1
|
Babatunde KA, Babatunde OF, Ahmed A, Salgado-Pabon W, Beebe DJ, Kerr SC. Neutrophil Macrophage Crosstalk via Extracellular Vesicles Drives Reverse Migration in a Fully Human Model of Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e01036. [PMID: 40448602 DOI: 10.1002/advs.202501036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/18/2025] [Indexed: 06/02/2025]
Abstract
Persistent neutrophilic inflammation can lead to tissue damage and chronic inflammation, contributing to non-healing wounds. The resolution phase of neutrophilic inflammation is critical to preventing tissue damage. Animal models have provided insight into resolution of neutrophilic inflammation via efferocytosis and reverse migration (rM); however, species-specific differences and complexity of innate immune responses make translation to humans challenging. Thus, there is a need for in vitro systems that can elucidate mechanisms of resolution of human neutrophilic inflammation. Here, a human microphysiological system (MPS) is developed to mimic an inflammatory sterile injury (SI) microenvironment to study the role of macrophage-derived extracellular vesicles (M-EVs) in the resolution of inflammation via neutrophil rM. The MPS integrates a blood vessel mimic, injury site spheroid, human neutrophils, macrophages, and macrophage-derived EVs to investigate the role of M-EVs in neutrophil rM in vitro. The MPS enabled demonstration that EVs derived from macrophage subsets modulate migratory behavior in primary neutrophils differently in specific inflammatory microenvironments. A new mechanism is identified underlying neutrophil rM, where neutrophils exposed to M2-EV-derived-IL-8 migrate away from the SI site. Overall, the SI MPS system demonstrates a reverse migratory pattern in human primary neutrophils, advancing the study of the resolution of inflammation via M-EVs.
Collapse
Affiliation(s)
| | | | - Adeel Ahmed
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, 53705, USA
| | | | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, 53792, USA
| | - Sheena C Kerr
- Carbone Cancer Center, University of Wisconsin, Madison, WI, 53792, USA
| |
Collapse
|
2
|
Robertson TF, Schrope J, Zwick Z, Rindy J, Horn A, Hou Y, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. Development 2025; 152:dev204351. [PMID: 40114648 PMCID: PMC12070063 DOI: 10.1242/dev.204351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Amoeboid cells such as leukocytes can enter and migrate in diverse tissues, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to determine whether cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with F-actin-rich, leading-edge pseudopods, matching how they migrate in vitro. T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of F-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro, and we found that the stratified keratinocyte layers of the epidermis also impose planar-like confinement on leukocytes in vivo. Collectively, our data indicate that immune cells adapt their migration strategy to navigate different tissue geometries in vivo.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Jon Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Zoe Zwick
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Julie Rindy
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Adam Horn
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yiran Hou
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
3
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Robertson T, Li J, Bennin D, Juang T, Ahmed A, Li C, Huttenlocher A, Beebe DJ. Confinement by Liquid-Liquid Interface Replicates In Vivo Neutrophil Deformations and Elicits Bleb-Based Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414024. [PMID: 40151891 DOI: 10.1002/advs.202414024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Leukocytes forge paths through interstitial spaces by exerting forces to overcome confining mechanical pressures provided by surrounding cells. While such mechanical cues regulate leukocyte motility, engineering an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, microchannels are constructed with a liquid-liquid interface that exerts confining pressures similar to cells in tissues, and thus, is deformable by cell-generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. It is discovered that neutrophils employ a bleb-based mechanism of force generation to deform a soft barrier exerting cell-scale confining pressures. In all, this work introduces a tunable in vitro material interface that replicates confining pressures applied by soft tissue environments.
Collapse
Affiliation(s)
- Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kaitlyn Lazorchak
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Clyde W Tinnen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jack J Stevens
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mehtab Farooqui
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tanner Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David Bennin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adeel Ahmed
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Zhao Y, Jiang S, Lv Y, Gao J, Zhang L, Tian X, Sheng X, Wang H, Guo C, Lu W, Li C, Chang T, Lou Y, Wang H. Differential expression of S100A10 protein in leukocytes and its effects on monocyte emigration from bone marrow. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf021. [PMID: 40112184 DOI: 10.1093/jimmun/vkaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Abstract
Although the importance of the unique member of S100 EF-hand family, S100A10 in health and disease is well appreciated, a precise characterization of S100A10 expression still remains elusive. To this purpose, we generated a knock-in mouse line in which downstream of the coding sequence of the S100a10 gene was inserted IRES-mCherry-pA sequence. Interestingly, mCherry fluorescence was widely distributed in splenic myeloid and lymphoid cells, whereas neutrophils showed a negligible mCherry level. By taking advantage of these reporter mice, we found Ly6C+ monocytes expressed the highest levels of S100A10 and bound significantly more plasminogen compared with the other respective leukocyte subsets. Furthermore, we demonstrated that S100A10 was required for emigration of Ly6C+ monocytes from bone marrow by mainly affecting CCR2 cell surface presentation. S100a10-/- mice had fewer circulating Ly6C+ monocytes and, after challenged with thioglycolate, accumulated less CCR2+ monocytes in bone marrow. However, S100A10 was not necessary for efficient neutrophil recruitment from the blood to inflamed tissue. These findings provide evidence that S100A10 is critical for monocyte mobilization and suggest its differential regulatory roles for monocyte and neutrophil chemoattractants in leukocyte homeostasis. Thus, targeting the S100A10-CCR2 pathway may be an attractive approach to regulate inflammatory responses and infectious diseases.
Collapse
Affiliation(s)
- Yuxin Zhao
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shan Jiang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jingtao Gao
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xueqin Tian
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaohang Sheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Han Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Cun Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chuang Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tingmin Chang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Saha S, Yang Q, Losert W, Morozov AV, Sengupta AM. Spatiotemporal feature learning for actin dynamics. PLoS One 2025; 20:e0318036. [PMID: 40043045 PMCID: PMC11882080 DOI: 10.1371/journal.pone.0318036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/08/2025] [Indexed: 05/13/2025] Open
Abstract
The social amoeba Dictyostelium discoideum is a standard model system for studying cell motility and formation of biological patterns. D. discoideum cells form protrusions and migrate via cytoskeletal reorganization driven by coordinated waves of actin polymerization and depolymerization. Assembly and disassembly of actin filaments are regulated by a complex network of biochemical reactions, exhibiting sensitivity to external physical cues such as stiffness, composition and surface topography of the extracellular matrix, as well as the presence of external electric fields. In this study, we investigate whether the cellular microenvironment, and in particular the presence of electric fields and the nano-topography type, can be directly inferred from images or videos of actin waves. We employ three machine learning techniques to analyze the resulting videos: dictionary learning, scattering transforms, and optical flow. We predict the type of the extracellular environment by observing actin waves frame-by-frame and identifying key visual features that help classify cell motion by the microenvironment type. Our analysis reveals that the decomposition of static images into an adaptive basis of visual primitives provides a robust approach to classifying cells by the nano-topography type. In contrast, predicting whether cells are moving under the influence of an external electric field requires tracking of stable cellular features such as corners and edges over a period of time. We expect our computational approach to be useful in many settings where non-trivial collective dynamics is observed with the help of fluorescent labeling and video microscopy.
