1
|
Passariello M, Manna L, Rapuano Lembo R, Yoshioka A, Inoue T, Kajiwara K, Hashimoto SI, Nakamura K, De Lorenzo C. Tri-specific tribodies targeting 5T4, CD3, and immune checkpoint drive stronger functional T-cell responses than combinations of antibody therapeutics. Cell Death Discov 2025; 11:58. [PMID: 39929828 PMCID: PMC11811032 DOI: 10.1038/s41420-025-02329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
One of the most promising cancer immunotherapies is based on bi-specific T-cell engagers (BiTEs) that simultaneously bind with one arm to a tumor-associated antigen on tumor cells and with the other one to CD3 complex on T cells to form a TCR-MHC independent immune synapse. We previously generated four novel tri-specific tribodies made up of a Fab targeting 5T4, an oncofetal tumor antigen expressed on several types of tumors, a scFv targeting CD3 on T cells, and an additional scFv specific for an immune checkpoint (IC), such as PD-1, PD-L1 or LAG-3. To verify their advantages over the combinations of BiTEs (CD3/TAA) with IC inhibitors, recently used to overcome tumor immunosuppressive environment, here we tested their functional properties in comparison with clinically validated mAbs targeting the same ICs, used alone or in combination with a control bi-specific devoid of immunomodulatory scFvs, called 53 P. We found that the novel tri-specific tribodies activated human peripheral blood mononuclear cells more efficiently than clinically validated mAbs (atezolizumab, pembrolizumab, and relatlimab) either used alone or in combination with 53 P, leading to a stronger tumor cytotoxicity and cytokines release. In particular, 53L10 tribody targeting PD-L1 displayed much more potent effects than the combination of 53 P with all the clinically validated mAbs and led to complete tumor regression in vivo, showing much higher efficacy than the combination of 53 P and atezolizumab. We shed light on the molecular basis of this potentiated anti-tumor activity by evidencing that the insertion of the anti-PD-L1 moiety in 53L10 led not only to stronger binding of the tri-specific to tumor cells but also efficiently blocked the effects of increased PD-L1 on tumor cells, induced by IFNγ secretion also due to T-cell activation. These results are important also for the design of novel T-cell engagers targeting other tumor antigens.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
- Ceinge - Biotecnologie Avanzate S.C. a.R.L, Naples, Italy
| | - Lorenzo Manna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
- Ceinge - Biotecnologie Avanzate S.C. a.R.L, Naples, Italy
| | - Rosa Rapuano Lembo
- Ceinge - Biotecnologie Avanzate S.C. a.R.L, Naples, Italy
- European School of Molecular Medicine, University of Milan, Milan, Italy
| | | | | | | | | | | | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.
- Ceinge - Biotecnologie Avanzate S.C. a.R.L, Naples, Italy.
| |
Collapse
|
2
|
Huang RR, Spliedt M, Kaufman T, Gorlatov S, Barat B, Shah K, Gill J, Stahl K, DiChiara J, Wang Q, Li JC, Alderson R, Moore PA, Brown JG, Tamura J, Zhang X, Bonvini E, Diedrich G. A Strategy for Simultaneous Engineering of Interspecies Cross-Reactivity, Thermostability, and Expression of a Bispecific 5T4 x CD3 DART ® Molecule for Treatment of Solid Tumors. Antibodies (Basel) 2025; 14:7. [PMID: 39846615 PMCID: PMC11755548 DOI: 10.3390/antib14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Background: Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. Method: To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level. Results: This approach generated multiple DART molecules that exhibited significant improvements in all three properties. The lead DART molecule demonstrated potent in vitro and in vivo anti-tumor activity. Although its clearance in human FcRn-transgenic mice was comparable to that of the parental molecule, faster clearance was observed in cynomolgus monkeys. The lead α5T4 x αCD3 DART molecule displayed no evidence of off-target binding or polyspecificity, suggesting that the increased affinity for the target may account for its accelerated clearance in cynomolgus monkeys. Conclusions: This may reflect target-mediated drug disposition (TMDD), a potential limitation of targeting 5T4, despite its limited expression in healthy tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gundo Diedrich
- MacroGenics Inc., Rockville, MD 20850, USA; (M.S.); (T.K.); (S.G.); (B.B.); (K.S.); (J.G.); (K.S.); (J.D.); (Q.W.); (J.C.L.); (R.A.); (P.A.M.); (J.G.B.); (J.T.); (X.Z.); (E.B.)
| |
Collapse
|
3
|
Harrop R, Blount DG, Khan N, Soyombo M, Moyce L, Drayson MT, Down J, Lawson MA, O'Connor D, Nimmo R, Lad Y, Souberbielle B, Mitrophanous K, Ettorre A. Targeting Tumor Antigen 5T4 Using CAR T Cells for the Treatment of Acute Myeloid Leukemia. Mol Cancer Ther 2025; 24:93-104. [PMID: 39387839 DOI: 10.1158/1535-7163.mct-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and subsequently eradicate tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step for a targeted therapy that selectively targets cancer cells without affecting normal tissues. 5T4 is a tumor-associated antigen expressed on the cell surface of most solid tumors. However, very little is known about its expression in hematologic malignancies. In this study, we assess the expression of 5T4 in different types of leukemias, specifically acute myeloid leukemia (AML), and normal hematopoietic stem cells (HSC). We also provide an in vitro assessment of safety and efficacy of 5T4-targeting CAR T cells against HSCs and AML tumor cell lines. 5T4 expression was seen in about 50% of AML cases; AML with mutated nucleophosmin 1, AML-myelodysplasia-related, and AML not otherwise specified showed the highest percentage of 5T4+ cases. 5T4 CAR T cells efficiently and specifically killed AML tumor cell lines, including leukemic stem cells. Coculture of 5T4 CAR T cells with HSCs from healthy donors showed no impact on subsequent colony formation, thus confirming the safety profile of 5T4. A proof-of-concept study using a murine model for AML demonstrated that CAR T cells recognize 5T4 expressed on cells and can kill tumor cells both in vitro and in vivo. These results highlight 5T4 as a promising target for immune intervention in AML and that CAR T cells can be considered a powerful personalized therapeutic approach to treat AML.
Collapse
Affiliation(s)
| | | | - Naeem Khan
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | | | - Laura Moyce
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | - Mark T Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | - Jenny Down
- Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Michelle A Lawson
- Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | | | - Rachael Nimmo
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | - Yatish Lad
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | | | | | - Anna Ettorre
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| |
Collapse
|
4
|
He Y, Tian R, Xu D, Wu Y, Rina S, Chen T, Guan Y, Xie T, Ying T, Xie F, Han J. Preclinical evaluation and pilot clinical study of [ 68Ga]Ga-NOTA-H006 for non-invasive PET imaging of 5T4 oncofetal antigen. Eur J Nucl Med Mol Imaging 2025; 52:611-622. [PMID: 39377811 DOI: 10.1007/s00259-024-06941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Trophoblast glycoprotein, the so-called 5T4, is an oncofetal antigen expressed in many different cancers. However, no 5T4-specific radioligand is employed in the clinic for non-invasive diagnosis. Thus, the aim of the current study was to develop a PET radiotracer for imaging 5T4 expression in preclinical and clinical stages. METHODS A VHH library was constructed by camel immunization. The specificity of the VHHs toward 5T4 antigen was screened through phage display biopanning and periplasmic extract enzyme-linked immunosorbent assay. 1,4,7-Triazacyclononane-1,4,7-triacetate acid (NOTA) derivative was conjugated to the selected VHH. After radiolabeling, microPET/CT and ex vivo biodistribution were conducted using BxPC-3 and MDA-MB-468 tumor-bearing mice. Cold VHH was co-injected with the tracer to challenge its binding in vivo. For the pilot clinical study, PET/CT images were acquired at 1 h after injection of tracer in patients with pathologically confirmed primary and metastatic tumors. RESULTS A library with a capacity of 1.2 × 1012 colony-forming units was constructed after successful camel immunization. Nb1-40 with a median effect concentration of 0.43 nM was selected. After humanization, the resulting H006 maintained a high affinity towards 5T4. [68Ga]Ga-NOTA-H006 with the molar activities of 6.48-54.2 GBq/µmol was prepared with high radiochemical purity (> 98%). Using [68Ga]Ga-NOTA-H006, microPET/CT revealed a clear visualization of 5T4 expression in BxPC-3 tumor-bearing mice. Ex vivo biodistribution showed that the highest tumor-to-blood ratio (∼ 3-fold) and tumor-to-muscle ratio (∼ 5-fold) were achieved at 60 min post-injection. Co-injection of the cold H006 at a dose of 1.5 mg/kg significantly reduced the tumor uptake (p < 0.0001). In the pilot clinical study, [68Ga]Ga-NOTA-H006 demonstrated its capacity to map 5T4-positive lesions in humans and yielded a mean effective dose of 3.4 × 10- 2 mSv/MBq. CONCLUSIONS [68Ga]Ga-NOTA-H006, which can visualize 5T4 expression in vivo, has been successfully developed. This opens up opportunities for non-invasively studying 5T4 expression through nuclear medicine. Further clinical investigations are warranted to explore its clinical value in disease progression and companion diagnosis.
Collapse
Affiliation(s)
- Yingfang He
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - Ruhua Tian
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Dong Xu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200233, China
| | - Sa Rina
- Huahe Pharmaceutical Co., Ltd, Shanghai, China
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200233, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200233, China.
