1
|
Moon DO. MetAP2 as a Therapeutic Target for Obesity and Type 2 Diabetes: Structural Insights, Mechanistic Roles, and Inhibitor Development. Biomolecules 2024; 14:1572. [PMID: 39766279 PMCID: PMC11673396 DOI: 10.3390/biom14121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity. The unique architecture of MetAP2's active site and its interactions with substrates are examined to elucidate its enzymatic function. The review also explores the development of MetAP2 inhibitors, focusing on their mechanisms of action, preclinical and clinical findings, and therapeutic potential. Special emphasis is placed on docking studies to analyze the binding interactions of six key inhibitors (fumagillin, TNP-470, beloranib, ZGN-1061, indazole, and pyrazolo[4,3-b]indole) with MetAP2, revealing their structural determinants for efficacy and specificity. These findings underscore the potential of MetAP2 as a therapeutic target and provide valuable insights for the rational design of next-generation inhibitors to address obesity and T2DM.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Quiñonero F, Ortigosa-Palomo A, Ortiz R, Melguizo C, Prados J. Fungi-Derived Bioactive Compounds as Potential Therapeutic Agents for Pancreatic Cancer: A Systematic Review. Microorganisms 2024; 12:1527. [PMID: 39203369 PMCID: PMC11356550 DOI: 10.3390/microorganisms12081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic cancer (PC) is one of the tumors with the lowest 5-year survival rate worldwide due to late diagnosis and lack of effective therapy. Because of this, it is necessary to discover new ways of treatment to increase the quality of life of patients. In this context, the secondary metabolites of several fungi have been shown as a possible therapeutic strategy in several types of cancer, such as colorectal cancer, being able to trigger their action through the induction of apoptosis. The objective was to perform a systematic review process to analyze the studies carried out during the last ten years using secondary metabolites derived from fungi as antitumor treatment against PC. After the search process in three databases (PubMed, SCOPUS, and Web of Science) a total of 199 articles were found, with 27 articles finally being included after screening. The results extracted from this systematic review process made it possible to determine the existence of bioactive compounds extracted from fungi that have been effective in in vitro and in vivo conditions and that may be applicable as a possible therapy to avoid drug resistance in PC, one of the major problems of this disease.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Alba Ortigosa-Palomo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Vo KT, Matthay KK, DuBois SG. Targeted antiangiogenic agents in combination with cytotoxic chemotherapy in preclinical and clinical studies in sarcoma. Clin Sarcoma Res 2016; 6:9. [PMID: 27274393 PMCID: PMC4896001 DOI: 10.1186/s13569-016-0049-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal malignancies. In recent years, studies have demonstrated that inhibition of angiogenic pathways or disruption of established vasculature can attenuate the growth of sarcomas. However, when used as monotherapy in the clinical setting, these targeted antiangiogenic agents have only provided modest survival benefits in some sarcoma subtypes, and have not been efficacious in others. Preclinical and early clinical data suggest that the addition of conventional chemotherapy to antiangiogenic agents may lead to more effective therapies for patients with these tumors. In the current review, the authors summarize the available evidence and possible mechanisms supporting this approach.
Collapse
Affiliation(s)
- Kieuhoa T. Vo
- />Department of Pediatrics, UCSF School of Medicine, San Francisco School of Medicine, UCSF Benioff Children’s Hospital, University of California, 550 16th Street, 4th Floor, Box 0434, San Francisco, CA 94158 USA
| | - Katherine K. Matthay
- />Department of Pediatrics, UCSF School of Medicine, San Francisco School of Medicine, UCSF Benioff Children’s Hospital, University of California, 550 16th Street, 4th Floor, Box 0434, San Francisco, CA 94158 USA
| | - Steven G. DuBois
- />Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, 450 Brookline Avenue, Dana 3, Boston, MA 02215 USA
| |
Collapse
|
4
|
Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Toward a Cancer Drug of Fungal Origin. Med Res Rev 2015; 35:937-67. [PMID: 25850821 PMCID: PMC4529806 DOI: 10.1002/med.21348] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.
Collapse
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/0, 70126 Bari, Italy
| | - Véronique Mathieu
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme; Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robert Kiss
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Versleijen-Jonkers YMH, Vlenterie M, van de Luijtgaarden ACM, van der Graaf WTA. Anti-angiogenic therapy, a new player in the field of sarcoma treatment. Crit Rev Oncol Hematol 2014; 91:172-85. [PMID: 24613529 DOI: 10.1016/j.critrevonc.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 01/12/2023] Open
Abstract
Sarcomas encompass a heterogeneous family of mesenchymal malignancies. In metastatic disease improvement in outcome has been limited and there is a clear need for the development of new therapies. One potential target is angiogenesis, already an accepted target for treatment of more prevalent cancers. Multiple (pre)clinical studies focused on the role of angiogenesis and anti-angiogenic treatment in sarcomas. However, getting significant results is complicated due to the relatively small number of patients and the broad range of sarcoma subtypes. Recently, pazopanib has been approved for the treatment of advanced soft tissue sarcoma patients, which is an important step forward and paves the way for the introduction of anti-angiogenic treatment in sarcomas. However, more studies are needed to understand the biological mechanisms by which patients respond to angiogenic inhibitors and to detect markers of response. This review covers the knowledge that has been gained on the role of angiogenesis and anti-angiogenic therapy in sarcomas.
