1
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Two Novel Candidate Genes for Insulin Secretion Identified by Comparative Genomics of Multiple Backcross Mouse Populations. Genetics 2018; 210:1527-1542. [PMID: 30341086 DOI: 10.1534/genetics.118.301578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
To identify novel disease genes for type 2 diabetes (T2D) we generated two backcross populations of obese and diabetes-susceptible New Zealand Obese (NZO/HI) mice with the two lean mouse strains 129P2/OlaHsd and C3HeB/FeJ. Subsequent whole-genome linkage scans revealed 30 novel quantitative trait loci (QTL) for T2D-associated traits. The strongest association with blood glucose [12 cM, logarithm of the odds (LOD) 13.3] and plasma insulin (17 cM, LOD 4.8) was detected on proximal chromosome 7 (designated Nbg7p, NZO blood glucose on proximal chromosome 7) exclusively in the NZOxC3H crossbreeding, suggesting that the causal gene is contributed by the C3H genome. Introgression of the critical C3H fragment into the genetic NZO background by generating recombinant congenic strains and metabolic phenotyping validated the phenotype. For the detection of candidate genes in the critical region (30-46 Mb), we used a combined approach of haplotype and gene expression analysis to search for C3H-specific gene variants in the pancreatic islets, which appeared to be the most likely target tissue for the QTL. Two genes, Atp4a and Pop4, fulfilled the criteria from our candidate gene approaches. The knockdown of both genes in MIN6 cells led to decreased glucose-stimulated insulin secretion, indicating a regulatory role of both genes in insulin secretion, thereby possibly contributing to the phenotype linked to Nbg7p In conclusion, our combined- and comparative-cross analysis approach has successfully led to the identification of two novel diabetes susceptibility candidate genes, and thus has been proven to be a valuable tool for the discovery of novel disease genes.
Collapse
|
3
|
Kozell LB, Denmark DL, Walter NAR, Buck KJ. Distinct Roles for Two Chromosome 1 Loci in Ethanol Withdrawal, Consumption, and Conditioned Place Preference. Front Genet 2018; 9:323. [PMID: 30210527 PMCID: PMC6120100 DOI: 10.3389/fgene.2018.00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
We previously identified a region on chromosome 1 that harbor quantitative trait loci (QTLs) with large effects on alcohol withdrawal risk using both chronic and acute models in mice. Here, using newly created and existing QTL interval-specific congenic (ISC) models, we report the first evidence that this region harbors two distinct alcohol withdrawal QTLs (Alcw11and Alcw12), which underlie 13% and 3–6%, respectively, of the genetic variance in alcohol withdrawal severity measured using the handling-induced convulsion. Our results also precisely localize Alcw11 and Alcw12 to discreet chromosome regions (syntenic with human 1q23.1–23.3) that encompass a limited number of genes with validated genotype-dependent transcript expression and/or non-synonymous sequence variation that may underlie QTL phenotypic effects. ISC analyses also implicate Alcw11and Alcw12 in withdrawal-induced anxiety-like behavior, representing the first evidence for their broader roles in alcohol withdrawal beyond convulsions; but detect no evidence for Alcw12 involvement in ethanol conditioned place preference (CPP) or consumption. Our data point to high-quality candidates for Alcw12, including genes involved in mitochondrial respiration, spatial buffering, and neural plasticity, and to Kcnj9 as a high-quality candidate for Alcw11. Our studies are the first to show, using two null mutant models on different genetic backgrounds, that Kcnj9−/− mice demonstrate significantly less severe alcohol withdrawal than wildtype littermates using acute and repeated exposure paradigms. We also demonstrate that Kcnj9−/− voluntarily consume significantly more alcohol (20%, two-bottle choice) than wildtype littermates. Taken together with evidence implicating Kcnj9 in ethanol CPP, our results support a broad role for this locus in ethanol reward and withdrawal phenotypes. In summary, our results demonstrate two distinct chromosome 1 QTLs that significantly affect risk for ethanol withdrawal, and point to their distinct unique roles in alcohol reward phenotypes.