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
| |
Collapse
|
5
|
Ozcan Tezgin D, Kurkcu S, Si D, Krucinska J, Mosley A, Mehta P, Babic I, Nurmemmedov E, Kuo A, He W, Nelson CE, Wright L, Wright DL, Giardina C. Evaluation of UCP1162, a potent propargyl-linked inhibitor of dihydrofolate reductase with potential application to cancer and autoimmune disease. Biochem Pharmacol 2024; 230:116617. [PMID: 39528074 DOI: 10.1016/j.bcp.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Cellular resistance can limit the effectiveness of antifolate drugs for the treatment of cancer and autoimmune diseases. We examined the biochemical and cellular effects of a propargyl linked, non-classical antifolate UCP1162 that shows exceptional potency and resilience in the background of methotrexate resistance. UCP1162 inhibited the human DHFR enzyme with affinity and kinetics comparable to methotrexate (MTX). UCP1162 also inhibited cancer cell proliferation and bound cellular DHFR at low nanomolar concentrations. Leucovorin suppressed the cellular effects of UCP1162, consistent with UCP1162 working as an antifolate. Like other antifolates, UCP1162 reduced acute inflammation in mice and inhibited FLS cell growth and motility. Single cell RNA-seq showed that MTX and UCP1162 generated overlapping gene expression changes after a 48-hour exposure. However, while leukemia cells (CCRF-CEM) resistant to MTX could be readily selected, UCP1162-resistant cells could not be obtained. Long-term exposure to UCP1162 resulted in static culture expressing stem cell genes (CD34, ABCG2, ABCB1), adaptive genes (TCN2, CDKN1A), and genes that might serve as therapeutic targets (TPBG/5T4, TNFRSF10A, ACE). These findings suggest that UCP1162 is a unique tool for studying cellular responses to long-term antifolate treatment and holds promise as a lead compound capable of overcoming some forms of antifolate resistance.
Collapse
Affiliation(s)
- Didem Ozcan Tezgin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Shan Kurkcu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Debjani Si
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| | - Jolanta Krucinska
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| | - Adriane Mosley
- Quercus Molecular Design, Farmington, CT 06032, United States
| | - Pratik Mehta
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Ivan Babic
- CellarisBio, LLC, 9276 Scranton Rd, Suite 500, San Diego, CA 92121, United States
| | - Elmar Nurmemmedov
- CellarisBio, LLC, 9276 Scranton Rd, Suite 500, San Diego, CA 92121, United States
| | - Alan Kuo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Wu He
- Flow Cytometry Core Facility, University of Connecticut, Storrs, CT 06269, United States
| | - Craig E Nelson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Lee Wright
- Quercus Molecular Design, Farmington, CT 06032, United States
| | - Dennis L Wright
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States; Quercus Molecular Design, Farmington, CT 06032, United States
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
6
|
Gu Y, Zhao Q. Clinical Progresses and Challenges of Bispecific Antibodies for the Treatment of Solid Tumors. Mol Diagn Ther 2024; 28:669-702. [PMID: 39172329 PMCID: PMC11512917 DOI: 10.1007/s40291-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
In recent years, bispecific antibodies (BsAbs) have emerged as a promising therapeutic strategy against tumors. BsAbs can recruit and activate immune cells, block multiple signaling pathways, and deliver therapeutic payloads directly to tumor sites. This review provides a comprehensive overview of the recent advances in the development and clinical application of BsAbs for the treatment of solid tumors. We discuss the different formats, the unique mechanisms of action, and the clinical outcomes of the most advanced BsAbs in solid tumor therapy. Several studies have also analyzed the clinical progress of bispecific antibodies. However, this review distinguishes itself by exploring the challenges associated with bispecific antibodies and proposing potential solutions. As the field progresses, BsAbs hold promise to redefine cancer treatment paradigms and offer new hope to patients with solid tumors.
Collapse
Affiliation(s)
- Yuheng Gu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
7
|
Bliss CM, Hulin-Curtis SL, Williams M, Marušková M, Davies JA, Statkute E, Baker AT, Stack L, Kerstetter L, Kerr-Jones LE, Milward KF, Russell G, George SJ, Badder LM, Stanton RJ, Coughlan L, Humphreys IR, Parker AL. A pseudotyped adenovirus serotype 5 vector with serotype 49 fiber knob is an effective vector for vaccine and gene therapy applications. Mol Ther Methods Clin Dev 2024; 32:101308. [PMID: 39206304 PMCID: PMC11357811 DOI: 10.1016/j.omtm.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Adenoviruses (Ads) have demonstrated significant success as replication-deficient (RD) viral vectored vaccines, as well as broad potential across gene therapy and cancer therapy. Ad vectors transduce human cells via direct interactions between the viral fiber knob and cell surface receptors, with secondary cellular integrin interactions. Ad receptor usage is diverse across the extensive phylogeny. Commonly studied human Ad serotype 5 (Ad5), and chimpanzee Ad-derived vector "ChAdOx1" in licensed ChAdOx1 nCoV-19 vaccine, both form primary interactions with the coxsackie and adenovirus receptor (CAR), which is expressed on human epithelial cells and erythrocytes. CAR usage is suboptimal for targeted gene delivery to cells with low/negative CAR expression, including human dendritic cells (DCs) and vascular smooth muscle cells (VSMCs). We evaluated the performance of an RD Ad5 vector pseudotyped with the fiber knob of human Ad serotype 49, termed Ad5/49K vector. Ad5/49K demonstrated superior transduction of murine and human DCs over Ad5, which translated into significantly increased T cell immunogenicity when evaluated in a mouse cancer vaccine model using 5T4 tumor-associated antigen. Additionally, Ad5/49K exhibited enhanced transduction of primary human VSMCs. These data highlight the potential of Ad5/49K vector for both vascular gene therapy applications and as a potent vaccine vector.
Collapse
Affiliation(s)
- Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Sarah L. Hulin-Curtis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Marta Williams
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Mahulena Marušková
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - James A. Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Evelina Statkute
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alexander T. Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Louise Stack
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lucas Kerstetter
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Lauren E. Kerr-Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Kate F. Milward
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Gabrielle Russell
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Luned M. Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J. Stanton
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lynda Coughlan
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
- University of Maryland School of Medicine, Center for Vaccine Development and Global Health, Baltimore, MD 21201, USA
| | - Ian R. Humphreys
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
8
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
9
|
Sun L, Shi M, Wang J, Han X, Wei J, Huang Z, Yang X, Ding Y, Zhang P, He A, Liu M, Yan R, Yang X, Li R, Wang G. Overexpressed Trophoblast Glycoprotein Contributes to Preeclampsia Development by Inducing Abnormal Trophoblast Migration and Invasion Toward the Uterine Spiral Artery. Hypertension 2024; 81:1524-1536. [PMID: 38716674 DOI: 10.1161/hypertensionaha.124.22923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Preeclampsia is a significant pregnancy disorder with an unknown cause, mainly attributed to impaired spiral arterial remodeling. METHODS Using RNA sequencing, we identified key genes in placental tissues from healthy individuals and preeclampsia patients. Placenta and plasma samples from pregnant women were collected to detect the expression of TPBG (trophoblast glycoprotein). Pregnant rats were injected with TPBG-carrying adenovirus to detect preeclamptic features. HTR-8/SVneo cells transfected with a TPBG overexpression lentiviral vector were used in cell function experiments. The downstream molecular mechanisms of TPBG were explored using RNA sequencing and single-cell RNA sequencing data. TPBG expression was knocked down in the lipopolysaccharide-induced preeclampsia-like rat model to rescue the preeclampsia features. We also assessed TPBG's potential as an early preeclampsia predictor using clinical plasma samples. RESULTS TPBG emerged as a crucial differentially expressed gene, expressed specifically in syncytiotrophoblasts and extravillous trophoblasts. Subsequently, we established a rat model with preeclampsia-like phenotypes by intravenously injecting TPBG-expressing adenoviruses, observing impaired spiral arterial remodeling, thus indicating a causal correlation between TPBG overexpression and preeclampsia. Studies with HTR-8/SVneo cells, chorionic villous explants, and transwell assays showed TPBG overexpression disrupts trophoblast/extravillous trophoblast migration/invasion and chemotaxis. Notably, TPBG knockdown alleviated the lipopolysaccharide-induced preeclampsia-like rat model. We enhanced preeclampsia risk prediction in early gestation by combining TPBG expression with established clinical predictors. CONCLUSIONS These findings are the first to show that TPBG overexpression contributes to preeclampsia development by affecting uterine spiral artery remodeling. We propose TPBG levels in maternal blood as a predictor of preeclampsia risk. The proposed mechanism by which TPBG overexpression contributes to the occurrence of preeclampsia via its disruptive effect on trophoblast and extravillous trophoblast migration/invasion on uterine spiral artery remodeling, thereby increasing the risk of preeclampsia.
Collapse
Affiliation(s)
- Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Mengyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Ruiling Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education (X.Y., G.W.), Jinan University, Guangzhou, China
- Clinical Research Center, Clifford Hospital, Guangzhou, China (X.Y.)
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education (X.Y., G.W.), Jinan University, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine (G.W.), Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
11
|
You G, Li Z, Li L, Xu C. Overexpression of RBM15 modulated the effect of trophoblast cells by promoting the binding ability between YTHDF2 and the CD82 3'UTR to decrease the expression of CD82. Heliyon 2024; 10:e30702. [PMID: 38765115 PMCID: PMC11098837 DOI: 10.1016/j.heliyon.2024.e30702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Background Pre-eclampsia (PE) is a syndrome with no specific pathological mechanism and is specific to pregnancy. The combined analysis of proteomics and transcriptomics possesses many benefits for treating this disease. m6A modification plays a major role in PE; however, mechanism have not been studied clearly. This study investigated the potential mechanism underlying the role of m6A in PE. Methods Mass spectrometry-based label-free quantitative proteomics and transcriptomics experiments were conducted on the placenta of patients with pre-eclampsia and normal pregnancies, and the two omics were followed by joint analysis. Total m6A modification in placental tissues, HTR8/SVneo cells, and JEG-3 cells was measured by dot blot. The levels of RBM15 and CD82 in tissues and cells were detected using qPCR. The protein levels of G3BP1, RBM15, MMP-2, YTHDF2, and MMP-9 were measured by western blotting. The function, migration, and invasion characteristics of HTR8/SVneo and JEG-3 cells were measured using Transwell assays. SRAMP predicted the m6A modification site in the CD82 mRNA 3'UTR, and this was confirmed using luciferase activity and YTHDF2-RIP. Results m6A modification was promoted in the PE group, and the RBM15 abundance was increased. Overexpression of RBM15 increased m6A modification. However, overexpression of RBM15 suppressed the expression of MMP-2 and MMP-9 and also the migratory and invasive capabilities of HTR8/SVneo and JEG-3 cells. CD82 expression levels were decreased in PE, and CD82 expression was confirmed via qPCR, western blotting and immunofluorescence. Furthermore, RBM15 overexpression reduced CD82 mRNA and protein levels. Luciferase activity and YTHDF2-RIP results verified that overexpression of RBM15 promoted the binding ability between YTHDF2 and the CD82 3'UTR, thereby decreasing CD82 expression. Finally, CD82 overexpression reversed the effect of RBM15 overexpression on the expression of MMP-2 and MMP-9 and on the migratory and invasive capabilities of the cells. Conclusions Overexpression of RBM15 hindered the migratory and invasive capabilities of trophoblasts, while concurrently enhancing m6A modification. The potential mechanism was that overexpression of RBM15 promoted the binding capability between YTHDF2 and CD82 3'UTR and decrease the expression of CD82. Thus, this study provides a theoretical basis for the treatment of PE.