Collapse
Affiliation(s)
- Yvonne M H Versleijen-Jonkers
- Department of Medical Oncology, Radboud University Medical Center, Internal Postal Code 452, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Myrella Vlenterie
- Department of Medical Oncology, Radboud University Medical Center, Internal Postal Code 452, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Addy C M van de Luijtgaarden
- Department of Medical Oncology, Radboud University Medical Center, Internal Postal Code 452, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Internal Postal Code 452, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
6
|
JIANG WENG, YE LIN, JI KE, FREWER NATASHA, JI JIAFU, MASON MALCOLMD. Inhibitory effects of Yangzheng Xiaoji on angiogenesis and the role of the focal adhesion kinase pathway. Int J Oncol 2012; 41:1635-42. [DOI: 10.3892/ijo.2012.1627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/04/2012] [Indexed: 11/05/2022] Open
|
7
|
Koppitz H, Rockstroh JK, Schüller H, Standop J, Skowasch D, Müller-Hermelink HK, Schmidt-Wolf IG. State-of-the-art classification and multimodality treatment of malignant thymoma. Cancer Treat Rev 2012; 38:540-8. [DOI: 10.1016/j.ctrv.2011.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/23/2022]
|
8
|
Kass DJ, Rattigan E, Kahloon R, Loh K, Yu L, Savir A, Markowski M, Saqi A, Rajkumar R, Ahmad F, Champion HC. Early treatment with fumagillin, an inhibitor of methionine aminopeptidase-2, prevents Pulmonary Hypertension in monocrotaline-injured rats. PLoS One 2012; 7:e35388. [PMID: 22509410 PMCID: PMC3324555 DOI: 10.1371/journal.pone.0035388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/16/2012] [Indexed: 01/30/2023] Open
Abstract
Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients.
Collapse
MESH Headings
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/genetics
- Aminopeptidases/metabolism
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclohexanes/administration & dosage
- Disease Models, Animal
- Fatty Acids, Unsaturated/administration & dosage
- Gene Expression Regulation
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Heart Ventricles/drug effects
- Heart Ventricles/physiopathology
- Hemodynamics
- Humans
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/prevention & control
- Male
- Monocrotaline/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/cytology
- Myofibroblasts/drug effects
- Myofibroblasts/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Rats
- Rats, Sprague-Dawley
- Sesquiterpenes/administration & dosage
Collapse
Affiliation(s)
- Daniel J Kass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and the Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Farjo KM, Ma JX. The potential of nanomedicine therapies to treat neovascular disease in the retina. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:21. [PMID: 20932321 PMCID: PMC2958857 DOI: 10.1186/2040-2384-2-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/08/2010] [Indexed: 12/20/2022]
Abstract
Neovascular disease in the retina is the leading cause of blindness in all age groups. Thus, there is a great need to develop effective therapeutic agents to inhibit and prevent neovascularization in the retina. Over the past decade, anti-VEGF therapeutic agents have entered the clinic for the treatment of neovascular retinal disease, and these agents have been effective for slowing and preventing the progression of neovascularization. However, the therapeutic benefits of anti-VEGF therapy can be diminished by the need for prolonged treatment regimens of repeated intravitreal injections, which can lead to complications such as endophthalmitis, retinal tears, and retinal detachment. Recent advances in nanoparticle-based drug delivery systems offer the opportunity to improve bioactivity and prolong bioavailability of drugs in the retina to reduce the risks associated with treating neovascular disease. This article reviews recent advances in the development of nanoparticle-based drug delivery systems which could be utilized to improve the treatment of neovascular disease in the retina.
Collapse
Affiliation(s)
- Krysten M Farjo
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
10
|
Abstract
Angiogenesis has become an attractive target for drug therapy because of its key role in tumor growth. An extensive array of compounds is currently in preclinical development, with many now entering the clinic and/or achieving approval from the US Food and Drug Administration. Several regulatory and signaling molecules governing angiogenesis are of interest, including growth factors (eg, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, and epidermal growth factor), receptor tyrosine kinases, and transcription factors such as hypoxia inducible factor, as well as molecules involved in mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling. Pharmacologic agents have been identified that target these pathways, yet for some agents (notably thalidomide), an understanding of the specific mechanisms of antitumor action has proved elusive. The following review describes key molecular mechanisms and novel therapies that are on the horizon for antiangiogenic tumor therapy.
