1
|
Dong S, Zhao M, Zhu J, Li T, Yan M, Xing K, Liu P, Yu S, Ma J, He H. Natural killer cells: a future star for immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1442673. [PMID: 39234249 PMCID: PMC11371580 DOI: 10.3389/fimmu.2024.1442673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
The interplay between immune components and the epithelium plays a crucial role in the development and progression of head and neck squamous cell carcinoma (HNSCC). Natural killer (NK) cells, one of the main tumor-killing immune cell populations, have received increasing attention in HNSCC immunotherapy. In this review, we explore the mechanism underlying the interplay between NK cells and HNSCC. A series of immune evasion strategies utilized by cancer cells restrict HNSCC infiltration of NK cells. Overcoming these limitations can fully exploit the antineoplastic potential of NK cells. We also investigated the tumor-killing efficacy of NK cell-based immunotherapies, immunotherapeutic strategies, and new results from clinical trials. Notably, cetuximab, the most essential component of NK cell-based immunotherapy, inhibits the epidermal growth factor receptor (EGFR) signaling pathway and activates the immune system in conjunction with NK cells, inducing innate effector functions and improving patient prognosis. In addition, we compiled information on other areas for the improvement of patient prognosis using anti-EGFR receptor-based monoclonal antibody drugs and the underlying mechanisms and prognoses of new immunotherapeutic strategies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shuyan Dong
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jin Zhu
- Department of Pathology, Xi’an Daxing Hospital, Xi’an, China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaixun Xing
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
Toll‐like receptors (TLRs) belong to a germline‐encoded protein family. These are pattern recognition receptors. They sense pathogen‐associated molecular patterns (PAMPs). When this occurs, activation of the NF‐ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross‐prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF‐ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF‐ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
|
3
|
Weidhaas JB, Hu C, Komaki R, Masters GA, Blumenschein GR, Chang JY, Lu B, Dicker AP, Bogart JA, Garces YI, Narayan S, Robinson CG, Kavadi VS, Greenberger JS, Koprowski CD, Welsh J, Gore EM, MacRae RM, Paulus R, Bradley JD. The Inherited KRAS-variant as a Biomarker of Cetuximab Response in NSCLC. CANCER RESEARCH COMMUNICATIONS 2023; 3:2074-2081. [PMID: 37728512 PMCID: PMC10566451 DOI: 10.1158/2767-9764.crc-23-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE RTOG 0617 was a phase III randomized trial for patients with unresectable stage IIIA/IIIB non-small cell lung cancer comparing standard-dose (60 Gy) versus high-dose (74 Gy) radiotherapy and chemotherapy, plus or minus cetuximab. Although the study was negative, based on prior evidence that patients with the KRAS-variant, an inherited germline mutation, benefit from cetuximab, we evaluated KRAS-variant patients in RTOG 0617. EXPERIMENTAL DESIGN From RTOG 0617, 328 of 496 (66%) of patients were included in this analysis. For time-to-event outcomes, stratified log-rank tests and multivariable Cox regression models were used. For binary outcomes, Cochran-Mantel-Haenzel tests and multivariable logistic regression models were used. All statistical tests were two sided, and a P value <0.05 was considered significant. RESULTS A total of 17.1% (56/328) of patients had the KRAS-variant, and overall survival rates were similar between KRAS-variant and non-variant patients. However, there was a time-dependent effect of cetuximab seen only in KRAS-variant patients-while the hazard of death was higher in cetuximab-treated patients within year 1 [HR = 3.37, 95% confidence interval (CI): 1.13-10.10, P = 0.030], death was lower from year 1 to 4 (HR = 0.33, 95% CI: 0.11-0.97, P = 0.043). In contrast, in non-variant patients, the addition of cetuximab significantly increased local failure (HR = 1.59, 95% CI: 1.11-2.28, P = 0.012). CONCLUSIONS/DISCUSSION Although an overall survival advantage was not achieved in KRAS-variant patients, there is potential impact of cetuximab for this genetic subset of patients. In contrast, cetuximab seems to harm non-variant patients. These findings further support the importance of genetic patient selection in trials studying the addition of systemic agents to radiotherapy. SIGNIFICANCE The KRAS-variant is the first functional, inherited miRNA-disrupting variant identified in cancer. Our findings support that cetuximab has a potentially beneficial impact on KRAS-variant patients treated with radiation. The work confirms prior evidence that KRAS-variant patients are a subgroup who are especially sensitive to radiation. These findings further support the potential of this class of variants to enable true treatment personalization, considering the equally important endpoints of response and toxicity.
Collapse
Affiliation(s)
| | - Chen Hu
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Gregory A. Masters
- Helen F Graham Cancer Center and Research Institute and Medical Oncology Hematology Consultants Pa, Newark, Delaware
| | | | | | - Bo Lu
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Adam P. Dicker
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Jeffrey A. Bogart
- Upstate Medical University (accruals Thomas Jefferson University Hospital), Syracuse, New York
| | | | - Samir Narayan
- St. Joseph Mercy Cancer Center (accruals Michigan Cancer Research Consortium CCOP), Ypsilanti, Michigan
| | | | | | | | - Christopher D. Koprowski
- Helen F Graham Cancer Center (accruals Christiana Care Health Services, Inc. CCOP), Newark, Delaware
| | | | - Elizabeth M. Gore
- Medical College of Wisconsin and the Zablocki VAMC, Milwaukee, Wisconsin
| | | | - Rebecca Paulus
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
4
|
Yang W, Sun X, Liu S, Xu Y, Li Y, Huang X, Liu K, Mao L, Min S, Liu L, Li S, Zhu Y, Zhang Y, Xie X, Xu K, Sun C, Yan J, Li Z. TLR8 agonist Motolimod-induced inflammatory death for treatment of acute myeloid leukemia. Biomed Pharmacother 2023; 163:114759. [PMID: 37105077 DOI: 10.1016/j.biopha.2023.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The clinical treatment of AML is dominated by "7 + 3" therapy, but it often shows great toxicity and limited therapeutic efficacy in application. Therefore, it is urgent to develop novel therapeutic strategies to achieve safe and efficient treatment of AML. Small-molecule inhibitors have the characteristics of high specificity, low off-target toxicity and remarkable therapeutic effect, and are receiving more and more attention in tumor therapy. In this study, we screened a library of 1972 FDA-approved small molecular compounds for those that induced the inflammatory death of AML cells, among which the TLR8 agonist Motolimod (MTL) showed stronger anti-AML activity in the animal model but slight affection on normal lymphocytes in control mice. In terms of mechanism, cellular experiments in AML cell lines proved that TLR8 and LKB1/AMPK are the key distinct mechanisms for MTL triggered caspase-3-dependent cell death and the expression of a large number of inflammatory factors. In conclusion, our findings identified the immunoactivator MTL as a single agent exerting significant anti-AML activity in vitro and in vivo, with strong potential for clinical translation.
Collapse
Affiliation(s)
- Wei Yang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Xiongfei Sun
- Department of hematopathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Shuai Liu
- Department of Laboratory, Shenzhen Samii International Medical Center (Shenzhen Fourth People's Hospital), Shenzhen 518118, PR China
| | - Ying Xu
- Department of hematopathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Yunlei Li
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Xiaoru Huang
- Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Shasha Min
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Linjiang Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yuqi Zhu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xina Xie
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kui Xu
- Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, PR China
| | - Changqing Sun
- Department of Clinical Laboratory, Shenzhen Baoan Pure Traditional Chinese Medicine Hospital, Shenzhen 518126, PR China
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, PR China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine). Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging. School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Chu F, Maffini F, Lepanto D, Vacirca D, Taormina SV, De Berardinis R, Gandini S, Vignati S, Ranghiero A, Rappa A, Chiocca S, Barberis M, Tagliabue M, Ansarin M. The Genetic and Immunologic Landscape Underlying the Risk of Malignant Progression in Laryngeal Dysplasia. Cancers (Basel) 2023; 15:cancers15041117. [PMID: 36831458 PMCID: PMC9954731 DOI: 10.3390/cancers15041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
(1) Background: The development of laryngeal cancer is a multistep process involving structural alterations of the epithelial mucosa, from dysplasia (LDy) to invasive carcinoma. In this study, we define new biomarkers, prognostic for malignant transformation, in patients affected by LDy. (2) Methods: We used targeted next-generation sequencing and immunohistochemical analysis to define the mutational and immunological landscape of 15 laryngeal dysplasia progressing to invasive cancer (progressing dysplasia), as well as 31 cases of laryngeal dysplasia that did not progress to carcinoma (non-progressing dysplasia). Two pathologists independently analyzed the presence of tumor-infiltrating lymphocytes in LDy pre-embedded paraffin-fixed specimens. The RNA-based next-generation sequencing panel OIRRA was used to evaluate the expression of 395 genes related to immune system activation. (3) Results: High TILs are significantly correlated with a higher risk of malignant transformation. The non-brisk pattern was significantly associated with an 86% reduced risk of malignant progression (OR = 0.16, 95% CI: 0.03-0.5, p = 0.008). TILs showed a highly positive correlation with CCR6, CD83, HLA-DPB1, MX1 and SNAI1, and they were inversely correlated with CD48, CIITA, CXCR4, FCER1G, IL1B, LST1 and TLR8. (4) Conclusions: TILs have a great potential to identify high-risk progression dysplasia and thus to define surveillance protocols and prevention programs.