Collapse
Affiliation(s)
| | | | - Ling Li
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| | - Chengfang Xu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
12
|
Haldar SD, Vilar E, Maitra A, Zaidi N. Worth a Pound of Cure? Emerging Strategies and Challenges in Cancer Immunoprevention. Cancer Prev Res (Phila) 2023; 16:483-495. [PMID: 37001882 PMCID: PMC10548442 DOI: 10.1158/1940-6207.capr-22-0478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Cancer immunoprevention applies immunologic approaches such as vaccines to prevent, rather than to treat or cure, cancer. Despite limited success in the treatment of advanced disease, the development of cancer vaccines to intercept premalignant states is a promising area of current research. These efforts are supported by the rationale that vaccination in the premalignant setting is less susceptible to mechanisms of immune evasion compared with established cancer. Prophylactic vaccines have already been developed for a minority of cancers mediated by oncogenic viruses (e.g., hepatitis B and human papillomavirus). Extending the use of preventive vaccines to non-virally driven malignancies remains an unmet need to address the rising global burden of cancer. This review provides a broad overview of clinical trials in cancer immunoprevention with an emphasis on emerging vaccine targets and delivery platforms, translational challenges, and future directions.
Collapse
Affiliation(s)
- Saurav D. Haldar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Schindler NR, Braun DA. Antigenic targets in clear cell renal cell carcinoma. KIDNEY CANCER 2023; 7:81-91. [PMID: 38014393 PMCID: PMC10475986 DOI: 10.3233/kca-230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 11/29/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the management of advanced renal cell carcinoma (RCC), but most patients still do not receive a long-term benefit from these therapies, and many experience off-target, immune-related adverse effects. RCC is also different from many other ICI-responsive tumors, as it has only a modest mutation burden, and total neoantigen load does not correlate with ICI response. In order to improve the efficacy and safety of immunotherapies for RCC, it is therefore critical to identify the antigens that are targeted in effective anti-tumor immunity. In this review, we describe the potential classes of target antigens, and provide examples of previous and ongoing efforts to investigate and target antigens in RCC, with a focus on clear cell histology. Ultimately, we believe that a concerted antigen discovery effort in RCC will enable an improved understanding of response and resistance to current therapies, and lay a foundation for the future development of "precision" antigen-directed immunotherapies.
Collapse
Affiliation(s)
- Nicholas R. Schindler
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - David A. Braun
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Miller CP, Shokri F, Akilesh S, Xu Y, Warren EH, Tykodi SS, Tretiakova M. Immunohistochemical Detection of 5T4 in Renal Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:135-144. [PMID: 36735485 DOI: 10.1097/pai.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023]
Abstract
5T4 (trophoblast glycoprotein encoded by TPBG ) is a cancer/testis antigen highly expressed in renal cell carcinoma (RCC) and many other cancers but rarely in normal tissues. Interest in developing 5T4 as a prognostic biomarker and direct targeting of 5T4 by emerging receptor-engineered cellular immunotherapies has been hampered by the lack of validated 5T4-specific reagents for immunohistochemistry (IHC). We tested 4 commercially available monoclonal antibodies (mAbs) for the detection of 5T4 in formalin-fixed, paraffin-embedded RCC and normal tissues. Using parental and TPBG -edited A498 cells, 3 mAbs showed 5T4 specificity. Further analyses focused on 2 mAbs with the most robust staining (MBS1750093, Ab134162). IHC on tissue microarrays incorporating 263 renal tumors showed high staining concordance of these 2 mAbs ranging from 0.80 in chromophobe RCC to 0.89 in advanced clear cell RCC (ccRCC). MBS1750093, the most sensitive, exhibited 2+/3+ staining in papillary RCC (92.2%) > advanced ccRCC (60.0%) > chromophobe RCC (43.6%) > localized ccRCC (39.6%) > oncocytoma (22.7%). RNA in situ hybridization also revealed high levels of TPBG RNA were present most frequently in papillary and advanced ccRCC. In advanced ccRCC, there was a trend towards higher 5T4 expression and regional or distant metastases. Normal organ controls showed no or weak staining with the exception of focal moderate staining in kidney glomeruli and distal tubules by IHC. These data identify mAbs suitable for detecting 5T4 in formalin-fixed, paraffin-embedded tissues and demonstrate both interpatient and histologic subtype heterogeneity. Our validated 5T4 IHC protocol will facilitate biomarker studies and support the therapeutic targeting of 5T4.
Collapse
Affiliation(s)
- Christopher P Miller
- Clinical Research Division, Fred Hutchinson Cancer Center
- Department of Laboratory Medicine and Pathology
| | | | | | - Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Center
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Center
- Department of Laboratory Medicine and Pathology
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Scott S Tykodi
- Clinical Research Division, Fred Hutchinson Cancer Center
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
15
|
Wang GC, Zhou M, Zhang Y, Cai HM, Chiang ST, Chen Q, Han TZ, Li RX. Screening and identifying a novel M-MDSCs-related gene signature for predicting prognostic risk and immunotherapeutic responses in patients with lung adenocarcinoma. Front Genet 2023; 13:989141. [PMID: 36699465 PMCID: PMC9869425 DOI: 10.3389/fgene.2022.989141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) shows intratumoral heterogeneity, a highly complex phenomenon that known to be a challenge during cancer therapy. Considering the key role of monocytic myeloid-derived suppressor cells (M-MDSCs) in the tumor microenvironment (TME), we aimed to build a prognostic risk model using M-MDSCs-related genes. Methods: M-MDSCs-related genes were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Utilized univariate survival analysis and random forest algorithm to screen candidate genes. A least absolute shrinkage and selection operator (LASSO) Cox regression analysis was selected to build the risk model. Patients were scored and classified into high- and low-risk groups based on the median risk scores. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis along with R packages "estimate" and "ssGSEA" were performed to reveal the mechanism of risk difference. Prognostic biomarkers and tumor mutation burden (TMB) were combined to predict the prognosis. Nomogram was carried out to predict the survival probability of patients in 1, 3, and 5 years. Results: 8 genes (VPREB3, TPBG, LRFN4, CD83, GIMAP6, PRMT8, WASF1, and F12) were identified as prognostic biomarkers. The GEO validation dataset demonstrated the risk model had good generalization effect. Significantly enrichment level of cell cycle-related pathway and lower content of CD8+ T cells infiltration in the high-risk group when compared to low-risk group. Morever, the patients were from the intersection of high-TMB and low-risk groups showed the best prognosis. The nomogram demonstrated good consistency with practical outcomes in predicting the survival rate over 1, 3, and 5 years. Conclusion: The risk model demonstrate good prognostic predictive ability. The patients from the intersection of low-risk and high-TMB groups are not only more sensitive response to but also more likely to benefit from immune-checkpoint-inhibitors (ICIs) treatment.
