied between 83 and 108% for starch and between 95 and 111% for tomatoes. Intra-day precisions were below 4% and inter-day precisions varied from 3 to 8% in both matrices. Various cereal based infant foods, jars containing vegetables and fruits as well as tomato products for infants were analyzed for Alternaria mycotoxin contamination (n = 25). TA was the most frequently determined mycotoxin and was detected in much higher contents than the other toxins. AME and TEN were quantified in many samples, but in low concentrations, whereas AOH, ATX I, and ALTP were determined rarely, among which AOH had higher concentration. Some infant food products were highly contaminated with Alternaria mycotoxins and the consumption of these individual products might pose a risk to the health of infants. However, when the mean or median is considered, no toxicological risk was obvious.
Collapse
Affiliation(s)
- Marina Gotthardt
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Klara Gunkel
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Atefeh Fooladi Moghaddam
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany.,National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elisabeth Baumann
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Roland Kietz
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
30
|
Synthesis of [ 13C₃]-B6 Vitamers Labelled at Three Consecutive Positions Starting from [ 13C₃]-Propionic Acid. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23092117. [PMID: 30142892 PMCID: PMC6225105 DOI: 10.3390/molecules23092117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/31/2022]
Abstract
[13C3]-labelled vitamers (PN, PL and PM) of the B6 group were prepared starting from [13C3]-propionic acid. [13C3]-PN was synthesized in ten linear steps with an overall yield of 17%. Hereby, higher alkyl homologues of involved esters showed a positive impact on the reaction outcome of the intermediates in the chosen synthetic route. Oxidation of [13C3]-PN to [13C3]-PL was undertaken using potassium permanganate and methylamine followed by acid hydrolysis of the imine derivative. [13C3]-PM could be prepared from the oxime derivative of [13C3]-PN by hydrogenation with palladium.
Collapse
|
31
|
Determination of patulin in apple juice by single-drop liquid-liquid-liquid microextraction coupled with liquid chromatography-mass spectrometry. Food Chem 2018; 257:1-6. [DOI: 10.1016/j.foodchem.2018.02.077] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 02/01/2023]
|
32
|
Hattori S, Tsukada M, Morita M, Suenaga K. [Single-Laboratory Validation Study of Determination of Patulin by GC-MS in Juice]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2018; 59:157-160. [PMID: 30033994 DOI: 10.3358/shokueishi.59.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined whether the analytical method of patulin (a mycotoxin found in fruit juice) developed in Nagano prefecture meets the criteria in the Codex Procedural Manual and Guidelines on Analytical Terminology. The trueness, repeatability, within-laboratory reproducibility and HorRat value were 98.8-103.4%, less than 6.4, 8.1 and 0.4%, respectively, for apple juice and pear juice.Thus, the trueness and precision met the required criteria.
Collapse
Affiliation(s)
- Satoshi Hattori
- Food and Agricultural Materials Inspection Center, Kobe Regional Center
| | - Masanori Tsukada
- Food and Agricultural Materials Inspection Center, Kobe Regional Center
| | - Mifumi Morita
- Food and Agricultural Materials Inspection Center, Headquarters Saitama Shintoshin National Government Building Kensato BLDG
| | - Kazuya Suenaga
- Food and Agricultural Materials Inspection Center, Headquarters Saitama Shintoshin National Government Building Kensato BLDG
| |
Collapse
|
33
|
Nielsen DU, Neumann KT, Lindhardt AT, Skrydstrup T. Recent developments in carbonylation chemistry using [13
C]CO, [11
C]CO, and [14
C]CO. J Labelled Comp Radiopharm 2018; 61:949-987. [DOI: 10.1002/jlcr.3645] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Dennis U. Nielsen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry; Aarhus University; Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry; Aarhus University; Aarhus C Denmark
| | - Anders T. Lindhardt
- Carbon Dioxide Activation Center (CADIAC), Department of Engineering; Aarhus University; Aarhus N Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry; Aarhus University; Aarhus C Denmark
| |
Collapse
|
34