Collapse
Affiliation(s)
- Francesco Chu
- Division of Otolaryngology and Head and Neck Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Fausto Maffini
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Daniela Lepanto
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Davide Vacirca
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Sergio Vincenzo Taormina
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Rita De Berardinis
- Division of Otolaryngology and Head and Neck Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Correspondence: (R.D.B.); (M.T.); Tel.: +39-02-57489380 (R.D.B. & M.T.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Silvano Vignati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Alberto Ranghiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Alessandra Rappa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Marta Tagliabue
- Division of Otolaryngology and Head and Neck Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (R.D.B.); (M.T.); Tel.: +39-02-57489380 (R.D.B. & M.T.)
| | - Mohssen Ansarin
- Division of Otolaryngology and Head and Neck Surgery, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
6
|
Novel Insights of Anti-EGFR Therapy in HNSCC: Combined with Immunotherapy or Not? Curr Oncol Rep 2023; 25:93-105. [PMID: 36585960 DOI: 10.1007/s11912-022-01349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The efficacy of anti-EGFR therapy is still unfavorable in recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) patients. Disorder of antitumor immunity and aberrantly expressed checkpoint biomarkers had been validated to involve anti-EGFR therapy tolerance and efficacy. Here we review the immunomodulation of anti-EGFR therapy in the tumor immune microenvironment (TIME) of HNSCC and assist clinicians in finding the potential strategies to rescue anti-EGFR tolerance therapy in the era of immunotherapy for HNSCC. RECENT FINDINGS Anti-EGFR therapy, especially cetuximab, was validated to induce the innate and adaptive immune responses of HNSCC patients. It is mainly through inducing natural killer (NK) cells mediating antibody-dependent cell-mediated cytotoxicity (ADCC), recruiting multiple tumor-infiltrating immune cells, and finally remodeling the TIME. Moreover, mountains of preclinical models and clinical trials revealed that combining anti-EGFR agents with immunotherapy could enhance the antitumor effectiveness in HNSCC. Anti-EGFR therapy may usher in another dawn in the treatment of patients with HNSCC through combination with immunotherapy. We offer an overview of the ongoing efforts to make out the immunomodulation of the EGFR pathway in both innate and adaptive immune responses; update the constant preclinical models and clinical trials for the combination of anti-EGFR and immunotherapy in HNSCC; and finally evaluate the efficacy and advantages of the combination therapeutic strategies in clinical use.
Collapse
|
7
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
9
|
Wang X, Muzaffar J, Kirtane K, Song F, Johnson M, Schell MJ, Li J, Yoder SJ, Conejo-Garcia JR, Guevara-Patino JA, Bonomi M, Bhateja P, Rocco JW, Steuer CE, Saba NF, Chung CH. T cell repertoire in peripheral blood as a potential biomarker for predicting response to concurrent cetuximab and nivolumab in head and neck squamous cell carcinoma. J Immunother Cancer 2022; 10:e004512. [PMID: 35676062 PMCID: PMC9185557 DOI: 10.1136/jitc-2022-004512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND T cell receptor (TCR) signaling profile is a fundamental property that underpins both adaptive and innate immunity in the host. Despite its potential clinical relevance, the TCR repertoire in peripheral blood has not been thoroughly explored for its value as an immunotherapy efficacy biomarker in head and neck squamous cell carcinoma (HNSCC). The purpose of the present study is to characterize and compare the TCR repertoire in peripheral blood mononuclear cells (PBMC) from patients with HNSCC treated with the combination of cetuximab and nivolumab. METHODS We used the immunoSEQ assay to sequence the TCR beta (TCR-B) chain repertoire from serially obtained PBMC at baseline and during the treatments from a total of 41 patients who received the combination (NCT03370276). Key TCR repertoire metrics, including diversity and clonality, were calculated and compared between patients with different therapy responses and clinical characteristics (eg, human papillomavirus (HPV) status and smoking history). Patient survival outcomes were compared according to patient groups stratified by the TCR-B clonotyping. To confirm the observed patterns in TCR spectrum, samples from patients who achieved complete response (CR) and partial response (PR) were further profiled with the immunoSEQ deep resolution assay. RESULTS Our data indicated that the patients who achieved CR and PR had an increased TCR sequence diversity in their baseline samples, this tendency being more pronounced in HPV-negative patients or those with a smoking history. Notably, the CR/PR group had the lowest proportion of patients with oligoclonal TCR clones (2 out of 8 patients), followed by the stable disease group (9 out of 20 patients) and lastly the progressive disease group (7 out of 10 patients). An overall trend toward favorable patient survival was also observed in the polyclonal group. Finally, we reported the shared TCR clones across patients within the same response group, as well as the shared clones by aligning immunoSEQ reads with TCR data retrieved from The Cancer Genome Atlas- head and neck squamous cell carcinoma (TCGA-HNSC) cohort. CONCLUSIONS Our data suggest that, despite the great clinical heterogeneity of HNSCC and the limited responders in the present cohort, the peripheral TCR repertoires from pretreatment PBMC may be developed as biomarkers for the benefit of immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jameel Muzaffar
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Matthew Johnson
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Sean J Yoder
- Department of Molecular Genomics Core, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jose A Guevara-Patino
- Department of Immunology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Marcelo Bonomi
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Priyanka Bhateja
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James W Rocco
- Department of Otolaryngology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Conor E Steuer
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| |
Collapse
|
10
|
Yang R, Yu S, Xu T, Zhang J, Wu S. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. J Hematol Oncol 2022; 15:43. [PMID: 35413927 PMCID: PMC9006576 DOI: 10.1186/s13045-022-01261-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
RNA sensors detect foreign and endogenous RNAs to protect the host by initiating innate and adaptive immune response. In tumor microenvironment (TME), activation of RNA sensors induces tumor-inhibitory cytotoxic T lymphocyte responses and inhibits the activity of immunosuppressive cells though stimulating type I IFN signaling pathway. These characteristics allow RNA sensors to be prospective targets in tumor immunotherapy. Therefore, a comprehensive understanding of the roles of RNA sensors in TME could provide new insight into the antitumor immunotherapy. Moreover, RNA sensors could be prominent triggering targets to synergize with immunotherapies. In this review, we highlight the diverse mechanisms of RNA sensors in cancer immunity and their emerging contributions in cancer immunotherapy, including monotherapy with RNA sensor agonists, as well as combination with chemotherapy, radiotherapy, immune checkpoint blockade or cancer vaccine.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Gruijs M, Ganzevles SH, Stigter-van Walsum M, van der Mast R, van Ostaijen-ten Dam MM, Tuk CW, Schilham MW, Leemans CR, Brakenhoff RH, van Egmond M, van de Ven R, Bakema JE. NK Cell-Dependent Antibody-Mediated Immunotherapy Is Improved In Vitro and In Vivo When Combined with Agonists for Toll-like Receptor 2 in Head and Neck Cancer Models. Int J Mol Sci 2021; 22:11057. [PMID: 34681717 PMCID: PMC8541276 DOI: 10.3390/ijms222011057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The immunosuppressive character of head and neck cancers may explain the relatively low response rates to antibody therapy targeting a tumor antigen, such as cetuximab, and anti-PD-1 checkpoint inhibition. Immunostimulatory agents that overcome tumor-derived inhibitory signals could augment therapeutic efficacy, thereby enhancing tumor elimination and improving patient survival. Here, we demonstrate that cetuximab treatment combined with immunostimulatory agonists for Toll-like receptor (TLR) 2 induces profound immune responses. Natural killer (NK) cells, isolated from healthy individuals or patients with head and neck cancer, harbored enhanced cytotoxic capacity and increased tumor-killing potential in vitro. Additionally, combination treatment increased the release of several pro-inflammatory cytokines and chemokines by NK cells. Tumor-bearing mice that received cetuximab and the TLR2 ligand Pam3CSK4 showed increased infiltration of immune cells into the tumors compared to mice that received cetuximab monotherapy, resulting in a significant delay in tumor growth or even complete tumor regression. Moreover, combination treatment resulted in improved overall survival in vivo. In conclusion, combining tumor-targeting antibody-based immunotherapy with TLR stimulation represents a promising treatment strategy to improve the clinical outcomes of cancer patients. This treatment could well be applied together with other therapeutic strategies such as anti-PD-(L)1 checkpoint inhibition to further overcome immunosuppression.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/immunology
- Cell Line, Tumor
- Cetuximab/pharmacology
- Cetuximab/therapeutic use
- Cytokines/metabolism
- Drug Therapy, Combination
- Female
- Head and Neck Neoplasms/therapy
- Humans
- Immunotherapy
- Killer Cells, Natural/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Mice
- Mice, Nude
- Receptors, IgG/agonists
- Receptors, IgG/metabolism
- Toll-Like Receptor 2/agonists
- Toll-Like Receptor 2/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Sonja H. Ganzevles
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Richard van der Mast
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Monique M. van Ostaijen-ten Dam
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - Cornelis W. Tuk
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Marco W. Schilham
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - C. René Leemans
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Ruud H. Brakenhoff
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Jantine E. Bakema
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| |
Collapse
|
12
|
Baysal H, De Pauw I, Zaryouh H, Peeters M, Vermorken JB, Lardon F, De Waele J, Wouters A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Front Immunol 2021; 12:737311. [PMID: 34557197 PMCID: PMC8453198 DOI: 10.3389/fimmu.2021.737311] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Mierzwa M, Beadle BM, Chua MLK, Ma DJ, Thomson DJ, Margalit DN. Something for Everyone From Low-Risk to High-Risk: 5 Recent Studies to Improve Treatment and Surveillance for All Patients With Squamous Cell Carcinoma of the Head and Neck. Int J Radiat Oncol Biol Phys 2021; 111:1-8. [PMID: 34348102 DOI: 10.1016/j.ijrobp.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Melvin L K Chua
- Divisions of Radiation Oncology and Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | | | - David J Thomson
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Danielle N Margalit
- Brigham & Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
14
|
Lien MY, Wang TH, Hsieh CY, Tsai MH, Hua CH, Cheng FM, Chung WH, Tang CH, Chia-Hsun Hsieh J. Both combined or sequential use with immune checkpoint inhibitors on cetuximab-treated patients with recurrent or metastatic head and neck squamous cell carcinoma improve the overall survival. Oral Oncol 2021; 119:105380. [PMID: 34146822 DOI: 10.1016/j.oraloncology.2021.105380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND After the introduction of ICI treatment, data about feasibility and activity of a cetuximab-containing first-line therapy in patients with recurrent and/or metastatic head and neck cancer (R/M HNSCC) are still not available. We sought to analyze the clinical outcomes in the real-world setting. MATERIAL METHODS This retrospective study was conducted at two tertiary medical centers in Taiwan. Patients with R/M HNSCC receiving cetuximab-containing first-line therapy were included between January 2017 and July 2019. The study endpoints were the response, Progression-Free Survival (PFS), and Overall Survival (OS). Subgroup analyses were conducted to evaluate survival outcomes by platinum resistance and the use of immunotherapy. RESULTS We identified 290 patients treated with cetuximab-containing first-line therapy. The most primary tumor site was oral cavity cancer (59.3%). 44% of patients were resistant to platinum. The median PFS and OS were 5.0 months and 9.1 months, respectively, for the total population. In patients with platinum resistance, the median OS was 10.4 months with ICIs versus 6.3 months without ICIs; p = 0.01. In patients with platinum sensitivity, the median OS was 20.6 months with ICIs versus 9.1 months without ICs; p < 0.01. OS benefit with ICIs was similar between patients who received ICIs after progression on Cetuximab and receiving Cetuximab in combination with ICIs. Independent favorable prognostic factors for OS were platinum-sensitive, better response to cetuximab, and ICIs use. CONCLUSION ICIs are indicated to improve OS in R/M HNSCC receiving cetuximab-containing first-line therapy, even in platinum-resistant populations. The reduction in risk of death with ICIs was similar regarding the combination or sequencing of cetuximab.