Collapse
Affiliation(s)
- Geng-Chong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mi Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Man Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Seok-Theng Chiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tian-Zhen Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
16
|
Nelson MH, Fritzell S, Miller R, Werchau D, Van Citters D, Nilsson A, Misher L, Ljung L, Bader R, Deronic A, Chunyk AG, Schultz L, Varas LA, Rose N, Håkansson M, Gross J, Furebring C, Pavlik P, Sundstedt A, Veitonmäki N, Ramos HJ, Säll A, Dahlman A, Bienvenue D, von Schantz L, McMahan CJ, Askmyr M, Hernandez-Hoyos G, Ellmark P. The Bispecific Tumor Antigen-Conditional 4-1BB x 5T4 Agonist, ALG.APV-527, Mediates Strong T-Cell Activation and Potent Antitumor Activity in Preclinical Studies. Mol Cancer Ther 2023; 22:89-101. [PMID: 36343381 PMCID: PMC9808321 DOI: 10.1158/1535-7163.mct-22-0395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
4-1BB (CD137) is an activation-induced costimulatory receptor that regulates immune responses of activated CD8 T and natural killer cells, by enhancing proliferation, survival, cytolytic activity, and IFNγ production. The ability to induce potent antitumor activity by stimulating 4-1BB on tumor-specific cytotoxic T cells makes 4-1BB an attractive target for designing novel immuno-oncology therapeutics. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel bispecific antibody that stimulates 4-1BB function when co-engaged with the tumor-associated antigen 5T4. ALG.APV-527 was built on the basis of the ADAPTIR bispecific platform with optimized binding domains to 4-1BB and 5T4 originating from the ALLIGATOR-GOLD human single-chain variable fragment library. The epitope of ALG.APV-527 was determined to be located at domain 1 and 2 on 4-1BB using X-ray crystallography. As shown in reporter and primary cell assays in vitro, ALG.APV-527 triggers dose-dependent 4-1BB activity mediated only by 5T4 crosslinking. In vivo, ALG.APV-527 demonstrates robust antitumor responses, by inhibiting growth of established tumors expressing human 5T4 followed by a long-lasting memory immune response. ALG.APV-527 has an antibody-like half-life in cynomolgus macaques and was well tolerated at 50.5 mg/kg. ALG.APV-527 is uniquely designed for 5T4-conditional 4-1BB-mediated antitumor activity with potential to minimize systemic immune activation and hepatotoxicity while providing efficacious tumor-specific responses in a range of 5T4-expressing tumor indications as shown by robust activity in preclinical in vitro and in vivo models. On the basis of the combined preclinical dataset, ALG.APV-527 has potential as a promising anticancer therapeutic for the treatment of 5T4-expressing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jane Gross
- Aptevo Therapeutics Inc., Seattle, Washington
| | | | | | | | | | | | - Anna Säll
- Alligator Bioscience AB, Lund, Sweden
| | | | | | | | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.,Department of Immunotechnology, Lund University, Lund, Sweden.,Corresponding Author: Peter Ellmark, Alligator Bioscience, Medicon Village, 223 81 Lund, Sweden. Phone: 467-9721-2739; E-mail:
| |
Collapse
|
17
|
Ling Q, Zheng B, Chen X, Ye S, Cheng Q. The employment of vaccinia virus for colorectal cancer treatment: A review of preclinical and clinical studies. Hum Vaccin Immunother 2022; 18:2143698. [PMID: 36369829 DOI: 10.1080/21645515.2022.2143698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading malignancies that causes death worldwide. Cancer vaccines and oncolytic immunotherapy bring new hope for patients with advanced CRC. The capability of vaccinia virus (VV) in carrying foreign genes as antigens or immunostimulatory factors has been demonstrated in animal models. VV of Wyeth, Western Reserve, Lister, Tian Tan, and Copenhagen strains have been engineered for the induction of antitumor response in multiple cancers. This paper summarized the preclinical and clinical application and development of VV serving as cancer vaccines and oncolytic vectors in CRC treatment. Additionally, the remaining challenges and future direction are also discussed.
Collapse
Affiliation(s)
- Qiaoyun Ling
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xudong Chen
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Shaoshun Ye
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Quan Cheng
- Department of Anorectal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Vardeu A, Davis C, McDonald I, Stahlberg G, Thapa B, Piotrowska K, Marshall MA, Evans T, Wheeler V, Sebastian S, Anderson K. Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses. J Immunother Cancer 2022; 10:jitc-2022-005398. [PMID: 36323434 PMCID: PMC9639133 DOI: 10.1136/jitc-2022-005398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The use of immunotherapeutic vaccination in prostate cancer is a promising approach that likely requires the induction of functional, cytotoxic T cells . The experimental approach described here uses a well-studied adenovirus-poxvirus heterologous prime-boost regimen, in which the vectors encode a combination of prostate cancer antigens, with the booster dose delivered by either the intravenous or intramuscular (IM) route. This prime-boost regimen was investigated for antigen-specific CD8+ T cell induction. METHODS The coding sequences for four antigens expressed in prostate cancer, 5T4, PSA, PAP, and STEAP1, were inserted into replication-incompetent chimpanzee adenovirus Oxford 1 (ChAdOx1) and into replication-deficient modified vaccinia Ankara (MVA). In four strains of mice, ChAdOx1 prime was delivered intramuscularly, with an MVA boost delivered by either IM or intravenous routes. Immune responses were measured in splenocytes using ELISpot, multiparameter flow cytometry, and a targeted in vivo killing assay. RESULTS The prime-boost regimen was highly immunogenic, with intravenous administration of the boost resulting in a sixfold increase in the magnitude of antigen-specific T cells induced and increased in vivo killing relative to the intramuscular boosting route. Prostate-specific antigen (PSA)-specific responses were dominant in all mouse strains studied (C57BL/6, BALBc, CD-1 and HLA-A2 transgenic). CONCLUSION This quadrivalent immunotherapeutic approach using four antigens expressed in prostate cancer induced high magnitude, functional CD8+ T cells in murine models. The data suggest that comparing the intravenous versus intramuscular boosting routes is worthy of investigation in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Evans
- Chief Scientific Officer, Vaccitech Limited, Oxford, UK
| | | | | | | |
Collapse
|
19
|
Kemper K, Gielen E, Boross P, Houtkamp M, Plantinga TS, de Poot SAH, Burm SM, Janmaat ML, Koopman LA, van den Brink EN, Rademaker R, Verzijl D, Engelberts PJ, Satijn D, Sasser AK, Breij ECW. Mechanistic and pharmacodynamic studies of DuoBody-CD3x5T4 in preclinical tumor models. Life Sci Alliance 2022; 5:5/11/e202201481. [PMID: 36271507 PMCID: PMC9458754 DOI: 10.26508/lsa.202201481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
CD3 bispecific antibodies (bsAbs) show great promise as anticancer therapeutics. Here, we show in-depth mechanistic studies of a CD3 bsAb in solid cancer, using DuoBody-CD3x5T4. Cross-linking T cells with tumor cells expressing the oncofetal antigen 5T4 was required to induce cytotoxicity. Naive and memory CD4+ and CD8+ T cells were equally effective at mediating cytotoxicity, and DuoBody-CD3x5T4 induced partial differentiation of naive T-cell subsets into memory-like cells. Tumor cell kill was associated with T-cell activation, proliferation, and production of cytokines, granzyme B, and perforin. Genetic knockout of FAS or IFNGR1 in 5T4+ tumor cells abrogated tumor cell kill. In the presence of 5T4+ tumor cells, bystander kill of 5T4− but not of 5T4−IFNGR1− tumor cells was observed. In humanized xenograft models, DuoBody-CD3x5T4 antitumor activity was associated with intratumoral and peripheral blood T-cell activation. Lastly, in dissociated patient-derived tumor samples, DuoBody-CD3x5T4 activated tumor-infiltrating lymphocytes and induced tumor-cell cytotoxicity, even when most tumor-infiltrating lymphocytes expressed PD-1. These data provide an in-depth view on the mechanism of action of a CD3 bsAb in preclinical models of solid cancer.
Collapse
|
20
|
Passariello M, Yoshioka A, Takahashi K, Hashimoto SI, Inoue T, Nakamura K, De Lorenzo C. Novel tri-specific tribodies induce strong T cell activation and anti-tumor effects in vitro and in vivo. J Exp Clin Cancer Res 2022; 41:269. [PMID: 36071464 PMCID: PMC9450414 DOI: 10.1186/s13046-022-02474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immunotherapy based on Bi-specific T Cell Engagers (TCE) represents one of the most attractive strategy to treat cancers resistant to conventional therapies. TCE are antibody-like proteins that simultaneously bind with one arm to a Tumor Associated Antigen (TAA) on cancer cells and with the other one to CD3 complex on a T-cell to form a TCR-independent immune synapse and circumvent Human Leucocyte Antigen restriction. Among them, the tribodies, such as Tb535H, a bi-specific molecule, made up of a Fab and a scFv domain both targeting 5T4 and another scFv targeting CD3, have demonstrated anti-tumor efficacy in preclinical studies. Methods Here, we generated five novel tri-specific and multi-functional tribodies, called 53X tribodies, composed of a 5T4 binding Fab arm and a CD3 binding scFv, but differently from the parental Tb535H, they contain an additional scFv derived from an antibody specific for an immune checkpoint, such as PD-1, PD-L1 or LAG-3. Results Compared with the parental Tb535H bi-specific T cell engager targeting 5T4, the novel 53X tribodies retained similar binding properties of Tb535H tribody, but showed enhanced anti-tumor potency due to the incorporation of the checkpoint inhibitory moiety. In particular, one of them, called 53L10, a tri-specific T cell engager targeting 5T4, CD3 and PD-L1, showed the most promising anti-tumor efficacy in vitro and led to complete tumor regression in vivo. Conclusions The novel tribodies have the potential to become strong and safe therapeutic drugs, allowing to reduce also the cost of production as one single molecule contains three different specificities including the anti-TAA, anti-CD3 and anti-IC binding arms. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02474-3.
Collapse
|
21
|
Shi Y, Wu H, Hu W, Jin Y, Kong M, Wang Y, Chen B, Li Q, Huang K, Yang Z, Li F, Wu Y, Ying T. An antigen-strengthened dye-modified fully-human-nanobody-based immunoprobe for second near infrared bioimaging of metastatic tumors. Biomaterials 2022; 287:121637. [PMID: 35728407 DOI: 10.1016/j.biomaterials.2022.121637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Conventional immunoprobes have absorption capabilities across the visible to near infrared (NIR-I, 650-900 nm) region. Recently, second near infrared (NIR-II, 1000-1700 nm) window have gained much attention due to their deeper penetration depth and improved visualization. Here, we describe the design and synthesis of a fully human nanobody-based fluorescent immunoprobe (ICGM-n501) for NIR-II bioimaging with strengthened fluorescent emission by antigen for the first time. By site-directed conjugation of an FDA-approved dye analogue, indocyanine green decorated with maleimide (ICGM), into a tumor-specific n501, ICGM-n501 provides real-time monitoring of abdominal transportation pathway of antibody-based bioagents with high resolution (0.21 mm), presents better accuracy and lower dosage (0.21 μmol kg-1) in bioimaging of peritoneal metastatic tumors than bioluminescence agent D-luciferin. In this work, ICGM-n501 demonstrates its potential in clinical surgery guidance, provide an expanded category of available NIR-II fluorophores and a template for next-generation immunoassay bioagents.