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Eriksen GS, Taranu I, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J 2018; 16:e05242. [PMID: 32625894 PMCID: PMC7009563 DOI: 10.2903/j.efsa.2018.5242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fumonisins, mycotoxins primarily produced by Fusarium verticillioides and Fusarium proliferatum, occur predominantly in cereal grains, especially in maize. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to fumonisins and their modified and hidden forms in feed. Fumonisin B1 (FB 1), FB 2 and FB 3 are the most common forms of fumonisins in feedstuffs and thus were included in the assessment. FB 1, FB 2 and FB 3 have the same mode of action and were considered as having similar toxicological profile and potencies. For fumonisins, the EFSA Panel on Contaminants in the Food Chain (CONTAM) identified no-observed-adverse-effect levels (NOAELs) for cattle, pig, poultry (chicken, ducks and turkeys), horse, and lowest-observed-adverse-effect levels (LOAELs) for fish (extrapolated from carp) and rabbits. No reference points could be identified for sheep, goats, dogs, cats and mink. The dietary exposure was estimated on 18,140 feed samples on FB 1-3 representing most of the feed commodities with potential presence of fumonisins. Samples were collected between 2003 and 2016 from 19 different European countries, but most of them from four Member States. To take into account the possible occurrence of hidden forms, an additional factor of 1.6, derived from the literature, was applied to the occurrence data. Modified forms of fumonisins, for which no data were identified concerning both the occurrence and the toxicity, were not included in the assessment. Based on mean exposure estimates, the risk of adverse health effects of feeds containing FB 1-3 was considered very low for ruminants, low for poultry, horse, rabbits, fish and of potential concern for pigs. The same conclusions apply to the sum of FB 1-3 and their hidden forms, except for pigs for which the risk of adverse health effect was considered of concern.
Collapse
|
35
|
Schalk K, Koehler P, Scherf KA. Quantitation of Specific Barley, Rye, and Oat Marker Peptides by Targeted Liquid Chromatography-Mass Spectrometry To Determine Gluten Concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3581-3592. [PMID: 29392950 DOI: 10.1021/acs.jafc.7b05286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Celiac disease is triggered by the ingestion of gluten from wheat, barley, rye, and possibly oats. Gluten is quantitated by DNA-based methods or enzyme-linked immunosorbent assays (ELISAs). ELISAs mostly detect the prolamin fraction and potentially over- or underestimate gluten contents. Therefore, a new independent method is required to comprehensively detect gluten. A targeted liquid chromatography-tandem mass spectrometry method was developed to quantitate seven barley, seven rye, and three oat marker peptides derived from each gluten protein fraction (prolamin and glutelin) and type (barley, B-, C-, D-, and γ-hordeins; rye, γ-75k-, γ-40k-, ω-, and HMW-secalins). The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference gluten protein type resulted in peptide-specific yields, which enabled the conversion of peptide into protein concentrations. This method was applied to quantitate gluten in samples from the brewing process, in raw materials for sourdough fermentation, and in dried sourdoughs.
Collapse
Affiliation(s)
- Kathrin Schalk
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Peter Koehler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| |
Collapse
|
36
|
Owino VO, Cornelius C, Loechl CU. Elucidating Adverse Nutritional Implications of Exposure to Endocrine-Disrupting Chemicals and Mycotoxins through Stable Isotope Techniques. Nutrients 2018; 10:nu10040401. [PMID: 29570653 PMCID: PMC5946186 DOI: 10.3390/nu10040401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple drivers of the double burden of malnutrition (DBM) include a rapid shift from predominantly plant-based diets to energy-dense foods based on meats, milk, animal fats and vegetable oils. The shift to overweight and obesity is driven by increased exposure to mass media, urbanization, technological advances in food processing, rising income and increased population density associated with increased access to cheap foods. At the same time, undernutrition persists mainly due to food insecurity and lack of access to safe water, sanitation and adequate health care. All known nutrition interventions result in only one third reduction in stunting. Little consideration has been given to hazardous exposure to endocrine disrupting chemicals (EDCs) and microbial toxins as major components of the malnutrition-causal framework. These hazards include microbial toxins, for example, mycotoxins, and environmental pollutants such as persistent organic pollutants (POPs), some of which are known to disrupt the endocrine system. These hazards sit at the cross road of undernutrition and overweight and obesity since the exposure cuts across the critical window of opportunity (the first 1000 days). In this review, we update on the role of food and environmental contaminants, especially EDCs and aflatoxins, in child growth and on the implications for metabolic dysfunction and disease risk in later life, and discuss potential applications of nuclear and isotopic techniques to elucidate the underlying biological mechanisms, outcome indicators, as well as occurrence levels.