Collapse
Affiliation(s)
- Siddhartha Saha
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Qixin Yang
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
| | - Wolfgang Losert
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Anirvan M Sengupta
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Computational Mathematics, Flatiron Institute, New York, New York, United States of America
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York, United States of America
| |
Collapse
|
6
|
Li Y, Ong HT, Cui H, Gao X, Lee JWN, Guo Y, Li R, Pennacchio FA, Maiuri P, Efremov AK, Holle AW. Confinement-sensitive volume regulation dynamics via high-speed nuclear morphological measurements. Proc Natl Acad Sci U S A 2024; 121:e2408595121. [PMID: 39700138 DOI: 10.1073/pnas.2408595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips. Standard volumetric measurement relies on confocal microscopy, which suffers from high phototoxicity, slow speed, limited throughput, and artifacts in fast-moving cells. To address this, we developed a form of double fluorescence exclusion microscopy, designed to function at the interface of microchannel-based PDMS sidewalls, that can track cellular and nuclear volume dynamics during confined migration. By verifying the vertical symmetry of nuclei in confinement, we obtained computational estimates of nuclear surface area. We then tracked nuclear volume and surface area under physiological confinement at a time resolution exceeding 30 frames per minute. We find that during self-induced entrance into confinement, the cell rapidly expands its surface area until a threshold is reached, followed by a rapid decrease in nuclear volume. We next used osmotic shock as a tool to alter nuclear volume in confinement, and found that the nuclear response to hypo-osmotic shock in confinement does not follow classical scaling laws, suggesting that the limited expansion potential of the nuclear envelope might be a constraining factor in nuclear volume regulation in confining environments in vivo.
Collapse
Affiliation(s)
- Yixuan Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hongyue Cui
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yuqi Guo
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Fabrizio A Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zurich 8006, Switzerland
| | - Paolo Maiuri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Artem K Efremov
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
7
|
Da Silva André G, Labouesse C. Mechanobiology of 3D cell confinement and extracellular crowding. Biophys Rev 2024; 16:833-849. [PMID: 39830117 PMCID: PMC11735831 DOI: 10.1007/s12551-024-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate. It is well known that the mechanical properties of the microenvironment, such as stiffness and stress relaxation, are important in activating mechanosensitive pathways, and these are responsive to confinement conditions. In this review, we look at how low, intermediate, and high levels of confinement modulate the activation of known mechanobiology pathways, in single cells, organoids, and tumor spheroids, with a specific focus on 3D confinement in microwells, elastic, or viscoelastic scaffolds. In addition, a confining microenvironment can drastically limit cellular communication in both healthy and diseased tissues, due to extracellular crowding. We discuss potential implications of extracellular crowding on molecular transport, extracellular matrix deposition, and fluid transport. Understanding how cells sense and respond to various levels of confinement should inform the design of 3D engineered matrices that recapitulate the physical properties of tissues.
Collapse
Affiliation(s)
- Gabriela Da Silva André
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Hayes AJ, Pingen M, Wilson G, Hansell C, Love S, Burgoyne P, McElroy D, Bartolini R, Vidler F, Schuette F, Gamble A, Campbell J, Galatis D, Campbell JDM, Graham GJ. Enhanced CCR2 expression by ACKR2-deficient NK cells increases tumoricidal cell therapy efficacy. J Leukoc Biol 2024; 116:1544-1553. [PMID: 39052923 DOI: 10.1093/jleuko/qiae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Chemokines regulate leukocyte navigation to inflamed sites and specific tissue locales and may therefore be useful for ensuring accurate homing of cell therapeutic products. We, and others, have shown that atypical chemokine receptor 2 (ACKR2)-deficient mice (ACKR2-/-) are protected from metastasis development in cell line and spontaneous mouse models. We have shown that this relates to enhanced CCR2 expression on ACKR2-/- natural killer cells, allowing them to home more effectively to CCR2 ligand-expressing metastatic deposits. Here we demonstrate that the metastatic-suppression phenotype in ACKR2-/- mice is not a direct effect of the absence of ACKR2. Instead, enhanced natural killer cell CCR2 expression is caused by passenger mutations that originate from the creation of the ACKR2-/- mouse strain in 129 embryonic stem cells. We further demonstrate that simple selection of CCR2+ natural killer cells enriches for a population of cells with enhanced antimetastatic capabilities. Given the widespread expression of CCR2 ligands by tumors, our study highlights CCR2 as a potentially important contributor to natural killer cell tumoricidal cell therapy.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Mice, Knockout
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Neoplasm Metastasis
- Cytotoxicity, Immunologic
- Cell Line, Tumor
- Mice, Inbred C57BL
- Chemokine Receptor D6
Collapse
Affiliation(s)
- Alan J Hayes
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Marieke Pingen
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gillian Wilson
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Chris Hansell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Samantha Love
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Paul Burgoyne
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Daniel McElroy
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Robin Bartolini
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Francesca Vidler
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Fabian Schuette
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Alistair Gamble
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jordan Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Dimitrios Galatis
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - John D M Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gerard J Graham
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
9
|
Shannon MJ, Eisman SE, Lowe AR, Sloan TFW, Mace EM. cellPLATO - an unsupervised method for identifying cell behaviour in heterogeneous cell trajectory data. J Cell Sci 2024; 137:jcs261887. [PMID: 38738282 PMCID: PMC11213520 DOI: 10.1242/jcs.261887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Advances in imaging, segmentation and tracking have led to the routine generation of large and complex microscopy datasets. New tools are required to process this 'phenomics' type data. Here, we present 'Cell PLasticity Analysis Tool' (cellPLATO), a Python-based analysis software designed for measurement and classification of cell behaviours based on clustering features of cell morphology and motility. Used after segmentation and tracking, the tool extracts features from each cell per timepoint, using them to segregate cells into dimensionally reduced behavioural subtypes. Resultant cell tracks describe a 'behavioural ID' at each timepoint, and similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Here, we use cellPLATO to investigate the role of IL-15 in modulating human natural killer (NK) cell migration on ICAM-1 or VCAM-1. We find eight behavioural subsets of NK cells based on their shape and migration dynamics between single timepoints, and four trajectories based on sequences of these behaviours over time. Therefore, by using cellPLATO, we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.
Collapse
Affiliation(s)
- Michael J. Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, NYC, NY 10032, USA
| | - Shira E. Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, NYC, NY 10032, USA
| | - Alan R. Lowe
- Institute for the Physics of Living Systems, Institute for Structural and Molecular Biology and London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | | | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, NYC, NY 10032, USA
| |
Collapse
|
10
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells use focal adhesions to pull themselves through confined environments. J Cell Biol 2024; 223:e202310067. [PMID: 38889096 PMCID: PMC11187980 DOI: 10.1083/jcb.202310067] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
11
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Li J, Bennin D, Robertson T, Juang TD, Ahmed A, Li C, Huttenlocher A, Beebe D. Confinement by liquid-liquid interface replicates in vivo neutrophil deformations and elicits bleb based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544898. [PMID: 38106211 PMCID: PMC10723256 DOI: 10.1101/2023.06.14.544898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations are made to match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. We discover that, in this context, neutrophils employ a bleb-based mechanism of force generation to deform a barrier exerting cell-scale confining pressures.
Collapse
|
12
|
Robertson TF, Schrope J, Zwick Z, Rindy JK, Horn A, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607647. [PMID: 39211200 PMCID: PMC11360923 DOI: 10.1101/2024.08.14.607647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amoeboid cells like leukocytes can enter and migrate within virtually every tissue of the body, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to ask if cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with f-actin-rich leading-edge pseudopods, matching how they migrate in vitro . T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of f-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro , and we correspondingly found the stratified keratinocyte layers of the epidermis impose planar-like confinement on leukocytes in vivo . By imaging the same cell type across the body, our data collectively indicates that cells adapt their migration strategy to navigate different tissue geometries in vivo .
Collapse
|
13
|
Ende K, Santos F, Guasch J, Kemkemer R. Migration of human T cells can be differentially directed by electric fields depending on the extracellular microenvironment. iScience 2024; 27:109746. [PMID: 38706849 PMCID: PMC11067362 DOI: 10.1016/j.isci.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
T cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare. In this in vitro study, we show that direct current EFs with strengths of physiologically occurring EFs (25-200 mV/mm) can guide the migration of primary human CD4+ and CD8+ T cells on 2D substrates toward the anode and in a 3D environment differentially (CD4+ T cells show cathodal and CD8+ T cells show anodal electrotaxis). Overall, we find that EFs present a potent stimulus to direct T cell migration in different microenvironments in a cell-type-, substrate-, and voltage-dependent manner, while not significantly influencing T cell differentiation or viability.
