1
|
Wang Y, Song Y, Zhang D, Xing C, Liang J, Wang C, Yang X, Liu Z, Zhao Z. Effects of nitrogen-driven eutrophication on the horizontal transfer of extracellular antibiotic resistance genes in water-sediment environments. ENVIRONMENTAL RESEARCH 2025; 274:121317. [PMID: 40057108 DOI: 10.1016/j.envres.2025.121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 05/04/2025]
Abstract
Excessive nitrogen and other nutrients can trigger the eutrophication of freshwater bodies. Antibiotic resistance genes (ARGs) are now recognized as environmental pollutants, with extracellular ARGs (eARGs) being the dominant form in sediments. However, research on the propagation characteristics of eARGs remains limited. This study investigated the transfer characteristics of kanamycin resistance (KR) genes in the pEASY-T1 plasmid to intracellular DNA (iDNA) and extracellular DNA (eDNA) in water and sediment microenvironments under increasing nitrogen concentrations, as well as the community structure of free-living (FL) and particle-attached (PA) bacteria. The results revealed KR genes relative abundance in free extracellular DNA (f-eDNA) and adsorbed extracellular DNA (a-eDNA) of the water initially decreased and then increased with rising nitrogen concentrations. Its abundance in iDNA of the sediments decreased significantly with increasing nitrogen content, with relative abundance ranging from 5.09 × 10-4 to 1.14 × 10-3 copies/16SrRNA. The transfer from eDNA to iDNA in the water showed a rising and then falling trend as nitrogen concentration rose. The transfer of iDNA from the water to iDNA in sediments exhibited the opposite pattern. Additionally, copper (Cu) and zinc (Zn) were identified as key factors influencing the abundance of KR genes in the water, but total phosphorus (TP) was the primary determinant of KR gene distribution in sediments according to random forest analysis. These findings reveal novel mechanisms of eARG propagation in eutrophic environments, providing a theoretical foundation for managing antibiotic resistance in aquatic ecosystems.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Chao Xing
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xiaobin Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zikuo Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
2
|
Dong W, Liu Y, Lin M, Zhang J, Lin D. pH-gated activation of nematodes-secreted NUC-1 accelerates extracellular antibiotic resistance gene degradation in aquatic environments. WATER RESEARCH 2025; 283:123788. [PMID: 40349596 DOI: 10.1016/j.watres.2025.123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The global dissemination of extracellular antibiotic resistance genes (eARGs) in environmental matrices necessitates urgent development of mitigation approaches. Although nematodes exhibit potential as biological agents for eARG degradation, significant research gaps exist in understanding their performance under diverse environmental conditions and strategies for enhancing degradation efficiency through systematic parameter optimization. Here, we systematically evaluated the degradation of plasmid-borne tetM by Caenorhabditis elegans across eight high nematodes-prevalent habitats, revealing a remarkable 38-fold variation in efficacy. Solution pH was identified as the pivotal regulatory parameter through controlled experiments. Acidification to pH 6 enhanced nematodes-mediated eARG degradation by 25-fold, effectively reducing the transformation efficiency below the detectable limit within 15 min. Through multidisciplinary analyses incorporating gene mutation analysis, mRNA quantification, capillary electrophoresis, and zymographic analysis, we demonstrate that environmental pH specifically modulates NUC-1 activity rather than expression. Structural modeling and pKa calculation reveal this pH-dependent regulation operates through protonation state change in the NUC-1 catalytic center, achieving maximal enzymatic activity at pH 6. Remarkably, this pH-gated regulatory mechanism is conserved across five nematode species spanning two distinct families, highlighting its broad biological significance and biotechnological potential. Our study establishes the first comprehensive environmental assessment framework for nematodes-mediated eARG degradation and elucidates a pH-gated regulation mechanism at the molecular level, providing a novel foundation for developing biotechnologies to control AR dissemination with spatiotemporal accuracy.
Collapse
Affiliation(s)
- Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manxi Lin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Sousa M, Machado I, Simões LC, Simões M. Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100557. [PMID: 40230384 PMCID: PMC11995807 DOI: 10.1016/j.ese.2025.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Idalina Machado
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga, Guimarães, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| |
Collapse
|
4
|
Zöhrer J, Ascher‐Jenull J, Wagner AO. Tracking Different States of Spiked Environmental DNA Using Multiplex Digital PCR Assays. Environ Microbiol 2025; 27:e70086. [PMID: 40151898 PMCID: PMC11950903 DOI: 10.1111/1462-2920.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
The study of microbial communities based on the total environmental DNA (eDNA) is influenced by the presence of different eDNA states, i.e., intracellular (iDNA) and extracellular DNA (exDNA), and the choice of the DNA extraction method. Although the use of spike-and-recovery controls facilitates the diagnosis of such issues, appropriate experimental setups simultaneously accounting for the different eDNA states and their bacterial origins are missing. Here, we used two single-gene deletion mutants of both Escherichia coli and Bacillus subtilis to trace exDNA and iDNA spike-ins of each selected model organism within environmental samples. Unique primer/probe sets were developed for each strain, allowing their absolute quantification using multiplex digital PCR assays. The proposed spike-and-recovery controls were successfully applied to various environments including soil, sediment, sludge and compost. While the percent recovery of spiked iDNA differed significantly between E. coli and B. subtilis, results were similar for both model organisms in the case of spiked exDNA, emphasising that the fate of DNA molecules in the environment is similar irrespective of their bacterial origin. Hence, future studies may benefit from the proposed approach to better understand methodological ambiguities related to the eDNA extraction in general as well as the separation of the different eDNA states.
Collapse
Affiliation(s)
- Julia Zöhrer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Judith Ascher‐Jenull
- Department of Experimental Architecture, Integrative Design ExtremesUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
5
|
Kakahi FB, Martinez JA, Avitia FM, Volke DC, Wirth NT, Nikel PI, Delvigne F. Release of extracellular DNA by Pseudomonas sp. as a major determinant for biofilm switching and an early indicator for cell population control. iScience 2025; 28:112063. [PMID: 40124492 PMCID: PMC11928846 DOI: 10.1016/j.isci.2025.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/28/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
In Pseudomonas sp., the switch from planktonic to sessile state is driven by extracellular DNA release. We observed a subpopulation of cells associated with eDNA in the planktonic phase, as indicated by propidium iodide staining. Surprisingly, the size of this subpopulation was directly correlated with the overall biofilm-forming capacity of the population. This challenges the prevailing understanding of phenotypic switching and confirms that biofilm formation in Pseudomonas is a collective process governed by eDNA release. Automated flow cytometry tracked the process, and PI-positive cells were identified as an early indicator of biofilm formation. Automated glucose pulsing successfully reduced biofilm formation by interfering with PI-positive cell proliferation. This study provides insights into the collective determinants of biofilm switching in Pseudomonas putida and introduces a potential strategy for controlling biofilm formation.
Collapse
Affiliation(s)
- Fatemeh Bajoul Kakahi
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Juan Andres Martinez
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Fabian Moreno Avitia
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Frank Delvigne
- Terra Research and Teaching Centre, Micro Bial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
6
|
Xue Z, He H, Han Y, Tian W, Li S, Guo J, Yu P, Qiao L, Zhang W. Relic DNA obscures bacterial diversity and interactions in ballast tank sediment. ENVIRONMENTAL RESEARCH 2025; 267:120715. [PMID: 39733986 DOI: 10.1016/j.envres.2024.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024]
Abstract
The dark and anoxic environment of ballast tank sediment (BTS) harbors substantial amounts of relic DNA, yet its impact on microbial diversity estimates in BTS management remains poorly understood. This study employed propidium monoazide (PMA) treatment to eliminate relic DNA and used 16S amplicon high-throughput sequencing to characterize both total and viable bacteria. Our findings revealed that relic DNA is abundant in BTS. When removed, it led to variable reductions in species richness, which fluctuated from a 3.15% increase to a 37.52% decrease. Additionally, 6.27%-15.79% of OTUs were absent in the PMA-treated samples. These findings indicate that relic DNA has diverse effects on microbial diversity estimates. Moreover, relic DNA removal altered the relative abundances of a wide range of taxa, thereby facilitating the detection of rare taxa. Furthermore, the absence of relic DNA resulted in an overestimation of co-occurrence network size, complexity, and competitiveness, which could lead to misinterpretations of community assembly processes. In conclusion, our findings indicate that relic DNA obscures microbial diversity estimates and risk assessments in BTS, highlighting the critical need for monitoring viable bacteria in ballast sediment management.
Collapse
Affiliation(s)
- Zhaozhao Xue
- Marine College, Shandong University, Weihai, China
| | - Haoze He
- Marine College, Shandong University, Weihai, China
| | - Yangchun Han
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Wen Tian
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Shengjie Li
- COSCO SHIPPING Heavy Industry Technology (Weihai) Co., Ltd, Weihai, China
| | - Jingfeng Guo
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Pei Yu
- Marine College, Shandong University, Weihai, China
| | - Lina Qiao
- Marine College, Shandong University, Weihai, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, China.
| |
Collapse
|
7
|
He L, Zhang M, Li J, Duan Q, Zhang D, Pan X. Aquaculture oxidant (ClO 2) or antibiotic disinfection induces unique bimodal aggregation and boosts exDNA sedimentation: A disinfection-driven great spatial shift of antibiotic resistance risk. WATER RESEARCH 2025; 270:122820. [PMID: 39612813 DOI: 10.1016/j.watres.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
ClO2 has been ever-increasingly used as an alternative disinfectant to alleviate antibiotic resistance risk in aquaculture. However, the feasibility of ClO2 disinfection in reducing antibiotic resistance has not been clarified yet. We comparatively explored the aggregation mechanisms and their effect on extracellular DNA (exDNA) partition and settlement in disinfected aquaculture waters and natural waters. In contrast to the unimodal aggregation in natural non-aquaculture waters, a unique bimodal size distribution pattern of micron-sized aggregates was found in aquaculture waters regardless of the disinfectants (macro-aggregates - 200-700 μm in diameter and micro-aggregates - 2-200 μm in diameter). The bimodal aggregates had 2-4 orders of magnitude higher content of Ferron cations and enriched hundred-fold exDNA in aquaculture waters than in natural waters. ExDNA was adsorbed on the surface of aggregates and conglutinated mainly by carbohydrates and coagulative cations. Macro-aggregates had lower fractal dimension but greater sedimentation velocities compared with micro-aggregates. Polylithionite was the key ballast mineral facilitating fast sedimentation of aggregates in aquaculture waters. Loading more antibiotic resistance genes and mobile gene elements, the aquaculture aggregates sank more rapidly from water to sediments than the natural-water aggregates. It indicates that disinfection with ClO2 or antibiotics facilitated the spatial transfer of antibiotic resistance risk with high horizontal transfer potential from water column to sediment through forming bimodal aggregates. These findings imply that the adoption of antibiotic alternatives such as the oxidant of ClO2 is far from sufficient to alleviate antibiotic resistance in aquaculture.