Collapse
Affiliation(s)
- Yibing Shi
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huifang Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiqiang Hu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
| | - Yujia Jin
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mengya Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yulu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Binfan Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Quanxiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Keke Huang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenlin Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Diaz-Cano I, Paz-Ares L, Otano I. Adoptive tumor infiltrating lymphocyte transfer as personalized immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:163-192. [PMID: 35798505 DOI: 10.1016/bs.ircmb.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, a large group of patients fail to respond to therapy or progress after initial response, which brings the need for additional treatment options. Manipulating the immune system using a variety of approaches has been explored for the past years with successful results. Sustained progress has been made to understand the T cell-mediated anti-tumor responses counteracting the tumorigenesis process. The T-lymphocyte pool, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in defeating cancer. The adoptive cell transfer of autologous tumor-infiltrating lymphocytes has been used in humans for over 30 years to treat metastatic melanoma. In this review, we provide a brief history of ACT-TIL and discuss the current state of ACT-TIL clinical development in solid tumors. We also discuss how key advances in understanding genetic intratumor heterogeneity, to accurately identify neoantigens, and new strategies designed to overcome T-cell exhaustion and tumor immunosuppression have improved the efficacy of the TIL-therapy infusion. Characteristics of the TIL products will be discussed, as well as new strategies, including the selective expansion of specific fractions from the cell product or the genetic manipulation of T cells for improving the in-vivo survival and functionality. In summary, this review outlines the potential of ACT-TIL as a personalized approach for epithelial tumors and continued discoveries are making it increasingly more effective against other types of cancers.
Collapse
Affiliation(s)
- Ines Diaz-Cano
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain; Medicine and Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Itziar Otano
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/Spanish National Cancer Research Center (CNIO), Madrid, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
| |
Collapse
|
23
|
Chan LY, Dass SA, Tye GJ, Imran SAM, Wan Kamarul Zaman WS, Nordin F. CAR-T Cells/-NK Cells in Cancer Immunotherapy and the Potential of MSC to Enhance Its Efficacy: A Review. Biomedicines 2022; 10:biomedicines10040804. [PMID: 35453554 PMCID: PMC9024487 DOI: 10.3390/biomedicines10040804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one’s flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs’ unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells’ activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.
Collapse
Affiliation(s)
- Ler Yie Chan
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- INTEC Education College, Jalan Senangin Satu 17/2A, Seksyen 17, Shah Alam 40200, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- Correspondence: ; Tel.: +60-3-91457670
| |
Collapse
|
24
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
25
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
26
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Mao C, Near R, Zhong X, Gao W. Cross-species higher sensitivities of FcγRIIIA/FcγRIV to afucosylated IgG for enhanced ADCC. Antib Ther 2021; 4:159-170. [PMID: 34485821 PMCID: PMC8408537 DOI: 10.1093/abt/tbab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 11/27/2022] Open
Abstract
Background Expressing afucosylated human IgG1 antibodies with Chinese hamster ovary (CHO) cells deficient of α-(1,6)-fucosyltransferase (FUT8) is being more and more accepted as a routine method to enhance antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies, especially for anti-cancer regimens. However, in pre-clinical studies relying on disease models other than mice and primates, e.g., those underrepresented species for infectious diseases, it is less clear whether such afucosylated antibodies can demonstrate enhanced therapeutic index. This is because the orthologues of human FcγRIIIA or mouse FcγRIV from those species have not been well characterized. Methods We set up a luciferase-based ADCC assay with Jurkat reporter cells expressing FcγRIIIA/FcγRIV from human, mouse, rat, hamster, guinea pig, ferret, rabbit, cat, dog, pig and monkey, and also produced human, mouse, hamster, rabbit and pig IgG from wild type and Fut8−/− CHO cells or hybridomas. Results We confirmed that enhanced stimulation through FcγRIIIA/FcγRIV by afucosylated IgG, as compared with wild type IgG, is a cross-species phenomenon. Conclusions Thus, efficacy and toxicology studies of the next generation afucosylated therapeutic IgG and Fc fusion proteins in these underrepresented animal models should be expected to generate translatable data for treating human diseases, leading to the expanded applications of this new class of glycoengineered biologics.
Collapse
Affiliation(s)
| | - Richard Near
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Xuemei Zhong
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, USA
| |
Collapse
|
28
|
Martínez-Cortés F, Servín-Blanco R, Domínguez-Romero AN, Munguía ME, Guzman Valle J, Odales J, Gevorkian G, Manoutcharian K. Generation of cancer vaccine immunogens derived from Oncofetal antigen (OFA/iLRP) using variable epitope libraries tested in an aggressive breast cancer model. Mol Immunol 2021; 139:65-75. [PMID: 34454186 DOI: 10.1016/j.molimm.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
After decades of cancer vaccine efforts, there is an imperious necessity for novel ideas that may result in better tumor control in patients. We have proposed the use of a novel Variable Epitope Library (VEL) vaccine strategy, which incorporates an unprecedented number of mutated epitopes to target antigenic variability and break tolerance against tumor-associated antigens. Here, we used an oncofetal antigen/immature laminin receptor protein-derived sequence to generate 9-mer and 43-mer VEL immunogens. 4T1 tumor-bearing mice developed epitope-specific CD8+IFN-γ+ and CD4+IFN-γ+ T cell responses after treatment. Tumor and lung analysis demonstrated that VELs could increase the number of tumor-infiltrating lymphocytes with diverse effector functions while reducing the number of immunosuppressive myeloid-derived suppressor and regulatory T cells. Most importantly, VEL immunogens inhibited tumor growth and metastasis after a single dose. The results presented here are consistent with our previous studies and provide evidence for VEL immunogens' feasibility as promising cancer immunotherapy.
Collapse
Affiliation(s)
- Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - María Elena Munguía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico.
| |
Collapse
|
29
|
Yao HP, Zhao H, Hudson R, Tong XM, Wang MH. Duocarmycin-based antibody-drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discov Today 2021; 26:1857-1874. [PMID: 34224904 DOI: 10.1016/j.drudis.2021.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hui Zhao
- Office of Scientific Research, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
30
|
Smith RA, Zammit DJ, Damle NK, Usansky H, Reddy SP, Lin JH, Mistry M, Rao NS, Denis LJ, Gupta S. ASN004, A 5T4-targeting scFv-Fc Antibody-Drug Conjugate with High Drug-to-Antibody Ratio, Induces Complete and Durable Tumor Regressions in Preclinical Models. Mol Cancer Ther 2021; 20:1327-1337. [PMID: 34045226 DOI: 10.1158/1535-7163.mct-20-0565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
The 5T4 oncofetal antigen (trophoblast glycoprotein) is expressed in a wide range of malignant tumors but shows very limited expression in normal adult tissues. ASN004 is a 5T4-targeted antibody-drug conjugate (ADC) that incorporates a novel single-chain Fv-Fc antibody and Dolaflexin drug-linker technology, with an Auristatin F hydroxypropylamide payload drug-to-antibody ratio of approximately 10-12. The pharmacology, toxicology, and pharmacokinetic properties of ASN004 and its components were investigated in vitro and in vivo ASN004 showed high affinity for the 5T4 antigen and was selectively bound to and internalized into 5T4-expressing tumor cells, and potent cytotoxicity was demonstrated for a diverse panel of solid tumor cell lines. ASN004 induced complete and durable tumor regression in multiple tumor xenograft models, derived from human lung, breast, cervical, and gastric tumor cell lines having a wide range of 5T4 expression levels. A single dose of ASN004, as low as 1 mg/kg i.v., achieved complete tumor regression leading to tumor-free survivors in the A431 cervical cancer model. In head-to-head studies, superior activity of ASN004 was demonstrated against trastuzumab-DM1, in a low-5T4/high-HER2 expressing gastric tumor model, and 10-fold greater potency was found for ASN004 against the 5T4-targeted ADC PF-06263507 in a lung tumor model. In marmoset monkeys, ASN004 was well tolerated at doses up to 1.5 mg/kg Q3W i.v., and showed dose-dependent exposure, linear pharmacokinetics, and markedly low exposure of free payload drug. Taken together, these findings identify ASN004 as a promising new ADC therapeutic for clinical evaluation in a broad range of solid tumor types.
Collapse
Affiliation(s)
- Roger A Smith
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey.
| | - David J Zammit
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Nitin K Damle
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Helen Usansky
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Sanjeeva P Reddy
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Jun-Hsiang Lin
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Mahesh Mistry
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Niranjan S Rao
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Louis J Denis
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| | - Sandeep Gupta
- Asana BioSciences, Princeton Pike Corporate Center, Lawrenceville, New Jersey
| |
Collapse
|
31
|
Chimeric Antigen Receptor Design and Efficacy in Ovarian Cancer Treatment. Int J Mol Sci 2021; 22:ijms22073495. [PMID: 33800608 PMCID: PMC8037934 DOI: 10.3390/ijms22073495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
Our increased understanding of tumour biology gained over the last few years has led to the development of targeted molecular therapies, e.g., vascular endothelial growth factor A (VEGF-A) antagonists, poly[ADP-ribose] polymerase 1 (PARP1) inhibitors in hereditary breast and ovarian cancer syndrome (BRCA1 and BRCA2 mutants), increasing survival and improving the quality of life. However, the majority of ovarian cancer (OC) patients still do not have access to targeted molecular therapies that would be capable of controlling their disease, especially resistant or relapsed. Chimeric antigen receptors (CARs) are recombinant receptor constructs located on T lymphocytes or other immune cells that change its specificity and functions. Therefore, in a search for a successful solid tumour therapy using CARs the specific cell surface antigens identification is crucial. Numerous in vitro and in vivo studies, as well as studies on humans, prove that targeting overexpressed molecules, such as mucin 16 (MUC16), annexin 2 (ANXA2), receptor tyrosine-protein kinase erbB-2 (HER2/neu) causes high tumour cells toxicity and decreased tumour burden. CARs are well tolerated, side effects are minimal and they inhibit disease progression. However, as OC is heterogenic in its nature with high mutation diversity and overexpression of different receptors, there is a need to consider an individual approach to treat this type of cancer. In this publication, we would like to present the history and status of therapies involving the CAR T cells in treatment of OC tumours, suggest potential T cell-intrinsic determinants of response and resistance as well as present extrinsic factors impacting the success of this approach.