Collapse
Affiliation(s)
- Karen Ende
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Fabião Santos
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Judith Guasch
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ralf Kemkemer
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Guo Z, Murakami M, Saito K, Kato H, Toriyama M, Tominaga M, Ishii KJ, Fujita F. Integrin α5 regulates motility of human monocyte-derived Langerhans cells during immune response. Exp Dermatol 2024; 33:e15021. [PMID: 38429832 DOI: 10.1111/exd.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Langerhans cells (LCs) are mainly present in the epidermis and mucosa, and have important roles during skin infection. Migration of LCs to lymph nodes is essential for antigen presentation. However, due to the difficulties in isolating and culturing human LCs, it is not fully understood how LCs move and interact with the extracellular matrix (ECM) through their adhesion molecules such as integrin, during the immune responses. In this study, we aimed to investigate LC motility, cell shape and the role of integrin under inflammatory conditions using monocyte-derived Langerhans cells (moLCs) as a model. As a result, lipopolysaccharide (LPS) stimulation increased adhesion on fibronectin coated substrate and integrin α5 expression in moLCs. Time-lapse imaging of moLCs revealed that stimulation with LPS elongated cell shape, whilst decreasing their motility. Additionally, this decrease in motility was not observed when pre-treated with a neutralising antibody targeting integrin α5. Together, our data suggested that activation of LCs decreases their motility by promoting integrin α5 expression to enhance their affinity to the fibronectin, which may contribute to their migration during inflammation.
Collapse
Affiliation(s)
- Zhihan Guo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masato Murakami
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Skin Care Institute, Mandom Corporation, Osaka, Japan
| | - Kaori Saito
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroko Kato
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manami Toriyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Makoto Tominaga
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, Sokendai (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Fujita
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
15
|
Uderhardt S, Neag G, Germain RN. Dynamic Multiplex Tissue Imaging in Inflammation Research. ANNUAL REVIEW OF PATHOLOGY 2024; 19:43-67. [PMID: 37722698 DOI: 10.1146/annurev-pathmechdis-070323-124158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgiana Neag
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Advanced Tissue Imaging (CAT-I), National Institute of Allergy and Infectious Diseases and National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
16
|
Shannon MJ, Eisman SE, Lowe AR, Sloan T, Mace EM. cellPLATO: an unsupervised method for identifying cell behaviour in heterogeneous cell trajectory data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564355. [PMID: 37961659 PMCID: PMC10634992 DOI: 10.1101/2023.10.28.564355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Advances in imaging, cell segmentation, and cell tracking now routinely produce microscopy datasets of a size and complexity comparable to transcriptomics or proteomics. New tools are required to process this 'phenomics' type data. Cell PLasticity Analysis TOol (cellPLATO) is a Python-based analysis software designed for measurement and classification of diverse cell behaviours based on clustering of parameters of cell morphology and motility. cellPLATO is used after segmentation and tracking of cells from live cell microscopy data. The tool extracts morphological and motility metrics from each cell per timepoint, before being using them to segregate cells into behavioural subtypes with dimensionality reduction. Resultant cell tracks have a 'behavioural ID' for each cell per timepoint corresponding to their changing behaviour over time in a sequence. Similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Trajectories and underlying behaviours generate a phenotypic fingerprint for each experimental condition, and representative cells are mathematically identified and graphically displayed for human understanding of each subtype. Here, we use cellPLATO to investigate the role of IL-15 in modulating NK cell migration on ICAM-1 or VCAM-1. We find 8 behavioural subsets of NK cells based on their shape and migration dynamics, and 4 trajectories of behaviour. Therefore, using cellPLATO we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.
Collapse
Affiliation(s)
- Michael J Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Shira E Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Alan R Lowe
- Institute for the Physics of Living Systems, Institute for Structural and Molecular Biology and London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | | | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
17
|
Rai SK, Singh D, Sarangi PP. Role of RhoG as a regulator of cellular functions: integrating insights on immune cell activation, migration, and functions. Inflamm Res 2023:10.1007/s00011-023-01761-9. [PMID: 37378671 DOI: 10.1007/s00011-023-01761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND RhoG is a multifaceted member of the Rho family of small GTPases, sharing the highest sequence identity with the Rac subfamily members. It acts as a molecular switch, when activated, plays a central role in regulating the fundamental processes in immune cells, such as actin-cytoskeleton dynamics, transendothelial migration, survival, and proliferation, including immunological functions (e.g., phagocytosis and trogocytosis) during inflammatory responses. METHOD We have performed a literature review based on published original and review articles encompassing the significant effect of RhoG on immune cell functions from central databases, including PubMed and Google Scholar. RESULTS AND CONCLUSIONS Recently published data shows that the dynamic expression of different transcription factors, non-coding RNAs, and the spatiotemporal coordination of different GEFs with their downstream effector molecules regulates the cascade of Rho signaling in immune cells. Additionally, alterations in RhoG-specific signaling can lead to physiological, pathological, and developmental adversities. Several mutations and RhoG-modulating factors are also known to pre-dispose the downstream signaling with abnormal gene expression linked to multiple diseases. This review focuses on the cellular functions of RhoG, interconnecting different signaling pathways, and speculates the importance of this small GTPase as a prospective target against several pathological conditions.
Collapse
Affiliation(s)
- Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
18
|
Kaltenbach L, Martzloff P, Bambach SK, Aizarani N, Mihlan M, Gavrilov A, Glaser KM, Stecher M, Thünauer R, Thiriot A, Heger K, Kierdorf K, Wienert S, von Andrian UH, Schmidt-Supprian M, Nerlov C, Klauschen F, Roers A, Bajénoff M, Grün D, Lämmermann T. Slow integrin-dependent migration organizes networks of tissue-resident mast cells. Nat Immunol 2023; 24:915-924. [PMID: 37081147 PMCID: PMC10232366 DOI: 10.1038/s41590-023-01493-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction1. Many immune cells do not necessarily require integrins, the major family of adhesion receptors in mammals, to move productively through three-dimensional tissue spaces2,3. Instead, they can use alternative strategies to transmit their actin-driven forces to the substrate, explaining their migratory adaptation to changing external environments4-6. However, whether these generalized concepts apply to all immune cells is unclear. Here, we show that the movement of mast cells (immune cells with important roles during allergy and anaphylaxis) differs fundamentally from the widely applied paradigm of interstitial immune cell migration. We identify a crucial role for integrin-dependent adhesion in controlling mast cell movement and localization to anatomical niches rich in KIT ligand, the major mast cell growth and survival factor. Our findings show that substrate-dependent haptokinesis is an important mechanism for the tissue organization of resident immune cells.