Collapse
Affiliation(s)
- Lizhi He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingdong Duan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
8
|
Nugrahani NA, Nurilyana MM, Faizal IA, Kholifa M, Hafizi I. Efficacy of avocado seed extract in preventing, inhibiting, and eliminating Prevotella intermedia biofilms: An in vitro study. Vet World 2025; 18:408-418. [PMID: 40182820 PMCID: PMC11963592 DOI: 10.14202/vetworld.2025.408-418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/16/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim Prevotella intermedia is a significant contributor to periodontitis, capable of forming biofilms that resist antibiotics and complicate treatment. Avocado seeds (Persea americana Mill.) are rich in bioactive compounds, including flavonoids, tannins, saponins, and alkaloids, which exhibit potential antibiofilm activity. This study aims to evaluate the efficacy of avocado seed ethanol extract in preventing biofilm attachment, inhibiting biofilm formation, and eradicating established biofilms of P. intermedia in vitro. Materials and Methods A post-test-only control group design was employed using P. intermedia (ATCC 25611). Ten groups were included: Bacterial and negative controls, a positive control (chlorhexidine), and experimental groups with ethanol extract concentrations (3.25%-9.25%). Biofilm activity was assessed using 96-well microtiter plates, crystal violet staining, and optical density measurements at 595 nm to determine the minimum biofilm prevention (MBPC), inhibition (MBIC), and eradication concentrations (MBEC). Statistical analysis was conducted using one-way ANOVA and Bonferroni post hoc tests. Results Biofilm assays showed a dose-dependent increase in antibiofilm efficacy. The highest attachment prevention (82.67%), biofilm formation inhibition (84.26%), and biofilm eradication (86.04%) were observed at 9.25%. Significant differences (p < 0.05) were found between the extract and negative control groups, with no significant differences (p > 0.05) between the 8.25%-9.25% extracts and chlorhexidine. The MBPC50, MBIC50, and MBEC50 were identified at a concentration of 6.25%, achieving >50% efficacy in biofilm prevention, inhibition, and eradication. Conclusion Avocado seed ethanol extract demonstrated significant antibiofilm properties against P. intermedia, comparable to chlorhexidine at higher concentrations. The bioactive compounds - flavonoids, tannins, saponins, and alkaloids - likely contributed to these effects through mechanisms such as quorum sensing inhibition, disruption of bacterial adhesion, and destabilization of biofilm structures. These findings highlight avocado seed extract as a promising natural alternative for managing periodontitis-related biofilm infections.
Collapse
Affiliation(s)
- Nur Ariska Nugrahani
- Department of Oral Biology, Faculty of Dentistry, Muhammadiyah University of Surakarta, 57141, Surakarta, Indonesia
| | - Maulita Misi Nurilyana
- Department of Oral Biology, Faculty of Dentistry, Muhammadiyah University of Surakarta, 57141, Surakarta, Indonesia
| | - Imam Agus Faizal
- Department of Applied Bachelor's Degree of Medical Laboratory Technology, Faculty of Pharmacy, Science, and Technology, Al-Irsyad University of Cilacap, 53223, Cilacap, Indonesia
| | - Mahmud Kholifa
- Department of Oral Biology, Faculty of Dentistry, Muhammadiyah University of Surakarta, 57141, Surakarta, Indonesia
| | - Ikmal Hafizi
- Department of Orthodontics Dentistry, Faculty of Dentistry, Muhammadiyah University of Surakarta, 57141, Surakarta, Indonesia
| |
Collapse
|
9
|
Fauziah T, Esyanti RR, Meitha K, Iriawati, Hermawaty D, Intan Febrina Wijayanti GA. Cell cycle arrest via DNA Damage Response (DDR) pathway induced by extracellular self-DNA (esDNA) application in rice root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109370. [PMID: 39647227 DOI: 10.1016/j.plaphy.2024.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Conspecific plant growth is inhibited by extracellular fragments in a concentration-dependent manner. Although several reports have addressed this self-DNA inhibition, the underlying mechanism remains unclear. In this investigation, we evaluated the progression of cell cycle of rice roots in responding to extracellular-self DNA (esDNA). We analyzed root growth, hydrogen peroxide (H2O2) production, Catalase (CAT) and Ascorbate Peroxidase (APX) enzyme activities, DNA Damage Response (DDR)-related gene expression, and cell cycle progression. Our results suggest that esDNA-induced root growth inhibition on days 7 and 10 and might associated with cell cycle arrest initiated several hours after esDNA treatment. The esDNA-induced cell cycle arrest is facilitated through the DDR pathway, activated by DNA damage resulting from elevated reactive oxygen species (ROS) induced by esDNA. Specifically, esDNA upregulates DDR-related gene expression including OsATM (Oryza sativa ataxia telangiectasia mutated), OsATR (Oryza sativa ATM and Rad3-related), OsSOG1 (Oryza sativa SUPPRESSOR OF GAMMA RESPONSE 1), OsWEE1 (Oryza sativa WEE1-like kinase 1), and OsSMR4 (Oryza sativa SIAMESE-RELATED 4), leading to cell cycle arrest. Finally, we propose that cell cycle arrest might be a plausible explanation for the phenomenon of root growth inhibition by esDNA. This result highlights the significance of DDR signaling in the plant's response to esDNA. This finding will be helpful as initial information for developing green herbicides to control monocot weeds in agriculture.
Collapse
Affiliation(s)
- Tessa Fauziah
- Doctoral Program of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia; Department of Agriculture, University of Singaperbangsa Karawang, Jl. HS.Ronggo Waluyo, Karawang, 41361, West Java, Indonesia.
| | - Rizkita Rachmi Esyanti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia.
| | - Karlia Meitha
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia.
| | - Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia.
| | - Dina Hermawaty
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia; Department of Biotechnology, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat No.Kav. 88, East Jakarta, 13210, Jakarta, Indonesia.
| | | |
Collapse
|
10
|
Hu R, Chen X, Han Y, Li W, Zhang S, Liu Z, Wang J, Lu X, Luo G, Zhang S, Zhen G. KOH-modified biochar enhances nitrogen metabolism of the chloroquine phosphate-disturbed anammox: Physical binding, EPS modulation and versatile metabolic hierarchy. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136467. [PMID: 39579692 DOI: 10.1016/j.jhazmat.2024.136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Chloroquine phosphate (CQ) poses strong biotoxicity on anammox process, and thus detoxifying is essential for the stable operation of anammox in treating CQ-bearing wastewater. Biochar has been proven to simultaneously detoxify pollutant and modulate nitrogen cycle in anammox by its shelter effect and electron exchange capacity (EEC) ability. To further improve the ability of biochar to promote the nitrogen metabolism of anammox, a KOH modification strategy was used to tailor a high-EEC biochar in this work. KOH modified biochar can bind CQ for detoxification driven by hydrogen bond, π-π interaction, and electrostatic interaction. Meanwhile, the EEC of modified biochar increased by 70 % than that of pristine biochar, thus improving nitrogen removal efficiency by 55.6 % and 9.5 % than CQ and BC group, respectively. Besides, the microorganism regulated by modified biochar produced more α-helix configuration, improving EPS barrier ability to CQ and sludge granulation. Lastly, metagenomic analysis revealed that modified biochar can stimulate the Wood-Ljungdahl pathway, increased the relative abundance of CODH from 0.74 % in CQ to 1.00 % in modified BC group. It favored the proliferation of autotrophic microorganisms, especially increased the relative abundance of anammox bacteria by 86.8 % than CQ group. This work will shed the light on integrating high-EEC biochar into anammox to cope with the micropollutants stress.
Collapse
Affiliation(s)
- Rui Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Shuting Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jiandong Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
11
|
Galazka S, Vigl V, Kuffner M, Dielacher I, Spettel K, Kriz R, Kreuzinger N, Vierheilig J, Woegerbauer M. Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria. Foods 2024; 14:11. [PMID: 39796301 PMCID: PMC11720611 DOI: 10.3390/foods14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE ISPps and the class 1 integron-integrase gene intI1 were detected by probe-based qPCR in concentrations up to 104 copies/mL in all smoothies, lettuce, carrots and a single tomato sample. The highest total (2.2 × 105 copies/mL) and the most diverse ARG and MGE loads (16/26 targets) were observed in freshly prepared and the lowest prevalences (5/26) and concentrations (4.1 × 103 copies/mL) in high-pressure-processed (HPP) smoothies. BlaCTX-M-1-15 (1.2 × 105 c/mL) and strB (6.3 × 104 c/mL) were the most abundant, and qacEΔ1 (95%), blaTEM1 (85%), ermB and sul1 (75%, each) were the most prevalent ARGs. QnrS, vanA, sat-4, blaKPC, blaNDM-1 and blaOXA-10 were never detected. HPP treatment reduced the microbial loads by ca. 5 logs, also destroying extracellular DNA potentially encoding ARGs that could otherwise be transferred by bacterial transformation. The bacterial microbiome, potential pathogens, bacterial ARG carriers and competent bacteria able to take up ARGs were identified by Illumina 16S rRNA gene sequencing. To reduce the risk of AMR spread from smoothies, our data endorse the application of DNA-disintegrating processing techniques such as HPP.
Collapse
Affiliation(s)
- Sonia Galazka
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Valerie Vigl
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
| | - Melanie Kuffner
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
| | - Irina Dielacher
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, 1100 Vienna, Austria
| | - Richard Kriz
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, 1100 Vienna, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Julia Vierheilig
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
- Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Markus Woegerbauer
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
| |
Collapse
|
12
|
Xue Z, Tian W, Han Y, Li S, Guo J, He H, Yu P, Zhang W. Environmental RNA metabarcoding for ballast water microbial diversity: Minimizing false positives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176902. [PMID: 39401587 DOI: 10.1016/j.scitotenv.2024.176902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
While maritime transport boosts global trade by shipping bulk goods, it raises concerns about the spread of harmful bacteria via ballast water. Moreover, the dark and cold environments of ballast tanks often harbor extracellular DNA from dead organisms, leading to false positives in traditional environmental DNA (eDNA) metabarcoding analyses. Here, we alternatively employed environmental RNA (eRNA) metabarcoding to assess its potential for reducing false positive in ballast water monitoring. We collected eDNA and eRNA in parallel from ballast water before and after disinfection in three vessels. High-throughput sequencing of the 16S rRNA V4-V5 regions and cDNA counterparts was conducted to compare bacterial community composition. Our findings showed that over 80 % of the top 150 abundant amplicon sequence variants (ASVs) were detected by both eRNA and eDNA metabarcoding. Samples sequenced separately using DNA and RNA consistently clustered together, indicating similar community recovery efficacy. However, 42 % of ASVs were detected exclusively in DNA, resulting in significantly higher bacterial diversity compared to RNA, which suggests false positives in the DNA method. In treated samples with higher dead cell counts, the RNA method showed significantly lower bacterial diversity, indicating its effectiveness in detecting live bacteria. In summary, eRNA metabarcoding offers comparable recovery efficiency while maintaining a lower false-positive rate than eDNA metabarcoding.