Collapse
Affiliation(s)
- Victor O Owino
- Nutrition and Health Related Environmental Studies Section, Division of Health, International Atomic Energy Agency, Vienna International Centre P.O. Box 100, A-1400 Vienna, Austria.
| | - Carolin Cornelius
- Nutrition and Health Related Environmental Studies Section, Division of Health, International Atomic Energy Agency, Vienna International Centre P.O. Box 100, A-1400 Vienna, Austria.
| | - Cornelia U Loechl
- Nutrition and Health Related Environmental Studies Section, Division of Health, International Atomic Energy Agency, Vienna International Centre P.O. Box 100, A-1400 Vienna, Austria.
| |
Collapse
|
37
|
Boecker S, Grätz S, Kerwat D, Adam L, Schirmer D, Richter L, Schütze T, Petras D, Süssmuth RD, Meyer V. Aspergillus niger is a superior expression host for the production of bioactive fungal cyclodepsipeptides. Fungal Biol Biotechnol 2018; 5:4. [PMID: 29507740 PMCID: PMC5833056 DOI: 10.1186/s40694-018-0048-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Fungal cyclodepsipeptides (CDPs) are non-ribosomally synthesized peptides produced by a variety of filamentous fungi and are of interest to the pharmaceutical industry due to their anticancer, antimicrobial and anthelmintic bioactivities. However, both chemical synthesis and isolation of CDPs from their natural producers are limited due to high costs and comparatively low yields. These challenges might be overcome by heterologous expression of the respective CDP-synthesizing genes in a suitable fungal host. The well-established industrial fungus Aspergillus niger was recently genetically reprogrammed to overproduce the cyclodepsipeptide enniatin B in g/L scale, suggesting that it can generally serve as a high production strain for natural products such as CDPs. In this study, we thus aimed to determine whether other CDPs such as beauvericin and bassianolide can be produced with high titres in A. niger, and whether the generated expression strains can be used to synthesize new-to-nature CDP derivatives. Results The beauvericin and bassianolide synthetases were expressed under control of the tuneable Tet-on promoter, and titres of about 350–600 mg/L for bassianolide and beauvericin were achieved when using optimized feeding conditions, respectively. These are the highest concentrations ever reported for both compounds, whether isolated from natural or heterologous expression systems. We also show that the newly established Tet-on based expression strains can be used to produce new-to-nature beauvericin derivatives by precursor directed biosynthesis, including the compounds 12-hydroxyvalerate-beauvericin and bromo-beauvericin. By feeding deuterated variants of one of the necessary precursors (d-hydroxyisovalerate), we were able to purify deuterated analogues of beauvericin and bassianolide from the respective A. niger expression strains. These deuterated compounds could potentially be used as internal standards in stable isotope dilution analyses to evaluate and quantify fungal spoilage of food and feed products. Conclusion In this study, we show that the product portfolio of A. niger can be expanded from enniatin to other CDPs such as beauvericin and bassianolide, as well as derivatives thereof. This illustrates the capability of A. niger to produce a range of different peptide natural products in titres high enough to become industrially relevant. Electronic supplementary material The online version of this article (10.1186/s40694-018-0048-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Boecker
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.,2Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Stefan Grätz
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Dennis Kerwat
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Lutz Adam
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - David Schirmer
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Lennart Richter
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Tabea Schütze
- 2Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Daniel Petras
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich D Süssmuth
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Vera Meyer
- 2Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
38
|
Schalk K, Koehler P, Scherf KA. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins. PLoS One 2018; 13:e0192804. [PMID: 29425234 PMCID: PMC5806900 DOI: 10.1371/journal.pone.0192804] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods.
Collapse
Affiliation(s)
- Kathrin Schalk
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Peter Koehler
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Katharina Anne Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- * E-mail:
| |
Collapse
|
39
|
Zhang L, Dou XW, Zhang C, Logrieco AF, Yang MH. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins (Basel) 2018; 10:E65. [PMID: 29393905 PMCID: PMC5848166 DOI: 10.3390/toxins10020065] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiao-Wen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Antonio F Logrieco
- National Research Council of Italy, CNR-ISPA, Via G. Amendola, 122/O, I-70126 Bari, Italy.