Collapse
Affiliation(s)
- Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Paloma Martzloff
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sarah K Bambach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nadim Aizarani
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Manuel Stecher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roland Thünauer
- Advanced Light and Fluorescence Microscopy Facility, Centre for Structural Systems Biology (CSSB) and University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Aude Thiriot
- Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Klaus Heger
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Wienert
- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Ulrich H von Andrian
- Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
- Berlin Institute for the Foundation of Learning and Data (BIFOLD) and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Roers
- Institute for Immunology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Marc Bajénoff
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for infection Research (HZI), Würzburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
19
|
Conley HE, Sheats MK. Targeting Neutrophil β 2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules 2023; 13:892. [PMID: 37371473 DOI: 10.3390/biom13060892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are important innate immune cells that respond during inflammation and infection. These migratory cells utilize β2-integrin cell surface receptors to move out of the vasculature into inflamed tissues and to perform various anti-inflammatory responses. Although critical for fighting off infection, neutrophil responses can also become dysregulated and contribute to disease pathophysiology. In order to limit neutrophil-mediated damage, investigators have focused on β2-integrins as potential therapeutic targets, but so far these strategies have failed in clinical trials. As the field continues to move forward, a better understanding of β2-integrin function and signaling will aid the design of future therapeutics. Here, we provide a detailed review of resources, tools, experimental methods, and in vivo models that have been and will continue to be utilized to investigate the vitally important cell surface receptors, neutrophil β2-integrins.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
20
|
Mast cell migration and organization in tissues depend on integrin-ECM interactions. Nat Immunol 2023:10.1038/s41590-023-01494-1. [PMID: 37081152 DOI: 10.1038/s41590-023-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
21
|
Goodin DA, Frieboes HB. Evaluation of innate and adaptive immune system interactions in the tumor microenvironment via a 3D continuum model. J Theor Biol 2023; 559:111383. [PMID: 36539112 DOI: 10.1016/j.jtbi.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Immune cells in the tumor microenvironment (TME) are known to affect tumor growth, vascularization, and extracellular matrix (ECM) deposition. Marked interest in system-scale analysis of immune species interactions within the TME has encouraged progress in modeling tumor-immune interactions in silico. Due to the computational cost of simulating these intricate interactions, models have typically been constrained to representing a limited number of immune species. To expand the capability for system-scale analysis, this study develops a three-dimensional continuum mixture model of tumor-immune interactions to simulate multiple immune species in the TME. Building upon a recent distributed computing implementation that enables efficient solution of such mixture models, major immune species including monocytes, macrophages, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSC), cytotoxic, helper, regulatory T-cells, and effector and regulatory B-cells and their interactions are represented in this novel implementation. Immune species extravasate from blood vasculature, undergo chemotaxis toward regions of high chemokine concentration, and influence the TME in proportion to locally defined levels of stimulation. The immune species contribute to the production of angiogenic and tumor growth factors, promotion of myofibroblast deposition of ECM, upregulation of angiogenesis, and elimination of living and dead tumor species. The results show that this modeling approach offers the capability for quantitative insight into the modulation of tumor growth by diverse immune-tumor interactions and immune-driven TME effects. In particular, MDSC-mediated effects on tumor-associated immune species' activation levels, volume fraction, and influence on the TME are explored. Longer term, linking of the model parameters to particular patient tumor information could simulate cancer-specific immune responses and move toward a more comprehensive evaluation of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dylan A Goodin
- Department of Bioengineering, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, KY, USA.
| |
Collapse
|
22
|
Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1112196. [PMID: 36891309 PMCID: PMC9986442 DOI: 10.3389/fimmu.2023.1112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.
Collapse
Affiliation(s)
- Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui-ru Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Chang-meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Truszkowski L, Batur D, Long H, Tarbashevich K, Vos BE, Trappmann B, Raz E. Primordial germ cells adjust their protrusion type while migrating in different tissue contexts in vivo. Development 2023; 150:286614. [PMID: 36515556 PMCID: PMC10110502 DOI: 10.1242/dev.200603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
In both physiological processes and disease contexts, migrating cells have the ability to adapt to conditions in their environment. As an in vivo model for this process, we use zebrafish primordial germ cells that migrate throughout the developing embryo. When migrating within an ectodermal environment, the germ cells form fewer and smaller blebs when compared with their behavior within mesodermal environment. We find that cortical tension of neighboring cells is a parameter that affects blebbing frequency. Interestingly, the change in blebbing activity is accompanied by the formation of more actin-rich protrusions. These alterations in cell behavior that correlate with changes in RhoA activity could allow the cells to maintain dynamic motility parameters, such as migration speed and track straightness, in different settings. In addition, we find that the polarity of the cells can be affected by stiff structures positioned in their migration path This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lukasz Truszkowski
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Dilek Batur
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | | | - Bart E Vos
- Third Institute of Physics - Biophysics, Georg August University Göttingen, D-37007 Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| |
Collapse
|
24
|
George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2023; 10:1091801. [PMID: 36699013 PMCID: PMC9869768 DOI: 10.3389/fcell.2022.1091801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Cell migration is crucial for efficient immune responses and is aberrantly used by cancer cells during metastatic dissemination. Amoeboid migrating cells use myosin II-powered blebs to propel themselves, and change morphology and direction. Immune cells use amoeboid strategies to respond rapidly to infection or tissue damage, which require quick passage through several barriers, including blood, lymph and interstitial tissues, with complex and varied environments. Amoeboid migration is also used by metastatic cancer cells to aid their migration, dissemination and survival, whereby key mechanisms are hijacked from professionally motile immune cells. We explore important parallels observed between amoeboid immune and cancer cells. We also consider key distinctions that separate the lifespan, state and fate of these cell types as they migrate and/or fulfil their function. Finally, we reflect on unexplored areas of research that would enhance our understanding of how tumour cells use immune cell strategies during metastasis, and how to target these processes.
Collapse
|
25
|
Visweshwaran SP, Nayab H, Hoffmann L, Gil M, Liu F, Kühne R, Maritzen T. Ena/VASP proteins at the crossroads of actin nucleation pathways in dendritic cell migration. Front Cell Dev Biol 2022; 10:1008898. [PMID: 36274843 PMCID: PMC9581539 DOI: 10.3389/fcell.2022.1008898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
As sentinels of our immune system dendritic cells (DCs) rely on efficient cell migration for patrolling peripheral tissues and delivering sampled antigens to secondary lymphoid organs for the activation of T-cells. Dynamic actin polymerization is key to their macropinocytic and migratory properties. Both major actin nucleation machineries, formins and the Arp2/3 complex, are critical for different aspects of DC functionality, by driving the generation of linear and branched actin filaments, respectively. However, the importance of a third group of actin nucleators, the Ena/VASP family, has not been addressed yet. Here, we show that the two family members Evl and VASP are expressed in murine DCs and that their loss negatively affects DC macropinocytosis, spreading, and migration. Our interactome analysis reveals Ena/VASP proteins to be ideally positioned for orchestrating the different actin nucleation pathways by binding to the formin mDia1 as well as to the WAVE regulatory complex, a stimulator of Arp2/3. In fact, Evl/VASP deficient murine DCs are more vulnerable to inhibition of Arp2/3 demonstrating that Ena/VASP proteins contribute to the robustness and efficiency of DC migration.
Collapse
Affiliation(s)
| | - Hafiza Nayab
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Lennart Hoffmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Marine Gil
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Department of Nanophysiology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
- *Correspondence: Tanja Maritzen,
| |
Collapse
|
26
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
27
|
Zhang W, Jiao Z, Huang H, Wu Y, Wu H, Liu Z, Zhang Z, An Q, Cheng Y, Chen S, Man C, Du L, Wang F, Chen Q. Effects of Pasteurella multocida on Histopathology, miRNA and mRNA Expression Dynamics in Lung of Goats. Animals (Basel) 2022; 12:ani12121529. [PMID: 35739866 PMCID: PMC9219503 DOI: 10.3390/ani12121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Pasteurella multocida (Pm) infection causes severe respiratory disease in goats. We investigated the effects of the Pm infection intratracheally on the histopathology, miRNA and mRNA expression dynamics in the lung of goats infected for 1, 2, 5 and 7 days. Pm infection caused fever, which significantly (p < 0.05) increased the body temperature of the goats from day 1 to 5. Haemotoxylin−eosin staining of the infected lung tissue showed characteristics of suppurative pneumonia with inflammatory cells infiltration and the lung structure destruction. During the Pm infection of the goats, compared with the control group, there were 3080, 3508, 2716 and 2675 differentially expressed genes and 42, 69, 91 and 108 significantly expressed miRNAs (|log2Fold Change| > 1, p < 0.05) in the Pm_d1, Pm_d2, Pm_d5 and Pm_d7 groups, respectively. Five miRNAs and nine immune-related genes were selected for confirmation by reverse transcription−polymerase chain reaction. The results indicated that the expression patterns of the miRNAs and genes were consistent with those determined by next-generation sequencing. The differentially expressed genes were enriched in cytokine−cytokine receptor interaction, cell adhesion molecules, complement and coagulation cascades, tight junction and phagosome Kyoto Encyclopedia of Genes and Genomes pathways and cytokine production, leukocyte migration, myeloid leukocyte migration, cell periphery, plasma membrane, extracellular region part, extracellular region and other Gene Ontology terms. The differentially expressed genes were mapped to marker genes in human and mouse lung cells. The results showed the presence of some marker genes of the immune cells. Compared with the CK group, five miRNAs and 892 common genes were differentially expressed in the Pm_d1, Pm_d2, Pm_d5 and Pm_d7 groups. The target relationships between the common 5 miRNAs and 892 differentially expressed genes were explored and the miRNAs involved in the host immune reaction may act through the target genes. Our study characterized goats’ reaction in the lung from histopathological and molecular changes upon Pm infection, which will provide valuable information for understanding the responses in goats during Pm infection.