Collapse
Affiliation(s)
- Zhaozhao Xue
- Marine College, Shandong University, Weihai, China
| | - Wen Tian
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Yangchun Han
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Shengjie Li
- COSCO SHIPPING Heavy Industry Technology (Weihai) Co., Ltd, Weihai, China
| | - Jingfeng Guo
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Haoze He
- Marine College, Shandong University, Weihai, China
| | - Pei Yu
- Marine College, Shandong University, Weihai, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, China.
| |
Collapse
|
13
|
Wu W, Hsieh CH, Logares R, Lennon JT, Liu H. Ecological processes shaping highly connected bacterial communities along strong environmental gradients. FEMS Microbiol Ecol 2024; 100:fiae146. [PMID: 39479791 DOI: 10.1093/femsec/fiae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
Along the river-sea continuum, microorganisms are directionally dispersed by water flow while being exposed to strong environmental gradients. To compare the two assembly mechanisms that may strongly and differently influence metacommunity dynamics, namely homogenizing dispersal and heterogeneous selection, we characterized the total (16S rRNA gene) and putatively active (16S rRNA transcript) bacterial communities in the Pearl River-South China Sea Continuum, during the wet (summer) and dry (winter) seasons using high-throughput sequencing. Moreover, well-defined sampling was conducted by including freshwater, oligohaline, mesohaline, polyhaline, and marine habitats. We found that heterogeneous selection exceeded homogenizing dispersal in both the total and active fractions of bacterial communities in two seasons. However, homogeneous selection was prevalent (the dominant except in active bacterial communities during summer), which was primarily due to the bacterial communities' tremendous diversity (associated with high rarity) and our specific sampling design. In either summer or winter seasons, homogeneous and heterogeneous selection showed higher relative importance in total and active communities, respectively, implying that the active bacteria were more responsive to environmental gradients than were the total bacteria. In summary, our findings provide insight into the assembly of bacterial communities in natural ecosystems with high spatial connectivity and environmental heterogeneity.
Collapse
Affiliation(s)
- Wenxue Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Chinese mainland
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, Chinese mainland
- School of Marine Science, Sun Yat-sen University, Zhuhai 519082, Chinese mainland
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan
| | - Ramiro Logares
- Institute of Marine Sciences, CSIC, Barcelona 08003, Spain
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, Chinese mainland
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong
| |
Collapse
|
14
|
Li Y, Li Y, Wang Y, Yang Y, Qi M, Su T, Li R, Liu D, Gao Y, Qi Y, Qiu L. Flg22-facilitated PGPR colonization in root tips and control of root rot. MOLECULAR PLANT PATHOLOGY 2024; 25:e70026. [PMID: 39497329 PMCID: PMC11534644 DOI: 10.1111/mpp.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Plant root border cells (RBCs) prevent the colonization of plant growth-promoting rhizobacteria (PGPR) at the root tip, rendering the PGPR unable to effectively control pathogens infecting the root tip. In this study, we engineered four strains of Pseudomonas sp. UW4, a typical PGPR strain, each carrying an enhanced green fluorescent protein (EGFP)-expressing plasmid. The UW4E strain harboured only the plasmid, whereas the UW4E-flg22 strain expressed a secreted EGFP-Flg22 fusion protein, the UW4E-Flg(flg22) strain expressed a non-secreted Flg22, and the UW4E-flg22-D strain expressed a secreted Flg22-DNase fusion protein. UW4E-flg22 and UW4E-flg22-D, which secreted Flg22, induced an immune response in wheat RBCs and colonized wheat root tips, whereas the other strains, which did not secrete Flg22, failed to elicit this response and did not colonize wheat root tips. The immune response revealed that wheat RBCs synthesized mucilage, extracellular DNA, and reactive oxygen species. Furthermore, the Flg22-secreting strains showed a 33.8%-93.8% higher colonization of wheat root tips and reduced the root rot incidence caused by Rhizoctonia solani and Fusarium pseudograminearum by 24.6%-35.7% compared to the non-Flg22-secreting strains in pot trials. There was a negative correlation between the incidence of wheat root rot and colonization of wheat root tips by these strains. In contrast, wheat root length and dry weight were positively correlated with the colonization of wheat root tips by these strains. These results demonstrate that engineered secretion of Flg22 by PGPR is an effective strategy for controlling root rot and improving plant growth.
Collapse
Affiliation(s)
- Yanan Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yafei Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuepeng Wang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yanqing Yang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Man Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Tongfu Su
- College of SciencesHenan Agricultural UniversityZhengzhouChina
| | - Rui Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Dehai Liu
- Institute of Biology Co., Ltd., Henan Academy of ScienceZhengzhouChina
| | - Yuqian Gao
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuancheng Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Liyou Qiu
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| |
Collapse
|
15
|
Jiménez-Hernández A, Carbajal-Valenzuela IA, Torres-Pacheco I, Rico-García E, Ocampo-Velazquez RV, Feregrino-Pérez AA, Guevara-Gonzalez RG. Extracellular DNA as a Strategy to Manage Vascular Wilt Caused by Fusarium oxysporum in Tomato ( Solanum lycopersicum L.) Based on Its Action as a Damage-Associated Molecular Pattern (DAMP) or Pathogen-Associated Molecular Pattern (PAMP). PLANTS (BASEL, SWITZERLAND) 2024; 13:2999. [PMID: 39519922 PMCID: PMC11547959 DOI: 10.3390/plants13212999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Vascular wilt is an important tomato disease that affects culture yields worldwide, with Fusarium oxysporum (F.o) being the causal agent of this infection. Several management strategies have lost effectiveness due to the ability of this pathogen to persist in soil and its progress in vascular tissues. However, nowadays, research has focused on understanding the plant defense mechanisms to cope with plant diseases. One recent and promising approach is the use of extracellular DNA (eDNA) based on the ability of plants to detect their self-eDNA as damage-associated molecular patterns (DAMPs) and pathogens' (non-self) eDNA as pathogen-associated molecular patterns (PAMPs). The aim of this work was to evaluate the effect of the eDNA of F.o (as a DAMP for the fungus and a PAMP for tomato plants) applied on soil, and of tomato's eDNA (as a DAMP of tomato plants) sprayed onto tomato plants, to cope with the disease. Our results suggested that applications of the eDNA of F.o (500 ng/µL) as a DAMP for this pathogen in soil offered an alternative for the management of the disease, displaying significantly lower disease severity levels in tomato, increasing the content of some phenylpropanoids, and positively regulating the expression of some defense genes. Thus, the eDNA of F.o applied in soil was shown to be an interesting strategy to be further evaluated as a new element within the integrated management of vascular wilt in tomato.
Collapse
Affiliation(s)
- Alejandra Jiménez-Hernández
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Ireri Alejandra Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Enrique Rico-García
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Rosalía V. Ocampo-Velazquez
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| | - Ana Angélica Feregrino-Pérez
- Posgraduate Studies Division, C.A Basic and Applied Bioengineering, School of Engineering, Autonomous University of Queretaro, C.U Cerro de las Campanas, S/N, Colonia Las Campanas, Santiago de Querétaro C.P. 76010, QRO, Mexico;
| | - Ramón Gerardo Guevara-Gonzalez
- Center of Applied Research in Biosystems (CIAB-CARB), School of Engineering-Campus Amazcala, Autonomous University of Queretaro, Carr. Amazcala-Chichimequillas Km 1.0, S/N, El Marques C.P. 76926, QRO, Mexico; (A.J.-H.); (I.A.C.-V.); (I.T.-P.); (E.R.-G.); (R.V.O.-V.)
| |
Collapse
|
16
|
Oberreiter V, Gelabert P, Brück F, Franz S, Zelger E, Szedlacsek S, Cheronet O, Cano FT, Exler F, Zagorc B, Karavanić I, Banda M, Gasparyan B, Straus LG, Gonzalez Morales MR, Kappelman J, Stahlschmidt M, Rattei T, Kraemer SM, Sawyer S, Pinhasi R. Maximizing efficiency in sedimentary ancient DNA analysis: a novel extract pooling approach. Sci Rep 2024; 14:19388. [PMID: 39169089 PMCID: PMC11339378 DOI: 10.1038/s41598-024-69741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.
Collapse
Affiliation(s)
- Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Florian Brück
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ivor Karavanić
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marko Banda
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, USA
- EvoAdapta Group Universidad de Cantabria, Santander, Spain
| | - Manuel R Gonzalez Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Gobierno de Cantabria, Banco Santander, Spain
| | - John Kappelman
- Department of Anthropology and Department of Earth and Planetary Sciences, The University of Texas, Austin, TX, USA
| | - Mareike Stahlschmidt
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institut für Analytische Chemie, University of Vienna, Vienna, Austria
- Forschungsverbund Umwelt und Klima, University of Vienna, Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Sivalingam P, Sabatino R, Sbaffi T, Corno G, Fontaneto D, Borgomaneiro G, Rogora M, Crotti E, Mapelli F, Borin S, Pilar AL, Eckert EM, Di Cesare A. Anthropogenic pollution may enhance natural transformation in water, favouring the spread of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134885. [PMID: 38876022 DOI: 10.1016/j.jhazmat.2024.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination. We analyzed intracellular and extracellular DNA from wastewater treatment plant effluents and lake surface water by shotgun sequencing. We also conducted experiments to evaluate anthropogenic pollution's effect on transforming extracellular DNA (using Gfp-plasmids carrying ARGs) within a natural microbial community. Chemical analysis showed treated wastewater had higher anthropogenic pollution-related parameters than lake water. The richness of microbial community, antimicrobial resistome, and high-risk ARGs was greater in treated wastewaters than in lake waters both for intracellular and extracellular DNA. Except for the high-risk ARGs, richness was significantly higher in intracellular than in extracellular DNA. Several ARGs were associated with mobile genetic elements and located on plasmids. Furthermore, Gfp-plasmid transformation within a natural microbial community was enhanced by anthropogenic pollution levels. Our findings underscore anthropogenic pollution's pivotal role in shaping microbial communities and their antimicrobial resistome. Additionally, it may facilitate ARG dissemination through extracellular DNA plasmid uptake.
Collapse
Affiliation(s)
- Periyasamy Sivalingam
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Tomasa Sbaffi
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Gianluca Corno
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Diego Fontaneto
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Giulia Borgomaneiro
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Michela Rogora
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Elena Crotti
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Sara Borin
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Lopez Pilar
- Biological Science Faculty, Complutense University of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain
| | - Ester M Eckert
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Andrea Di Cesare
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy.
| |
Collapse
|
18
|
Skalny M, Rokowska A, Szuwarzynski M, Gajewska M, Dziewit L, Bajda T. Nanoscale surface defects of goethite governing DNA adsorption process and formation of the Goethite-DNA conjugates. CHEMOSPHERE 2024; 362:142602. [PMID: 38871190 DOI: 10.1016/j.chemosphere.2024.142602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In urbanized areas, extracellular DNA (exDNA) is suspected of carrying genes with undesirable traits like virulence genes (VGs) or antibiotic resistance genes (ARGs), which can spread through horizontal gene transfer (HGT). Hence, it is crucial to develop novel approaches for the mitigation of exDNA in the environment. Our research explores the role of goethite, a common iron mineral with high adsorption capabilities, in exDNA adsorption processes. We compare well-crystalline, semi-crystalline, and nano goethites with varying particle sizes to achieve various specific surface areas (SSAs) (18.7-161.6 m2/g) and porosities. We conducted batch adsorption experiments using DNA molecules of varying chain lengths (DNA sizes: <11 Kb, <6 Kb, and <3 Kb) and assessed the impact of Ca2+ and biomacromolecules on the adsorption efficacy and mechanisms. Results show that porosity and pore structure significantly influence DNA adsorption capacity. Goethite with well-developed meso- and macroporosity demonstrated enhanced DNA adsorption. The accumulation of DNA on the goethite interface led to substantial aggregation in the system, thus the formation of DNA-goethite conjugates, indicating the bridging between mineral particles. DNA chain length, the presence of Ca2+, and the biomacromolecule matrix also affected the adsorption capacity and mechanism. Interactions between DNA and positively charged biomacromolecules or Ca2+ led to DNA compaction, allowing greater DNA accumulation in pores. However, a high concentration of biomacromolecules led to the saturation of the goethite surface, inhibiting DNA adsorption. AFM imaging of goethite particles after adsorption suggested the formation of the DNA multilayer. The study advances understanding of the environmental behavior of exDNA and its interaction with iron oxyhydroxides, offering insights into developing more effective methods for ARGs removal in wastewater treatment plants. By manipulating the textural properties of goethite, it's possible to enhance exDNA removal, potentially reducing the spread of biocontamination in urban and industrial environments.