Collapse
Affiliation(s)
- Laura B Kozell
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deaunne L Denmark
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Nicole A R Walter
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Kari J Buck
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis. Genes (Basel) 2017; 8:genes8120347. [PMID: 29186889 PMCID: PMC5748665 DOI: 10.3390/genes8120347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022] Open
Abstract
Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.
Collapse
|
5
|
Attie AD, Churchill GA, Nadeau JH. How mice are indispensable for understanding obesity and diabetes genetics. Curr Opin Endocrinol Diabetes Obes 2017; 24:83-91. [PMID: 28107248 PMCID: PMC5837807 DOI: 10.1097/med.0000000000000321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The task of cataloging human genetic variation and its relation to disease is rapidly approaching completion. The new challenge is to discover the function of disease-associated genes and to understand the pathways that lead to human disease. We propose that achieving this new level of understanding will increasingly rely on the use of model organisms. We discuss the advantages of the mouse as a model organism to our understanding of human disease. RECENT FINDINGS The collection of available mouse strains represents as much genetic and phenotypic variation as is found in the human population. However, unlike humans, mice can be subjected to experimental breeding protocols and the availability of tissues allows for a far greater and deeper level of phenotyping. New methods for gene editing make it relatively easy to create mouse models of known human mutations. The distinction between genetic and epigenetic inheritance can be studied in great detail. Various experimental protocols enable the exploration of the role of the microbiome in physiology and disease. SUMMARY We propose that there will be an interdependence between human and model organism research. Technological advances and new genetic screening platforms in the mouse have greatly improved the path to gene discovery and mechanistic studies of gene function.
Collapse
Affiliation(s)
- Alan D Attie
- aDepartment of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin bThe Jackson Laboratory, Bar Harbor, Maine cPacific Northwest Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
6
|
Heifetz EM, Soller M. Targeted Recombinant Progeny: a design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines. BMC Genet 2015; 16:76. [PMID: 26148479 PMCID: PMC4492090 DOI: 10.1186/s12863-015-0206-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-resolution mapping of the loci (QTN) responsible for genetic variation in quantitative traits is essential for positional cloning of candidate genes, and for effective marker assisted selection. The confidence interval (QTL) flanking the point estimate of QTN-location is proportional to the number of individuals in the mapping population carrying chromosomes recombinant in the given interval. Consequently, many designs for high resolution QTN mapping are based on increasing the proportion of recombinants in the mapping population. The "Targeted Recombinant Progeny" (TRP) design is a new design for high resolution mapping of a target QTN in crosses between pure, or inbred lines. It is a three-generation procedure generating a large number of recombinant individuals within a QTL previously shown to contain a QTN. This is achieved by having individuals that carry chromosomes recombinant across the target QTL interval as parents of a large mapping population; most of whom will therefore carry recombinant chromosomes targeted to the given QTL. The TRP design is particularly useful for high resolution mapping of QTN that differentiate inbred or pure lines, and hence are not amenable to high resolution mapping by genome-wide association tests. RESULTS In the absence of residual polygenic variation, population sizes required for achieving given mapping resolution by the TRP-F2 design relative to a standard F2 design ranged from 0.289 for a QTN with standardized allele substitution effect = 0.2, mapped to an initial QTL of 0.2 Morgan to 0.041 for equivalent QTN mapped to an initial QTL of 0.02 M. In the presence of residual polygenic variation, the relative effectiveness of the TRP design ranges from 1.068 to 0.151 for the same initial QTL intervals and QTN effect. Thus even in the presence of polygenic variation, the TRP can still provide major savings. Simulation showed that mapping by TRP should be based on 30-50 markers spanning the initial interval; and on at least 50 or more G2 families representing this number of recombination points,. CONCLUSIONS The TRP design can be an effective procedure for achieving high and ultra-high mapping resolution of a target QTN previously mapped to a known confidence interval (QTL).