Collapse
Affiliation(s)
- Ming-Yu Lien
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan; School and Medicine, China Medical University, Taichung 404, Taiwan
| | - Ti-Hao Wang
- Division of Radiation Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Fu-Ming Cheng
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Hui Chung
- Division of Radiation Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chih-Hsin Tang
- School and Medicine, China Medical University, Taichung 404, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Jason Chia-Hsun Hsieh
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei City Municipal TuCheng Hospital, New Taipei City 236, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
| |
Collapse
|
15
|
Buchwald ZS, Schmitt NC. Immunotherapeutic Strategies for Head and Neck Cancer. Otolaryngol Clin North Am 2021; 54:729-742. [PMID: 34116846 DOI: 10.1016/j.otc.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunotherapy has revolutionized the treatment of cancer, including head and neck squamous cell carcinoma (HNSCC). Most immune therapies consist of biologics, including monoclonal antibodies, vaccines, and cell therapy. This article reviews basic tumor immunology and provides an overview of immunotherapeutic strategies used for HNSCC. The current indications for use of programmed cell death protein 1 immune checkpoint inhibitors in recurrent/metastatic HNSCC are summarized. In addition, new immunotherapeutic biologics and combinations under investigation in early-phase clinical trials are highlighted.
Collapse
Affiliation(s)
- Zachary S Buchwald
- Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Road NE, C5086, Atlanta, GA 30322, USA; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicole C Schmitt
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
Rohatgi A, Kirkwood JM. Beyond PD-1: The Next Frontier for Immunotherapy in Melanoma. Front Oncol 2021; 11:640314. [PMID: 33732652 PMCID: PMC7958874 DOI: 10.3389/fonc.2021.640314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The advent of first and second-generation immune checkpoint blockade (ICI) has resulted in improved survival of patients with metastatic melanoma over the past decade. However, the majority of patients ultimately progress despite these treatments, which has served as an impetus to consider a range of subsequent therapies. Many of the next generation of immunotherapeutic agents focus on modifying the immune system to overcome resistance to checkpoint blockade. ICI resistance can be understood as primary, or acquired-where the latter is the most common scenario. While there are several postulated mechanisms by which resistance, particularly acquired resistance, occurs, the predominant escape mechanisms include T cell exhaustion, upregulation of alternative inhibitory checkpoint receptors, and alteration of the tumor microenvironment (TME) into a more suppressive, anti-inflammatory state. Therapeutic agents in development are designed to work by combating one or more of these resistance mechanisms. These strategies face the added challenge of minimizing immune-related toxicities, while improving antitumor efficacy. This review focuses upon the following categories of novel therapeutics: 1) alternative inhibitory receptor pathways; 2) damage- or pathogen-associated molecular patterns (DAMPs/PAMPs); and 3) immune cell signaling mediators. We present the current state of these therapies, including preclinical and clinical data available for these targets under development.
Collapse
Affiliation(s)
| | - John M. Kirkwood
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Ortiz-Cuaran S, Bouaoud J, Karabajakian A, Fayette J, Saintigny P. Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Front Oncol 2021; 11:614332. [PMID: 33718169 PMCID: PMC7947611 DOI: 10.3389/fonc.2021.614332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide. More than half of HNSCC patients experience locoregional or distant relapse to treatment despite aggressive multimodal therapeutic approaches that include surgical resection, radiation therapy, and adjuvant chemotherapy. Before the arrival of immunotherapy, systemic chemotherapy was previously employed as the standard first-line protocol with an association of cisplatin or carboplatin plus 5-fluorouracil plus cetuximab (anti-EFGR antibody). Unfortunately, acquisition of therapy resistance is common in patients with HNSCC and often results in local and distant failure. Despite our better understanding of HNSCC biology, no other molecular-targeted agent has been approved for HNSCC. In this review, we outline the mechanisms of resistance to the therapeutic strategies currently used in HNSCC, discuss combination treatment strategies to overcome them, and summarize the therapeutic regimens that are presently being evaluated in early- and late-phase clinical trials.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Department of Maxillofacial Surgery and Stomatology, Pitié-Salpêtrière University Hospital, Pierre et Marie Curie University, Sorbonne University, Paris, France
| | - Andy Karabajakian
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Fayette
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
18
|
Gutiérrez Calderón V, Cantero González A, Gálvez Carvajal L, Aguilar Lizarralde Y, Rueda Domínguez A. Neoadjuvant immunotherapy in resectable head and neck cancer: oral cavity carcinoma as a potential research model. Ther Adv Med Oncol 2021; 13:1758835920984061. [PMID: 33747147 PMCID: PMC7905482 DOI: 10.1177/1758835920984061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Squamous cell carcinoma of oral cavity (OCSCC) accounts for approximately 25% of
cases of head and neck squamous cell carcinoma (HNSCC). Tobacco and alcohol
consumption are the main risk factors for both cancers. Surgical resection,
combined with adjuvant radiotherapy or radiochemotherapy in patients with high
risk of relapse, is the key element in management in the initial stages.
However, despite the availability of aggressive multidisciplinary treatments,
advanced resectable OCSCC carries poor prognosis; only half of the patients are
disease-free 5 years after the surgery. Immunotherapy based on the use of immune
checkpoint inhibitors has been proven to be effective in a wide variety of
tumours, including recurrent and metastatic HNSCC. These positive results
resulted in investigations into its effectiveness in earlier stages of the
disease with OCSCC emerging as an interesting research model because of the
accessible location of the tumours. This article reviews the potential
advantages of emerging immunotherapeutic agents [mainly monoclonal antibodies
against programmed cell death-1 (PD-1) immune checkpoint
inhibitors] as neoadjuvant treatment for OCSCC at locoregional stages as well as
the ongoing clinical trials, challenges in evaluating tumour response, and
possible predictive biomarkers of response with highlights regarding the role of
oral microbiota as modulators of immune response. The efficacy and safety of
anti-PD-1 drugs in these patients have been proven in
preliminary trials. If there is a decrease in the relapse rate and an
improvement in the overall survival after surgical resection in ongoing trials,
preoperative immunotherapy may be established as a treatment option for patients
with early stages of the disease.
Collapse
Affiliation(s)
- Vanesa Gutiérrez Calderón
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Alexandra Cantero González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Laura Gálvez Carvajal
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | | | - Antonio Rueda Domínguez
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Carlos Haya Avenue, s/n, Málaga, Spain
| |
Collapse
|
19
|
Cheng Y, Borcherding N, Ogunsakin A, Lemke-Miltner CD, Gibson-Corley KN, Rajan A, Choi AB, Wongpattaraworakul W, Chan CHF, Salem AK, Weiner GJ, Simons AL. The anti-tumor effects of cetuximab in combination with VTX-2337 are T cell dependent. Sci Rep 2021; 11:1535. [PMID: 33452311 PMCID: PMC7810827 DOI: 10.1038/s41598-020-80957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
The Toll-like receptor 8 (TLR8) agonist VTX-2337 (motolimod) is an anti-cancer immunotherapeutic agent that is believed to augment natural killer (NK) and dendritic cell (DC) activity. The goal of this work is to examine the role of TLR8 expression/activity in head and neck squamous cell carcinoma (HNSCC) to facilitate the prediction of responders to VTX-2337-based therapy. The prognostic role of TLR8 expression in HNSCC patients was assessed by TCGA and tissue microarray analyses. The anti-tumor effect of VTX-2337 was determined in SCCVII/C3H, mEERL/C57Bl/6 and TUBO-human EGFR/BALB/c syngeneic mouse models. The effect of combined VTX-2337 and cetuximab treatment on tumor growth, survival and immune cell recruitment was assessed. TLR8 expression was associated with CD8+ T cell infiltration and favorable survival outcomes. VTX-2337 delayed tumor growth in all 3 syngeneic mouse models and significantly increased the survival of cetuximab-treated mice. The anti-tumor effects of VTX-2337+ cetuximab were accompanied by increased splenic lymphoid DCs and IFNγ+ CD4+ and tumor-specific CD8+ T cells. Depletion of CD4+ T cells, CD8+ T cells and NK cells were all able to abolish the anti-tumor effect of VTX-2337+ cetuximab. Altogether, VTX-2337 remains promising as an adjuvant for cetuximab-based therapy however patients with high TLR8 expression may be more likely to derive benefit from this drug combination compared to patients with low TLR8 expression.
Collapse
Affiliation(s)
- Yinwen Cheng
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Nicholas Borcherding
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Iowa Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ayomide Ogunsakin
- Department of Biochemistry, Lincoln University, Lincoln University, PA, USA
| | - Caitlin D Lemke-Miltner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Anand Rajan
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Allen B Choi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Wattawan Wongpattaraworakul
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Carlos H F Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - George J Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrean L Simons
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA. .,Department of Pathology, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA. .,Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Abdelwahab A, Palosaari S, Abdelwahab SA, Rifaai RA, El-Tahawy NF, Saber EA, Nousiainen T, Valkealahti M, Huhtakangas J, Karttunen TJ, Lehenkari P. Differential synovial tissue expression of TLRs in seropositive and seronegative rheumatoid arthritis: A preliminary report. Autoimmunity 2020; 54:23-34. [PMID: 33377396 DOI: 10.1080/08916934.2020.1864729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are known to have an important role in triggering the innate immune response and in priming antigen-specific adaptive immunity and inflammation. The differences in synovial tissue expression of the TLRs between seronegative and seropositive rheumatoid arthritis (RA) were examined from 9 seropositive RA, 5 seronegative RA and 4 osteoarthritis (OA) patients. Synovitis status was assessed using Krenn's scoring and TLR 1-9 expression by immunohistochemistry. Tissue citrulline content was analysed by HPLC method. In RA TLR expression was generally higher than in OA. TLR2 expression was higher in both seronegative and seropositive RA compared to OA. TLR 1, 4 and 8 expressions were higher in seropositive RA than in seronegative RA or in OA. For TLRs 3, 5, 6, 7 and 9 local differences of expression were found between groups. TLR 1-9 expression correlated with the synovitis grade. No statistical difference was found in synovial tissue citrulline content between the groups. In seropositive RA, the TLR repertoire in the synovial tissue differs from seronegative RA and could explain differences in disease outcomes. The high expression of protein sensing (TLR1, TLR2 and TLR4) and nucleic acid sensing TLRs (TLR7, TLR8 and TLR9) in the seropositive RA could make the synovium primed for reacting to citrullinated proteins and nucleic acids that could be released to extracellular space in formation of neutrophil extracellular traps. This reactivity could be augmented by Fc receptor activation by anti-citrullinated protein antibody immunocomplexes associated with seropositive RA.