Collapse
Affiliation(s)
- Mateusz Skalny
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland.
| | - Anna Rokowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Michal Szuwarzynski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
19
|
Lin H, Li R, Chen Y, Cheng Y, Yuan Q, Luo Y. Enhanced sensitivity of extracellular antibiotic resistance genes (ARGs) to environmental concentrations of antibiotic. CHEMOSPHERE 2024; 360:142434. [PMID: 38797215 DOI: 10.1016/j.chemosphere.2024.142434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
As emerging contaminants, antibiotics are frequently present in various environments, particularly rivers, albeit often at sublethal concentrations (ng/L∼μg/L). Assessing the risk associated with these low levels, which are far below the lethal threshold for most organisms, remains challenging. In this study, using microcosms containing planktonic bacteria and biofilm, we examined how antibiotic resistance genes (ARGs) in different physical states, including intracellular ARGs (iARGs) and extracellular ARGs (eARGs) responded to these low-level antibiotics. Our findings reveal a positive correlation between sub-lethal antibiotic exposure (ranging from 0.1 to 10 μg/L) and increased prevalence (measured as ARG copies/16s rDNA) of both iARGs and eARGs in planktonic bacteria. Notably, eARGs demonstrated greater sensitivity to antibiotic exposure compared to iARGs, with a lower threshold (0.1 μg/L for eARGs versus 1 μg/L for iARGs) for abundance increase. Moreover, ARGs in biofilms demonstrates higher sensitivity to antibiotic exposure compared to planktonic bacteria. To elucidate the underlying mechanisms, we established an integrated population dynamics-pharmacokinetics-pharmacodynamics (PD-PP) model. This model indicates that the enhanced sensitivity of eARGs is primarily driven by an increased potential for plasmid release from cells under low antibiotic concentrations. Furthermore, the accumulation of antibiotic in biofilms induces a greater sensitivity of ARG compared to the planktonic bacteria. This study provides a fresh perspective on the development of antibiotic resistance and offers an innovative approach for assessing the risk of sublethal antibiotic in the environment.
Collapse
Affiliation(s)
- Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Shenzhen Research Institute of Nanjing University, Shen Zhen, 518000, China
| | - Ruiqing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuying Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuan Cheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
Wang S, Tian R, Bi Y, Meng F, Zhang R, Wang C, Wang D, Liu L, Zhang B. A review of distribution and functions of extracellular DNA in the environment and wastewater treatment systems. CHEMOSPHERE 2024; 359:142264. [PMID: 38714248 DOI: 10.1016/j.chemosphere.2024.142264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Extracellular DNA refers to DNA fragments existing outside the cell, originating from various cell release mechanisms, including active secretion, cell lysis, and phage-mediated processes. Extracellular DNA serves as a vital environmental biomarker, playing crucial ecological and environmental roles in water bodies. This review is summarized the mechanisms of extracellular DNA release, including pathways involving cell lysis, extracellular vesicles, and type IV secretion systems. Then, the extraction and detection methods of extracellular DNA from water, soil, and biofilm are described and analyzed. Finally, we emphasize the role of extracellular DNA in microbial community systems, including its significant contributions to biofilm formation, biodiversity through horizontal gene transfer, and electron transfer processes. This review offers a comprehensive insight into the sources, distribution, functions, and impacts of extracellular DNA within aquatic environments, aiming to foster further exploration and understanding of extracellular DNA dynamics in aquatic environments as well as other environments.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Ruimin Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Bo Zhang
- Tianjin Eco-City Water Investment and Construction Co. Ltd, Hexu Road 276, Tianjin, 300467, China
| |
Collapse
|
21
|
Hu R, Chen X, Xia M, Chen B, Lu X, Luo G, Zhang S, Zhen G. Identification of extracellular polymeric substances layer barrier in chloroquine phosphate-disturbed anammox consortia and mechanism dissection on cytotoxic behavior by computational chemistry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134335. [PMID: 38657504 DOI: 10.1016/j.jhazmat.2024.134335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
The over-dosing use of chloroquine phosphate (CQ) poses severe threats to human beings and ecosystem due to the high persistence and biotoxicity. The discharge of CQ into wastewater would affect the biomass activity and process stability during the biological processes, e.g., anammox. However, the response mechanism of anammox consortia to CQ remain unknown. In this study, the accurate role of extracellular polymeric substances barrier in attenuating the negative effects of CQ, and the mechanism on cytotoxic behavior were dissected by molecular spectroscopy and computational chemistry. Low concentrations (≤6.0 mg/L) of CQ hardly affected the nitrogen removal performance due to the adaptive evolution of EPS barrier and anammox bacteria. Compact protein of EPS barrier can bind more CQ (0.24 mg) by hydrogen bond and van der Waals force, among which O-H and amide II region respond CQ binding preferentially. Importantly, EPS contributes to the microbiota reshape with selectively enriching Candidatus_Kuenenia for self-protection. Furthermore, the macroscopical cytotoxic behavior was dissected at a molecular level by CQ fate/distribution and computational chemistry, suggesting that the toxicity was ascribed to attack of CQ on functional proteins of anammox bacteria with atom N17 (f-=0.1209) and C2 (f+=0.1034) as the most active electrophilic and nucleophilic sites. This work would shed the light on the fate and risk of non-antibiotics in anammox process.
Collapse
Affiliation(s)
- Rui Hu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mengting Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
22
|
Mara P, Geller-McGrath D, Suter E, Taylor GT, Pachiadaki MG, Edgcomb VP. Plasmid-Borne Biosynthetic Gene Clusters within a Permanently Stratified Marine Water Column. Microorganisms 2024; 12:929. [PMID: 38792759 PMCID: PMC11123730 DOI: 10.3390/microorganisms12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.
Collapse
Affiliation(s)
- Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| | - David Geller-McGrath
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Elizabeth Suter
- Biology, Chemistry and Environmental Science Department, Molloy University, New York, NY 11570, USA;
| | - Gordon T. Taylor
- School of Marine, Atmospheric and Sustainability Sciences, Stony Brook University, New York, NY 11794, USA;
| | - Maria G. Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Virginia P. Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| |
Collapse
|
23
|
Yang CJ, Song JS, Yoo JJ, Park KW, Yun J, Kim SG, Kim YS. 16S rRNA Next-Generation Sequencing May Not Be Useful for Examining Suspected Cases of Spontaneous Bacterial Peritonitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:289. [PMID: 38399576 PMCID: PMC10890036 DOI: 10.3390/medicina60020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Ascites, often associated with liver cirrhosis, poses diagnostic challenges, particularly in detecting bacterial infections. Traditional methods have limitations, prompting the exploration of advanced techniques such as 16S rDNA next-generation sequencing (NGS) for improved diagnostics in such low-biomass fluids. The aim of this study was to investigate whether the NGS method enhances detection sensitivity compared to a conventional ascites culture. Additionally, we aimed to explore the presence of a microbiome in the abdominal cavity and determine whether it has a sterile condition. Materials and Methods: Ten patients with clinically suspected spontaneous bacterial peritonitis (SBP) were included in this study. A traditional ascites culture was performed, and all ascites samples were subjected to 16S ribosomal RNA gene amplification and sequencing. 16S rRNA gene sequencing results were interpreted by comparing them to positive and negative controls for each sample. Results: Differential centrifugation was applied to all ascites samples, resulting in very small or no bacterial pellets being harvested. The examination of the 16S amplicon sequencing libraries indicated that the target amplicon products were either minimally visible or exhibited lower intensity than their corresponding negative controls. Contaminants present in the reagents were also identified in the ascites samples. Sequence analysis of the 16S rRNA gene of all samples showed microbial compositions that were akin to those found in the negative controls, without any bacteria isolated that were unique to the samples. Conclusions: The peritoneal cavity and ascites exhibit low bacterial biomass even in the presence of SBP, resulting in a very low positivity rate in 16S rRNA gene sequencing. Hence, the 16S RNA sequencing method does little to enhance the rate of positive samples compared to traditional culture methods, including in SBP cases.
Collapse
Affiliation(s)
- Chan Jin Yang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Ju Sun Song
- GC Genome, Department of Laboratory Medicine, Green Cross Laboratories, Youngin 16924, Republic of Korea;
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Keun Woo Park
- Preclinical Stroke Modeling Laboratory Weill Cornell Medicine, Burke Medical Research Institute, White Plains, NY 10605, USA;
| | - Jina Yun
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (C.J.Y.); (J.Y.); (S.G.K.); (Y.S.K.)