Collapse
Affiliation(s)
| | - Morris Soller
- Department of Genetics, Silverman Life Sciences Institute, Edmund Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
7
|
Ishikawa A, Okuno SI. Fine mapping and candidate gene search of quantitative trait loci for growth and obesity using mouse intersubspecific subcongenic intercrosses and exome sequencing. PLoS One 2014; 9:e113233. [PMID: 25398139 PMCID: PMC4232600 DOI: 10.1371/journal.pone.0113233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/26/2014] [Indexed: 12/20/2022] Open
Abstract
Although growth and body composition traits are quantitative traits of medical and agricultural importance, the genetic and molecular basis of those traits remains elusive. Our previous genome-wide quantitative trait locus (QTL) analyses in an intersubspecific backcross population between C57BL/6JJcl (B6) and wild Mus musculus castaneus mice revealed a major growth QTL (named Pbwg1) on a proximal region of mouse chromosome 2. Using the B6.Cg-Pbwg1 intersubspecific congenic strain created, we revealed 12 closely linked QTLs for body weight and body composition traits on an approximately 44.1-Mb wild-derived congenic region. In this study, we narrowed down genomic regions harboring three (Pbwg1.12, Pbwg1.3 and Pbwg1.5) of the 12 linked QTLs and searched for possible candidate genes for the QTLs. By phenotypic analyses of F2 intercross populations between B6 and each of four B6.Cg-Pbwg1 subcongenic strains with overlapping and non-overlapping introgressed regions, we physically defined Pbwg1.12 affecting body weight to a 3.8-Mb interval (61.5-65.3 Mb) on chromosome 2. We fine-mapped Pbwg1.3 for body length to an 8.0-Mb interval (57.3-65.3) and Pbwg1.5 for abdominal white fat weight to a 2.1-Mb interval (59.4-61.5). The wild-derived allele at Pbwg1.12 and Pbwg1.3 uniquely increased body weight and length despite the fact that the wild mouse has a smaller body size than that of B6, whereas it decreased fat weight at Pbwg1.5. Exome sequencing and candidate gene prioritization suggested that Gcg and Grb14 are putative candidate genes for Pbwg1.12 and that Ly75 and Itgb6 are putative candidate genes for Pbwg1.5. These genes had nonsynonymous SNPs, but the SNPs were predicted to be not harmful to protein functions. These results provide information helpful to identify wild-derived quantitative trait genes causing enhanced growth and resistance to obesity.
Collapse
Affiliation(s)
- Akira Ishikawa
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| | - Sin-ichiro Okuno
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Abstract
The selective genotyping approach, where only individuals from the high and low extremes of the trait distribution are selected for genotyping and the remaining individuals are not genotyped, has been known as a cost-saving strategy to reduce genotyping work and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping. We propose a novel and simple statistical method based on the normal mixture model for selective genotyping when both genotyped and ungenotyped individuals are fitted in the model for QTL analysis. Compared to the existing methods, the main feature of our model is that we first provide a simple way for obtaining the distribution of QTL genotypes for the ungenotyped individuals and then use it, rather than the population distribution of QTL genotypes as in the existing methods, to fit the ungenotyped individuals in model construction. Another feature is that the proposed method is developed on the basis of a multiple-QTL model and has a simple estimation procedure similar to that for complete genotyping. As a result, the proposed method has the ability to provide better QTL resolution, analyze QTL epistasis, and tackle multiple QTL problem under selective genotyping. In addition, a truncated normal mixture model based on a multiple-QTL model is developed when only the genotyped individuals are considered in the analysis, so that the two different types of models can be compared and investigated in selective genotyping. The issue in determining threshold values for selective genotyping in QTL mapping is also discussed. Simulation studies are performed to evaluate the proposed methods, compare the different models, and study the QTL mapping properties in selective genotyping. The results show that the proposed method can provide greater QTL detection power and facilitate QTL mapping for selective genotyping. Also, selective genotyping using larger genotyping proportions may provide roughly equivalent power to complete genotyping and that using smaller genotyping proportions has difficulties doing so. The R code of our proposed method is available on http://www.stat.sinica.edu.tw/chkao/.