Collapse
Affiliation(s)
- Alzahraa Abdelwahab
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt.,Anatomy and Cell Biology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Sanna Palosaari
- Anatomy and Cell Biology, Medical Research Center Oulu and Cancer and Translational Medicine Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Soha Abdelkawy Abdelwahab
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, delegated to Deraya University, New Minia, Egypt
| | - Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nashwa Fathy El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, delegated to Deraya University, New Minia, Egypt
| | - Tomi Nousiainen
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | | | - Johanna Huhtakangas
- Anatomy and Cell Biology, Medical Research Center Oulu and Cancer and Translational Medicine Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland.,Rheumatology Unit, Department of Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, Cancer and Translational Medicine Medical Research Unit, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Anatomy and Cell Biology, Medical Research Center Oulu and Cancer and Translational Medicine Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
21
|
Chen M, Hu S, Li Y, Jiang TT, Jin H, Feng L. Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduct Target Ther 2020; 5:270. [PMID: 33214545 PMCID: PMC7677403 DOI: 10.1038/s41392-020-00347-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy especially immune checkpoint inhibition has achieved unprecedented successes in cancer treatment. However, there are many patients who failed to benefit from these therapies, highlighting the need for new combinations to increase the clinical efficacy of immune checkpoint inhibitors. In this review, we summarized the latest discoveries on the combination of nucleic acid-sensing immunity and immune checkpoint inhibitors in cancer immunotherapy. Given the critical role of nuclear acid-mediated immunity in maintaining the activation of T cell function, it seems that harnessing the nuclear acid-mediated immunity opens up new strategies to enhance the effect of immune checkpoint inhibitors for tumor control.
Collapse
Affiliation(s)
- Miaoqin Chen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Shiman Hu
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yiling Li
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ting Ting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
22
|
Wang Y, Yang H, Li H, Zhao S, Zeng Y, Zhang P, Lin X, Sun X, Wang L, Fu G, Gao Y, Wang P, Gao D. Development of a novel TLR8 agonist for cancer immunotherapy. MOLECULAR BIOMEDICINE 2020; 1:6. [PMID: 35006413 PMCID: PMC8607422 DOI: 10.1186/s43556-020-00007-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/14/2020] [Indexed: 01/12/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase 1 clinical trials.
Collapse
Affiliation(s)
- Yuxun Wang
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China.
| | - Heping Yang
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Huanping Li
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Shuda Zhao
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Yikun Zeng
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Panpan Zhang
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Xiaoqin Lin
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Xiaoxiang Sun
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Longsheng Wang
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Guangliang Fu
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Yaqiao Gao
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Pei Wang
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| | - Daxin Gao
- Shanghai Denovo Pharmatech Co., Ltd., 576 Libing Road, Shanghai Zhangjiang High-Tech Park, Pudong New District, Shanghai, 201203, China
| |
Collapse
|
23
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Ferris RL, Saba NF, Gitlitz BJ, Haddad R, Sukari A, Neupane P, Morris JC, Misiukiewicz K, Bauman JE, Fenton M, Jimeno A, Adkins DR, Schneider CJ, Sacco AG, Shirai K, Bowles DW, Gibson M, Nwizu T, Gottardo R, Manjarrez KL, Dietsch GN, Bryan JK, Hershberg RM, Cohen EEW. Effect of Adding Motolimod to Standard Combination Chemotherapy and Cetuximab Treatment of Patients With Squamous Cell Carcinoma of the Head and Neck: The Active8 Randomized Clinical Trial. JAMA Oncol 2019; 4:1583-1588. [PMID: 29931076 DOI: 10.1001/jamaoncol.2018.1888] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Immunotherapy for recurrent and/or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN) is promising. The toll-like receptor 8 (TLR8) agonist motolimod may stimulate innate and adaptive immunity. Objective To determine whether motolimod improves outcomes for R/M SCCHN when combined with standard therapy. Design, Setting, and Participants The Active8 study was a multicenter, randomized, double-blind, placebo-controlled clinical trial enrolling adult patients (age ≥18 years) with histologically confirmed R/M SCCHN of the oral cavity, oropharynx, hypopharynx, or larynx between October 2013 and August 2015. Follow-up ended September 2016. Analysis for the present report was conducted between June 2016 and December 2017. Interventions Combination treatment with platinum (carboplatin or cisplatin), fluorouracil, cetuximab (the EXTREME regimen), and either placebo or motolimod, each administered intravenously every 3 weeks. Patients received a maximum of 6 chemotherapy cycles, after which patients received weekly cetuximab with either placebo or motolimod every 4 weeks. Main Outcomes and Measures Progression-free survival (PFS) as determined by independent central review using immune-related RECIST (Response Evaluation Criteria in Solid Tumors). Key secondary end points included overall survival (OS) and safety. Results Of 195 patients enrolled, 85% were men (n = 166); 82% were white (n = 159); median age was 58 years (range 23-81 years). Median PFS was 6.1 vs 5.9 months (hazard ratio [HR], 0.99; 1-sided 90% CI, 0.00-1.22; P = .47), and median OS was 13.5 vs 11.3 months (HR, 0.95; 1-sided 90% CI, 0.00-1.22; P = .40) for motolimod vs placebo. Increased incidence of injection site reactions, pyrexia, chills, anemia, and acneiform rash were noted with motolimod. Of 83 cases oropharyngeal cancer, 52 (63%) were human papillomavirus (HPV) positive. In a prespecified subgroup analysis of HPV-positive participants, motolimod vs placebo resulted in significantly longer PFS (7.8 vs 5.9 months; HR, 0.58; 1-sided 90% CI, 0.00-0.90; P = .046) and OS (15.2 vs 12.6 months; HR, 0.41; 1-sided 90% CI, 0.00-0.77; P = .03). In an exploratory analysis, patients with injection site reactions had longer PFS and OS (median PFS, 7.1 vs 5.9 months; HR, 0.69; 1-sided 90% CI, 0.00-0.93; P = .06; and median OS, 18.7 vs 12.6; HR, 0.56; 1-sided 90% CI, 0.00-0.81; P = .02). Conclusions and Relevance Adding motolimod to the EXTREME regimen was well tolerated but did not improve PFS or OS in the intent-to-treat population. Significant benefit was observed in HPV-positive patients and those with injection site reactions, suggesting that TLR8 stimulation may benefit subset- and biomarker-selected patients. Trial Registration ClinicalTrials.gov identifier: NCT01836029.
Collapse
Affiliation(s)
- Robert L Ferris
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Nabil F Saba
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Barbara J Gitlitz
- Keck School of Medicine, University of Southern California, Los Angeles
| | | | | | | | - John C Morris
- University of Cincinnati Cancer Institute, Cincinnati, Ohio
| | | | - Julie E Bauman
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Moon Fenton
- West Cancer Center, University of Tennessee, Memphis
| | | | | | | | | | | | | | - Michael Gibson
- University Hospitals Seidman Cancer Center, Cleveland, Ohio
| | | | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - Ezra E W Cohen
- Moores Cancer Center, University of California San Diego, La Jolla
| |
Collapse
|
25
|
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019; 18:845-867. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Jules A Hoffmann
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France.,CNRS UPR 9022, Institute for Molecular and Cellular Biology, Strasbourg, France.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université Paris Descartes, Paris, France.
| |
Collapse
|
26
|
Tan LSY, Wong B, Gangodu NR, Lee AZE, Kian Fong Liou A, Loh KS, Li H, Yann Lim M, Salazar AM, Lim CM. Enhancing the immune stimulatory effects of cetuximab therapy through TLR3 signalling in Epstein-Barr virus (EBV) positive nasopharyngeal carcinoma. Oncoimmunology 2018; 7:e1500109. [PMID: 30377565 DOI: 10.1080/2162402x.2018.1500109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022] Open
Abstract
Cetuximab immunotherapy targeting the epidermal growth factor receptor (EGFR) has been used to treat nasopharyngeal cancer (NPC) with some success. Therefore, combining an immune adjuvant to boost the immune microenvironment may improve its clinical efficacy. Herein, we investigate the immune-stimulatory effects of Poly-ICLC (a TLR3 agonist) in enhancing cetuximab-based immunotherapy and correlate these responses with FcɣRIIIa (V158F) or TLR3 single nucleotide polymorphisms (SNPs- L412F and C829T) expressed on immune effector cells. We observed high levels of TLR3 mRNA in NPC cells; and both TLR3 and EGFR expression were unaffected by Poly-ICLC treatment. Cetuximab plus Poly-ICLC significantly enhanced NK-mediated ADCC through up-regulation of CD107a and Granzyme B expression. This effect was independent of FcɣRIIIa-V158F and TLR3-L412F or TLR3-C829T polymorphisms expressed on NK cells. Additionally, IFN-ɣ expression and secretion were doubled following cetuximab plus poly-ICLC treatment; compared to either treatment alone. This effect was independent of TLR3 polymorphisms. Consequentially, adaptive immune responses were also seen with increased DC maturation (CD83), co-stimulatory molecules expression (CD80 and CD86) and increased frequency of EGFR-specific CD8 + T cells following Poly-ICLC treatment. The percentage of CD80+ CD83+ and CD83+ CD86+ DC was highest in the Poly-ICLC plus cetuximab group, compared to either treatment alone. These results demonstrate the effectiveness of Poly-ICLC in enhancing both cetuximab-mediated innate and adaptive anti-tumor immunity against NPC, which is independent of FcɣRIIIa-158, TLR3-L412F or TLR3-C829T polymorphisms. Additionally, Poly-ICLC does not downregulate EGFR expression on NPC cells and hence, will not dampen cetuximab anti-tumor activity.