Collapse
Affiliation(s)
| | - William D. Figg
- To whom correspondence should be addressed: 10 Center Drive, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD 20892 USA Phone: 301-402-3622 Fax: 301-402-8606
| |
Collapse
|
11
|
Antiangiogenic Agents and Vascular Disrupting Agents for the Treatment of Lung Cancer: A Review. J Thorac Oncol 2010; 5:129-39. [DOI: 10.1097/jto.0b013e3181c59a60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Benny O, Pakneshan P. Novel technologies for antiangiogenic drug delivery in the brain. Cell Adh Migr 2009; 3:224-9. [PMID: 19262168 DOI: 10.4161/cam.3.2.7766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antiangiogenic therapies aimed at inhibiting the formation of tumor vasculature hold great promise for cancer therapy, with multiple compounds currently undergoing clinical trials. As with many forms of chemotherapy, antiangiogenic drugs face numerous hurdles in their translation to clinical use. Many such promising agents exhibit a short half-life, low solubility, poor bioavailability and multiple toxic side effects. Furthermore, when targeting malignant brain tumors the blood-brain barrier represents a formidable obstacle, preventing drugs from penetrating into the central nervous system (CNS). In this review, we discuss several preclinical antiangiogenic therapies and describe issues related to the unique conditions in the brain with regard to cancer treatment and neurotoxicity. We focus on the limitations of antiangiogenic drugs in the brain, along with numerous solutions that involve novel biomaterials and nanotechnological approaches. We also discuss an example in which modifying the properties of an antiangiogenic compound enhanced its clinical efficacy in treating tumors while simultaneously mitigating undesirable neurological side-effects.
Collapse
Affiliation(s)
- Ofra Benny
- Department of Surgery, Children's Hospital Boston, Harvard Medical School, MA, USA.
| | | |
Collapse
|
13
|
|
14
|
Winter PM, Schmieder AH, Caruthers SD, Keene JL, Zhang H, Wickline SA, Lanza GM. Minute dosages of alpha(nu)beta3-targeted fumagillin nanoparticles impair Vx-2 tumor angiogenesis and development in rabbits. FASEB J 2008; 22:2758-67. [PMID: 18362202 PMCID: PMC2493462 DOI: 10.1096/fj.07-103929] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/28/2008] [Indexed: 01/06/2023]
Abstract
Fumagillin suppresses angiogenesis in cancer models and clinical trials, but it is associated with neurotoxicity at systemic doses. In this study, alpha(nu)beta(3)-targeted fumagillin nanoparticles were used to suppress the neovasculature and inhibit Vx-2 adenocarcinoma development using minute drug doses. Tumor-bearing rabbits were treated on days 6, 9, and 12 postimplantation with alpha(nu)beta(3)-targeted fumagillin nanoparticles (30 microg/kg), alpha(nu)beta(3)-targeted nanoparticles without drug, nontargeted fumagillin nanoparticles (30 microg/kg) or saline. On day 16, MRI was performed with alpha(nu)beta(3)-targeted paramagnetic nanoparticles to quantify tumor size and assess neovascularity. Tumor volume was reduced among rabbits receiving alpha(nu)beta(3)-targeted fumagillin nanoparticles (470+/-120 mm(3)) compared with the three control groups: nontargeted fumagillin nanoparticles (1370+/-300 mm(3), P<0.05), alpha(nu)beta(3)-targeted nanoparticles without drug (1080+/-180 mm(3), P<0.05) and saline (980+/-80 mm(3), P<0.05). MR molecular imaging of control rabbits (no fumagillin) revealed a predominant peripheral distribution of neovascularity representing 7.2% of the tumor rim volume, which decreased to 2.8% (P<0.05) with alpha(nu)beta(3)-targeted fumagillin nanoparticle treatment. Microscopically, the tumor parenchyma tended to show T-cell infiltration after targeted fumagillin treatment, which was not appreciated in control animals. These results suggest that alpha(nu)beta(3)-targeted fumagillin nanoparticles could provide a safe and effective means to deliver MetAP2 inhibitors alone or in combination with cytotoxic or immunotherapy.