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
40
|
Malachová A, Stránská M, Václavíková M, Elliott CT, Black C, Meneely J, Hajšlová J, Ezekiel CN, Schuhmacher R, Krska R. Advanced LC-MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal Bioanal Chem 2018; 410:801-825. [PMID: 29273904 PMCID: PMC5775372 DOI: 10.1007/s00216-017-0750-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
Liquid chromatography (LC) coupled with mass spectrometry (MS) is widely used for the determination of mycotoxins in cereals and cereal-based products. In addition to the regulated mycotoxins, for which official control is required, LC-MS is often used for the screening of a large range of mycotoxins and/or for the identification and characterization of novel metabolites. This review provides insight into the LC-MS methods used for the determination of co-occurring mycotoxins with special emphasis on multiple-analyte applications. The first part of the review is focused on targeted LC-MS approaches using cleanup methods such as solid-phase extraction and immunoaffinity chromatography, as well as on methods based on minimum cleanup (quick, easy, cheap, effective, rugged, and safe; QuEChERS) and dilute and shoot. The second part of the review deals with the untargeted determination of mycotoxins by LC coupled with high-resolution MS, which includes also metabolomics techniques to study the fate of mycotoxins in plants.
Collapse
Affiliation(s)
- Alexandra Malachová
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Milena Stránská
- Department of Food Analysis & Nutrition, Faculty of Food & Biochemical Technology, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Marta Václavíková
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Connor Black
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Jana Hajšlová
- Department of Food Analysis & Nutrition, Faculty of Food & Biochemical Technology, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, 121103, Nigeria
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria.
| |
Collapse
|
41
|
Rychlik M, Kanawati B, Schmitt-Kopplin P. Foodomics as a promising tool to investigate the mycobolome. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Zhang K, Schaab MR, Southwood G, Tor ER, Aston LS, Song W, Eitzer B, Majumdar S, Lapainis T, Mai H, Tran K, El-Demerdash A, Vega V, Cai Y, Wong JW, Krynitsky AJ, Begley TH. A Collaborative Study: Determination of Mycotoxins in Corn, Peanut Butter, and Wheat Flour Using Stable Isotope Dilution Assay (SIDA) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7138-7152. [PMID: 27983809 DOI: 10.1021/acs.jafc.6b04872] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A collaborative study was conducted to evaluate stable isotope dilution assay (SIDA) and LC-MS/MS for the simultaneous determination of aflatoxins B1, B2, G1, and G2; deoxynivalenol; fumonisins B1, B2, and B3; ochratoxin A; HT-2 toxin; T-2 toxin; and zearalenone in foods. Samples were fortified with 12 13C uniformly labeled mycotoxins (13C-IS) corresponding to the native mycotoxins and extracted with acetonitrile/water (50:50 v/v), followed by centrifugation, filtration, and LC-MS/MS analysis. In addition to certified reference materials, the six participating laboratories analyzed corn, peanut butter, and wheat flour fortified with the 12 mycotoxins at concentrations ranging from 1.0 to 1000 ng/g. Using their available LC-MS/MS platform, each laboratory developed in-house instrumental conditions for analysis. The majority of recoveries ranged from 80 to 120% with relative standard derivations (RSDs) <20%. Greater than 90% of the average recoveries of the participating laboratories were in the range of 90-110%, with repeatability RSDr (within laboratory) < 10% and reproducibility RSDR (among laboratory) < 15%. All Z scores of the results of certified reference materials were between -2 and 2. Using 13C-IS eliminated the need for matrix-matched calibration standards for quantitation, simplified sample preparation, and achieved simultaneous identification and quantitation of multiple mycotoxins in a simple LC-MS/MS procedure.