| |
Collapse
|
24
|
Qin C, Zhang RH, Li Z, Zhao HM, Li YW, Feng NX, Li H, Cai QY, Hu X, Gao Y, Xiang L, Mo CH, Xing B. Insights into the enzymatic degradation of DNA expedited by typical perfluoroalkyl acids. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:278-286. [PMID: 38435362 PMCID: PMC10902504 DOI: 10.1016/j.eehl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are considered forever chemicals, gaining increasing attention for their hazardous impacts. However, the ecological effects of PFAAs remain unclear. Environmental DNA (eDNA), as the environmental gene pool, is often collected for evaluating the ecotoxicological effects of pollutants. In this study, we found that all PFAAs investigated, including perfluorohexanoic acid, perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctane sulfonate, even at low concentrations (0.02 and 0.05 mg/L), expedited the enzymatic degradation of DNA in a nonlinear dose-effect relationship, with DNA degradation fragment sizes being lower than 1,000 bp and 200 bp after 15 and 30 min of degradation, respectively. This phenomenon was attributed to the binding interaction between PFAAs and AT bases in DNA via groove binding. van der Waals force (especially dispersion force) and hydrogen bonding are the main binding forces. DNA binding with PFAAs led to decreased base stacking and right-handed helicity, resulting in loose DNA structure exposing more digestion sites for degrading enzymes, and accelerating the enzymatic degradation of DNA. The global ecological risk evaluation results indicated that PFAA contamination could cause medium and high molecular ecological risk in 497 samples from 11 contamination-hot countries (such as the USA, Canada, and China). The findings of this study show new insights into the influence of PFAAs on the environmental fates of biomacromolecules and reveal the hidden molecular ecological effects of PFAAs in the environment.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Run-Hao Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zekai Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
25
|
Menck-Costa MF, Baptista AAS, Sanches MS, dos Santos BQ, Cicero CE, Kitagawa HY, Justino L, Medeiros LP, de Souza M, Rocha SPD, Nakazato G, Kobayashi RKT. Resistance and Virulence Surveillance in Escherichia coli Isolated from Commercial Meat Samples: A One Health Approach. Microorganisms 2023; 11:2712. [PMID: 38004724 PMCID: PMC10672981 DOI: 10.3390/microorganisms11112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Escherichia coli is a key indicator of food hygiene, and its monitoring in meat samples points to the potential presence of antimicrobial-resistant strains capable of causing infections in humans, encompassing resistance profiles categorized as serious threats by the Centers for Disease Control and Prevention (CDC), such as Extended-Spectrum Beta-Lactamase (ESBL)-a problem with consequences for animal, human, and environmental health. The objective of the present work was to isolate and characterize ESBL-producing E. coli strains from poultry, pork, and beef meat samples, with a characterization of their virulence and antimicrobial resistance profiles. A total of 450 meat samples (150 chicken, 150 beef, and 150 pork) were obtained from supermarkets and subsequently cultured in medium supplemented with cefotaxime. The isolated colonies were characterized biochemically, followed by antibiogram testing using the disk diffusion technique. Further classification involved biofilm formation and the presence of antimicrobial resistance genes (blaCTX-M, AmpC-type, mcr-1, and fosA3), and virulence genes (eaeA, st, bfpA, lt, stx1, stx2, aggR, iss, ompT, hlyF, iutA, iroN, fyuA, cvaC, and hylA). Statistical analysis was performed via the likelihood-ratio test. In total, 168 strains were obtained, with 73% originating from chicken, 22% from pork, and 17% from beef samples. Notably, strains exhibited greater resistance to tetracycline (51%), ciprofloxacin (46%), and fosfomycin (38%), apart from β-lactams. The detection of antimicrobial resistance in food-isolated strains is noteworthy, underscoring the significance of antimicrobial resistance as a global concern. More than 90% of the strains were biofilm producers, and strains carrying many ExPEC genes were more likely to be biofilm formers (OR 2.42), which increases the problem since the microorganisms have a greater chance of environment persistence and genetic exchange. Regarding molecular characterization, bovine samples showed a higher prevalence of blaCTX-M-1 (OR 6.52), while chicken strains were more likely to carry the fosA3 gene (OR 2.43, CI 1.17-5.05) and presented between 6 to 8 ExPEC genes (OR 2.5, CI 1.33-5.01) compared to other meat samples. Concerning diarrheagenic E. coli genes, two strains harbored eae. It is important to highlight these strains, as they exhibited both biofilm-forming capacities and multidrug resistance (MDR), potentially enabling colonization in diverse environments and causing infections. In conclusion, this study underscores the presence of β-lactamase-producing E. coli strains, mainly in poultry samples, compared to beef and pork samples. Furthermore, all meat sample strains exhibited many virulence-associated extraintestinal genes, with some strains harboring diarrheagenic E. coli (DEC) genes.
Collapse
Affiliation(s)
- Maísa Fabiana Menck-Costa
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Ana Angelita Sampaio Baptista
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Matheus Silva Sanches
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Beatriz Queiroz dos Santos
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Claudinéia Emidio Cicero
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Hellen Yukari Kitagawa
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Larissa Justino
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Leonardo Pinto Medeiros
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Marielen de Souza
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Sergio Paulo Dejato Rocha
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Gerson Nakazato
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Renata Katsuko Takayama Kobayashi
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| |
Collapse
|
26
|
Espaldon A, Oguma K. Conformation-dependent UV inactivation efficiency of a conjugative, multi-drug resistant plasmid. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132324. [PMID: 37647660 DOI: 10.1016/j.jhazmat.2023.132324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
A conjugative, multi-drug-resistant plasmid was irradiated in-vivo and in-vitro with a 265-nm UV-light emitting diode (UV-LED) to investigate the gene inactivation efficiency of a plasmid deoxyribonucleic acid (pDNA) carrying DNA transfer and replication genes. The clinical-isolate 60 kb RP4 plasmid of the IncPα group containing the traG gene, was irradiated intracellularly in E. coli DH5α and extracellularly in a water medium at pH 8.5. Real-time quantitative polymerase chain reaction (RT-qPCR) measurements of the UV-fluence response gene inactivation rate constants revealed a decreasing pattern via a pseudo-1st-order inactivation kinetics in all forms examined. Our findings showed that the intracellular-supercoiled conformation, with k = 6.1 × 10-3 cm2/mJ, has the lowest UV susceptibility (lowest inactivation rate). UV absorbance measurements and a computational approach showed that the host's RNA provides the photo-shielding, demonstrating this high UV resistance. When UV exposure was measured in-vitro, the condensed DNA exhibited a self-shielding effect over supercoiled and denatured DNA due to the hypochromic-hyperchromic effects. This study has shown that large-sized conjugative plasmids with conformation-dependent UV/UV-LED-based gene inactivation play a significant role in preventing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Achilles Espaldon
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kumiko Oguma
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Gu Liu C, Maresso AW. Effect of various types of extracellular DNA on V. hyugaensis biofilm formation. mSphere 2023; 8:e0003523. [PMID: 37387577 PMCID: PMC10449505 DOI: 10.1128/msphere.00035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
Marine bacteria face a constant influx of new extracellular DNA (exDNA) due to the massive viral lysis that occurs in the ocean on a daily basis. Generally, biofilms have shown to be induced by self-secreted exDNA. However, the effect of various types of exDNA with varying lengths, self vs non-self, as well as guanine-cytosine content (GC) content on biofilm formation has not been explored, despite being a critical component of the extracellular polymeric substance. To test the effect of such exDNA on biofilms, a marine bioluminescent bacterium (Vibrio hyugaensis) was isolated from the Sippewissett Salt Marsh, USA, and treated with various types of exDNA. We observed rapid pellicle formation with distinct morphologies only in cultures treated with herring sperm gDNA, another Vibrio spp. gDNA, and an oligomer of 61-80% GC content. With pH measurements before and after the treatment, we observed a positive correlation between biofilm formation and the change to a more neutral pH. Our study highlights the importance of studying DNA-biofilm interaction by carefully examining the physical properties of the DNA and by varying its content, length, and source. Our observation may serve as the basis for future studies that seek to interrogate the molecular explanation for the various types of exDNA and their effects on biofilm formation. IMPORTANCE Bacteria mostly exist as biofilm, a protective niche that promotes protection from the environment and nutrient uptake. By forming these structures, bacteria have caused recalcitrant antibiotic-resistant infections, contamination of dairy and seafood, and fouling equipment in the industry. A critical component that makes up the extracellular polymeric substances, the structural component of a biofilm, is the extracellular DNA secreted by the bacteria found in the biofilm. However, previous studies on DNA and biofilm formation have neglected the unique properties of nucleic acid and its high diversity. Our study aims at disentangling these DNA properties by monitoring their effect at inducing biofilm formation. By varying length, self vs non-self, and GC percentage, we used various microscopy techniques to visualize the structural composition of a Vibrio hyugaensis biofilm. We observed DNA-dependent biofilm stimulation in this organism, a novel function of DNA in biofilm biology.
Collapse
Affiliation(s)
- Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR: Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR: Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
28
|
Yuan Q, Wang X, Fang H, Cheng Y, Sun R, Luo Y. Coastal mudflats as reservoirs of extracellular antibiotic resistance genes: Studies in Eastern China. J Environ Sci (China) 2023; 129:58-68. [PMID: 36804242 DOI: 10.1016/j.jes.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Despite coastal mudflats serving as essential ecological zones interconnecting terrestrial/freshwater and marine systems, little is known about the profiles of antibiotic resistance genes (ARGs) in this area. In this study, characteristics of typical ARGs, involving both intracellular (iARGs) and extracellular ARGs (eARGs) at different physical states, were explored in over 1000 km of coastal mudflats in Eastern China. Results indicated the presence of iARGs and eARGs at states of both freely present or attached by particles. The abundance of eARGs was significantly higher than that of iARGs (87.3% vs 12.7%), and their dominance was more significant than those in other habitats (52.7%-76.3%). ARG abundance, especially for eARGs, showed an increasing trend (p < 0.05) from southern (Nantong) to northern (Lianyungang) coastal mudflats. Higher salinity facilitated the transformation from iARGs to eARGs, and smaller soil particle size was conducive to the persistence of eARGs in northern coastal mudflats. This study addresses the neglected function of coastal mudflats as eARGs reservoirs.
Collapse
Affiliation(s)
- Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaolin Wang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Fang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
29
|
Han X, Wang J, Zhang J, Han B, Mei N, Fan R, Zhao J, Yao H, Yu X, Cai W. Digested extracellular DNA shortens the anodic startup of microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162642. [PMID: 36894072 DOI: 10.1016/j.scitotenv.2023.162642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
While the multiple functions of extracellular DNA (exDNA) in biofilm formation and electron transfer have been extensively studied in pure culture, its role in mixed anodic biofilm was still unknown. In this study, we employed DNase I enzyme to digest exDNA, thereby investigating its role in anodic biofilm formation based on the performance of four microbial electrolysis cells (MECs) groups with different DNase I enzyme concentration (0, 0.05, 0.1, 0.5 mg/mL). The responding time to reach 60 % maximum current of treatment group with DNase I enzyme has been significantly reduced to 83 %-86 % of the blank group (t-test, p < 0.01), indicating the exDNA digestion could promote the biofilm formation at the early stage. The anodic coulombic efficiency was enhanced by 10.74- 54.42 % in treatment group (t-test, p < 0.05), which could be ascribed to the higher absolute abundance of exoelectrogens. The lower relative abundance of exoelectrogens indicated the DNase I enzyme addition was beneficial for the enrichment of extensive species rather than exoelectrogens. As the DNase I enzyme augments the fluorescence signal of exDNA distribution in the small molecular weight region, implying the short chain exDNA could contribute to the biomass enhancement via boosting the most species enrichment. Furthermore, the exDNA alteration improved the complexity of microbial network. Our findings provide a new insight into the role of exDNA in the extracellular matrix of anodic biofilms.
Collapse
Affiliation(s)
- Xiangyu Han
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Jiaman Wang
- School of Engineering, Brown University, Providence, Rohde Island 02912, United States of America
| | - Jingjing Zhang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Baohong Han
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Ning Mei
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Runchuan Fan
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Zhao
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Hong Yao
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Xiaohua Yu
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China
| | - Weiwei Cai
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Intelligent Environment Research Center, Beijing Jiaotong University, No. 1 Guanzhuang, Chaoyang District, Beijing 100080, China.
| |
Collapse
|
30
|
Li Q, Liu Q, Wang Z, Zhang X, Ma R, Hu X, Mei J, Su Z, Zhu W, Zhu C. Biofilm Homeostasis Interference Therapy via 1 O 2 -Sensitized Hyperthermia and Immune Microenvironment Re-Rousing for Biofilm-Associated Infections Elimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300592. [PMID: 36850031 DOI: 10.1002/smll.202300592] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The recurrence of biofilm-associated infections (BAIs) remains high after implant-associated surgery. Biofilms on the implant surface reportedly shelter bacteria from antibiotics and evade innate immune defenses. Moreover, little is currently known about eliminating residual bacteria that can induce biofilm reinfection. Herein, novel "interference-regulation strategy" based on bovine serum albumin-iridium oxide nanoparticles (BIONPs) as biofilm homeostasis interrupter and immunomodulator via singlet oxygen (1 O2 )-sensitized mild hyperthermia for combating BAIs is reported. The catalase-like BIONPs convert abundant H2 O2 inside the biofilm-microenvironment (BME) to sufficient oxygen gas (O2 ), which can efficiently enhance the generation of 1 O2 under near-infrared irradiation. The 1 O2 -induced biofilm homeostasis disturbance (e.g., sigB, groEL, agr-A, icaD, eDNA) can disrupt the sophisticated defense system of biofilm, further enhancing the sensitivity of biofilms to mild hyperthermia. Moreover, the mild hyperthermia-induced bacterial membrane disintegration results in protein leakage and 1 O2 penetration to kill bacteria inside the biofilm. Subsequently, BIONPs-induced immunosuppressive microenvironment re-rousing successfully re-polarizes macrophages to pro-inflammatory M1 phenotype in vivo to devour residual biofilm and prevent biofilm reconstruction. Collectively, this 1 O2 -sensitized mild hyperthermia can yield great refractory BAIs treatment via biofilm homeostasis interference, mild-hyperthermia, and immunotherapy, providing a novel and effective anti-biofilm strategy.