Collapse
|
28
|
Zhai R, Snyder J, Montgomery S, Sato PY. Double life: How GRK2 and β-arrestin signaling participate in diseases. Cell Signal 2022; 94:110333. [PMID: 35430346 PMCID: PMC9929935 DOI: 10.1016/j.cellsig.2022.110333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and β-arrestins play key roles in GPCR and non-GPCR cellular responses. In fact, GRKs and arrestins are involved in a plethora of pathways vital for physiological maintenance of inter- and intracellular communication. Here we review decades of research literature spanning from the discovery, identification of key structural elements, and findings supporting the diverse roles of these proteins in GPCR-mediated pathways. We then describe how GRK2 and β-arrestins partake in non-GPCR signaling and briefly summarize their involvement in various pathologies. We conclude by presenting gaps in knowledge and our prospective on the promising pharmacological potential in targeting these proteins and/or downstream signaling. Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and arrestins in metabolism and disease progression.
Collapse
Affiliation(s)
| | | | | | - Priscila Y. Sato
- Corresponding author at: Drexel University College of Medicine, Department of Pharmacology and Physiology, 245 N 15th Street, NCB 8152, Philadelphia, PA 19102, USA. (P.Y. Sato)
| |
Collapse
|
29
|
Wu H, Li W, Hao M, Wang Y, Xue L, Ju C, Zhang C. An EPR-Independent extravasation Strategy: Deformable leukocytes as vehicles for improved solid tumor therapy. Adv Drug Deliv Rev 2022; 187:114380. [PMID: 35662610 DOI: 10.1016/j.addr.2022.114380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Effective delivery of therapeutic modality throughout the tumorous nidus plays a crucial role in successful solid tumor treatment. However, conventional nanomedicines based on enhanced permeability and retention (EPR) effect have yielded limited delivery/therapeutic efficiency, due mainly to the heterogeneity of the solid tumor. Leukocytes, which could intrinsically migrate across the vessel wall and crawl through tissue interstitium in a self-deformable manner, have currently emerged as an alternative drug delivery vehicle. In this review, we start with the intrinsic properties of leukocytes (e.g., extravasation and crawling inside tumor), focusing on unveiling the conceptual rationality of leveraging leukocytes as EPR-independent delivery vehicles. Then we discussed various cargoes-loading/unloading strategies for leukocyte-based vehicles as well as their promising applications. This review aims to serve as an up-to-date compilation, which might provide inspiration for scientists in the field of drug delivery.
Collapse
|
30
|
Actin Turnover Required for Adhesion-Independent Bleb Migration. FLUIDS 2022. [DOI: 10.3390/fluids7050173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell migration is critical for many vital processes, such as wound healing, as well as harmful processes, such as cancer metastasis. Experiments have highlighted the diversity in migration strategies employed by cells in physiologically relevant environments. In 3D fibrous matrices and confinement between two surfaces, some cells migrate using round membrane protrusions, called blebs. In bleb-based migration, the role of substrate adhesion is thought to be minimal, and it remains unclear if a cell can migrate without any adhesion complexes. We present a 2D computational fluid-structure model of a cell using cycles of bleb expansion and retraction in a channel with several geometries. The cell model consists of a plasma membrane, an underlying actin cortex, and viscous cytoplasm. Cellular structures are immersed in viscous fluid which permeates them, and the fluid equations are solved using the method of regularized Stokeslets. Simulations show that the cell cannot effectively migrate when the actin cortex is modeled as a purely elastic material. We find that cells do migrate in rigid channels if actin turnover is included with a viscoelastic description for the cortex. Our study highlights the non-trivial relationship between cell rheology and its external environment during migration with cytoplasmic streaming.
Collapse
|
31
|
Bull AL, Campanello L, Hourwitz MJ, Yang Q, Zhao M, Fourkas JT, Losert W. Actin Dynamics as a Multiscale Integrator of Cellular Guidance Cues. Front Cell Dev Biol 2022; 10:873567. [PMID: 35573675 PMCID: PMC9092214 DOI: 10.3389/fcell.2022.873567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
Migrating cells must integrate multiple, competing external guidance cues. However, it is not well understood how cells prioritize among these cues. We investigate external cue integration by monitoring the response of wave-like, actin-polymerization dynamics, the driver of cell motility, to combinations of nanotopographies and electric fields in neutrophil-like cells. The electric fields provide a global guidance cue, and approximate conditions at wound sites in vivo. The nanotopographies have dimensions similar to those of collagen fibers, and act as a local esotactic guidance cue. We find that cells prioritize guidance cues, with electric fields dominating long-term motility by introducing a unidirectional bias in the locations at which actin waves nucleate. That bias competes successfully with the wave guidance provided by the bidirectional nanotopographies.
Collapse
Affiliation(s)
- Abby L. Bull
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Leonard Campanello
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Qixin Yang
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
- *Correspondence: Wolfgang Losert,
| |
Collapse
|
32
|
Mastrogiovanni M, Vargas P, Rose T, Cuche C, Esposito E, Juzans M, Laude H, Schneider A, Bernard M, Goyard S, Renaudat C, Ungeheuer MN, Delon J, Alcover A, Di Bartolo V. The tumor suppressor adenomatous polyposis coli regulates T lymphocyte migration. SCIENCE ADVANCES 2022; 8:eabl5942. [PMID: 35417240 PMCID: PMC9007504 DOI: 10.1126/sciadv.abl5942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance in T cell biology is ill defined. APC regulates cytoskeleton organization, cell polarity, and migration in various cell types. Here, we address whether APC plays a role in T lymphocyte migration. Using a series of cell biology tools, we unveiled that T cells from FAP patients carrying APC mutations display impaired adhesion and motility in constrained environments. We further dissected the cellular mechanisms underpinning these defects in APC-depleted CEM T cell line that recapitulate the phenotype observed in FAP T cells. We found that APC affects T cell motility by modulating integrin-dependent adhesion and cytoskeleton reorganization. Hence, APC mutations in FAP patients not only drive intestinal neoplasms but also impair T cell migration, potentially contributing to inefficient antitumor immunity.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Thierry Rose
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Céline Cuche
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Elric Esposito
- Institut Pasteur, Université de Paris, UTechS BioImagerie Photonique, F-75015 Paris, France
| | - Marie Juzans
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Hélène Laude
- Institut Pasteur, Université de Paris, ICAReB, F-75015 Paris, France
| | - Amandine Schneider
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Mathilde Bernard
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Sophie Goyard
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | | | | | - Jérôme Delon
- Université de Paris, Institut Cochin, Inserm, CNRS, F-75014 Paris, France
| | - Andrés Alcover
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Corresponding author. (A.A.); (V.D.B.)
| | - Vincenzo Di Bartolo
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Corresponding author. (A.A.); (V.D.B.)