Collapse
Affiliation(s)
- Patrick M Winter
- Washington University Medical School, Campus Box 8215, 4320 Forest Park Ave., St. Louis, MO 63108, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I, Pravda E, Nahmias Y, Koirala S, Corfas G, D'Amato RJ, Folkman J. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol 2008; 26:799-807. [PMID: 18587385 PMCID: PMC2803109 DOI: 10.1038/nbt1415] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 06/03/2008] [Indexed: 01/15/2023]
Abstract
Targeting angiogenesis, the formation of blood vessels, is an important modality for cancer therapy. TNP-470, a fumagillin analog, is among the most potent and broad-spectrum angiogenesis inhibitors. However, a major clinical limitation is its poor oral availability and short half-life, necessitating frequent, continuous parenteral administration. We have addressed these issues and report an oral formulation of TNP-470, named Lodamin. TNP-470 was conjugated to monomethoxy-polyethylene glycol-polylactic acid to form nanopolymeric micelles. This conjugate can be absorbed by the intestine and selectively accumulates in tumors. Lodamin significantly inhibits tumor growth, without causing neurological impairment in tumor-bearing mice. Using the oral route of administration, it first reaches the liver, making it especially efficient in preventing the development of liver metastasis in mice. We show that Lodamin is an oral nontoxic antiangiogenic drug that can be chronically administered for cancer therapy or metastasis prevention.
Collapse
Affiliation(s)
- Ofra Benny
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, 1 Blackfan Circle, St. Karp Research Building, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liver regeneration and tumor stimulation--a review of cytokine and angiogenic factors. J Gastrointest Surg 2008; 12:966-80. [PMID: 18181006 DOI: 10.1007/s11605-007-0459-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/06/2007] [Indexed: 01/31/2023]
Abstract
Liver resection for metastatic (colorectal carcinoma) tumors is often followed by a significant incidence of tumor recurrence. Cellular and molecular changes resulting from hepatectomy and the subsequent liver regeneration process may influence the kinetics of tumor growth and contribute to recurrence. Clinical and experimental evidence suggests that factors involved in liver regeneration may also stimulate the growth of occult tumors and the reactivation of dormant micrometastases. An understanding of the underlying changes may enable alternative strategies to minimize tumor recurrence and improve patient survival after hepatectomy.
Collapse
|
17
|
TNP-470: The Resurrection of the First Synthetic Angiogenesis Inhibitor. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Gilheeney SW, Lyden DC, Sgouros S, Antunes N, Gerald W, Kramer K, Lis E, Meyers P, Rosen N, Thaler HT, Trippett T, Wexler L, Dunkel IJ. A phase II trial of thalidomide and cyclophosphamide in patients with recurrent or refractory pediatric malignancies. Pediatr Blood Cancer 2007; 49:261-5. [PMID: 16972243 DOI: 10.1002/pbc.21045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Previous clinical and pre-clinical research has demonstrated synergy between anti-angiogenic agents and cytotoxic chemotherapy. This trial was undertaken to investigate whether the combination of cyclophosphamide and thalidomide would be active against pediatric tumors. PROCEDURE Patients with pediatric malignancies who had no remaining conventional therapeutic options were recruited from January 1999 to May 2001. They received thalidomide (6-12 mg/kg po every day; maximum daily dose 800 mg) and cyclophosphamide (1,200 mg/m2 IV every 28 days). RESULTS Twenty-seven patients were enrolled on the study. Seventeen were male and 10 were female. Median age at the time of registration was 15 years (range 1-54 years). The median number of prior treatment regimens was four. Twenty-one patients were evaluable for response; 1 had a partial response (Hodgkin disease), 1 demonstrated stable disease (neuroendocrine tumor), and 19 had progressive disease. The most common toxicities were hematological (leukocytopenia and neutropenia) and gastrointestinal. One patient experienced a grade 3 rash. Fatigue and daytime somnolence were variable. No peripheral neuropathy was observed. CONCLUSION The combination of thalidomide and cyclophosphamide as described herein has a modest and tolerable toxicity profile but little evidence of efficacy.
Collapse
Affiliation(s)
- Stephen W Gilheeney
- Departments of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nahari D, Satchi-Fainaro R, Chen M, Mitchell I, Task LB, Liu Z, Kihneman J, Carroll AB, Terada LS, Nwariaku FE. Tumor cytotoxicity and endothelial Rac inhibition induced by TNP-470 in anaplastic thyroid cancer. Mol Cancer Ther 2007; 6:1329-37. [PMID: 17431111 DOI: 10.1158/1535-7163.mct-06-0554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaplastic thyroid carcinoma is an aggressive form of cancer with no treatment. Angiogenesis inhibitors, such as TNP-470, a synthetic derivative of fumagillin, have been shown to reduce tumor size and increase survival in heterotopic animal models of thyroid cancer. Our goals were to determine the effect of TNP-470 on anaplastic thyroid cancer using an orthotopic murine model, to identify the molecular pathways of TNP-470 actions on endothelial cells, and to determine the non-endothelial tumor effects of TNP-470. We injected human anaplastic thyroid carcinoma cells (DRO'90) into the thyroid glands of nude mice. Mice received TNP-470 (30 mg/kg) s.c. for 6 weeks. TNP-470 prolonged survival and reduced liver metastases. TNP-470 had direct cytotoxic effects on anaplastic thyroid carcinoma cells in vitro and in vivo. Paradoxically, TNP-470 increased vascular endothelial growth factor secretion from tumor cells in vitro and in vivo. However, there was no associated increase in tumor microvessel density. In endothelial cells, TNP-470 prevented vascular endothelial growth factor-induced endothelial permeability, intercellular gap formation, and ruffle formation by preventing Rac1 activation.