Collapse
|
9
|
Schauwecker PE. Microarray-assisted fine mapping of quantitative trait loci on chromosome 15 for susceptibility to seizure-induced cell death in mice. Eur J Neurosci 2013; 38:3679-90. [PMID: 24001120 DOI: 10.1111/ejn.12351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
Prior studies with crosses of the FVB/NJ (FVB; seizure-induced cell death-susceptible) mouse and the C57BL/6J (B6; seizure-induced cell death-resistant) mouse revealed the presence of a quantitative trait locus (QTL) on chromosome 15 that influenced susceptibility to kainic acid-induced cell death (Sicd2). In an earlier study, we confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure-induced cell death through the creation of the FVB.B6-Sicd2 congenic strain, and created three interval-specific congenic lines (ISCLs) that encompass Sicd2 on chromosome 15 to fine-map this locus. To further localise this Sicd2 QTL, an additional congenic line carrying overlapping intervals of the B6 segment was created (ISCL-4), and compared with the previously created ISCL-1-ISCL-3 and assessed for seizure-induced cell death phenotype. Whereas all of the ISCLs showed reduced cell death associated with the B6 phenotype, ISCL-4, showed the most extensive reduction in seizure-induced cell death throughout all hippocampal subfields. In order to characterise the susceptibility loci on Sicd2 by use of this ISCL and identify compelling candidate genes, we undertook an integrative genomic strategy of comparing exon transcript abundance in the hippocampus of this newly developed chromosome 15 subcongenic line (ISCL-4) and FVB-like littermates. We identified 10 putative candidate genes that are alternatively spliced between the strains and may govern strain-dependent differences in susceptibility to seizure-induced excitotoxic cell death. These results illustrate the importance of identifying transcriptomics variants in expression studies, and implicate novel candidate genes conferring susceptibility to seizure-induced cell death.
Collapse
Affiliation(s)
- P E Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, 1333 San Pablo Street, BMT 403, Los Angeles, CA, 90033, USA
| |
Collapse
|
10
|
Wang Y, Chen X, Tsai S, Thomas A, Shizuru JA, Cao TM. Fine mapping of the Bmgr5 quantitative trait locus for allogeneic bone marrow engraftment in mice. Immunogenetics 2013; 65:585-96. [PMID: 23666360 PMCID: PMC3713196 DOI: 10.1007/s00251-013-0709-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/26/2013] [Indexed: 01/04/2023]
Abstract
To identify novel mechanisms regulating allogeneic hematopoietic cell engraftment, we used forward genetics and previously described identification, in mice, of a bone marrow (BM) engraftment quantitative trait locus (QTL), termed Bmgr5. This QTL confers dominant and large allele effects for engraftment susceptibility. It was localized to chromosome 16 by quantitative genetic techniques in a segregating backcross bred from susceptible BALB.K and resistant B10.BR mice. We now report verification of the Bmgr5 QTL using reciprocal chromosome 16 consomic strains. The BM engraftment phenotype in these consomic mice shows that Bmgr5 susceptibility alleles are not only sufficient but also indispensable for conferring permissiveness for allogeneic BM engraftment. Using panels of congenic mice, we resolved the Bmgr5 QTL into two separate subloci, termed Bmgr5a (Chr16:14.6-15.8 Mb) and Bmgr5b (Chr16:15.8-17.6 Mb), each conferring permissiveness for the engraftment phenotype and both fine mapped to an interval amenable to positional cloning. Candidate Bmgr5 genes were then prioritized using whole exome DNA sequencing and microarray gene expression data. Further studies are warranted to elucidate the genetic interaction between the Bmgr5a and Bmgr5b QTL and identify causative genes and underlying gene variants. This may lead to new approaches for overcoming the problem of graft rejection in clinical hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Blood and Marrow Transplantation Program, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Xinjian Chen
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Schickwann Tsai
- Blood and Marrow Transplantation Program, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Alun Thomas
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Judith A. Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Thai M. Cao
- Blood and Marrow Transplantation Program, Department of Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