| |
Collapse
|
33
|
Renkawitz J, Donnadieu E, Moreau HD. Editorial: Immune Cell Migration in Health and Disease. Front Immunol 2022; 13:897626. [PMID: 35493502 PMCID: PMC9045749 DOI: 10.3389/fimmu.2022.897626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians University (LMU) Munich, Munich, Germany
| | | | - Hélène D. Moreau
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- *Correspondence: Hélène D. Moreau,
| |
Collapse
|
34
|
Mihlan M, Glaser KM, Epple MW, Lämmermann T. Neutrophils: Amoeboid Migration and Swarming Dynamics in Tissues. Front Cell Dev Biol 2022; 10:871789. [PMID: 35478973 PMCID: PMC9038224 DOI: 10.3389/fcell.2022.871789] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment. Once in the tissue, neutrophils undergo rapid shape changes and migrate at speeds higher than most other immune cells. They move in a substrate-independent manner in interstitial spaces and do not follow predetermined tissue paths. Instead, neutrophil navigation is largely shaped by the chemokine and chemoattractant milieu around them. This highlights the decisive role of attractant-sensing G-protein coupled receptors (GPCRs) and downstream molecular pathways for controlling amoeboid neutrophil movement in tissues. A diverse repertoire of cell-surface expressed GPCRs makes neutrophils the perfect sentinel cell type to sense and detect danger-associated signals released from wounds, inflamed interstitium, dying cells, complement factors or directly from tissue-invading microbes. Moreover, neutrophils release attractants themselves, which allows communication and coordination between individual cells of a neutrophil population. GPCR-mediated positive feedback mechanisms were shown to underlie neutrophil swarming, a population response that amplifies the recruitment of amoeboid migrating neutrophils to sites of tissue injury and infection. Here we discuss recent findings and current concepts that counteract excessive neutrophil accumulation and swarm formation. In particular, we will focus on negative feedback control mechanisms that terminate neutrophil swarming to maintain the delicate balance between tissue surveillance, host protection and tissue destruction.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W. Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
35
|
Paterson N, Lämmermann T. Macrophage network dynamics depend on haptokinesis for optimal local surveillance. eLife 2022; 11:e75354. [PMID: 35343899 PMCID: PMC8963880 DOI: 10.7554/elife.75354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Macrophages are key immune cells with important roles for tissue surveillance in almost all mammalian organs. Cellular networks made up of many individual macrophages allow for optimal removal of dead cell material and pathogens in tissues. However, the critical determinants that underlie these population responses have not been systematically studied. Here, we investigated how cell shape and the motility of individual cells influences macrophage network responses in 3D culture settings and in mouse tissues. We show that surveying macrophage populations can tolerate lowered actomyosin contractility, but cannot easily compensate for a lack of integrin-mediated adhesion. Although integrins were dispensable for macrophage chemotactic responses, they were crucial to control cell movement and protrusiveness for optimal surveillance by a macrophage population. Our study reveals that β1 integrins are important for maintaining macrophage shape and network sampling efficiency in mammalian tissues, and sets macrophage motility strategies apart from the integrin-independent 3D migration modes of many other immune cell subsets.
Collapse
Affiliation(s)
- Neil Paterson
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM)FreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| |
Collapse
|
36
|
Duckworth BC, Qin RZ, Groom JR. Spatial determinates of effector and memory CD8 + T cell fates. Immunol Rev 2021; 306:76-92. [PMID: 34882817 DOI: 10.1111/imr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
The lymph node plays a critical role in mounting an adaptive immune response to infection, clearance of foreign pathogens, and cancer immunosurveillance. Within this complex structure, intranodal migration is vital for CD8+ T cell activation and differentiation. Combining tissue clearing and volumetric light sheet fluorescent microscopy of intact lymph nodes has allowed us to explore the spatial regulation of T cell fates. This has determined that short-lived effector (TSLEC ) are imprinted in peripheral lymph node interfollicular regions, due to CXCR3 migration. In contrast, stem-like memory cell (TSCM ) differentiation is determined in the T cell paracortex. Here, we detail the inflammatory and chemokine regulators of spatially restricted T cell differentiation, with a focus on how to promote TSCM . We propose a default pathway for TSCM differentiation due to CCR7-directed segregation of precursors away from the inflammatory effector niche. Although volumetric imaging has revealed the consequences of intranodal migration, we still lack knowledge of how this is orchestrated within a complex chemokine environment. Toward this goal, we highlight the potential of combining microfluidic chambers with pre-determined complexity and subcellular resolution microscopy.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Raymond Z Qin
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
37
|
G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. Nat Commun 2021; 12:6798. [PMID: 34815397 PMCID: PMC8611058 DOI: 10.1038/s41467-021-26882-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
G-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.
Collapse
|
38
|
Schienstock D, Mueller SN. Moving beyond velocity: Opportunities and challenges to quantify immune cell behavior. Immunol Rev 2021; 306:123-136. [PMID: 34786722 DOI: 10.1111/imr.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The analysis of cellular behavior using intravital multi-photon microscopy has contributed substantially to our understanding of the priming and effector phases of immune responses. Yet, many questions remain unanswered and unexplored. Though advancements in intravital imaging techniques and animal models continue to drive new discoveries, continued improvements in analysis methods are needed to extract detailed information about cellular behavior. Focusing on dendritic cell (DC) and T cell interactions as an exemplar, here we discuss key limitations for intravital imaging studies and review and explore alternative approaches to quantify immune cell behavior. We touch upon current developments in deep learning models, as well as established methods from unrelated fields such as ecology to detect and track objects over time. As developments in open-source software make it possible to process and interactively view larger datasets, the challenge for the field will be to determine how best to combine intravital imaging with multi-parameter imaging of larger tissue regions to discover new facets of leukocyte dynamics and how these contribute to immune responses.
Collapse
Affiliation(s)
- Dominik Schienstock
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
39
|
Parveen A, Zahiruddin S, Agarwal N, Akhtar Siddiqui M, Husain Ansari S, Ahmad S. Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice. Saudi J Biol Sci 2021; 28:6178-6190. [PMID: 34764748 PMCID: PMC8568999 DOI: 10.1016/j.sjbs.2021.06.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Taking leads from the available research, we aimed to develop a synergy-based herbal combination of Tinospora cordifolia (TC), Phyllanthus emblica (PE), and Piper nigrum (PN). Also, evaluating their synergistic effect on CP-induced immunosuppression in mice model and exploring the possible mechanisms involved in reversing the damage. METHODOLOGY The immunomodulatory activity of combination, of TC stem, PE fruits, and PN dried fruits, was determined by in vitro assays (splenocyte proliferation and pinocytic activity of peritoneal macrophages of mice) and in vivo study using CP-induced immunosuppression model in Swiss Albino mice. The ratio was optimized for combining three by in vitro MTT assay. The combination was further evaluated for anti-oxidant activity by DPPH scavenging method and quantified for its bioactive metabolites by HPTLC. Serum collected on day 0, 4, 7 and 14 was employed for estimation of haematogram (haematocrit, TLC, DLC, and haemoglobin, etc) and immune parameters (IL-10, IL-6 and TNF-α) by ELISA. RESULTS The study demonstrated, that combination of herbal extracts at an intermediate dose could inhibit the proliferation of spleen cells and peritoneal macrophages (P ≤ 0.0001) and induce suppression of pro-inflammatory mediators, and also certified that combination exerts synergized effects. The results showed that the combination possess potential antioxidant activity by DPPH scavenging method (IC50-113.5 µg/ml). It was identified that combination significantly (P ≤ 0.0001) improved the immune markers, haematogram parameters, and histological parameters, with maximum protection offered by an intermediate dose. CONCLUSION The results suggested that present combination could be further explored clinically as potent synergy-based therapeutic approach for immune modulation.