Collapse
Affiliation(s)
- Louise Soo Yee Tan
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore
| | - Benjamin Wong
- Department of Pathology, National University Health System Singapore, Singapore
| | - Nagaraja Rao Gangodu
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore
| | - Andrea Zhe Ern Lee
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore
| | - Anthony Kian Fong Liou
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore
| | - Hao Li
- Department of Otorhinolaryngology, Tan Tock Seng Hospital, Singapore
| | - Ming Yann Lim
- Department of Otorhinolaryngology, Tan Tock Seng Hospital, Singapore
| | | | - Chwee Ming Lim
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore.,Department of Otolaryngology, National University of Singapore, Singapore
| |
Collapse
|
27
|
Kansy BA, Shayan G, Jie HB, Gibson SP, Lei YL, Brandau S, Lang S, Schmitt NC, Ding F, Lin Y, Ferris RL. T cell receptor richness in peripheral blood increases after cetuximab therapy and correlates with therapeutic response. Oncoimmunology 2018; 7:e1494112. [PMID: 30377562 PMCID: PMC6205044 DOI: 10.1080/2162402x.2018.1494112] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
The role of T cell receptor (TCR) signaling for adaptive immune responses is essential. The ability to respond to a broad spectrum of tumor antigens requires an adaptive selection of various TCR. So far, little is known about the role of TCR richness and clonality in the cellular immune response to head and neck cancer (HNC), though the Endothelial Growth Factor Receptor (EGFR)-specific CD8+ T cell response can be enhanced by cetuximab therapy. Therefore, we investigated differences in TCR sequences between human papillomavirus (HPV)+ and HPV- HNC patients, as well as differences in TCR sequence characteristics between T cells of peripheral blood mononuclear cells (PBMC) and tumor infiltrating lymphocytes (TIL). Additionally, we were able to investigate the TCR richness and clonality in samples pre- and post- treatment in a prospective clinical trial of neoadjuvant cetuximab. Interestingly, HPV+ and HPV- HNSCC did not significantly differ in the extent of TCR clonality and richness in PBMC or TIL. However, neoadjuvant cetuximab treatment increased the number of unique TCR sequences in PBMC (p = 0.0003), which was more prominent in the clinical responder patients compared to non-responders (p = 0.04). A trend toward TCR gene focusing was observed in TIL (p = 0.1) post-treatment. Thus, an increase in richness of TCR sequences in the periphery with a focusing at the tumor site is associated with an improved treatment response, suggesting an influence of peripheral quantity and intratumoral quality on adaptive immunity in cetuximab treated patients.
Collapse
Affiliation(s)
- Benjamin A Kansy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Gulidanna Shayan
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hyun-Bae Jie
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra P Gibson
- Cancer Immunology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yu L Lei
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Periodontics and Oral Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Nicole C Schmitt
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yan Lin
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany.,Cancer Immunology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Whiteside TL. Head and Neck Carcinoma Immunotherapy: Facts and Hopes. Clin Cancer Res 2018; 24:6-13. [PMID: 28751445 PMCID: PMC5754223 DOI: 10.1158/1078-0432.ccr-17-1261] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/14/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Cancer of the head and neck (HNC) is a heterogeneous disease of the upper aerodigestive tract, encompassing distinct histologic types, different anatomic sites, and human papillomavirus (HPV)-positive as well as HPV-negative cancers. Advanced/recurrent HNCs have poor prognosis with low survival rates. Tumor-mediated inhibition of antitumor immune responses and a high mutational burden are common features of HNCs. Both are responsible for the successful escape of these tumors from the host immune system. HNCs evolve numerous mechanisms of evasion from immune destruction. These mechanisms are linked to genetic aberrations, so that HNCs with a high mutational load are also highly immunosuppressive. The tumor microenvironment of these cancers is populated by immune cells that are dysfunctional, inhibitory cytokines, and exosomes carrying suppressive ligands. Dysfunctional immune cells in patients with recurrent/metastatic HNC can be made effective by the delivery of immunotherapies in combination with conventional treatments. With many promising immune-based strategies available, the future of immune therapies in HNC is encouraging, especially as methods for genetic profiling and mapping the immune landscape of the tumor are being integrated into a personalized approach. Efficiency of immune therapies is expected to rapidly improve with the possibility for patients' selection based on personal immunogenomic profiles. Noninvasive biomarkers of response to therapy will be emerging as a better understanding of the various molecular signals co-opted by the tumors is gained. The emerging role of immunotherapy as a potentially beneficial addition to standard treatments for recurrent/metastatic HNC offers hope to the patients for whom no other therapeutic options exist. Clin Cancer Res; 24(1); 6-13. ©2017 AACR.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Departments of Pathology, Immunology, and Otolaryngology, University of Pittsburgh Cancer Institute and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Shayan G, Kansy BA, Gibson SP, Srivastava RM, Bryan JK, Bauman JE, Ohr J, Kim S, Duvvuri U, Clump DA, Heron DE, Johnson JT, Hershberg RM, Ferris RL. Phase Ib Study of Immune Biomarker Modulation with Neoadjuvant Cetuximab and TLR8 Stimulation in Head and Neck Cancer to Overcome Suppressive Myeloid Signals. Clin Cancer Res 2017; 24:62-72. [PMID: 29061643 DOI: 10.1158/1078-0432.ccr-17-0357] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/18/2017] [Accepted: 10/17/2017] [Indexed: 01/04/2023]
Abstract
Purpose: The response rate of patients with head and neck squamous cell carcinoma (HNSCC) to cetuximab therapy is only 15% to 20%, despite frequent EGFR overexpression. Because immunosuppression is common in HNSCC, we hypothesized that adding a proinflammatory TLR8 agonist to cetuximab therapy might result in enhanced T-lymphocyte stimulation and anti-EGFR-specific priming.Experimental Design: Fourteen patients with previously untreated HNSCC were enrolled in this neoadjuvant trial and treated preoperatively with 3 to 4 weekly doses of motolimod (2.5 mg/m2) and cetuximab. Correlative tumor and peripheral blood specimens were obtained at baseline and at the time of surgical resection and analyzed for immune biomarker changes. Preclinical in vitro studies were also performed to assess the effect of cetuximab plus motolimod on myeloid cells.Results: TLR8 stimulation skewed monocytes toward an M1 phenotype and reversed myeloid-derived suppressor cell (MDSC) suppression of T-cell proliferation in vitro These data were validated in a prospective phase Ib neoadjuvant trial, in which fewer MDSC and increased M1 monocyte infiltration were found in tumor-infiltrating lymphocytes. Motolimod plus cetuximab also decreased induction of Treg and reduced markers of suppression, including CTLA-4, CD73, and membrane-bound TGFβ. Significantly increased circulating EGFR-specific T cells were observed, concomitant with enhanced CD8+ T-cell infiltration into tumors. These T cells manifested increased T-cell receptor (TCR) clonality, upregulation of the costimulatory receptor CD27, and downregulation of inhibitory receptor TIGIT.Conclusions: Enhanced inflammatory stimulation in the tumor microenvironment using a TLR agonist overcomes suppressive myeloid and regulatory cells, enhancing the cellular antitumor immune response by therapeutic mAb in HNSCC. Clin Cancer Res; 24(1); 62-72. ©2017 AACR.
Collapse
Affiliation(s)
| | - Benjamin A Kansy
- Department of Otolaryngology, Essen University Hospital, Essen, Germany
| | | | | | | | | | - James Ohr
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Seungwon Kim
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Clump
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Jonas T Johnson
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Robert L Ferris
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania. .,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Retrovirus-Based Virus-Like Particle Immunogenicity and Its Modulation by Toll-Like Receptor Activation. J Virol 2017; 91:JVI.01230-17. [PMID: 28794025 DOI: 10.1128/jvi.01230-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Retrovirus-derived virus-like particles (VLPs) are particularly interesting vaccine platforms, as they trigger efficient humoral and cellular immune responses and can be used to display heterologous antigens. In this study, we characterized the intrinsic immunogenicity of VLPs and investigated their possible adjuvantization by incorporation of Toll-like receptor (TLR) ligands. We designed a noncoding single-stranded RNA (ncRNA) that could be encapsidated by VLPs and induce TLR7/8 signaling. We found that VLPs efficiently induce in vitro dendritic cell activation, which can be improved by ncRNA encapsidation (ncRNAVLPs). Transcriptome studies of dendritic cells harvested from the spleens of immunized mice identified antigen presentation and immune activation as the main gene expression signatures induced by VLPs, while TLR signaling and Th1 signatures characterize ncRNAVLPs. In vivo and compared with standard VLPs, ncRNAVLPs promoted Th1 responses and improved CD8+ T cell proliferation in a MyD88-dependent manner. In an HIV vaccine mouse model, HIV-pseudotyped ncRNAVLPs elicited stronger antigen-specific cellular and humoral responses than VLPs. Altogether, our findings provide molecular evidence for a strong vaccine potential of retrovirus-derived VLPs that can be further improved by harnessing TLR-mediated immune activation.IMPORTANCE We previously reported that DNA vaccines encoding antigens displayed in/on retroviral VLPs are more efficient than standard DNA vaccines at inducing cellular and humoral immune responses. We aimed to decipher the mechanisms and investigated the VLPs' immunogenicity independently of DNA vaccination. We show that VLPs have the ability to activate antigen-presenting cells directly, thus confirming their intrinsic immunostimulatory properties and their potential to be used as an antigenic platform. Notably, this immunogenicity can be further improved and/or oriented by the incorporation into VLPs of ncRNA, which provides further TLR-mediated activation and Th1-type CD4+ and CD8+ T cell response orientation. Our results highlight the versatility of retrovirus-derived VLP design and the value of using ncRNA as an intrinsic vaccine adjuvant.
Collapse
|
31
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
Moskovitz JM, Moy J, Seiwert TY, Ferris RL. Immunotherapy for Head and Neck Squamous Cell Carcinoma: A Review of Current and Emerging Therapeutic Options. Oncologist 2017; 22:680-693. [PMID: 28507203 PMCID: PMC5469583 DOI: 10.1634/theoncologist.2016-0318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/13/2017] [Indexed: 01/21/2023] Open
Abstract
Advances in the field of cancer immunotherapy have occurred rapidly over the past decade. Exciting results from clinical trials have led to new treatment options and improved survival for patients with a myriad of solid tumor pathologies. However, questions remain unanswered regarding duration and timing of therapy, combination regimens, appropriate biomarkers of disease, and optimal monitoring of therapeutic response. This article reviews emerging immunotherapeutic agents and significant clinical trials that have led to advancements in the field of immuno-oncology for patients with head and neck squamous cell carcinoma. IMPLICATIONS FOR PRACTICE This review article summarizes recently developed agents that harness the immune system to fight head and neck squamous cell carcinoma. A brief review of the immune system and its role in cancer development is included. Recently completed and emerging therapeutic trials centering on the immune system and head and neck cancer are reviewed.