Collapse
Affiliation(s)
- Dorit Nahari
- Department of Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9156, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mair B, Fuerst G, Kubitzky P, Tangl S, Bergmeister H, Losert U, Watzek G, Gruber R. The anti-angiogenic substance TNP-470 impairs peri-implant bone formation: a pilot study in the rabbit metaphysis model. Clin Oral Implants Res 2007; 18:370-5. [PMID: 17298491 DOI: 10.1111/j.1600-0501.2006.01319.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To study the osseointegration of dental implants under the conditions of impaired blood vessel formation in a rabbit model. MATERIAL AND METHODS Twenty-four titanium implants were placed in the diaphyses of 12 rabbits, two in each tibia. After 2 days, six animals received TNP-470, an anti-angiogenic substance, 10 mg/kg body weight, three times a week, by subcutaneous injection. The remaining six animals served as controls. All animals were sacrificed 6 weeks post implantation. RESULTS The amount of newly formed bone (NFB) within a peri-implant distance of 0.2 mm and the percentage of bone-to-implant contacts (BIC) were determined in undecalcified ground sections. In both groups, appositional bone growth originating from the cortex was associated with a dense network of blood vessels. Within 1 mm apical from the implant shoulder, NFB was 29.3+/-6.7% in TNP-470 treated animals vs. 44.2+/-13.1% in the controls (P=0.03). In the adjacent cortical area NFB was 46.1+/-10.0% in TNP-470 treated animals and 58.4+/-3.0% in the control group (P=0.02). In the endosteal area, 3 mm from the implant shoulder NFB was 24.8+/-11.8% in TNP-470-treated animals and 27.0+/-9.6% in controls (P=0.73) and in the most apical peri-implant area corresponding to the bone marrow cavity 4.3+/-3.2% in TNP-470-treated animals and 10.5+/-5.2% in the controls (P=0.03). No decrease in BIC in response to TNP-470 was observed. CONCLUSION The data suggest that TNP-470 decreases the formation of peri-implant bone, whereas BIC overall are not affected by it. The rabbit model presented here supports the importance of angiogenesis in the process of peri-implant bone formation.
Collapse
Affiliation(s)
- Birgit Mair
- Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kass D, Bridges RS, Borczuk A, Greenberg S. Methionine aminopeptidase-2 as a selective target of myofibroblasts in pulmonary fibrosis. Am J Respir Cell Mol Biol 2007; 37:193-201. [PMID: 17446530 DOI: 10.1165/rcmb.2006-0352oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, scarring lung disease characterized by fibroblast accumulation and deposition of collagen. Factors that promote growth and/or survival of fibroblasts are potential therapeutic targets. Methionine aminopeptidase 2 (MetAP2), a member of the aminopeptidase family of proteases, has been implicated in cell proliferation in a variety of cell types, but its expression and function in the lung is not known. By immunohistochemistry, MetAP2 was expressed in many cell types, including fibroblasts, in IPF lungs. Fumagillin, an irreversible inhibitor of the enzymatic activity of MetAP2, attenuated collagen deposition in the bleomycin model of acute lung injury in mice. Treatment with fumagillin caused a selective reduction in the numbers of bromodeoxyuridine (BrdU)-positive myofibroblasts, but not type II alveolar epithelial cells, macrophages, or B- and T-lymphocytes in the lungs of bleomycin-treated mice. Incubation of primary rat lung fibroblasts with either fumagillin or with short interfering RNA that targeted MetAP2 led to reduced proliferation, as assessed by incorporation of BrdU. The profibrotic growth factor, platelet-derived growth factor, increased expression of MetAP2 in rat lung fibroblasts. We propose that MetAP2 plays a role in the proliferation of fibroblasts and myofibroblasts in fibrotic lung diseases and may serve as a novel pharmacologic target in IPF.