Collapse
Affiliation(s)
- Abida Parveen
- Bioactive Natural Product Laboratory, Centre for Translational and Clinical Research, SIST, Jamia Hamdard, New Delhi 110062, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Nidhi Agarwal
- Centre for Translational and Clinical Research, SCLS, Jamia Hamdard, New Delhi 110062, India
| | | | - Shahid Husain Ansari
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
40
|
Collado-Diaz V, Medina-Sanchez JD, Gkountidi AO, Halin C. Imaging leukocyte migration through afferent lymphatics. Immunol Rev 2021; 306:43-57. [PMID: 34708414 PMCID: PMC9298274 DOI: 10.1111/imr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Afferent lymphatics mediate the transport of antigen and leukocytes, especially of dendritic cells (DCs) and T cells, from peripheral tissues to draining lymph nodes (dLNs). As such they play important roles in the induction and regulation of adaptive immunity. Over the past 15 years, great advances in our understanding of leukocyte trafficking through afferent lymphatics have been made through time‐lapse imaging studies performed in tissue explants and in vivo, allowing to visualize this process with cellular resolution. Intravital imaging has revealed that intralymphatic leukocytes continue to actively migrate once they have entered into lymphatic capillaries, as a consequence of the low flow conditions present in this compartment. In fact, leukocytes spend considerable time migrating, patrolling and interacting with the lymphatic endothelium or with other intralymphatic leukocytes within lymphatic capillaries. Cells typically only start to detach once they arrive in downstream‐located collecting vessels, where vessel contractions contribute to enhanced lymph flow. In this review, we will introduce the biology of afferent lymphatic vessels and report on the presumed significance of DC and T cell migration via this route. We will specifically highlight how time‐lapse imaging has contributed to the current model of lymphatic trafficking and the emerging notion that ‐ besides transport – lymphatic capillaries exert additional roles in immune modulation.
Collapse
Affiliation(s)
| | | | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Fowell DJ, Kim M. The spatio-temporal control of effector T cell migration. Nat Rev Immunol 2021; 21:582-596. [PMID: 33627851 PMCID: PMC9380693 DOI: 10.1038/s41577-021-00507-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of 'stop' and 'go' guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.
Collapse
Affiliation(s)
- Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
42
|
Lennon-Duménil AM, Moreau HD. Barotaxis: How cells live and move under pressure. Curr Opin Cell Biol 2021; 72:131-136. [PMID: 34438279 DOI: 10.1016/j.ceb.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Cell migration is an essential process that controls many physiological functions ranging from development to immunity. In vivo, cells are guided by a combination of physical and chemical cues. Chemokines have been the center of attention for years, but the role of physical properties of tissues has been under-investigated, despite the fact that these properties can be drastically modified in pathology. Here, we discuss the role of one important tissue physical property, hydraulic resistance, in cell guidance, a phenomenon referred to as barotaxis, and describe the underlying physical principles and molecular mechanisms. Finally, we speculate on the putative role of barotaxis in physiological processes involving immune and cancer cells.
Collapse
Affiliation(s)
| | - Hélène D Moreau
- Institut Curie, PSL Research University, INSERM U932, F-75005 Paris, France.
| |
Collapse
|
43
|
CXCL10 + peripheral activation niches couple preferred sites of Th1 entry with optimal APC encounter. Cell Rep 2021; 36:109523. [PMID: 34380032 PMCID: PMC9218982 DOI: 10.1016/j.celrep.2021.109523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/02/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Correct positioning of T cells within infected tissues is critical for T cell activation and pathogen control. Upon tissue entry, effector T cells must efficiently locate antigen-presenting cells (APC) for peripheral activation. We reveal that tissue entry and initial peripheral activation of Th1 effector T cells are tightly linked to perivascular positioning of chemokine-expressing APCs. Dermal inflammation induces tissue-wide de novo generation of discrete perivascular CXCL10+ cell clusters, enriched for CD11c+MHC-II+ monocyte-derived dendritic cells. These chemokine clusters are "hotspots" for both Th1 extravasation and activation in the inflamed skin. CXCR3-dependent Th1 localization to the cluster micro-environment prolongs T-APC interactions and boosts function. Both the frequency and range of these clusters are enhanced via a T helper 1 (Th1)-intrinsic, interferon-gamma (IFNγ)-dependent positive-feedback loop. Thus, the perivascular CXCL10+ clusters act as initial peripheral activation niches, optimizing controlled activation broadly throughout the tissue by coupling Th1 tissue entry with enhanced opportunities for Th1-APC encounter.
Collapse
|
44
|
Ly6G deficiency alters the dynamics of neutrophil recruitment and pathogen capture during Leishmania major skin infection. Sci Rep 2021; 11:15071. [PMID: 34302006 PMCID: PMC8302578 DOI: 10.1038/s41598-021-94425-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophils represent one of the first immune cell types recruited to sites of infection, where they can control pathogens by phagocytosis and cytotoxic mechanisms. Intracellular pathogens such as Leishmania major can hijack neutrophils to establish an efficient infection. However the dynamic interactions of neutrophils with the pathogen and other cells at the site of the infection are incompletely understood. Here, we have investigated the role of Ly6G, a homolog of the human CD177 protein, which has been shown to interact with cell adhesion molecules, and serves as a bona fide marker for neutrophils in mice. We show that Ly6G deficiency decreases the initial infection rate of neutrophils recruited to the site of infection. Although the uptake of L. major by subsequently recruited monocytes was tightly linked with the concomitant uptake of neutrophil material, this process was not altered by Ly6G deficiency of the neutrophils. Instead, we observed by intravital 2-photon microscopy that Ly6G-deficient neutrophils entered the site of infection with delayed initial recruitment kinetics. Thus, we conclude that by promoting neutrophils’ ability to efficiently enter the site of infection, Ly6G contributes to the early engagement of intracellular pathogens by the immune system.
Collapse
|
45
|
Kamionka EM, Qian B, Gross W, Bergmann F, Hackert T, Beretta CA, Dross N, Ryschich E. Collagen Organization Does Not Influence T-Cell Distribution in Stroma of Human Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13153648. [PMID: 34359549 PMCID: PMC8344977 DOI: 10.3390/cancers13153648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The excessive desmoplasia is the hallmark of human pancreatic cancer that influences the local T-cell-based immune response. In the present work, the stromal collagen organization in normal and malignant pancreatic tissues as well as its relationsship to T-cell distribution in pancreatic cancer were studied. It was found that differences in collagen organization do not change the spatial orientation of T-cell migration and do not influence the availability of tumor cells for T-cells. The results of the study do not support the concept of use of stroma collagen organization for improvement of spatial T-cell distribution in the tumor. Abstract The dominant intrastromal T-cell infiltration in pancreatic cancer is mainly caused by the contact guidance through the excessive desmoplastic reaction and could represent one of the obstacles to an effective immune response in this tumor type. This study analyzed the collagen organization in normal and malignant pancreatic tissues as well as its influence on T-cell distribution in pancreatic cancer. Human pancreatic tissue was analyzed using immunofluorescence staining and multiphoton and SHG microscopy supported by multistep image processing. The influence of collagen alignment on activated T-cells was studied using 3D matrices and time-lapse microscopy. It was found that the stroma of malignant and normal pancreatic tissues was characterized by complex individual organization. T-cells were heterogeneously distributed in pancreatic cancer and there was no relationship between T-cell distribution and collagen organization. There was a difference in the angular orientation of collagen alignment in the peritumoral and tumor-cell-distant stroma regions in the pancreatic ductal adenocarcinoma tissue, but there was no correlation in the T-cell densities between these regions. The grade of collagen alignment did not influence the directionality of T-cell migration in the 3D collagen matrix. It can be concluded that differences in collagen organization do not change the spatial orientation of T-cell migration or influence stromal T-cell distribution in human pancreatic cancer. The results of the present study do not support the rationale of remodeling of stroma collagen organization for improvement of T-cell–tumor cell contact in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Eva-Maria Kamionka
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 365/420, 69120 Heidelberg, Germany; (E.-M.K.); (B.Q.); (W.G.); (T.H.)
| | - Baifeng Qian
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 365/420, 69120 Heidelberg, Germany; (E.-M.K.); (B.Q.); (W.G.); (T.H.)
| | - Wolfgang Gross
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 365/420, 69120 Heidelberg, Germany; (E.-M.K.); (B.Q.); (W.G.); (T.H.)
| | - Frank Bergmann
- Department of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany;
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 365/420, 69120 Heidelberg, Germany; (E.-M.K.); (B.Q.); (W.G.); (T.H.)
| | - Carlo A. Beretta
- CellNetworks Math-Clinic, University of Heidelberg, Bioquant BQ001, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Nicolas Dross
- Nikon Imaging Center, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Eduard Ryschich
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 365/420, 69120 Heidelberg, Germany; (E.-M.K.); (B.Q.); (W.G.); (T.H.)