Collapse
Affiliation(s)
- Jessica M Moskovitz
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Moy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tanguy Y Seiwert
- Department of Medicine, Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
- The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Monk BJ, Brady MF, Aghajanian C, Lankes HA, Rizack T, Leach J, Fowler JM, Higgins R, Hanjani P, Morgan M, Edwards R, Bradley W, Kolevska T, Foukas P, Swisher EM, Anderson KS, Gottardo R, Bryan JK, Newkirk M, Manjarrez KL, Mannel RS, Hershberg RM, Coukos G. A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study. Ann Oncol 2017; 28:996-1004. [PMID: 28453702 PMCID: PMC5406764 DOI: 10.1093/annonc/mdx049] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A phase 2, randomized, placebo-controlled trial was conducted in women with recurrent epithelial ovarian carcinoma to evaluate the efficacy and safety of motolimod-a Toll-like receptor 8 (TLR8) agonist that stimulates robust innate immune responses-combined with pegylated liposomal doxorubicin (PLD), a chemotherapeutic that induces immunogenic cell death. PATIENTS AND METHODS Women with ovarian, fallopian tube, or primary peritoneal carcinoma were randomized 1 : 1 to receive PLD in combination with blinded motolimod or placebo. Randomization was stratified by platinum-free interval (≤6 versus >6-12 months) and Gynecologic Oncology Group (GOG) performance status (0 versus 1). Treatment cycles were repeated every 28 days until disease progression. RESULTS The addition of motolimod to PLD did not significantly improve overall survival (OS; log rank one-sided P = 0.923, HR = 1.22) or progression-free survival (PFS; log rank one-sided P = 0.943, HR = 1.21). The combination was well tolerated, with no synergistic or unexpected serious toxicity. Most patients experienced adverse events of fatigue, anemia, nausea, decreased white blood cells, and constipation. In pre-specified subgroup analyses, motolimod-treated patients who experienced injection site reactions (ISR) had a lower risk of death compared with those who did not experience ISR. Additionally, pre-treatment in vitro responses of immune biomarkers to TLR8 stimulation predicted OS outcomes in patients receiving motolimod on study. Immune score (tumor infiltrating lymphocytes; TIL), TLR8 single-nucleotide polymorphisms, mutational status in BRCA and other DNA repair genes, and autoantibody biomarkers did not correlate with OS or PFS. CONCLUSIONS The addition of motolimod to PLD did not improve clinical outcomes compared with placebo. However, subset analyses identified statistically significant differences in the OS of motolimod-treated patients on the basis of ISR and in vitro immune responses. Collectively, these data may provide important clues for identifying patients for treatment with immunomodulatory agents in novel combinations and/or delivery approaches. TRIAL REGISTRATION Clinicaltrials.gov, NCT 01666444.
Collapse
Affiliation(s)
- B. J. Monk
- Arizona Oncology (US Oncology Network), University of Arizona, College of Medicine, Creighton University School of Medicine at St. Joseph's Hospital, Phoenix
| | - M. F. Brady
- GOG Foundation Statistical and Data Center, Roswell Park Cancer Institute, Buffalo
| | - C. Aghajanian
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York
| | - H. A. Lankes
- GOG Foundation Statistical and Data Center, Roswell Park Cancer Institute, Buffalo
| | - T. Rizack
- Women & Infants Hospital, Alpert Medical School of Brown University, Providence
| | - J. Leach
- Metro-Minnesota Community Oncology Research Consortium, Minneapolis
| | | | - R. Higgins
- Carolinas Medical Center Levine Cancer Institute, Charlotte
| | - P. Hanjani
- Hanjani Institute for Gynecologic Oncology, Abington Memorial Hospital, Abington
| | - M. Morgan
- University of Pennsylvania Health System, Philadelphia
| | - R. Edwards
- University of Pittsburgh Medical Center, Pittsburgh
| | - W. Bradley
- The Medical College of Wisconsin, Milwaukee
| | - T. Kolevska
- Kaiser Permanente Medical Center–Vallejo, Vallejo
| | - P. Foukas
- Ludwig Institute for Cancer Research, Lausanne
| | | | | | - R. Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | | | | | | | - R. S. Mannel
- The Oklahoma University College of Medicine, Oklahoma City, USA
| | | | - G. Coukos
- Ludwig Institute for Cancer Research, Lausanne
| |
Collapse
|
34
|
Weidhaas JB, Harris J, Schaue D, Chen AM, Chin R, Axelrod R, El-Naggar AK, Singh AK, Galloway TJ, Raben D, Wang D, Matthiesen C, Avizonis VN, Manon RR, Yumen O, Nguyen-Tan PF, Trotti A, Skinner H, Zhang Q, Ferris RL, Sidransky D, Chung CH. The KRAS-Variant and Cetuximab Response in Head and Neck Squamous Cell Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol 2017; 3:483-491. [PMID: 28006059 PMCID: PMC5470422 DOI: 10.1001/jamaoncol.2016.5478] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/09/2016] [Indexed: 01/07/2023]
Abstract
IMPORTANCE There is a significant need to find biomarkers of response to radiotherapy and cetuximab in locally advanced head and neck squamous cell carcinoma (HNSCC) and biomarkers that predict altered immunity, thereby enabling personalized treatment. OBJECTIVES To examine whether the Kirsten rat sarcoma viral oncogene homolog (KRAS)-variant, a germline mutation in a microRNA-binding site in KRAS, is a predictive biomarker of cetuximab response and altered immunity in the setting of radiotherapy and cisplatin treatment and to evaluate the interaction of the KRAS-variant with p16 status and blood-based transforming growth factor β1 (TGF-β1). DESIGN, SETTING, AND PARTICIPANTS A total of 891 patients with advanced HNSCC from a phase 3 trial of cisplatin plus radiotherapy with or without cetuximab (NRG Oncology RTOG 0522) were included in this study, and 413 patients with available samples were genotyped for the KRAS-variant. Genomic DNA was tested for the KRAS-variant in a CLIA-certified laboratory. Correlation of the KRAS-variant, p16 positivity, outcome, and TGF-β1 levels was evaluated. Hazard ratios (HRs) were estimated with the Cox proportional hazards model. MAIN OUTCOMES AND MEASURES The correlation of KRAS-variant status with cetuximab response and outcome, p16 status, and plasma TGF-β1 levels was tested. RESULTS Of 891 patients eligible for protocol analyses (786 male [88.2%], 105 [11.2%] female, 810 white [90.9%], 81 nonwhite [9.1%]), 413 had biological samples for KRAS-variant testing, and 376 had plasma samples for TGF-β1 measurement. Seventy patients (16.9%) had the KRAS-variant. Overall, for patients with the KRAS-variant, cetuximab improved both progression-free survival (PFS) for the first year (HR, 0.31; 95% CI, 0.10-0.94; P = .04) and overall survival (OS) in years 1 to 2 (HR, 0.19; 95% CI, 0.04-0.86; P = .03). There was a significant interaction of the KRAS-variant with p16 status for PFS in patients treated without cetuximab. The p16-positive patients with the KRAS-variant treated without cetuximab had worse PFS than patients without the KRAS-variant (HR, 2.59; 95% CI, 0.91-7.33; P = .07). There was a significant 3-way interaction among the KRAS-variant, p16 status, and treatment for OS (HR, for KRAS-variant, cetuximab and p16 positive, 0.22; 95% CI, 0.03-1.66; HR for KRAS-variant, cetuximab and p16 negative, 1.43; 95% CI, 0.48-4.26; HR for KRAS-variant, no cetuximab and p16 positive, 2.48; 95% CI, 0.64-9.65; and HR for KRAS-variant, no cetuximab and p16 negative, 0.61; 95% CI, 0.23-1.59; P = .02). Patients with the KRAS-variant had significantly elevated TGF-β1 plasma levels (median, 23 376.49 vs 18 476.52 pg/mL; P = .03) and worse treatment-related toxic effects. CONCLUSIONS AND RELEVANCE Patients with the KRAS-variant with HNSCC significantly benefit from the addition of cetuximab to radiotherapy and cisplatin, and there is a significant interaction between the KRAS-variant and p16 status. Elevated TGF-β1 levels in patients with the KRAS-variant suggests that cetuximab may help these patients by overcoming TGF-β1-induced suppression of antitumor immunity. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00265941.