Collapse
Affiliation(s)
- Qianming Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Quan Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zhengxi Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
31
|
Zhang C, McIntosh KD, Sienkiewicz N, Stelzer EA, Graham JL, Lu J. Using cyanobacteria and other phytoplankton to assess trophic conditions: A qPCR-based, multi-year study in twelve large rivers across the United States. WATER RESEARCH 2023; 235:119679. [PMID: 37011576 PMCID: PMC10123349 DOI: 10.1016/j.watres.2023.119679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
Phytoplankton is the essential primary producer in fresh surface water ecosystems. However, excessive phytoplankton growth due to eutrophication significantly threatens ecologic, economic, and public health. Therefore, phytoplankton identification and quantification are essential to understanding the productivity and health of freshwater ecosystems as well as the impacts of phytoplankton overgrowth (such as Cyanobacterial blooms) on public health. Microscopy is the gold standard for phytoplankton assessment but is time-consuming, has low throughput, and requires rich experience in phytoplankton morphology. Quantitative polymerase chain reaction (qPCR) is accurate and straightforward with high throughput. In addition, qPCR does not require expertise in phytoplankton morphology. Therefore, qPCR can be a useful alternative for molecular identification and enumeration of phytoplankton. Nonetheless, a comprehensive study is missing which evaluates and compares the feasibility of using qPCR and microscopy to assess phytoplankton in fresh water. This study 1) compared the performance of qPCR and microscopy in identifying and quantifying phytoplankton and 2) evaluated qPCR as a molecular tool to assess phytoplankton and indicate eutrophication. We assessed phytoplankton using both qPCR and microscopy in twelve large freshwater rivers across the United States from early summer to late fall in 2017, 2018, and 2019. qPCR- and microscope-based phytoplankton abundance had a significant positive linear correlation (adjusted R2 = 0.836, p-value < 0.001). Phytoplankton abundance had limited temporal variation within each sampling season and over the three years studied. The sampling sites in the midcontinent rivers had higher phytoplankton abundance than those in the eastern and western rivers. For instance, the concentration (geometric mean) of Bacillariophyta, Cyanobacteria, Chlorophyta, and Dinoflagellates at the sampling sites in the midcontinent rivers was approximately three times that at the sampling sites in the western rivers and approximately 18 times that at the sampling sites in the eastern rivers. Welch's analysis of variance indicates that phytoplankton abundance at the sampling sites in the midcontinent rivers was significantly higher than that at the sampling sites in the eastern rivers (p-value = 0.013) but was comparable to that at the sampling sites in the western rivers (p-value = 0.095). The higher phytoplankton abundance at the sampling sites in the midcontinent rivers was presumably because these rivers were more eutrophic. Indeed, low phytoplankton abundance occurred in oligotrophic or low trophic sites, whereas eutrophic sites had greater phytoplankton abundance. This study demonstrates that qPCR-based phytoplankton abundance can be a useful numerical indicator of the trophic conditions and water quality in freshwater rivers.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA 70813, United States
| | - Kyle D McIntosh
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency's Office of Research and Development, Oak Ridge, TN 37830, United States
| | - Nathan Sienkiewicz
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Erin A Stelzer
- U.S. Geological Survey, Columbus, OH 43229, United States
| | | | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States.
| |
Collapse
|
32
|
Gao X, Fu X, Xie M, Wang L. Environmental risks of antibiotic resistance genes released from biological laboratories and its control measure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:636. [PMID: 37133624 DOI: 10.1007/s10661-023-11316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Antibiotic resistance genes (ARGs) are a growing global threat to public health. Biological laboratory wastewater contains large amounts of free ARGs. It is important to assess the risk of free ARGs from biological laboratories and to find appropriate treatments to control their spread. The fate of plasmids in the environment and the effect of different thermal treatments on their persistence activity were tested. The results showed that untreated resistance plasmids could exist in water for more than 24 h (the special 245 bp fragment). Gel electrophoresis and transformation assays showed that the plasmids boiled for 20 min retained 3.65% ± 0.31% transformation activity of the intact plasmids, while autoclaving for 20 min at 121 °C could effectively degrade the plasmids and that NaCl, bovine serum albumin, and EDTA-2Na affected the degradation efficiency of the plasmids during boiling. In the simulated aquatic system, using 106 copy/μL of plasmids after autoclaving, only 102 copies/μL of the fragment after only 1-2 h could be detected. By contrast, boiled plasmids for 20 min were still detectable after plunging them into water for 24 h. These findings suggest that untreated and boiled plasmids can remain in the aquatic environment for a certain time resulting in the risk of disseminating ARGs. However, autoclaving is an effective way of degrading waste free resistance plasmids.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Mengdi Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
33
|
Goswami AG, Basu S, Banerjee T, Shukla VK. Biofilm and wound healing: from bench to bedside. Eur J Med Res 2023; 28:157. [PMID: 37098583 PMCID: PMC10127443 DOI: 10.1186/s40001-023-01121-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intriguing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bedside anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this context of "more needs to be done", we aim to explore various effective and clinically meaningful methods currently available for biofilm management and how these tools can be translated into safe clinical practice.
Collapse
Affiliation(s)
| | - Somprakas Basu
- All India Institute of Medical Sciences, Rishikesh, 249203, India.
| | | | | |
Collapse
|
34
|
Xue Z, Tian W, Han Y, Feng Z, Wang Y, Zhang W. The hidden diversity of microbes in ballast water and sediments revealed by metagenomic sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163666. [PMID: 37094681 DOI: 10.1016/j.scitotenv.2023.163666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
With the rapid globalization of trade, the worldwide spread of pathogens through ballast water is becoming a major concern. Although the international maritime organization (IMO) convention has been adopted to prevent the spread of harmful pathogens, the limited species resolution of the current microbe-monitoring methods challenged the ballast water and sediments management (BWSM). In this study, we explored metagenomic sequencing to investigate the species composition of microbial communities in four international vessels for BWSM. Our results showed the largest species diversity (14,403) in ballast water and sediments, including bacteria (11,710), eukaryotes (1007), archaea (829), and viruses (790). A total of 129 phyla were detected, among which the Proteobacteria, followed by Bacteroidetes, and Actinobacteria were the most abundant. Notably, 422 pathogens that are potentially harmful to marine environments and aquaculture were identified. The co-occurrence network analysis showed that most of these pathogens were positively correlated with the commonly used indicator bacteria Vibrio cholerae, Escherichia coli, and intestinal Enterococci species, validating the D-2 standard in BWSM. The functional profile showed prominent pathways of methane and sulfur metabolism, indicating that the microbial community in the severe tank environment still utilizes the energy to sustain such a high level of microbe diversity. In conclusion, metagenomic sequencing provides novel information for BWSM.
Collapse
Affiliation(s)
- Zhaozhao Xue
- Marine College, Shandong University, Weihai, China
| | - Wen Tian
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Yangchun Han
- Integarted Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Zhen Feng
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Yu Wang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, China.
| |
Collapse
|
35
|
Han B, Yang L, Hu Z, Chen Y, Mei N, Yao H. Critical role of extracellular DNA in the establishment and maintenance of anammox biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161897. [PMID: 36709891 DOI: 10.1016/j.scitotenv.2023.161897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has been widely used for the sustainable removal of nitrogen from wastewater. Extracellular DNA (exDNA), as one of the main components of biofilms, not only determines the initial formation process, but also allows the three-dimensional structure to be maintained. Since the effects of exDNA on anammox biofilm formation are still poorly understood, this study elucidated the effects of exDNA on different stages of anammox biofilm establishment and maintenance under static conditions and its mechanism. The results revealed that exDNA mainly affected the maintenance stage of anammox biofilm formation. Compared with the absence of exDNA, nitrogen removal efficiency in the presence of exDNA was 6.17 % higher; the number of bacteria cells attached to the carrier was 2.23 times that in the absence of exDNA. The spatiotemporal distribution of bacteria was revealed by fluorescence in situ hybridization. After 30 days, the relative abundances of anammox in biofilms were 6.19 % and 0.4 % in the presence and absence of exDNA, respectively, indicating its positive role in anammox bacteria (AnAOB) adhesion and biofilm formation. The presence of exDNA in extracellular polymeric substances (EPS) promotes the synthesis of proteins and soluble microbial products. According to the extended Derjaguin-Landau-Verwey-Overbeek (X - DLVO) theory, the presence of exDNA also reduced the Lewis acid-base interaction energy and created favorable thermodynamic conditions for AnAOB adhesion. These findings advance our understanding of the role of exDNA in anammox-mediated biofilm formation and offer insights into the mechanism of exDNA in the establishment and maintenance stages.
Collapse
Affiliation(s)
- Baohong Han
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Lijun Yang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Zhifeng Hu
- Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, PR China
| | - Yao Chen
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Ning Mei
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
| |
Collapse
|
36
|
Sivalingam P, Sabatino R, Sbaffi T, Fontaneto D, Corno G, Di Cesare A. Extracellular DNA includes an important fraction of high-risk antibiotic resistance genes in treated wastewaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121325. [PMID: 36828358 DOI: 10.1016/j.envpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Wastewater treatment plants are among the main hotspots for the release of antibiotic resistance genes (ARGs) into the environment. ARGs in treated wastewater can be found in the intracellular DNA (iDNA) and in the extracellular DNA (eDNA). In this study, we investigated the fate and the distribution (either in eDNA or in iDNA) of ARGs in the treated wastewaters pre and post-disinfection by shotgun metagenomics. The richness of the intracellular resistome was found to be higher than the extracellular one. However, the latter included different high risk ARGs. About 11% of the recovered metagenome assembled genomes (MAGs) from the extracted DNA was positive for at least one ARG and, among them, several were positive for more ARGs. The high-risk ARG bacA was the most frequently detected gene among the MAGs. The disinfection demonstrated to be an important driver of the composition of the antibiotic resistomes. Our results demonstrated that eDNA represents an important fraction of the overall ARGs, including a number of high-risk ARGs, which reach the environment with treated wastewater effluents. The studied disinfections only marginally affect the whole antibiotic resistome but cause important shifts from intracellular to extracellular DNA, potentially threating human health.
Collapse
Affiliation(s)
- Periyasamy Sivalingam
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Verbania, Italy
| | - Tomasa Sbaffi
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Verbania, Italy
| | - Diego Fontaneto
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Verbania, Italy
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Verbania, Italy.