Collapse
Affiliation(s)
- Kai Zhang
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration , 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Matthew R Schaab
- Arizona Department of Health Services , 250 North 17th Avenue, Phoenix, Arizona 85007, United States
| | - Gavin Southwood
- Arizona Department of Health Services , 250 North 17th Avenue, Phoenix, Arizona 85007, United States
| | - Elizabeth R Tor
- California Animal Health and Food Safety Laboratory System, Toxicology Laboratory, Univerisity of California-Davis , West Health Sciences Drive, Davis, California 95616, United States
| | - Linda S Aston
- California Animal Health and Food Safety Laboratory System, Toxicology Laboratory, Univerisity of California-Davis , West Health Sciences Drive, Davis, California 95616, United States
| | - Wenlu Song
- Food & Drug Laboratory Branch, California Department of Public Health , 850 Marina Bay Parkway, G365, Richmond, California 94804, United States
| | - Brian Eitzer
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station , 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - Sanghamitra Majumdar
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station , 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - Theodore Lapainis
- Pacific Regional Laboratory Northwest, U.S. Food and Drug Administration 22201 23rd Drive S.E., Bothell, Washington 98021, United States
| | - Huy Mai
- Kansas City Laboratory, U.S. Food and Drug Administration , 11510 West 80th Street, Lenexa, Kansas 66214, United States
| | - Kevin Tran
- Kansas City Laboratory, U.S. Food and Drug Administration , 11510 West 80th Street, Lenexa, Kansas 66214, United States
| | - Aref El-Demerdash
- Kansas City Laboratory, U.S. Food and Drug Administration , 11510 West 80th Street, Lenexa, Kansas 66214, United States
| | - Victor Vega
- Southeast Regional Laboratory, U.S. Food and Drug Administration , 60 8th Street, Atlanta, Georgia 30309, United States
| | - Yanxuan Cai
- Office of Regulatory Affairs, U.S. Food and Drug Administration , 12420 Parklawn Drive Element Building, Rockville, Maryland 20857, United States
| | - Jon W Wong
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration , 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Alexandra J Krynitsky
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration , 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Timothy H Begley
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration , 5001 Campus Drive, College Park, Maryland 20740, United States
| |
Collapse
|
43
|
Limay-Rios V, Miller JD, Schaafsma AW. Occurrence of Penicillium verrucosum, ochratoxin A, ochratoxin B and citrinin in on-farm stored winter wheat from the Canadian Great Lakes Region. PLoS One 2017; 12:e0181239. [PMID: 28749978 PMCID: PMC5531454 DOI: 10.1371/journal.pone.0181239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/28/2017] [Indexed: 11/24/2022] Open
Abstract
The occurrence of P. verrucosum and ochratoxin A (OTA) were surveyed for 3 and 4 years, respectively. A total of 250 samples was collected from an average of 30 farms during the 2011, 2012, 2013 and 2014 winter seasons. Most storage bins surveyed were typically 11 m high round bins made of corrugated, galvanized steel, with flat-bottoms and conical roofs. Samples of clumped grain contained the most P. verrucosum (p<0.05, n = 10) followed by samples taken from the first load (n = 24, mean = 147±87 CFU/g) and last load (n = 17, mean = 101±77 CFU/g). Five grain samples (2.2%) tested positive for OTA, citrinin and OTB at concentrations of 14.7±7.9, 4.9±1.9 and 1.2±0.7 ng/g, with only three samples exceeding 5 ng/g. Grain samples positive for OTA were related to moisture resulting from either condensation or migrating moist warm air in the bin or areas where precipitation including snow entered the bin. Bins containing grain and clumps contaminated with OTA were studied in detail. A number of statistically-significant risk factors for OTA contamination were identified. These included 1) grain clumps accumulated around or directly under manhole openings, 2) debris and residue of old grain or grain clumps collected from the bin walls or left on storage floor and augers and 3) grain clumps accumulated around side doors. Even when grain enters storage below the 14.5% threshold of moisture, condensation and moisture migration occurs in hotspots in modern corrugated steel storage bins. Hot spots of OTA contamination were most often in areas affected by moisture migration due to inadequate aeration and exposure to moisture from precipitation or condensation. Further, we found that the nature of the condensation affects the nature and distribution of small and isolated areas with high incidence of toxin contamination and/or P. verrucosum prevalence in the grain bins examined.
Collapse
Affiliation(s)
- Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, Ontario, Canada
| | - J. David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Arthur W. Schaafsma
- Department of Plant Agriculture, University of Guelph, Ridgetown, Ontario, Canada
| |
Collapse
|
44
|
Li X, Li H, Li X, Zhang Q. Determination of trace patulin in apple-based food matrices. Food Chem 2017; 233:290-301. [PMID: 28530578 DOI: 10.1016/j.foodchem.2017.04.117] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Patulin is a toxic metabolite of a number of fungi; its toxicity is serious and its contamination in food is a worldwide problem, especially in apple-based food. Effective control of patulin contamination strongly depends on reliable analytical methods. In this review, various analytical methods, especially those that have appeared in the last ten years, are summarized, including the highly reproducible chromatography and mass-spectrometry-based methods, highly selective sensor-based methods and indirect quantitative PCR methods. This review also summarizes the promising features of novel materials in sample preparation for patulin determination.