Collapse
Affiliation(s)
- Daniel Kass
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
22
|
Lanza G, Winter P, Cyrus T, Caruthers S, Marsh J, Hughes M, Wickline S. Nanomedicine Opportunities in Cardiology. Ann N Y Acad Sci 2006; 1080:451-65. [PMID: 17132801 DOI: 10.1196/annals.1380.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite myriad advances, cardiovascular-related diseases continue to remain our greatest health problem. In more than half of patients with atherosclerotic disease, their first presentation to medical attention becomes their last. Patients often survive their first cardiac event through acute revascularization and placement of drug-eluting stents (DES), but only select coronary lesions are amenable to DES placement, resulting in the use of bare metal or no stent, both of which lack the benefit of antirestenotic therapy. In other patients, transient ischemic attacks (TIAs) and stroke constitute the initial presentation of disease. In these patients, the diagnostic and therapeutic options are woefully inadequate. Nanomedicine offers options to each of these challenges. Antiangiogenic paramagnetic nanoparticles may be used to serially assess the severity of atherosclerotic disease in asymptomatic, high-risk patients by detecting the development of plaque neovasculature, which reflects the underlying lesion activity and vulnerability to rupture. The nanoparticles can locally deliver antiangiogenic therapy, which may acutely retard plaque progression, allowing aggressive statin therapy to become effective. Moreover, these agents may be useful as a quantitative marker to guide atherosclerotic management in an asymptomatic patient. In those cases proceeding to the catheterization laboratory for revascularization, nanoparticles incorporating antirestenotic drugs can be delivered directly into the wall of lesions not amenable to DES placement. Targeted nanoparticles could help ensure that antirestenotic drugs are available for all lesions. Moreover, displacement of antiproliferative agents from the intimal surface into the vascular wall is likely to improve rehealing of the endothelium, improving postprocedural management of these patients.
Collapse
Affiliation(s)
- Gregory Lanza
- Med and Biomed Engineering, School of Medicine, Washington University St. Louis, 4003 Kingshighway Bldg., St. Louis, MO 63130, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lanza GM, Winter PM, Caruthers SD, Hughes MS, Cyrus T, Marsh JN, Neubauer AM, Partlow KC, Wickline SA. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. Nanomedicine (Lond) 2006; 1:321-9. [PMID: 17716162 DOI: 10.2217/17435889.1.3.321] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanomedicine promises to enhance the ability of clinicians to address some of the serious challenges responsible for cardiovascular mortality, morbidity and numerous societal consequences. Targeted imaging and therapy applications with perfluorocarbon nanoparticles are relevant to a broad spectrum of cardiovascular diseases, ranging from asymptomatic atherosclerotic disease to acute myocardial infarction or stroke. As illustrated in this article, perfluorocarbon nanoparticles offer new tools to recognize and characterize pathology, to identify and segment high-risk patients and to treat chronic and acute disease.
Collapse
Affiliation(s)
- Gregory M Lanza
- Division of Cardiology, Washington University Medical School, Cortex Building, St Louis, MO 63108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Johnson FM, Krug LM, Tran HT, Shoaf S, Prieto VG, Tamboli P, Peeples B, Patel J, Glisson BS. Phase I studies of imatinib mesylate combined with cisplatin and irinotecan in patients with small cell lung carcinoma. Cancer 2006; 106:366-74. [PMID: 16342249 DOI: 10.1002/cncr.21640] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Small cell lung carcinoma (SCLC) cell lines commonly express KIT and its ligand, stem cell factor, suggesting an autocrine loop promoting cell growth. Imatinib inhibits KIT kinase activity. SCLC cells treated with imatinib in vitro undergo cell cycle arrest. Imatinib reduces resistance to irinotecan in vitro. Common metabolic pathways suggest there may be drug interactions between imatinib and irinotecan or cisplatin. In the current study, the authors investigated the feasibility of combining these drugs in the treatment of patients with SCLC. METHODS Two Phase I studies were conducted independently at two institutions. Patients with extensive-disease SCLC underwent therapy with cisplatin, irinotecan, and imatinib using two similar regimens. In one study, immunohistochemical analysis of the expression of potential imatinib targets was performed on pretreatment biopsy specimens, and blood specimens were collected and analyzed for imatinib, irinotecan, and cisplatin pharmacokinetic parameters. RESULTS Nine patients were enrolled and were evaluable for toxicity. A high incidence of neutropenia, diarrhea, and thrombosis was observed that precluded dose escalation. Six patients were evaluable for response after four cycles; five patients experienced a partial response and the other patient had developed progressive disease. Four of six tumor specimens tested expressed platelet-derived growth factor receptor-alpha and two expressed KIT. Irinotecan clearance was found to be significantly decreased by imatinib (P < 0.04). No significant alteration in the disposition of cisplatin was observed. CONCLUSIONS The maximum tolerated dose for this combination with granulocyte-colony-stimulating factor support was identified as imatinib at a dose of 300 mg/day with irinotecan (at a dose of 65 mg/m(2)) and cisplatin (at a dose of 30 mg/m(2)) given on Days 1 and 8, every 21 days. The decreased irinotecan clearance may explain the high incidence of diarrhea and neutropenia noted in the current study.