- Correspondence: ; Tel.: +49-6221-56-6110; Fax: +49-6221-56-5199
| |
Collapse
|
46
|
Gu X, Zhang J, Li J, Wang Z, Feng J, Li J, Pan K, Ni X, Zeng D, Jing B, Zhang D. Effects of Bacillus cereus PAS38 on Immune-Related Differentially Expressed Genes of Spleen in Broilers. Probiotics Antimicrob Proteins 2021; 12:425-438. [PMID: 31243733 DOI: 10.1007/s12602-019-09567-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study mainly explored the immunomodulatory mechanisms of the probiotic Bacillus cereus PAS38 (PB) on broiler spleen. A total of 120 avian white feather broilers were randomly divided into 4 groups (N = 30), as follows: control (CNTL, fed with basal diet), PB (fed with diet supplemented with probiotic B. cereus PAS38), vaccine (VAC, fed with basal diet and injected with Newcastle disease virus vaccine), and vaccine + PB group (PBVAC, fed with basal diet supplemented with B. cereus PAS38 and injected with NDV vaccine). The experiment was conducted for 42 days. Twelve spleens were collected from four different groups, weighed, and cut into histological sections, and transcriptome analysis was performed using RNA-seq. Results of the spleen and histological section relative weights showed that feeding with probiotic B. cereus PAS38 and vaccination had a similar tendency to promote spleen development. Compared with the CNTL group, 21 immune-related genes were significantly downregulated in the PB and PBVAC groups. These genes were mainly involved in attenuating inflammatory response. The upregulated antimicrobial peptide NK-lysin and guanylate-binding protein 1 expression levels indicated that this strain enhanced the body's antimicrobial capacity. B. cereus PAS38 also amplified the broilers' immune response to the vaccine, which mainly reflected on nonspecific immunity. Hence, probiotic B. cereus PAS38 can regulate and promote the immune function of broilers.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiao Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhenhua Wang
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Jie Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| |
Collapse
|
47
|
Vesperini D, Montalvo G, Qu B, Lautenschläger F. Characterization of immune cell migration using microfabrication. Biophys Rev 2021; 13:185-202. [PMID: 34290841 PMCID: PMC8285443 DOI: 10.1007/s12551-021-00787-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed "immune surveillance." Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.
Collapse
Affiliation(s)
- Doriane Vesperini
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Galia Montalvo
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
48
|
McGovern KE, Nance JP, David CN, Harrison RES, Noor S, Worth D, Landrith TA, Obenaus A, Carson MJ, Morikis D, Wilson EH. SPARC coordinates extracellular matrix remodeling and efficient recruitment to and migration of antigen-specific T cells in the brain following infection. Sci Rep 2021; 11:4549. [PMID: 33633185 PMCID: PMC7907143 DOI: 10.1038/s41598-021-83952-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 01/14/2023] Open
Abstract
Central nervous system (CNS) injury and infection can result in profound tissue remodeling in the brain, the mechanism and purpose of which is poorly understood. Infection with the protozoan parasite Toxoplasma gondii causes chronic infection and inflammation in the brain parenchyma. Control of parasite replication requires the continuous presence of IFNγ-producing T cells to keep T. gondii in its slowly replicating cyst form. During infection, a network of extracellular matrix fibers, revealed using multiphoton microscopy, forms in the brain. The origin and composition of these structures are unknown but the fibers have been observed to act as a substrate for migrating T cells. In this study, we show a critical regulator of extracellular matrix (ECM) remodeling, Secreted Protein, Acidic, Rich in Cysteine (SPARC), is upregulated in the brain during the early phases of infection in the frontal cortex. In the absence of SPARC, a reduced and disordered fibrous network, increased parasite burden, and reduced antigen-specific T cell entry into the brain points to a role for SPARC in T cell recruitment to and migration within the brain. We also report SPARC can directly bind to CCR7 ligands CCL19 and CCL21 but not CXCL10, and enhance migration toward a chemokine gradient. Measurement of T cell behavior points to tissue remodeling being important for access of immune cells to the brain and facilitating cellular locomotion. Together, these data identify SPARC as an important regulatory component of immune cell trafficking and access to the inflamed CNS.
Collapse
Affiliation(s)
- Kathryn E McGovern
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- BIO5 Institute, Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
| | - J Philip Nance
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Clément N David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- Nanostring Technologies, Inc, 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Reed E S Harrison
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521-0129, USA
- UCSD Bioengineering and the Institute for Engineering in Medicine, San Diego, CA, 92093, USA
| | - Shahani Noor
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- School of Medicine, MSC08, University of New Mexico, Albequerque, NM, 87131, USA
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Tyler A Landrith
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- Ambrey Genetics, Aliso Viejo, CA, 92656, USA
| | - Andre Obenaus
- School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Monica J Carson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521-0129, USA
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
49
|
Sprenkeler EGG, Guenther C, Faisal I, Kuijpers TW, Fagerholm SC. Molecular Mechanisms of Leukocyte Migration and Its Potential Targeting-Lessons Learned From MKL1/SRF-Related Primary Immunodeficiency Diseases. Front Immunol 2021; 12:615477. [PMID: 33692789 PMCID: PMC7938309 DOI: 10.3389/fimmu.2021.615477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) deficiency is one of the most recently discovered primary immunodeficiencies (PIDs) caused by cytoskeletal abnormalities. These immunological “actinopathies” primarily affect hematopoietic cells, resulting in defects in both the innate immune system (phagocyte defects) and adaptive immune system (T-cell and B-cell defects). MKL1 is a transcriptional coactivator that operates together with serum response factor (SRF) to regulate gene transcription. The MKL/SRF pathway has been originally described to have important functions in actin regulation in cells. Recent results indicate that MKL1 also has very important roles in immune cells, and that MKL1 deficiency results in an immunodeficiency affecting the migration and function of primarily myeloid cells such as neutrophils. Interestingly, several actinopathies are caused by mutations in genes which are recognized MKL(1/2)-dependent SRF-target genes, namely ACTB, WIPF1, WDR1, and MSN. Here we summarize these and related (ARPC1B) actinopathies and their effects on immune cell function, especially focusing on their effects on leukocyte adhesion and migration. Furthermore, we summarize recent therapeutic efforts targeting the MKL/SRF pathway in disease.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Blanter M, Gouwy M, Struyf S. Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. J Inflamm Res 2021; 14:141-162. [PMID: 33505167 PMCID: PMC7829132 DOI: 10.2147/jir.s284941] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are the most abundant immune cell type in the blood and constitute the first line of defense against invading pathogens. Despite their important role in many diseases, they are challenging to study due to their short life span and the inability to cryopreserve or expand them in vitro. Thus, research into neutrophils has to rely on cells freshly isolated from peripheral blood of human donors, introducing donor-dependent variation in the experimental data. To counteract these problems, researchers tried to develop adequate cell models, such as cell lines. For those functional studies that cannot rely on cell models, a standardization of protocols regarding neutrophil purification and culturing could be a solution. In this review, we provide an overview of the most commonly used models for neutrophil function (HL-60, PLB-985, NB4, Kasumi-1 and induced pluripotent stem cells). In addition, we describe the effects of glucose concentration, pH, oxygen tension and temperature on neutrophil function.
Collapse
Affiliation(s)
- Marfa Blanter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|