Collapse
Affiliation(s)
- Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Hongmei Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Xiaomin Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Qinghe Zhang
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
45
|
Schalk K, Lang C, Wieser H, Koehler P, Scherf KA. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Sci Rep 2017; 7:45092. [PMID: 28327674 PMCID: PMC5361186 DOI: 10.1038/srep45092] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/17/2017] [Indexed: 12/30/2022] Open
Abstract
Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91–603 μg/g flour. In contrast, the 33-mer was absent (<limit of detection) from tetra- and diploid species (durum wheat, emmer, einkorn), most likely because of the absence of the D-genome, which encodes α2-gliadins. Due to the presence of the 33-mer in all common wheat and spelt flours analysed here, the special focus in the literature on this most immunodominant peptide seems to be justified.
Collapse
Affiliation(s)
- Kathrin Schalk
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Christina Lang
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Katharina Anne Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
46
|
Hashizume K, Ito T, Igarashi S. Quantitation using a stable isotope dilution assay (SIDA) and thresholds of taste-active pyroglutamyl decapeptide ethyl esters (PGDPEs) in sake. Biosci Biotechnol Biochem 2017; 81:426-430. [DOI: 10.1080/09168451.2016.1259554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
A stable isotope dilution assay (SIDA) for two taste-active pyroglutamyl decapeptide ethyl esters (PGDPE1; (pGlu)LFGPNVNPWCOOC2H5, PGDPE2; (pGlu)LFNPSTNPWCOOC2H5) in sake was developed using deuterated isotopes and high-resolution mass spectrometry. Recognition thresholds of PGDPEs in sake were estimated as 3.8 μg/L for PGDPE1 and 8.1 μg/L for PGDPE2, evaluated using 11 student panelists aged in their twenties. Quantitated concentrations in 18 commercial sake samples ranged from 0 to 27 μg/L for PGDPE1 and from 0 to 202 μg/L for PGDPE2. The maximum levels of PGDPE1 and PGDPE2 in the sake samples were approximately 8 and 25 times higher than the estimated recognition thresholds, respectively. The results indicated that PGDPEs may play significant sensory roles in the sake. The level of PGDPEs in unpasteurized sake samples decreased during storage for 50 days at 6 °C, suggesting PGDPEs may be enzymatically decomposed.
Collapse
Affiliation(s)
- Katsumi Hashizume
- Department of Biological Resource Sciences, Akita Prefectural University, Akita, Japan
| | - Toshiko Ito
- Department of Biological Resource Sciences, Akita Prefectural University, Akita, Japan
| | - Shinya Igarashi
- Department of Biological Resource Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
47
|
Andrade PD, Dantas RR, Moura-Alves TLDSD, Caldas ED. Determination of multi-mycotoxins in cereals and of total fumonisins in maize products using isotope labeled internal standard and liquid chromatography/tandem mass spectrometry with positive ionization. J Chromatogr A 2017; 1490:138-147. [DOI: 10.1016/j.chroma.2017.02.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
48
|
Detection and quantitation of mycotoxins in infant cereals in the U.S. market by LC-MS/MS using a stable isotope dilution assay. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Righetti L, Paglia G, Galaverna G, Dall'Asta C. Recent Advances and Future Challenges in Modified Mycotoxin Analysis: Why HRMS Has Become a Key Instrument in Food Contaminant Research. Toxins (Basel) 2016; 8:E361. [PMID: 27918432 PMCID: PMC5198555 DOI: 10.3390/toxins8120361] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 01/24/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi in crops worldwide. These compounds can undergo modification in plants, leading to the formation of a large number of possible modified forms, whose toxicological relevance and occurrence in food and feed is still largely unexplored. The analysis of modified mycotoxins by liquid chromatography-mass spectrometry remains a challenge because of their chemical diversity, the large number of isomeric forms, and the lack of analytical standards. Here, the potential benefits of high-resolution and ion mobility mass spectrometry as a tool for separation and structure confirmation of modified mycotoxins have been investigated/reviewed.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| | - Giuseppe Paglia
- Center of Biomedicine, European Academy of Bolzano/Bozen, Via Galvani 31, Bolzano 39100, Italy.
| | - Gianni Galaverna
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| | - Chiara Dall'Asta
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| |
Collapse
|
50
|
|