11
|
Glant TT, Adarichev VA, Boldizsar F, Besenyei T, Laszlo A, Mikecz K, Rauch TA. Disease-promoting and -protective genomic loci on mouse chromosomes 3 and 19 control the incidence and severity of autoimmune arthritis. Genes Immun 2012; 13:336-45. [PMID: 22402741 DOI: 10.1038/gene.2012.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteoglycan (PG)-induced arthritis (PGIA) is a murine model of rheumatoid arthritis. Arthritis-prone BALB/c mice are 100% susceptible, whereas the major histocompatibility complex-matched DBA/2 strain is completely resistant to PGIA. To reduce the size of the disease-suppressive loci for sequencing and to find causative genes of arthritis, we created a set of BALB/c.DBA/2-congenic/subcongenic strains carrying DBA/2 genomic intervals overlapping the entire Pgia26 locus on chromosome 3 (chr3) and Pgia23/Pgia12 loci on chr19 in the arthritis-susceptible BALB/c background. Upon immunization of these subcongenic strains and their wild-type (BALB/c) littermates, we identified a major Pgia26a sublocus on chr3 that suppressed disease onset, incidence and severity via controlling the complex trait of T-cell responses. The region was reduced to 3 Mbp (11.8 Mbp with flanking regions) in size and contained gene(s) influencing the production of a number of proinflammatory cytokines. Additionally, two independent loci (Pgia26b and Pgia26c) suppressed the clinical scores of arthritis. The Pgia23 locus (∼3 Mbp in size) on chr19 reduced arthritis susceptibility and onset, and the Pgia12 locus (6 Mbp) associated with low arthritis severity. Thus, we have reached the critical sizes of arthritis-associated genomic loci on mouse chr3 and chr19, which are ready for high-throughput sequencing of genomic DNA.
Collapse
Affiliation(s)
- T T Glant
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Avagyan S, Aguilo F, Kamezaki K, Snoeck HW. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis. Blood 2011; 118:6078-86. [PMID: 21967974 PMCID: PMC3234666 DOI: 10.1182/blood-2011-07-365080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/23/2011] [Indexed: 01/21/2023] Open
Abstract
Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.
Collapse
Affiliation(s)
- Serine Avagyan
- Children's Hospital of New York-Presbyterian, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|
13
|
Yang HS, Shimomura K, Vitaterna MH, Turek FW. High-resolution mapping of a novel genetic locus regulating voluntary physical activity in mice. GENES BRAIN AND BEHAVIOR 2011; 11:113-24. [PMID: 21978078 DOI: 10.1111/j.1601-183x.2011.00737.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both human beings and animals exhibit substantial inter-individual variation in voluntary physical activity, and evidence indicates that a significant component of this variation is because of genetic factors. However, little is known of the genetic basis underlying central regulation of voluntary physical activity in mammals. In this study, using an F(2) intercross population and interval-specific congenic strains (ISCS) derived from the C57BL/6J strain and a chromosome 13 substitution strain, C57BL/6J-Chr13A/J/NA/J, we identified a 3.76-Mb interval on chromosome 13 containing 25 genes with a significant impact on daily voluntary wheel running activity in mice. Brain expression and polymorphisms between the C57BL/6J and A/J strains were examined to prioritize candidate genes. As the dopaminergic pathway regulates motor movement and motivational behaviors, we tested its function by examining cocaine-induced locomotor responses in ISCS with different levels of activity. The low-activity ISCS exhibited a significantly higher response to acute cocaine administration than the high-activity ISCS. Expression analysis of key dopamine-related genes (dopamine transporter and D1, D2, D3, D4 and D5 receptors) revealed that expression of D1 receptor was higher in the low-activity ISCS than in the high-activity ISCS in both the dorsal striatum and nucleus accumbens. Pathway analysis implicated Tcfap2a, a gene found within the 3.76-Mb interval, involved in the D1 receptor pathway. Using a luciferase reporter assay, we confirmed that the transcriptional factor, Tcfap2a, regulates the promoter activity of the D1 receptor gene. Thus, Tcfap2a is proposed as a candidate genetic regulator of the level of voluntary physical activity through its influence on a dopaminergic pathway.