Collapse
|
32
|
Abstract
OX40 and 5T4 are molecules that play a role in T-cell expansion and cytoskeleton's disruption in cancer, respectively. US2019161555 patent describes a bispecific antibody that targets OX40/5T4 with the potential application of cancer treatment. The method of analysis of the US201916155 patent consisted of claim's analysis, as well as the chemical/biological information's analysis of the bispecific antibody. The patent includes independent claims related to bispecific antibodies that bind to OX40/5T4, DNA encoding the antibodies, a vector that harbors the DNA, a host cell that contains the vector, a pharmaceutical composition containing a pharmaceutically effective amount of the antibodies, medical use of the antibodies, use of the antibodies in the treatment or prevention of neoplastic disorders and a method of treating neoplastic disorders. Bispecific antibodies that target OX40/5T4 can activate IL-2 secretion in CD4+ T cells.
Collapse
|
33
|
Xu Y, Miller CP, Warren EH, Tykodi SS. Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Hum Vaccin Immunother 2021; 17:1882-1896. [PMID: 33667140 PMCID: PMC8189101 DOI: 10.1080/21645515.2020.1870846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In renal-cell carcinoma (RCC), tumor-reactive T-cell responses can occur spontaneously or in response to systemic immunotherapy with cytokines and immune checkpoint inhibitors. Cancer vaccines and engineered T-cell therapies are designed to selectively augment tumor antigen-specific CD8+ T-cell responses with the goal to elicit tumor regression and avoid toxicities associated with nonspecific immunotherapies. In this review, we provide an overview of the central role of T-cell immunity in the treatment of advanced RCC. Clinical outcomes for antigen-targeted vaccines or other T-cell-engaging therapies for RCC are summarized and evaluated, and emerging new strategies to enhance the effectiveness of antigen-specific therapy for RCC are discussed.
Collapse
Affiliation(s)
- Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chris P Miller
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Scott S Tykodi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Bansal D, Reimers MA, Knoche EM, Pachynski RK. Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13020334. [PMID: 33477569 PMCID: PMC7831137 DOI: 10.3390/cancers13020334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Although most prostate cancers are localized, and the majority are curable, recurrences occur in approximately 35% of men. Among patients with prostate-specific antigen (PSA) recurrence and PSA doubling time (PSADT) less than 15 months after radical prostatectomy, prostate cancer accounted for approximately 90% of the deaths by 15 years after recurrence. An immunosuppressive tumor microenvironment (TME) and impaired cellular immunity are likely largely responsible for the limited utility of checkpoint inhibitors (CPIs) in advanced prostate cancer compared with other tumor types. Thus, for immunologically "cold" malignancies such as prostate cancer, clinical trial development has pivoted towards novel approaches to enhance immune responses. Numerous clinical trials are currently evaluating combination immunomodulatory strategies incorporating vaccine-based therapies, checkpoint inhibitors, and chimeric antigen receptor (CAR) T cells. Other trials evaluate the efficacy and safety of these immunomodulatory agents' combinations with standard approaches such as androgen deprivation therapy (ADT), taxane-based chemotherapy, radiotherapy, and targeted therapies such as tyrosine kinase inhibitors (TKI) and poly ADP ribose polymerase (PARP) inhibitors. Here, we will review promising immunotherapies in development and ongoing trials for metastatic castration-resistant prostate cancer (mCRPC). These novel trials will build on past experiences and promise to usher a new era to treat patients with mCRPC.
Collapse
|
35
|
Guo C, Dong E, Lai Q, Zhou S, Zhang G, Wu M, Yue X, Tao Y, Peng Y, Ali J, Lu Y, Fu Y, Lai W, Zhang Z, Ma F, Yao Y, Gou L, Yang H, Yang J. Effective antitumor activity of 5T4-specific CAR-T cells against ovarian cancer cells in vitro and xenotransplanted tumors in vivo. MedComm (Beijing) 2020; 1:338-350. [PMID: 34766126 PMCID: PMC8491242 DOI: 10.1002/mco2.34] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is considered to be the most lethal gynecologic malignancy, and despite the development of conventional therapies and new therapeutic approaches, the patient's survival time remains short because of tumor recurrence and metastasis. Therefore, effective methods to control tumor progression are urgently needed. The oncofetal tumor-associated antigen 5T4 (trophoblast glycoprotein, TPBG) represents an appealing target for adoptive T-cell immunotherapy as it is highly expressed on the surface of various tumor cells, has very limited expression in normal tissues, and spreads widely in malignant tumors throughout their development. In this study, we generated second-generation human chimeric antigen receptor (CAR) T cells with redirected specificity to 5T4 (5T4 CAR-T) and demonstrated that these CAR-T cells can elicit lytic cytotoxicity in targeted tumor cells, in addition to the secretion of cytotoxic cytokines, including IFN-γ, IL-2, and GM-CSF. Furthermore, adoptive transfer of 5T4 CAR-T cells significantly delayed tumor formation in xenografts of peritoneal and subcutaneous animal models. These results demonstrate the potential efficacy and feasibility of 5T4 CAR-T cell immunotherapy and provide a theoretical basis for the clinical study of future immunotherapies targeting 5T4 for ovarian cancer.
Collapse
Affiliation(s)
- Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - E Dong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Guangbing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Xiaozhu Yue
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yiran Tao
- West China‐California Research Center for Predictive Intervention MedicineWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Jamel Ali
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringTallahasseeFlorida
| | - Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Fanxin Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yuqin Yao
- Healthy Food Evaluation Research Center/Sichuan UniversityWest China School of Public Health and West China Fourth HospitalChengduPeople's Republic of China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
36
|
Benard E, Casey NP, Inderberg EM, Wälchli S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand J Immunol 2020; 92:e12917. [PMID: 32557659 DOI: 10.1111/sji.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Ovarian Cancer (OC) is currently difficult to cure, mainly due to its late detection and the advanced state of the disease at the time of diagnosis. Therefore, conventional treatments such as debulking surgery and combination chemotherapy are rarely able to control progression of the tumour, and relapses are frequent. Alternative therapies are currently being evaluated, including immunotherapy and advanced T cell-based therapy. In the present review, we will focus on a description of those Chimeric Antigen Receptors (CARs) that have been validated in the laboratory or are being tested in the clinic. Numerous target antigens have been defined due to the identification of OC biomarkers, and many are being used as CAR targets. We provide an exhaustive list of these constructs and their current status. Despite being innovative and efficient, the OC-specific CARs face a barrier to their clinical efficacy: the tumour microenvironment (TME). Indeed, effector cells expressing CARs have been shown to be severely inhibited, rendering the CAR T cells useless once at the tumour site. Herein, we give a thorough description of the highly immunosuppressive OC TME and present recent studies and innovations that have enabled CAR T cells to counteract this negative environment and to destroy tumours.
Collapse
Affiliation(s)
- Emmanuelle Benard
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Wan YL, Sapra P, Bolton J, Chua JX, Durrant LG, Stern PL. Combination Treatment with an Antibody-Drug Conjugate (A1mcMMAF) Targeting the Oncofetal Glycoprotein 5T4 and Carboplatin Improves Survival in a Xenograft Model of Ovarian Cancer. Target Oncol 2020; 14:465-477. [PMID: 31332693 PMCID: PMC6684567 DOI: 10.1007/s11523-019-00650-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Recurrence occurs in over 75% of women with epithelial ovarian cancer despite optimal treatment. Selectively killing tumour cells thought to initiate relapse using an antibody–drug conjugate could prolong progression-free survival and offer an improved side-effect profile. A1mcMMAF is an antibody–drug conjugate designed to target cells expressing the tumour-associated antigen 5T4. It has shown to be efficacious in various cell line models and have a greater impact when combined with routine chemotherapeutic regimes. Objectives This study aims to explore the potential for the use of a 5T4 antibody–drug conjugate in women with ovarian cancer both as a monotherapy and in combination with platinum-based chemotherapy. Methods Immunohistochemical analysis was used to assess 5T4 expression in tumours from patients with ovarian cancer. Effectiveness of A1mcMMAF therapy as a single agent and in combination with carboplatin was assessed in vitro in the ovarian cancer cell line SKOV3 and confirmed in vivo using a serial bioluminescence assay in a SKOV3 xenograft model of ovarian cancer. Results 5T4 is confirmed as suitably expressed in epithelial ovarian cancers prior to adjuvant therapy and is an independent predictor of poor survival. A1mcMMAF showed specific activity, both in vitro and in vivo, against SKOV3 ovarian cancer cells. When used in combination with carboplatin, in vivo tumour growth was inhibited resulting in prolonged survival in a SKOV3 xenograft model. Conclusions These data support further investigation of A1mcMMAF in combination with platinum-based chemotherapy in ovarian and other cancer treatments. Electronic supplementary material The online version of this article (10.1007/s11523-019-00650-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y Louise Wan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, NY, 10954, USA
| | - James Bolton
- Department of Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Jia Xin Chua
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Lindy G Durrant
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Peter L Stern
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
38
|
Xu Y, Morales AJ, Cargill MJ, Towlerton AMH, Coffey DG, Warren EH, Tykodi SS. Preclinical development of T-cell receptor-engineered T-cell therapy targeting the 5T4 tumor antigen on renal cell carcinoma. Cancer Immunol Immunother 2019; 68:1979-1993. [PMID: 31686124 PMCID: PMC6877496 DOI: 10.1007/s00262-019-02419-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
5T4 (trophoblast glycoprotein, TPBG) is a transmembrane tumor antigen expressed on more than 90% of primary renal cell carcinomas (RCC) and a wide range of human carcinomas but not on most somatic adult tissues. The favorable expression pattern has encouraged the development and clinical testing of 5T4-targeted antibody and vaccine therapies. 5T4 also represents a compelling and unexplored target for T-cell receptor (TCR)-engineered T-cell therapy. Our group has previously isolated high-avidity CD8+ T-cell clones specific for an HLA-A2-restricted 5T4 epitope (residues 17-25; 5T4p17). In this report, targeted single-cell RNA sequencing was performed on 5T4p17-specific T-cell clones to sequence the highly variable complementarity-determining region 3 (CDR3) of T-cell receptor α chain (TRA) and β chain (TRB) genes. Full-length TRA and TRB sequences were cloned into lentiviral vectors and transduced into CD8+ T-cells from healthy donors. Redirected effector T-cell function against 5T4p17 was measured by cytotoxicity and cytokine release assays. Seven unique TRA-TRB pairs were identified. All seven TCRs exhibited high expression on CD8+ T-cells with transduction efficiencies from 59 to 89%. TCR-transduced CD8+ T-cells demonstrated redirected cytotoxicity and cytokine release in response to 5T4p17 on target-cells and killed 5T4+/HLA-A2+ kidney-, breast-, and colorectal-tumor cell lines as well as primary RCC tumor cells in vitro. TCR-transduced CD8+ T-cells also detected presentation of 5T4p17 in TAP1/2-deficient T2 target-cells. TCR-transduced T-cells redirected to recognize the 5T4p17 epitope from a broadly shared tumor antigen are of interest for future testing as a cellular immunotherapy strategy for HLA-A2+ subjects with 5T4+ tumors.