Collapse
Affiliation(s)
- Faye M Johnson
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77230-1402, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kaptzan T, Skutelsky E, Itzhaki O, Sinai J, Huszar M, Siegal A, Ben-Zvi R, Jossiphov J, Michowitz M, Schiby G, Leibovici J. Efficacy of anti-angiogenic treatment of tumors in old versus young mice. Mech Ageing Dev 2006; 127:398-409. [PMID: 16476469 DOI: 10.1016/j.mad.2005.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/15/2005] [Accepted: 12/22/2005] [Indexed: 12/19/2022]
Abstract
Cancer treatment in the older population, the most afflicted by the disease, is as yet, inefficient. A reduced aggressiveness of tumors is often observed in the elderly, implying the necessity for therapeutic modalities adjusted to age. A rational design of age-related cancer therapy could be based on the mechanisms of this phenomenon. It is suggested that, in addition to the patient's old age-specific health problems (which prohibit the use of the aggressive cancer treatments now in use), the age-related differential tumor biology (apparently beneficial to the old) should also be considered for the design of treatment modalities suitable for the aged. Based on one mechanism of the reduced aggressiveness of tumors in the old (age-dependent decreased angiogenesis), we compared the effect of an anti-angiogenic treatment in young and old mice. TNP-470 treatment resulted in an inhibitory effect on B16 melanoma in both young and old mice but the effect was more pronounced in old animals. Moreover, a high percentage of long-term surviving animals was observed only in the old-treated mice. Treatment with TNP-470 of the AKR lymphoma produced similar results. We thus found a differential age-dependent therapeutic efficiency of an anti-angiogenic agent on two tumors. Importantly, the anti-angiogenic drug was more efficient against tumors of old animals.
Collapse
Affiliation(s)
- Tatiana Kaptzan
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mocellin S, Rossi CR, Brandes A, Nitti D. Adult soft tissue sarcomas: Conventional therapies and molecularly targeted approaches. Cancer Treat Rev 2006; 32:9-27. [PMID: 16338075 DOI: 10.1016/j.ctrv.2005.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/21/2005] [Indexed: 01/12/2023]
Abstract
The therapeutic approach to soft tissue sarcomas (STS) has evolved over the past two decades based on the results from randomized controlled trials, which are guiding physicians in the treatment decision-making process. Despite significant improvements in the control of local disease, a significant number of patients ultimately die of recurrent/metastatic disease following radical surgery due to a lack of effective adjuvant treatments. In addition, the characteristic chemoresistance of STS has compromised the therapeutic value of conventional antineoplastic agents in cases of unresectable advanced/metastatic disease. Therefore, novel therapeutic strategies are urgently needed to improve the prognosis of patients with STS. Recent advances in STS biology are paving the way to the development of molecularly targeted therapeutic strategies, the efficacy of which relies not only on the knowledge of the molecular mechanisms underlying cancer development/progression but also on the personalization of the therapeutic regimen according to the molecular features of individual tumours. In this work, we review the state-of-the-art of conventional treatments for STS and summarize the most promising findings in the development of molecularly targeted therapeutic approaches.
Collapse
Affiliation(s)
- Simone Mocellin
- Surgery Branch, Department of Oncological and Surgical Sciences, University of Padova, Via Giustiniani 2, 35128 Padua, Italy.
| | | | | | | |
Collapse
|
27
|
Dasgupta B, Yi Y, Hegedus B, Weber JD, Gutmann DH. Cerebrospinal fluid proteomic analysis reveals dysregulation of methionine aminopeptidase-2 expression in human and mouse neurofibromatosis 1-associated glioma. Cancer Res 2005; 65:9843-50. [PMID: 16267007 DOI: 10.1158/0008-5472.can-05-1842] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Individuals affected with the neurofibromatosis 1 (NF1) tumor predisposition syndrome are prone to the development of multiple nervous system tumors, including optic pathway gliomas (OPG). The NF1 tumor suppressor gene product, neurofibromin, functions as a Ras GTPase-activating protein, and has been proposed to regulate cell growth by inhibiting Ras activity. Recent studies from our laboratory have shown that neurofibromin also regulates the mammalian target of rapamycin activity in a Ras-dependent fashion, and that the rapamycin-mediated mammalian target of rapamycin inhibition ameliorates the Nf1-/- astrocyte growth advantage. Moreover, Nf1-deficient astrocytes exhibit increased protein translation. As part of a larger effort to identify protein markers for NF1-associated astrocytomas that could be exploited for therapeutic drug design, we did an objective proteomic analysis of the cerebrospinal fluid from genetically engineered Nf1 mice with optic glioma. One of the proteins found to be increased in the cerebrospinal fluid of OPG-bearing mice was the eukaryotic initiation factor-2alpha binding protein, methionine aminopeptidase 2 (MetAP2). In this study, we show that Nf1 mouse OPGs and NF1-associated human astrocytic tumors, but not sporadic pilocytic or other low-grade astrocytomas, specifically expressed high levels of MetAP2. In addition, we show that Nf1-deficient astrocytes overexpress MetAP2 in vitro and in vivo, and that treatment with the MetAP2 inhibitor fumagillin significantly reduces Nf1-/- astrocyte proliferation in vitro. These observations suggest that MetAP2 is regulated by neurofibromin, and that MetAP2 inhibitors could be potentially employed to treat NF1-associated tumor proliferation.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
28
|
Ströbel P, Marx A, Zettl A, Müller-Hermelink HK. Thymoma and Thymic Carcinoma: An Update of the WHO Classification 2004. Surg Today 2005; 35:805-11. [PMID: 16175459 DOI: 10.1007/s00595-005-3047-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 01/18/2005] [Indexed: 01/04/2023]
Abstract
When dealing with tumors of the thymus and mediastinum, both the surgeon and the pathologist are confronted with a vast variety of different pathohistologic entities, among which epithelial tumors, namely thymomas and thymic carcinomas, are the most frequent. Intimate knowledge of the different entities and their anticipated clinical outcome is required to meet diagnostic and therapeutic challenges. We herein briefly update the reader with the most important new changes in the 2004 WHO classification of tumors of the thymus and to important new trends in the treatment of some of these tumors.