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Verbania, Italy
| |
Collapse
|
37
|
Cheng YY, Zhou Z, Papadopoulos JM, Zuke JD, Falbel TG, Anantharaman K, Burton BM, Venturelli OS. Efficient plasmid transfer via natural competence in a microbial co-culture. Mol Syst Biol 2023; 19:e11406. [PMID: 36714980 PMCID: PMC9996237 DOI: 10.15252/msb.202211406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - James M Papadopoulos
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jason D Zuke
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA.,Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
38
|
Wang W, Rahman A, Kang S, Vikesland PJ. Investigation of the Influence of Stress on Label-Free Bacterial Surface-Enhanced Raman Spectra. Anal Chem 2023; 95:3675-3683. [PMID: 36757218 DOI: 10.1021/acs.analchem.2c04636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Label-free surface-enhanced Raman spectroscopy (SERS) has been proposed as a promising bacterial detection technique. However, the quality of the collected bacterial spectra can be affected by the time between sample acquisition and the SERS measurement. This study evaluated how storage stress stimuli influence the label-free SERS spectra of Pseudomonas syringae samples stored in phosphate buffered saline. The results indicate that when faced with nutrient limitations and changes in osmatic pressure, samples at room temperature (25 °C) exhibit more significant spectral changes than those stored at cold temperature (4 °C). At higher temperatures, bacterial communities secrete extracellular biomolecules that induce programmed cell death and result in increases in the supernatant SERS signals. Surviving cells consume cellular components to support their metabolism, thus leading to measurable declines in cell SERS intensity. Two-dimensional correlation spectroscopy analysis suggests that cellular component signatures decline sequentially in the following order: proteins, nucleic acids, and lipids. Extracellular nucleic acids, proteins, and carbohydrates are secreted in turn. After subtracting the SERS changes resulting from storage, we evaluated bacterial response to viral infection. P. syringae SERS profile changes enable accurate bacteriophage Phi6 quantification over the range of 104-1010 PFU/mL. The results indicate that storage conditions impact bacterial label-free SERS signals and that such influences need to be accounted for and if possible avoided when detecting bacteria or evaluating bacterial response to stress stimuli.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
39
|
eDNA Provides a Scaffold for Autoaggregation of B. subtilis in Bacterioplankton Suspension. Microorganisms 2023; 11:microorganisms11020332. [PMID: 36838297 PMCID: PMC9966259 DOI: 10.3390/microorganisms11020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The self-binding of bacterial cells, or autoaggregation, is, together with surface colonization, one of the first steps in the formation of a mature biofilm. In this work, the autoaggregation of B. subtilis in dilute bacterial suspensions was studied. The dynamics of cell lysis, eDNA release, and bacterial autoaggregate assembly were determined and related to the spatial autocorrelation of bacterial cells in dilute planktonic bacterial suspensions. The non-random distribution of cells was associated with an eDNA network, which stabilized the initial bacterial cell-cell aggregates. Upon the addition of DNase I, the aggregates were dispersed. The release of eDNA during cell lysis allows for the entrapment of bacterial drifters at a radius several times the size of the dying bacteria. The size of bacterial aggregates increased from 2 to about 100 μm in diameter in dilute bacterial suspensions. The results suggest that B. subtilis cells form previously unnoticed continuum of autoaggregate structures during planktonic growth.
Collapse
|
40
|
Yuan Q, Wang Y, Wang S, Li R, Ma J, Wang Y, Sun R, Luo Y. Adenine imprinted beads as a novel selective extracellular DNA extraction method reveals underestimated prevalence of extracellular antibiotic resistance genes in various environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158570. [PMID: 36075418 DOI: 10.1016/j.scitotenv.2022.158570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Despite severe threats of extracellular antibiotic resistance genes (eARGs) towards public health in various environments, advanced studies have been hindered mainly by ineffective extracellular DNA (exDNA) extraction methods, which is challenged by trace levels of exDNA and inference from abundant coexisting compounds. This study developed a highly selective exDNA extraction method based on molecular imprinting technology (MIT) by using adenine as the template for the first time. Results suggested that adenine imprinted beads were rough spheres at an average size of 0.39 ± 0.07 μm. They effectively adsorbed DNA in the absence of chaotropic agents, with superior capacity (796.2 mg/g), rate (0.0066/s) and regarding DNA of variable lengths, even the ultra-short DNA (<100 bp). They were also highly selective towards DNA, circumventing the interference of competitive compounds' interference. These properties contribute to efficient exDNA extraction (71 %-119 %) from various environmental samples. Specifically, adenine imprinted beads enabled significantly higher extraction rates of eARGs from river, air and vegetable samples (69 %-95 %) compared to that by commercial DNA extraction products (16 %-62 %). The adenine imprinted beads-based method reveals underestimated eARG levels in the environment and the corresponding risks, and thus will thus be a powerful tool for advanced exDNA research.
Collapse
Affiliation(s)
- Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yi Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shangjie Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruiqing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junlu Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yijing Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Oberemok VV, Useinov RZ, Skorokhod OA, Gal’chinsky NV, Novikov IA, Makalish TP, Yatskova EV, Sharmagiy AK, Golovkin IO, Gninenko YI, Puzanova YV, Andreeva OA, Alieva EE, Eken E, Laikova KV, Plugatar YV. Oligonucleotide Insecticides for Green Agriculture: Regulatory Role of Contact DNA in Plant-Insect Interactions. Int J Mol Sci 2022; 23:ijms232415681. [PMID: 36555325 PMCID: PMC9779641 DOI: 10.3390/ijms232415681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Insects vastly outnumber us in terms of species and total biomass, and are among the most efficient and voracious consumers of plants on the planet. As a result, to preserve crops, one of the primary tasks in agriculture has always been the need to control and reduce the number of insect pests. The current use of chemical insecticides leads to the accumulation of xenobiotics in ecosystems and a decreased number of species in those ecosystems, including insects. Sustainable development of human society is impossible without useful insects, so the control of insect pests must be effective and selective at the same time. In this article, we show for the first time a natural way to regulate the number of insect pests based on the use of extracellular double-stranded DNA secreted by the plant Pittosporum tobira. Using a principle similar to one found in nature, we show that the topical application of artificially synthesized short antisense oligonucleotide insecticides (olinscides, DNA insecticides) is an effective and selective way to control the insect Coccus hesperidum. Using contact oligonucleotide insecticide Coccus-11 at a concentration of 100 ng/μL on C. hesperidum larvae resulted in a mortality of 95.59 ± 1.63% within 12 days. Green oligonucleotide insecticides, created by nature and later discovered by humans, demonstrate a new method to control insect pests that is beneficial and safe for macromolecular insect pest management.
Collapse
Affiliation(s)
- Volodymyr V. Oberemok
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens—National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea
- Correspondence: ; Tel.: +7-(978)-814-68-66
| | - Refat Z. Useinov
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
| | - Oleksii A. Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, 10124 Turin, Italy
| | - Nikita V. Gal’chinsky
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
| | - Ilya A. Novikov
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
| | - Tatyana P. Makalish
- S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, Simferopol 295015, Crimea
| | - Ekaterina V. Yatskova
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens—National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea
| | - Alexander K. Sharmagiy
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens—National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea
| | - Ilya O. Golovkin
- S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, Simferopol 295015, Crimea
| | - Yuri I. Gninenko
- All-Russian Research Institute for Silviculture and Mechanization of Forestry, Pushkino 141200, Russia
| | - Yelizaveta V. Puzanova
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
| | - Oksana A. Andreeva
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
| | - Edie E. Alieva
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
| | - Emre Eken
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea
| | - Kateryna V. Laikova
- S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, Simferopol 295015, Crimea
| | - Yuri V. Plugatar
- Department of Natural Ecosystems, Nikita Botanical Garden—National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea
| |
Collapse
|
42
|
Lanzotti V, Grauso L, Mangoni A, Termolino P, Palomba E, Anzano A, Incerti G, Mazzoleni S. Metabolomics and molecular networking analyses in Arabidopsis thaliana show that extracellular self-DNA affects nucleoside/nucleotide cycles with accumulation of cAMP, cGMP and N6-methyl-AMP. PHYTOCHEMISTRY 2022; 204:113453. [PMID: 36174718 DOI: 10.1016/j.phytochem.2022.113453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Extracellular DNA (exDNA) widely occurs in the environment due to release by either cell lysis or active secretion. The role of exDNA in plant-soil interactions has been investigated and inhibitory effects on the growth of conspecific individuals by their self-DNA have been reported. Transcriptome analysis in the model plant Arabidopsis thaliana showed a clear recognition by the plant roots of self- and nonself-exDNA, with inhibition occurring only after exposure to the former. In this study, an untargeted metabolomics approach was used to assess at molecular level the plant reactions to exDNA exposure. Thus, the effects on the metabolites profile of A. thaliana after exposure to self- and nonself-exDNA from plants and fish, were studied by NMR, LC-MS, chemometrics and molecular networking analyses. Results show that self-DNA significantly induces the accumulation of RNA constituents (nucleobases, ribonucleosides, dinucleotide and trinucleotide oligomers). Interestingly, AMP and GMP are found along with their cyclic analogues cAMP and cGMP, and in form of cyclic dimers (c-di-AMP and c-di-GMP). Also methylated adenosine monophosphate (m6AMP) and the dimeric dinucleotide N-methyladenylyl-(3'→5') cytidine (m6ApC) increased only in the self-DNA treatment. Such striking evidence of self-DNA effects highlights a major role of exDNA in plant sensing of its environment.
Collapse
Affiliation(s)
- Virginia Lanzotti
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Laura Grauso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Alfonso Mangoni
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055, Portici, Italy.
| | - Emanuela Palomba
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055, Portici, Italy.
| | - Attilio Anzano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100, Udine, Italy.
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| |
Collapse
|
43
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
44
|
Qin C, Lu YX, Borch T, Yang LL, Li YW, Zhao HM, Hu X, Gao Y, Xiang L, Mo CH, Li QX. Interactions between Extracellular DNA and Perfluoroalkyl Acids (PFAAs) Decrease the Bioavailability of PFAAs in Pakchoi ( Brassica chinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14622-14632. [PMID: 36375011 DOI: 10.1021/acs.jafc.2c04597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging ionic organic pollutants worldwide. Great amounts of extracellular DNA (∼mg/kg) coexist with PFAAs in the environment. However, PFAA-DNA interactions and effects of such interactions have not been well studied. Herein, we used isothermal titration calorimetry (ITC), spectroscopy, and computational simulations to investigate the PFAA-DNA interactions. ITC assays showed that specific binding affinities of PFHxA-DNA, PFOA-DNA, PFNA-DNA, and PFOS-DNA were 5.14 × 105, 3.29 × 105, 1.99 × 105, and 2.18 × 104 L/mol, respectively, which were about 1-2 orders of magnitude stronger than those of PFAAs with human serum albumin. Spectral analysis suggested interactions of PFAAs with adenine (A), cytosine (C), guanine (G), and thymine (T), among which grooves associated with thymine were the major binding sites. Molecular dynamics simulations and quantum chemical calculations suggested that hydrogen bonds and van der Waals forces were the main interaction forces. Such a PFAA-DNA binding decreased the bioavailability of PFAAs in plant seedlings. The findings will help to improve the current understanding of the interaction between PFAAs and biomacromolecules, as well as how such interactions affect the bioavailability of PFAAs.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Ying-Xin Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado80523, United States
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Ling-Ling Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii96822, United States
| |
Collapse
|
45
|
Yang K, Wang L, Cao X, Gu Z, Zhao G, Ran M, Yan Y, Yan J, Xu L, Gao C, Yang M. The Origin, Function, Distribution, Quantification, and Research Advances of Extracellular DNA. Int J Mol Sci 2022; 23:13690. [PMID: 36430193 PMCID: PMC9698649 DOI: 10.3390/ijms232213690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In nature, DNA is ubiquitous, existing not only inside but also outside of the cells of organisms. Intracellular DNA (iDNA) plays an essential role in different stages of biological growth, and it is defined as the carrier of genetic information. In addition, extracellular DNA (eDNA) is not enclosed in living cells, accounting for a large proportion of total DNA in the environment. Both the lysis-dependent and lysis-independent pathways are involved in eDNA release, and the released DNA has diverse environmental functions. This review provides an insight into the origin as well as the multiple ecological functions of eDNA. Furthermore, the main research advancements of eDNA in the various ecological environments and the various model microorganisms are summarized. Furthermore, the major methods for eDNA extraction and quantification are evaluated.