Collapse
Affiliation(s)
- Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Alicia J Morales
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael J Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrea M H Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David G Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott S Tykodi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Abstract
Supplemental Digital Content is available in the text. Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells.
Collapse
|
40
|
Melanoma and autoimmunity: spontaneous regressions as a possible model for new therapeutic approaches. Melanoma Res 2019; 29:231-236. [PMID: 30615013 DOI: 10.1097/cmr.0000000000000573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Until now, malignancy has been considered a cellular problem represented by the perturbed (uncontrolled) division of the cells associated with invasion and metastasis. Contrary to this classical approach, a new perspective suggests that cancerous disease is, in fact, a supracellular problem represented by inadequate evolution of complex supracellular processes (embryogenesis, development, regeneration, etc.). Such complex processes would be disconnected from the real needs of the body, inducing unnecessary or even dangerous events such as an exacerbated rate of the cell division, angiogenesis, immunosuppression (specific to embryogenesis and melanoma), invasion (mediated by trophoblastic/placental factors in melanoma), and migration (specific to neural crest cells, which generate melanocytes - the most common origin for melanoma). As a result, a correct and comprehensive interpretation of cancer (causes, evolution, therapy, and prevention) should be conducted from a supracellular perspective. After presenting the supracellular perspective, this article further investigates the favorable evolution of malignant melanoma in two distinct situations: in patients receiving no therapy and in patients treated with immune-checkpoint inhibitors. In patients receiving no therapy, spontaneous regressions of melanoma could be the result of several autoimmune reactions (inducing not only melanoma regression but also vitiligo, an autoimmune event frequently associated with melanoma). Patients treated with immune-checkpoint inhibitors develop similar autoimmune reactions, which are clearly correlated with better therapeutic results. The best example is vitiligo, which is considered a positive prognostic factor for patients receiving immune-checkpoint inhibitors. This finding indicates that immune-checkpoint inhibitors induce distinct types of autoimmune events, some corresponding to specific favorable autoimmune mechanisms (favoring tumor regression) and others to common unfavorable adverse reactions (which should be avoided or minimized). In conclusion, the spectrum of autoimmune reactions induced by immune-checkpoint inhibitors should be restricted in the near future to only these specific favorable autoimmune mechanisms. In this way, the unnecessary autoimmune reactions/autoaggressions could be avoided (a better quality of life), and treatment specificity and efficiency should increase (a higher response rate for melanoma therapy).
Collapse
|
41
|
Motofei IG. Malignant Melanoma: Autoimmunity and Supracellular Messaging as New Therapeutic Approaches. Curr Treat Options Oncol 2019; 20:45. [PMID: 31056729 DOI: 10.1007/s11864-019-0643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Melanoma is one of the most aggressive forms of cancer, with a high mortality rate in the absence of a safe and curable therapy. As a consequence, several procedures have been tested over time, with the most recent (immunological and targeted) therapies proving to be effective in some patients. Unfortunately, these new treatment options continue to generate debate related to the therapeutic strategy (intended to maximize the long-term results of patients with melanoma), not only about the monotherapy configuration but also regarding association/succession between distinct therapeutic procedures. As an example, targeted therapy with BRAF inhibitors proved to be effective in advanced BRAF-mutant melanoma. However, such treatments with BRAF inhibitors lead to therapy resistance in half of patients after approximately 6 months. Even if most benign nevi incorporate oncogenic BRAF mutations, they rarely become melanoma; therefore, targeted therapy with BRAF inhibitors should be viewed as an incomplete or perfectible therapy. Another example is related to the administration of immune checkpoint inhibitors/ICIs (anti-CTLA-4 antibodies, anti-PD-1/PD-L1 antibodies), which are successfully used in metastatic melanoma. It is currently believed that CTLA-4 and PD-1 blockade would favor a strong immune response against cancer cells. The main side effects of ICIs are represented by the development of immune-related adverse events, which in some cases can be lethal. These ICI side effects would thus be not only therapeutically counterproductive but also potentially dangerous. Surprisingly, a subset of immune-related adverse events (especially autoimmune toxicity) seems to be clearly correlated with better therapeutic results, perhaps due to an additional therapeutic effect (currently insufficiently studied/exploited). Contrary to the classical approach of cancer (considered until now an uncontrolled division of cells), a very recent and comprehensive theory describes malignancy as a supracellular disease. Cancerous disease would therefore be a disturbed supracellular process (embryogenesis, growth, development, regeneration, etc.), which imposes/coordinates an increased rhythm of cell division, angiogenesis, immunosuppression, etc. Melanoma is presented from such a supracellular perspective to be able to explain the beneficial role of autoimmunity in cancer (autoimmune abortion/rejection of the melanoma-embryo phenotype) and to create premises to better optimize the newly emerging therapeutic options. Finally, it is suggested that the supracellular evolution of malignancy implies complex supracellular messaging (between the cells and host organism), which would be interfaced especially by the extracellular matrix and noncoding RNA. Therefore, understanding and manipulating supracellular messaging in cancer could open new treatment perspectives in the form of digitized (supracellular) therapy.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/Oncology, St. Pantelimon Hospital, Carol Davila University, Dionisie Lupu Street, no. 37, 020022, Bucharest, Romania.
| |
Collapse
|
42
|
Shi B, Wu M, Li Z, Xie Z, Wei X, Fan J, Xu Y, Ding D, Akash SH, Chen S, Cao S. Antitumor activity of a 5T4 targeting antibody drug conjugate with a novel payload derived from MMAF via C-Lock linker. Cancer Med 2019; 8:1793-1805. [PMID: 30843650 PMCID: PMC6488119 DOI: 10.1002/cam4.2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
Antibody-drug conjugates (ADCs) belong to a promising class of biopharmaceuticals in which target-killing of tumor cells was achieved by marrying the potency of the cytotoxic payload with the tumor specificity of the antibody. Here we developed a novel ADC (ZV0508) that targets 5T4 oncofetal antigen, which is overexpressed in many carcinomas on both bulk tumor cells and cancer stem cells. A novel cytotoxic payload called Duostatin-5 (Duo-5) which was derived from monomethyl auristatin F (MMAF) was attached to a 5T4 targeting antibody (ZV05) by interchain cysteine cross-linking conjugation via a disubstituted C-Lock linker. We have investigated the antitumor efficacy of ZV0508 by in vitro and in vivo studies, and compared its antitumor activity with ZV05-mcMMAF (ZV0501), in which MMAF was linked via a conventional noncleavable maleimidocaproyl linker. As results, ZV0508 exhibited ideal antiproliferative effects through blocking cell cycle and inducing cell apoptosis. The in vivo studies revealed that both ZV0501 and ZV0508 exhibited excellent antitumor activities even at a single dose. Although ZV0508 was inferior to ZV0501 in vitro, it elicited more durable antitumor responses than ZV0501 in vivo. The superior in vivo activity of ZV0508 may be due to the combined use of the disubstituted C-Lock linker and the novel payload Duo-5, resulting in a more stable and potent ADC. Taken together, these data suggest ZV0508 is a worthy candidate for the treatment of 5T4 positive cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cross-Linking Reagents
- Female
- Humans
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Male
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Oligopeptides/pharmacology
- Tumor Cells, Cultured/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Baoying Shi
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Min Wu
- Zova Biotherapeutics IncFuyang, HangzhouChina
| | - Zhaohui Li
- Zova Biotherapeutics IncFuyang, HangzhouChina
| | | | - Xiaoyue Wei
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Jiansheng Fan
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Yingchun Xu
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Ding Ding
- Noeantigen Therapeutics (HangZhou) Co., LtdHangzhouChina
| | - Sajid Hamid Akash
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug ResearchZhejiang UniversityHangzhouChina
| | - Sheldon Cao
- Zova Biotherapeutics IncFuyang, HangzhouChina
| |
Collapse
|
43
|
Harrop R, O’Neill E, Stern PL. Cancer stem cell mobilization and therapeutic targeting of the 5T4 oncofetal antigen. Ther Adv Vaccines Immunother 2019; 7:2515135518821623. [PMID: 30719508 PMCID: PMC6348545 DOI: 10.1177/2515135518821623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) can act as the cellular drivers of tumors harnessing stem cell properties that contribute to tumorigenesis either as founder elements or by the gain of stem cell traits by the malignant cells. Thus, CSCs can self-renew and generate the cellular heterogeneity of tumors including a hierarchical organization similar to the normal tissue. While the principle tumor growth contribution is often from the non-CSC components, it is the ability of small numbers of CSCs to avoid the effects of therapeutic strategies that can contribute to recurrence after treatment. However, identifying and characterizing CSCs for therapeutic targeting is made more challenging by their cellular potency being influenced by a particular tissue niche or by the capacity of more committed cells to regain stem cell functions. This review discusses the properties of CSCs including the limitations of the available cell surface markers, the assays that document tumor initiation and clonogenicity, the roles of epithelial mesenchymal transition and molecular pathways such as Notch, Wnt, Hippo and Hedgehog. The ability to target and eliminate CSCs is thought to be critical in the search for curative cancer treatments. The oncofetal tumor-associated antigen 5T4 (TBGP) has been linked with CSC properties in several different malignancies. 5T4 has functional attributes that are relevant to the spread of tumors including through EMT, CXCR4/CXCL12, Wnt, and Hippo pathways which may all contribute through the mobilization of CSCs. There are several different immunotherapies targeting 5T4 in development including antibody-drug conjugates, antibody-targeted bacterial super-antigens, a Modified Vaccinia Ankara-basedvaccine and 5T4-directed chimeric antigen receptor T-cells. These immune therapies would have the advantage of targeting both the bulk tumor as well as mobilized CSC populations.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Peter L. Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
44
|
Next Generation Cancer Vaccines-Make It Personal! Vaccines (Basel) 2018; 6:vaccines6030052. [PMID: 30096953 PMCID: PMC6161279 DOI: 10.3390/vaccines6030052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Dramatic success in cancer immunotherapy has been achieved over the last decade with the introduction of checkpoint inhibitors, leading to response rates higher than with chemotherapy in certain cancer types. These responses are often restricted to cancers that have a high mutational burden and show pre-existing T-cell infiltrates. Despite extensive efforts, therapeutic vaccines have been mostly unsuccessful in the clinic. With the introduction of next generation sequencing, the identification of individual mutations is possible, enabling the production of personalized cancer vaccines. Combining immune check point inhibitors to overcome the immunosuppressive microenvironment and personalized cancer vaccines for directing the host immune system against the chosen antigens might be a promising treatment strategy.