Collapse
Affiliation(s)
- Philipp Ströbel
- Institute of Pathology, University of Würzburg, D-97080, Würzburg, Germany
| | | | | | | |
Collapse
|
29
|
Hedley BD, Winquist E, Chambers AF. Therapeutic targets for antimetastatic therapy. Expert Opin Ther Targets 2005; 8:527-36. [PMID: 15584860 DOI: 10.1517/14728222.8.6.527] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastases are responsible for most cancer deaths. Despite dramatic advances in cancer therapy, the presence of metastases implies a significantly shortened survival and reduced quality of remaining life. Aside from prevention of cancer altogether, or significant improvements in early detection for most cancers, effective novel therapeutic strategies targeting metastasis should provide the greatest clinical benefit. Metastasis research has shown that many of the initial steps in metastasis are completed with a high degree of efficiency and may have occurred by the time of clinical diagnosis. Therefore, targeting the later stages of metastasis may offer a more promising therapeutic approach for the development of antimetastatic therapies. Appropriate clinical strategies include targeting dormant solitary cells, active preangiogenic metastases, or vascularised metastases. Dormancy of solitary single cells, seen clinically and experimentally, may be an explanation for cancer recurrence. Eradication or inactivation of these dormant cells could provide large benefit for patients. However, little is known about what makes cancer cells dormant and, therefore, a greater knowledge of the mechanisms of dormancy is needed. This review discusses potential biological targets, as defined by the steps in the metastatic process, for antimetastatic therapies and provides examples of clinical strategies for preventing or treating successful metastasis.
Collapse
Affiliation(s)
- Benjamin D Hedley
- Department of Medical Biophysics, University of Western Ontario, London Regional Cancer Program, London Health Sciences Centre, Ontario, N6A 4L6, Canada.
| | | | | |
Collapse
|
30
|
Herrington JD, Tran HT, Riggs MW. Prospective evaluation of carboplatin AUC dosing in patients with a BMI>or=27 or cachexia. Cancer Chemother Pharmacol 2005; 57:241-7. [PMID: 16133538 DOI: 10.1007/s00280-005-0012-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
When determining the carboplatin dosage from the Calvert formula, there are a lack of data when evaluating patients with cachexia or body mass index (BMI)>or=27. If the Cockcroft and Gault (C-G) creatinine clearance (CrCl) equation is utilized and substituted for glomerular filtration rate in the Calvert formula, the chance for inaccurate dosing occurs especially in these populations. Therefore, the purpose of this study is to evaluate and compare the target carboplatin area under the concentration (AUC) with the actual AUC achieved in cachectic or BMI>or=27 patients. In a prospective manner, we evaluated 19 patients with a BMI>or=27 and nine cachectic patients. In the C-G equation to determine creatinine clearance, the adjusted body weight was used for BMI>or=27 patients and serum creatinine value of 70.7 microM (0.8 mg/dl) for the cachectic patients. The carboplatin dose was calculated, administered to the patients, and subsequent carboplatin blood samples were obtained for pharmacokinetic determination. Once the AUC was determined, the results were compared with the expected outcomes from the modified C-G CrCl equation for the Calvert formula, Chatelut and Bénézet equations. The results demonstrated that the modified C-G CrCl equation for the Calvert formula had less bias and more precision than using actual weight in the C-G CrCl equation or using the Chatelut and Bénézet equations. Using the actual weight in overweight and especially obese patients and using a serum creatinine<70.7 microM in cachectic patients will lead to overestimation of the carboplatin clearance and thus AUC.
Collapse
Affiliation(s)
- Jon D Herrington
- Department of Clinical Pharmacy, Scott & White Memorial Hospital, 2401 South 31st Street, Temple, TX 76508, USA.
| | | | | |
Collapse
|