Collapse
Affiliation(s)
- Joanne B. Weidhaas
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Jonathan Harris
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Allen M. Chen
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Robert Chin
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles, California
| | - Rita Axelrod
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adel K. El-Naggar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | | | | | - David Raben
- Department of Radiation Oncology, University of Colorado at Denver, Aurora
| | - Dian Wang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee
| | - Chance Matthiesen
- Department of Radiation Oncology, Oklahoma University Health Sciences Center, Oklahoma City
| | - Vilija N. Avizonis
- Department of Radiation Oncology, Intermountain Medical Center, Salt Lake City, Utah
| | - Rafael R. Manon
- University of Florida Health Cancer Center, Orlando Health, Orlando
| | - Omar Yumen
- Department of Radiation Oncology, Geisinger Medical Center CCOP, Danville, Pennsylvania
| | - Phuc Felix Nguyen-Tan
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montreal, Montreal, Quebec, Canada
| | - Andy Trotti
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Heath Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Qiang Zhang
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - Robert L. Ferris
- Cancer Immunology Program and Tumor Microvenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - David Sidransky
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine H. Chung
- Department of Head and Neck–Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
35
|
Bauman JE, Cohen E, Ferris RL, Adelstein DJ, Brizel DM, Ridge JA, O’Sullivan B, Burtness BA, Butterfield LH, Carson WE, Disis ML, Fox BA, Gajewski TF, Gillison ML, Hodge JW, Le QT, Raben D, Strome SE, Lynn J, Malik S. Immunotherapy of head and neck cancer: Emerging clinical trials from a National Cancer Institute Head and Neck Cancer Steering Committee Planning Meeting. Cancer 2017; 123:1259-1271. [PMID: 27906454 PMCID: PMC5705038 DOI: 10.1002/cncr.30449] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
Recent advances have permitted successful therapeutic targeting of the immune system in head and neck squamous cell carcinoma (HNSCC). These new immunotherapeutic targets and agents are being rapidly adopted by the oncologic community and hold considerable promise. The National Cancer Institute sponsored a Clinical Trials Planning Meeting to address the issue of how to further investigate the use of immunotherapy in patients with HNSCC. The goals of the meeting were to consider phase 2 or 3 trial designs primarily in 3 different patient populations: those with previously untreated, human papillomavirus-initiated oropharyngeal cancers; those with previously untreated, human papillomavirus-negative HNSCC; and those with recurrent/metastatic HNSCC. In addition, a separate committee was formed to develop integrative biomarkers for the clinical trials. The meeting started with an overview of key immune components and principles related to HNSCC, including immunosurveillance and immune escape. Four clinical trial concepts were developed at the meeting integrating different immunotherapies with existing standards of care. These designs were presented for implementation by the head and neck committees of the National Cancer Institute-funded National Clinical Trials Network. This article summarizes the proceedings of this Clinical Trials Planning Meeting, the purpose of which was to facilitate the rigorous development and design of randomized phase 2 and 3 immunotherapeutic trials in patients with HNSCC. Although reviews usually are published immediately after the meeting is held, this report is unique because there are now tangible clinical trial designs that have been funded and put into practice and the studies are being activated to accrual. Cancer 2017;123:1259-1271. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Julie E. Bauman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ezra Cohen
- Department of Medicine, University of California at San Diego, San Diego, California
| | - Robert L. Ferris
- Department of Otolaryngology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David J. Adelstein
- Department of Medicine, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - David M. Brizel
- Department of Radiation Oncology, Duke Cancer Institute, Durham, North Carolina
| | - John A. Ridge
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Brian O’Sullivan
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Barbara A. Burtness
- Department of Radiation Oncology, Yale Cancer Center, New Haven, Connecticut
| | | | | | - Mary L. Disis
- Department of Medicine, University of Washington, Seattle, Washington
| | - Bernard A. Fox
- Department of Immunology, Earle A. Chiles Research Institute, Portland, Oregon
| | | | - Maura L. Gillison
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | | - Quynh-Thu Le
- Department of Radiation Oncology-Radiation Therapy, Stanford University, Stanford, California
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Scott E. Strome
- Department of Otolaryngology, University of Maryland, Baltimore, Maryland
| | - Jean Lynn
- Cancer Therapeutics Evaluation Program
| | | |
Collapse
|
36
|
Clinical value of monoclonal antibodies and tyrosine kinase inhibitors in the treatment of head and neck squamous cell carcinoma. Med Oncol 2017; 34:60. [PMID: 28315228 PMCID: PMC5357244 DOI: 10.1007/s12032-017-0918-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of malignant tumours that affects over 500,000 patients per year. Treatment failure is generally due to the heterogeneity of these tumours and to the serious adverse effects associated with treatment. Immunological system impairment, which is common in HNSCC, further contributes to treatment failure by mediating tumour escape mechanisms. To date, the only clinically approved targeted therapy agent is cetuximab, a monoclonal antibody (mAb) that binds to, and inhibits, epidermal growth factor receptor, which is widely overexpressed in HNSCC. Cetuximab has been proven to induce antibody-dependent cellular cytotoxicity, further magnifying its therapeutic effect. DNA sequencing of HNSCC cells has identified the presence of mutated genes, thus making their protein products potential targets for therapeutic inhibition. Immune mechanisms have been found to have a significant impact on carcinogenesis, thus providing the rationale to support efforts to identify anticancer compounds with immunomodulatory properties. In the context of the rapid development of novel targeted agents, the aim of the present paper is to review our current understanding of HNSCC and to review the novel anticancer agents (mAbs and TKIs) introduced in recent years, including an assessment of their efficacy and mechanisms of action.
Collapse
|
37
|
Chow LQM, Morishima C, Eaton KD, Baik CS, Goulart BH, Anderson LN, Manjarrez KL, Dietsch GN, Bryan JK, Hershberg RM, Disis ML, Martins RG. Phase Ib Trial of the Toll-like Receptor 8 Agonist, Motolimod (VTX-2337), Combined with Cetuximab in Patients with Recurrent or Metastatic SCCHN. Clin Cancer Res 2016; 23:2442-2450. [PMID: 27810904 DOI: 10.1158/1078-0432.ccr-16-1934] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
Abstract
Purpose: As Toll-like receptors (TLR) are key mediators of immune responses, TLR agonists may be important for augmenting the efficacy of therapies for squamous cell carcinoma of the head and neck (SCCHN). Motolimod (VTX-2337), a selective small-molecule agonist of TLR8, stimulates natural killer (NK) cells, dendritic cells, and monocytes. A phase Ib clinical trial assessed the safety and antitumor activity of motolimod in combination with cetuximab in patients with SCCHN. Correlative biomarkers of immune activity were explored.Experimental Design: Thirteen patients with recurrent or metastatic SCCHN were enrolled in this open-label, dose-escalation study using a standard 3 + 3 design. Doses of motolimod (2.5, 3.0, or 3.5 mg/m2) were given on days 1, 8, and 15, in combination with fixed weekly doses of cetuximab in 28-day cycles.Results: There were no protocol-defined dose-limiting toxicities, drug-related deaths, or evidence of synergistic toxicities between motolimod and cetuximab. Clinical tolerability at the 3.5 mg/m2 dose level was not optimal for repeated dosing and 3.0 mg/m2 was identified as the MTD. Two patients achieved partial responses for an overall response rate of 15%. Five patients had disease stabilization equating to a disease control rate of 54%. Statistically significant increases in plasma cytokines and in the frequency and activation of circulating NK cells were observed.Conclusions: Motolimod can be safely administered in combination with cetuximab with an acceptable toxicity profile. Encouraging antitumor activity and robust pharmacodynamic responses were observed. Motolimod is being further investigated in a phase II trial in patients with SCCHN (ClinicalTrials.gov ID: NCT01836029). Clin Cancer Res; 23(10); 2442-50. ©2016 AACR.
Collapse
|
38
|
Davis RJ, Ferris RL, Schmitt NC. Costimulatory and coinhibitory immune checkpoint receptors in head and neck cancer: unleashing immune responses through therapeutic combinations. CANCERS OF THE HEAD & NECK 2016; 1:12. [PMID: 31093342 PMCID: PMC6460794 DOI: 10.1186/s41199-016-0013-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/01/2016] [Indexed: 06/09/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a model of escape from anti-tumor immunity. The high frequency of p53 tumor suppressor loss in HNSCC leads to genomic instability and immune stimulation through the generation of neoantigens. However, the aggressive nature of HNSCC tumors and significant rates of resistance to conventional therapies highlights the ability of HNSCC to evade this immune response. Advances in understanding the role of co-stimulatory and immune checkpoint receptors in HNSCC-mediated immunosuppression lay the foundation for development of novel therapeutic approaches. This article provides an overview of these co-stimulatory and immune checkpoint pathways, as well as a review of preclinical and clinical evidence supporting the modulation of these pathways in HNSCC. Finally, the synergistic potential of combining these approaches is discussed, along with an update of current clinical trials evaluating combinations of immune-based therapies in HNSCC patients.
Collapse
Affiliation(s)
- Ruth J. Davis
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 10 Center Drive, Room 5B-39, Bethesda, MD 20892 USA
| | - Robert L. Ferris
- Department of Otolaryngology, Hillman Cancer Center Research Pavilion, University of Pittsburgh, 5117 Centre Avenue, Room 2.26b, Pittsburgh, PA 15213-1863 USA
- Department of Immunology, Hillman Cancer Center Research Pavilion, University of Pittsburgh, 5117 Centre Avenue, Room 2.26b, Pittsburgh, PA 15213-1863 USA
- Cancer Immunology Programm, Hillman Cancer Center Research Pavilion, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Room 2.26b, Pittsburgh, PA 15213-1863 USA
| | - Nicole C. Schmitt
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 10 Center Drive, Room 5B-39, Bethesda, MD 20892 USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, 6420 Rockledge Drive, Suite 4920, Bethesda, MD 20817 USA
| |
Collapse
|
39
|
Novel Immunotherapeutic Approaches for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8100087. [PMID: 27669306 PMCID: PMC5082377 DOI: 10.3390/cancers8100087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
The immune system plays a key role in preventing tumor formation by recognizing and destroying malignant cells. For over a century, researchers have attempted to harness the immune response as a cancer treatment, although this approach has only recently achieved clinical success. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is associated with cigarette smoking, alcohol consumption, betel nut use, and human papillomavirus infection. Unfortunately, worldwide mortality from HNSCC remains high, partially due to limits on therapy secondary to the significant morbidity associated with current treatments. Therefore, immunotherapeutic approaches to HNSCC treatment are attractive for their potential to reduce morbidity while improving survival. However, the application of immunotherapies to this disease has been challenging because HNSCC is profoundly immunosuppressive, resulting in decreased absolute lymphocyte counts, impaired natural killer cell function, reduced antigen-presenting cell function, and a tumor-permissive cytokine profile. Despite these challenges, numerous clinical trials testing the safety and efficacy of immunotherapeutic approaches to HNSCC treatment are currently underway, many of which have produced promising results. This review will summarize immunotherapeutic approaches to HNSCC that are currently undergoing clinical trials.
Collapse
|
40
|
van Egmond M, Vidarsson G, Bakema JE. Cross-talk between pathogen recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. Immunol Rev 2016; 268:311-27. [PMID: 26497530 DOI: 10.1111/imr.12333] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The individual role of pathogen-binding Toll-like receptors (TLRs) and antibody-binding Fc receptors (FcRs) during pathogenic infections has been studied extensively. However, combined activation of these different receptor classes has received little attention, even though they are triggered simultaneously when immune cells bind antibody-opsonized pathogens. In the last few years, it has become evident that joined activation of TLRs and FcRs substantially tailors inflammatory immune responses, which is an efficient and controlled mechanism of the host to act upon invading pathogens. In this review, we discuss the mechanisms of cross-talk between different TLRs and FcRs and the resulting inflammatory immune responses. Furthermore, we propose how chronic activation via this cross-talk might be detrimental in inflammatory (auto) immune diseases. We conclude with the potential exploitation of the interplay between TLRs and FcRs for monoclonal antibody therapy to target tumors. Future interests in this field of research include establishing a more detailed and mechanistic understanding of the mode of action of TLR and FcR cross-talk and exploration of its physiological importance in health and disease. This may furthermore open up novel therapeutic options for intervention in inflammatory diseases or cancer.