Collapse
|
45
|
Motofei IG. Biology of Cancer; From Cellular Cancerogenesis to Supracellular Evolution of Malignant Phenotype. Cancer Invest 2018; 36:309-317. [DOI: 10.1080/07357907.2018.1477955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ion G. Motofei
- Department of Surgery/Oncology, Carol Davila University, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
46
|
Wang R, Lai Q, Lu Y, Zhou Y, Tang L, Tao Y, Yao Y, Yu L, Liu Y, Wang Y, Zhang R, Jiang X, Gou L, Yang J. Expression of 5T4 extracellular domain fusion protein and preparation of anti-5T4 monoclonal antibody with high affinity and internalization efficiency. Protein Expr Purif 2018; 158:51-58. [PMID: 29981846 DOI: 10.1016/j.pep.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
5T4, a membrane protein, is overexpressed in many tumor tissues but rarely expressed in normal tissues. Here, CHO-5T4+ cells were generated and served as the antigen to immunize mice. Hybridoma techniques were employed to produce monoclonal antibodies (mAbs). The recombinant protein of human IgG Fc-fused extracellular domain of 5T4 (5T4 ECD-Fc) was obtained from transient expression in HEK293F cells. The fusion protein 5T4 ECD-Fc and CHO-5T4+ cells were respectively utilized to screen anti-5T4 antibodies that could bind to the native antigen. In preliminary screening, three hundred and fifty mAbs were obtained. Via surface plasmon resonance and flow cytometry screening, seven anti-5T4 mAbs stood out. Among them, H6 showed a high affinity (KD = 1.6 × 10-11 M) and internalization percentage (36% for 1 h and 80% for 4 h). The molecular weight and isoelectric point of H6 were determined by LC-MS and iCIEF. Moreover, the specific reactivity of H6 was demonstrated by western blotting, flow cytometry, and immunohistochemistry, respectively. In conclusion, we produced human recombinant protein of 5T4 extracellular domain and developed high-affinity internalizing monoclonal antibodies which may be applied in the 5T4-targeting ADC therapy and basic research.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhou
- The Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Liangze Tang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Tao
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Research Center for Public Health and Preventive Medicine, West China School of Public Health and Healthy Food Evaluation Research Center, NO. 4 West China Teaching Hospital, Sichuan University, Chengdu, China; Guangdong Zhongsheng Pharmaceutical Co., Ltd., China
| | - Lin Yu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruirui Zhang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lantu Gou
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- Department of Biotherapy, Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Guangdong Zhongsheng Pharmaceutical Co., Ltd., China.
| |
Collapse
|
47
|
Harris JL, Dave K, Gorman J, Khanna KK. The breast cancer antigen 5T4 interacts with Rab11, and is a target and regulator of Rab11 mediated trafficking. Int J Biochem Cell Biol 2018; 99:28-37. [DOI: 10.1016/j.biocel.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/19/2023]
|
48
|
Cappuccini F, Pollock E, Stribbling S, Hill AVS, Redchenko I. 5T4 oncofoetal glycoprotein: an old target for a novel prostate cancer immunotherapy. Oncotarget 2018; 8:47474-47489. [PMID: 28537896 PMCID: PMC5564579 DOI: 10.18632/oncotarget.17666] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023] Open
Abstract
The tumour-associated antigen 5T4 is an attractive target for cancer immunotherapy. However to date, reported 5T4-specific cellular immune responses induced by various immunisation platforms have been largely weak or non-existent. In the present study, we have evaluated a heterologous prime boost regime based on the simian adenovirus ChAdOx1 and modified vaccinia virus Ankara (MVA) expressing 5T4 for immunogenicity and tumour protective efficacy in a mouse cancer model. Vaccination-induced immune responses were strong, durable and attributable primarily to CD8+ T cells. By comparison, homologous MVA vaccination regimen did not induce detectable 5T4-specific T cell responses. ChAdOx1-MVA vaccinated mice were completely protected against subsequent B16 melanoma challenge, but in therapeutic settings this regime was only modestly effective in delaying tumour outgrowth. Concomitant delivery of the vaccine with monoclonal antibodies (mAbs) targeting immune checkpoint regulators LAG-3, PD-1 or PD-L1 demonstrated that the combination of vaccine with anti PD-1 mAb could significantly delay tumour growth and increase overall survival of tumour-bearing mice. Our findings support a translation of the combinatorial approach based on the heterologous ChAdOx1-MVA vaccination platform with immune checkpoint blockade into the clinic for the treatment of 5T4-positive tumours such as prostate, renal, colorectal, gastric, ovarian, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Federica Cappuccini
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Emily Pollock
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Stephen Stribbling
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Irina Redchenko
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
49
|
Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 2017; 18:168-182. [PMID: 29226910 DOI: 10.1038/nri.2017.131] [Citation(s) in RCA: 703] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer vaccines, which are designed to amplify tumour-specific T cell responses through active immunization, have long been envisioned as a key tool of effective cancer immunotherapy. Despite a clear rationale for such vaccines, extensive past efforts were unsuccessful in mediating clinically relevant antitumour activity in humans. Recently, however, next-generation sequencing and novel bioinformatics tools have enabled the systematic discovery of tumour neoantigens, which are highly desirable immunogens because they arise from somatic mutations of the tumour and are therefore tumour specific. As a result of the diversity of tumour neoepitopes between individuals, the development of personalized cancer vaccines is warranted. Here, we review the emerging field of personalized cancer vaccination and discuss recent developments and future directions for this promising treatment strategy.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
50
|
McGinn OJ, Krishnan S, Bourquin JP, Sapra P, Dempsey C, Saha V, Stern PL. Targeting the 5T4 oncofetal glycoprotein with an antibody drug conjugate (A1mcMMAF) improves survival in patient-derived xenograft models of acute lymphoblastic leukemia. Haematologica 2017; 102:1075-1084. [PMID: 28341731 PMCID: PMC5451339 DOI: 10.3324/haematol.2016.158485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Outcome in childhood acute lymphoblastic leukemia is prognosticated from levels of minimal residual disease after remission induction therapy. Higher levels of minimal residual disease are associated with inferior results even with intensification of therapy, thus suggesting that identification and targeting of minimal residual disease cells could be a therapeutic strategy. Here we identify high expression of 5T4 in subclonal populations of patient-derived xenografts from patients with high, post-induction levels of minimal residual disease. 5T4-positive cells showed preferential ability to overcome the NOD-scidIL2Rγnull mouse xenograft barrier, migrated in vitro on a CXCL12 gradient, preferentially localized to bone marrow in vivo and displayed the ability to reconstitute the original clonal composition on limited dilution engraftment. Treatment with A1mcMMAF (a 5T4-antibody drug conjugate) significantly improved survival without overt toxicity in mice engrafted with a 5T4-positive acute lymphoblastic leukemia cell line. Mice engrafted with 5T4-positive patient-derived xenograft cells were treated with combination chemotherapy or dexamethasone alone and then given A1mcMMAF in the minimal residual disease setting. Combination chemotherapy was toxic to NOD-scidIL2Rγnull mice. While dexamethasone or A1mcMMAF alone improved outcomes, the sequential administration of dexamethasone and A1mcMMAF significantly improved survival (P=0.0006) over either monotherapy. These data show that specifically targeting minimal residual disease cells improved outcomes and support further investigation of A1mcMMAF in patients with high-risk B-cell precursor acute lymphoblastic leukemia identified by 5T4 expression at diagnosis.
Collapse
Affiliation(s)
- Owen J McGinn
- Immunology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| | - Shekhar Krishnan
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.,Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Jean-Pierre Bourquin
- Division of Oncology & Children's Research Center, University Children's Hospital, University of Zurich, Switzerland
| | - Puja Sapra
- Pfizer Inc. Pearl River, NY10965-1299, USA
| | - Clare Dempsey
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| | - Vaskar Saha
- Paediatric Oncology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK .,Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Peter L Stern
- Immunology, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK
| |
Collapse
|