Collapse
Affiliation(s)
- Kaixin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lishuang Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinghong Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaorui Gu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guowei Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengqu Ran
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunhui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
46
|
Chowdhury NN, Hicks E, Wiesner MR. Investigating and Modeling the Regulation of Extracellular Antibiotic Resistance Gene Bioavailability by Naturally Occurring Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15044-15053. [PMID: 35853206 PMCID: PMC9979080 DOI: 10.1021/acs.est.2c02878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular antibiotic resistance genes (eARGs) are widespread in the environment and can genetically transform bacteria. This work examined the role of environmentally relevant nanoparticles (NPs) in regulating eARG bioavailability. eARGs extracted from antibiotic-resistant B. subtilis were incubated with nonresistant recipient B. subtilis cells. In the mixture, particle type (either humic acid coated nanoparticles (HASNPs) or their micron-sized counterpart (HASPs)), DNase I concentration, and eARG type were systematically varied. Transformants were counted on selective media. Particles decreased bacterial growth and eARG bioavailability in systems without nuclease. When DNase I was present (≥5 μg/mL), particles increased transformation via chromosomal (but not plasmid-borne) eARGs. HASNPs increased transformation more than HASPs, indicating that the smaller nanoparticle with greater surface area per volume is more effective in increasing eARG bioavailability. These results were also modeled via particle aggregation theory, which represented eARG-bacteria interactions as transport leading to collision, followed by attachment. Using attachment efficiency as a fitting factor, the model predicted transformant concentrations within 35% of experimental data. These results confirm the ability of NPs to increase eARG bioavailability and suggest that particle aggregation theory may be a simplified and suitable framework to broadly predict eARG uptake.
Collapse
Affiliation(s)
- Nadratun N Chowdhury
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ethan Hicks
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
47
|
Luo X, Ye X, Wang W, Chen Y, Li Z, Wang Y, Huang Y, Ran W, Cao H, Cui Z. Temporal dynamics of total and active root-associated diazotrophic communities in field-grown rice. Front Microbiol 2022; 13:1016547. [PMID: 36312965 PMCID: PMC9606772 DOI: 10.3389/fmicb.2022.1016547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Plant-associated nitrogen-fixing microorganisms (diazotrophs) are essential to host nutrient acquisition, productivity and health, but how host growth affects the succession characteristics of crop diazotrophic communities is still poorly understood. Here, Illumina sequencing of DNA- and RNA-derived nifH genes was employed to investigate the dynamics of total and active diazotrophic communities across rhizosphere soil and rice roots under four fertilization regimes during three growth periods (tillering, heading and mature stages) of rice in 2015 and 2016. Our results indicated that 71.9–77.2% of the operational taxonomic units (OTUs) were both detected at the DNA and RNA levels. According to the nonmetric multidimensional scaling ordinations of Bray–Curtis distances, the variations in community composition of active rhizosphere diazotrophs were greater than those of total rhizosphere diazotrophs. The community composition (β-diversity) of total and active root-associated diazotrophs was shaped predominantly by microhabitat (niche; R2 ≥ 0.959, p < 0.001), followed by growth period (R2 ≥ 0.15, p < 0.001). The growth period had a stronger effect on endophytic diazotrophs than on rhizosphere diazotrophs. From the tillering stage to the heading stage, the α-diversity indices (Chao1, Shannon and phylogenetic diversity) and network topological parameters (edge numbers, average clustering coefficient and average degree values) of total endophytic diazotrophic communities increased. The proportions of OTUs shared by the total rhizosphere and endophytic diazotrophs in rhizosphere diazotrophs gradually increased during rice growth. Moreover, total diazotrophic α-diversity and network complexity decreased from rhizosphere soil to roots. Collectively, compared with total diazotrophic communities, active diazotrophic communities were better indicators of biological response to environmental changes. The host microhabitat profoundly drove the temporal dynamics of total and active root-associated diazotrophic communities, followed by the plant growth period.
Collapse
Affiliation(s)
- Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Zhongli Cui, , ; Xianfeng Ye,
| | - Wenhui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yang Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei Ran
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Zhongli Cui, , ; Xianfeng Ye,
| |
Collapse
|
48
|
Gómez-Brandón M, Fornasier F, de Andrade N, Domínguez J. Influence of earthworms on the microbial properties and extracellular enzyme activities during vermicomposting of raw and distilled grape marc. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115654. [PMID: 35792389 DOI: 10.1016/j.jenvman.2022.115654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The treatment of winery wastes by using appropriate management technologies is of utmost need in order to reduce to a minimum their disposal and avoid negative environmental impacts. This is of particular interest for grape marc, the main solid by-product of the winery industry. However, comparative studies on a pilot-scale dealing with the impact of earthworms on marc derived from both red and white grape varieties during vermicomposting are still scarce. The present study sought to evaluate the changes in the biochemical and microbiological properties of red and white raw marc in the presence and the absence of the earthworm species Eisenia andrei. The distilled marc obtained through distillation of the red grape marc was also considered under this scenario. Samples were taken after 14, 28, 42, and 63 days of vermicomposting. On day 14 earthworms led to a pronounced increase in most of the enzymatic activities, but only in those vermireactors fed with raw marc from the red grape variety. Alfa- and beta-glucosidase as well as chitinase and leucine-aminopeptidase activities were between 3 to 5-times higher relative to the control, while alkaline phosphomonoesterase was even up to 14-fold higher with earthworm presence. From day 28 onwards the magnitude of earthworms' effect on the studied enzymes was also dependent on the type of grape marc. Reduced values of basal respiration, ranging between 200 and 350 mg CO2 kg OM h-1 and indicative of stabilized materials were found in the resulting vermicomposts. Moreover, the content of macro- and micronutrients in the end products matched with those considered to have the quality criteria of a good vermicompost. Altogether, these findings reinforce the effectiveness of vermicomposting for the biological stabilization of grape marc with the dual purpose of fertilizer production and environmental protection.
Collapse
Affiliation(s)
| | - Flavio Fornasier
- CREA Research Centre for Viticulture and Enology, Gorizia, Italy; SOLIomics s.r.l., Via del Cotonificio, 129/B, 33100, Udine, Italy
| | - Nariane de Andrade
- Departamento de Ciencia do Solo, Universidade Federal de Santa María, Río Grande do Sul, 97105-900, Brazil
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidad de Vigo, Vigo, 36310, Spain
| |
Collapse
|
49
|
Ma G, Logares R, Xue Y, Yang J. Does filter pore size introduce bias in DNA sequence-based plankton community studies? Front Microbiol 2022; 13:969799. [PMID: 36225356 PMCID: PMC9549009 DOI: 10.3389/fmicb.2022.969799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
The cell size of microbial eukaryotic plankton normally ranges from 0.2 to 200 μm. During the past decade, high-throughput sequencing of DNA has been revolutionizing their study on an unprecedented scale. Nonetheless, it is currently unclear whether we can accurately, effectively, and quantitatively depict the microbial eukaryotic plankton community using size-fractionated filtration combined with environmental DNA (eDNA) molecular methods. Here we assessed the microbial eukaryotic plankton communities with two filtering strategies from two subtropical reservoirs, that is one-step filtration (0.2–200 μm) and size-fractionated filtration (0.2–3 and 3–200 μm). The difference of 18S rRNA gene copy abundance between the two filtering treatments was less than 50% of the 0.2–200 μm microbial eukaryotic community for 95% of the total samples. Although the microbial eukaryotic plankton communities within the 0.2–200 μm and the 0.2–3 and 3–200 μm size fractions had approximately identical 18S rRNA gene copies, there were significant differences in their community composition. Furthermore, our results demonstrate that the systemic bias introduced by size-fractionation filtration has more influence on unique OTUs than shared OTUs, and the significant differences in abundance between the two eukaryotic plankton communities largely occurred in low-abundance OTUs in specific seasons. This work provides new insights into the use of size-fractionation in molecular studies of microbial eukaryotes populating the plankton.
Collapse
Affiliation(s)
- Guolin Ma
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- *Correspondence: Yuanyuan Xue,
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- Jun Yang,
| |
Collapse
|
50
|
Krolicka A, Mæland Nilsen M, Klitgaard Hansen B, Wulf Jacobsen M, Provan F, Baussant T. Sea lice (Lepeophtherius salmonis) detection and quantification around aquaculture installations using environmental DNA. PLoS One 2022; 17:e0274736. [PMID: 36129924 PMCID: PMC9491551 DOI: 10.1371/journal.pone.0274736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The naturally occurring ectoparasite salmon lice (Lepeophtherirus salmonis) poses a great challenge for the salmon farming industry, as well as for wild salmonids in the Northern hemisphere. To better control the infestation pressure and protect the production, there is a need to provide fish farmers with sensitive and efficient tools for rapid early detection and monitoring of the parasitic load. This can be achieved by targeting L. salmonis DNA in environmental samples. Here, we developed and tested a new L. salmonis specific DNA-based assay (qPCR assay) for detection and quantification from seawater samples using an analytical pipeline compatible with the Environmental Sample Processor (ESP) for autonomous water sample analysis of gene targets. Specificity of the L. salmonis qPCR assay was demonstrated through in-silico DNA analyses covering sequences of different L. salmonis isolates. Seawater was spiked with known numbers of nauplii and copepodite free-swimming (planktonic) stages of L. salmonis to investigate the relationship with the number of marker gene copies (MGC). Finally, field samples collected at different times of the year in the vicinity of a salmon production farm in Western Norway were analyzed for L. salmonis detection and quantification. The assay specificity was high and a high correlation between MGC and planktonic stages of L. salmonis was established in the laboratory conditions. In the field, L. salmonis DNA was consequently detected, but with MGC number below that expected for one copepodite or nauplii. We concluded that only L. salmonis tissue or eDNA residues were detected. This novel study opens for a fully automatized L. salmonis DNA quantification using ESP robotic to monitor the parasitic load, but challenges remain to exactly transfer information about eDNA quantities to decisions by the farmers and possible interventions.
Collapse
Affiliation(s)
| | | | | | - Magnus Wulf Jacobsen
- Danish Technical University, Section for Marine Living Resources, Silkeborg, Denmark
| | - Fiona Provan
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Thierry Baussant
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
- * E-mail:
| |
Collapse
|