Collapse
Affiliation(s)
- Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jantine E Bakema
- Tumor Biology Section, Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Wu TYH. Strategies for designing synthetic immune agonists. Immunology 2016; 148:315-25. [PMID: 27213842 DOI: 10.1111/imm.12622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
Abstract
Enhancing the immune system is a validated strategy to combat infectious disease, cancer and allergy. Nevertheless, the development of immune adjuvants has been hampered by safety concerns. Agents that can stimulate the immune system often bear structural similarities with pathogen-associated molecular patterns found in bacteria or viruses and are recognized by pattern recognition receptors (PRRs). Activation of these PRRs results in the immediate release of inflammatory cytokines, up-regulation of co-stimulatory molecules, and recruitment of innate immune cells. The distribution and duration of these early inflammatory events are crucial in the development of antigen-specific adaptive immunity in the forms of antibody and/or T cells capable of searching for and destroying the infectious pathogens or cancer cells. However, systemic activation of these PRRs is often poorly tolerated. Hence, different strategies have been employed to modify or deliver immune agonists in an attempt to control the early innate receptor activation through temporal or spatial restriction. These approaches include physicochemical manipulation, covalent conjugation, formulation and conditional activation/deactivation. This review will describe recent examples of discovery and optimization of synthetic immune agonists towards clinical application.
Collapse
|
42
|
Delitto D, Wallet SM, Hughes SJ. Targeting tumor tolerance: A new hope for pancreatic cancer therapy? Pharmacol Ther 2016; 166:9-29. [PMID: 27343757 DOI: 10.1016/j.pharmthera.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023]
Abstract
With a 5-year survival rate of just 8%, pancreatic cancer (PC) is projected to be the second leading cause of cancer deaths by 2030. Most PC patients are not eligible for surgery with curative intent upon diagnosis, emphasizing a need for more effective therapies. However, PC is notoriously resistant to chemoradiation regimens. As an alternative, immune modulating strategies have recently achieved success in melanoma, prompting their application to other solid tumors. For such therapeutic approaches to succeed, a state of immunologic tolerance must be reversed in the tumor microenvironment and that has been especially challenging in PC. Nonetheless, knowledge of the PC immune microenvironment has advanced considerably over the past decade, yielding new insights and perspectives to guide multimodal therapies. In this review, we catalog the historical groundwork and discuss the evolution of the cancer immunology field to its present state with a specific focus on PC. Strategies currently employing immune modulation in PC are reviewed, specifically highlighting 66 clinical trials across the United States and Europe.
Collapse
Affiliation(s)
- Daniel Delitto
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Gautam S, Fatehchand K, Elavazhagan S, Reader BF, Ren L, Mo X, Byrd JC, Tridandapani S, Butchar JP. Reprogramming Nurse-like Cells with Interferon γ to Interrupt Chronic Lymphocytic Leukemia Cell Survival. J Biol Chem 2016; 291:14356-14362. [PMID: 27226587 DOI: 10.1074/jbc.m116.723551] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/25/2022] Open
Abstract
Nurse-like cells (NLCs) play a central role in chronic lymphocytic leukemia (CLL) because they promote the survival and proliferation of CLL cells. NLCs are derived from the monocyte lineage and are driven toward their phenotype via contact-dependent and -independent signals from CLL cells. Because of the central role of NLCs in promoting disease, new strategies to eliminate or reprogram them are needed. Successful reprogramming may be of extra benefit because NLCs express Fcγ receptors (FcγRs) and thus could act as effector cells within the context of antibody therapy. IFNγ is known to promote the polarization of macrophages toward an M1-like state that is no longer tumor-supportive. In an effort to reprogram the phenotype of NLCs, we found that IFNγ up-regulated the M1-related markers CD86 and HLA-DR as well as FcγRIa. This corresponded to enhanced FcγR-mediated cytokine production as well as rituximab-mediated phagocytosis of CLL cells. In addition, IFNγ down-regulated the expression of CD31, resulting in withdrawal of the survival advantage on CLL cells. These results suggest that IFNγ can re-educate NLCs and shift them toward an effector-like state and that therapies promoting local IFNγ production may be effective adjuvants for antibody therapy in CLL.
Collapse
Affiliation(s)
- Shalini Gautam
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Kavin Fatehchand
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Saranya Elavazhagan
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Brenda F Reader
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Li Ren
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210; Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Jilin 130000, China
| | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, Ohio 43210
| | - John C Byrd
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | | | - Jonathan P Butchar
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
44
|
Dietsch GN, Lu H, Yang Y, Morishima C, Chow LQ, Disis ML, Hershberg RM. Coordinated Activation of Toll-Like Receptor8 (TLR8) and NLRP3 by the TLR8 Agonist, VTX-2337, Ignites Tumoricidal Natural Killer Cell Activity. PLoS One 2016; 11:e0148764. [PMID: 26928328 PMCID: PMC4771163 DOI: 10.1371/journal.pone.0148764] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023] Open
Abstract
VTX-2337 (USAN: motolimod) is a selective toll-like receptor 8 (TLR8) agonist, which is in clinical development as an immunotherapy for multiple oncology indications, including squamous cell carcinoma of the head and neck (SCCHN). Activation of TLR8 enhances natural killer cell activation, increases antibody-dependent cell-mediated cytotoxicity, and induces Th1 polarizing cytokines. Here, we show that VTX-2337 stimulates the release of mature IL-1β and IL-18 from monocytic cells through coordinated actions on both TLR8 and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome complex. In vitro, VTX-2337 primed monocytic cells to produce pro-IL-1β, pro-IL-18, and caspase-1, and also activated the NLRP3 inflammasome, thereby mediating the release of mature IL-1β family cytokines. Inhibition of caspase-1 blocked VTX-2337-mediated NLRP3 inflammasome activation, but had little impact on production of other TLR8-induced mediators such as TNFα. IL-18 activated natural killer cells and complemented other stimulatory pathways, including FcγRIII and NKG2D, resulting in IFNγ production and expression of CD107a. NLRP3 activation in vivo was confirmed by a dose-related increase in plasma IL-1β and IL-18 levels in cynomolgus monkeys administered VTX-2337. These results are highly relevant to clinical studies of combination VTX-2337/cetuximab treatment. Cetuximab, a clinically approved, epidermal growth factor receptor-specific monoclonal antibody, activates NK cells through interactions with FcγRIII and facilitates ADCC of tumor cells. Our preliminary findings from a Phase I open-label, dose-escalation, trial that enrolled 13 patients with recurrent or metastatic SCCHN show that patient NK cells become more responsive to stimulation by NKG2D or FcγRIII following VTX-2337 treatment. Together, these results indicate that TLR8 stimulation and inflammasome activation by VTX-2337 can complement FcγRIII engagement and may augment clinical responses in SCCHN patients treated with cetuximab. Trial Registration: ClinicalTrials.gov NCT01334177
Collapse
MESH Headings
- Animals
- Benzazepines/pharmacology
- Benzazepines/therapeutic use
- Carrier Proteins/agonists
- Caspase 1/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/immunology
- Disease Models, Animal
- Female
- Humans
- Inflammasomes/metabolism
- Interleukin-18/biosynthesis
- Interleukin-1beta/biosynthesis
- K562 Cells
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Macaca fascicularis
- Male
- NLR Family, Pyrin Domain-Containing 3 Protein
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Receptors, IgG/metabolism
- Toll-Like Receptor 8/agonists
Collapse
Affiliation(s)
| | - Hailing Lu
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
| | - Yi Yang
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
| | - Chihiro Morishima
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Laura Q. Chow
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Mary L. Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
| | | |
Collapse
|
45
|
Abstract
Although head and neck squamous cell carcinoma has traditionally been considered to be a very immunosuppressive, or at least nonimmunogenic, tumor type, recent results from clinical studies of immune checkpoint blockade strategies have led to resurgence in the enthusiasm for immunotherapeutic approaches. Additional strategies for immunotherapy that are under active investigation include enhancement of cetuximab-mediated antibody-dependent cell-mediated cytotoxicity, tumor vaccines, and engineered T cells for adoptive therapy. All of these studies have early-phase clinical trials under way, and the next several years will be exciting as the results of these studies are reported.
Collapse
Affiliation(s)
- David W Schoppy
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John B Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Abstract
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented.
Collapse
|
47
|
Abstract
Head and neck cancers are a diverse group of malignancies that includes an increasing number of virally mediated cancers in addition to tumors caused by tobacco and alcohol use. In both cases, tumor development is intimately related to the host immune system, and the status of an endogenous antitumor response is likely prognostic. Virally mediated cancers provide unique targets for preventive vaccines that generate immune responses directed against virus-associated antigens. Once head and neck tumors develop, they are commonly treated with surgery, radiotherapy, and/or chemotherapy. These treatments are associated with significant toxicities, and despite this, subgroups of patients respond poorly and are likely to relapse and die of their disease. Tumor immunotherapy may allow for improvements in both treatment-associated toxicity and outcome. In addition to providing specific targets for therapeutic vaccines and adoptive therapy, virally associated cancers may also be particularly dependent on immune checkpoints; therefore, immune checkpoint inhibitors are being actively tested for these diseases. Cancers that are not virally mediated may also respond to immunotherapies, and biomarkers that could predict response to immunotherapy irrespective of viral status are being evaluated. Multiple ongoing studies are testing benefits of immunotherapy in the management of metastatic squamous cell carcinoma of the head and neck. Early promising results pave the way for future studies that will expand testing to nonmetastatic diseases and other types of head and neck cancers. Prospects of combining various immunotherapies and more established treatments such as chemotherapy and radiotherapy are very intriguing and may provide synergistic benefits.
Collapse
Affiliation(s)
- Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
48
|
Massarelli E, Ferrarotto R, Glisson BS. New Strategies in Human Papillomavirus–Related Oropharynx Cancer: Effecting Advances in Treatment for a Growing Epidemic. Clin Cancer Res 2015; 21:3821-8. [DOI: 10.1158/1078-0432.ccr-14-1329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Dietsch GN, Randall TD, Gottardo R, Northfelt DW, Ramanathan RK, Cohen PA, Manjarrez KL, Newkirk M, Bryan JK, Hershberg RM. Late-Stage Cancer Patients Remain Highly Responsive to Immune Activation by the Selective TLR8 Agonist Motolimod (VTX-2337). Clin Cancer Res 2015; 21:5445-52. [DOI: 10.1158/1078-0432.ccr-15-0578] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/25/2015] [Indexed: 11/16/2022]
|
50
|
Rajasekaran N, Chester C, Yonezawa A, Zhao X, Kohrt HE. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment. Immunotargets Ther 2015; 4:91-100. [PMID: 27471715 PMCID: PMC4918249 DOI: 10.2147/itt.s61292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs) depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC) against tumor cells is triggered by the interaction of the fragment crystallizable (Fc) portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics.
Collapse
Affiliation(s)
- Narendiran Rajasekaran
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Cariad Chester
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Atsushi Yonezawa
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Xing Zhao
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Tissue Engineering and Stem Cells Research Center, Department of Immunology, Guiyang Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Holbrook E Kohrt
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|