Collapse
Affiliation(s)
- H S Yang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208-3520, USA
| | | | | | | |
Collapse
|
14
|
Mollah MBR, Ishikawa A. Intersubspecific subcongenic mouse strain analysis reveals closely linked QTLs with opposite effects on body weight. Mamm Genome 2011; 22:282-9. [PMID: 21451961 DOI: 10.1007/s00335-011-9323-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
A previous genome-wide QTL study revealed many QTLs affecting postnatal body weight and growth in an intersubspecific backcross mouse population between the C57BL/6J (B6) strain and wild Mus musculus castaneus mice captured in the Philippines. Subsequently, several closely linked QTLs for body composition traits were revealed in an F(2) intercross population between B6 and B6.Cg-Pbwg1, a congenic strain on the B6 genetic background carrying the growth QTL Pbwg1 on proximal chromosome 2. However, no QTL affecting body weight has been duplicated in the F(2) population, except for mapping an overdominant QTL that causes heterosis of body weight. In this study, we developed 17 intersubspecific subcongenic strains with overlapping and nonoverlapping castaneus regions from the B6.Cg-Pbwg1 congenic strain in order to search for and genetically dissect QTLs affecting body weight into distinct closely linked loci. Phenotypic comparisons of several developed subcongenic strains with the B6 strain revealed that two closely linked but distinct QTLs that regulate body weight, named Pbwg1.11 and Pbwg1.12, are located on an 8.9-Mb region between D2Mit270 and D2Mit472 and on the next 3.6-Mb region between D2Mit205 and D2Mit182, respectively. Further analyses using F(2) segregating populations obtained from intercrosses between B6 and each of the two selected subcongenic strains confirmed the presence of these two body weight QTLs. Pbwg1.11 had an additive effect on body weight at 6, 10, and 13 weeks of age, and its castaneus allele decreased it. In contrast, the castaneus allele at Pbwg1.12 acted in a dominant fashion and surprisingly increased body weight at 6, 10, and 13 weeks of age despite the body weight of wild castaneus mice being 60% of that of B6 mice. These findings illustrate the complex genetic nature of body weight regulation and support the importance of subcongenic mouse analysis to dissect closely linked loci.
Collapse
Affiliation(s)
- Md Bazlur R Mollah
- Laboratory of Animal Genetics, Division of Applied Genetics and Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | |
Collapse
|
15
|
Schauwecker PE. Congenic strains provide evidence that a mapped locus on chromosome 15 influences excitotoxic cell death. GENES, BRAIN, AND BEHAVIOR 2011; 10:100-10. [PMID: 20807240 PMCID: PMC3005149 DOI: 10.1111/j.1601-183x.2010.00644.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inbred strains of mice differ in their susceptibility to excitotoxin-induced cell death, but the genetic basis of individual variation is unknown. Prior studies with crosses of the FVB/NJ (seizure-induced cell death susceptible) mouse and the seizure-induced cell death resistant mouse, C57BL/6J, showed the presence of three quantitative trait loci (QTLs), named seizure-induced cell death 1 (Sicd1) to Sicd3. To better localize and characterize the Sicd2 locus, two reciprocal congenic mouse strains were created. While the B6.FVB-Sicd2 congenic mouse was without effect on modifying susceptibility to seizure-induced excitotoxic cell death, the FVB.B6-Sicd2 congenic mouse, in which the chromosome (Chr) 15 region of C57BL/6J was introgressed into FVB/NJ, showed reduced seizure-induced excitotoxic cell death following kainate administration. Phenotypic comparison between FVB and the congenic FVB.B6-Sicd2 strain confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure-induced excitotoxic cell death. Interval-specific congenic lines (ISCLs) that encompass Sicd2 on Chr 15 were generated and were used to fine-map this QTL. Resultant progeny were treated with kainate and examined for the extent of seizure-induced cell death in order to deduce the Sicd2 genotypes of the recombinants through linkage analysis. All of the ISCLs exhibited reduced cell death associated with the C57BL/6J phenotype; however, ISCL-2 showed the most dramatic reduction in seizure-induced cell death in both area CA3 and in the dentate hilus. These findings confirm the existence of polymorphic loci within the reduced critical region of Sicd2 that regulate the severity of seizure-induced cell death.
Collapse
Affiliation(s)
- P E Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
16
|
Nganga JK, Soller M, Iraqi FA. High resolution mapping of trypanosomosis resistance loci Tir2 and Tir3 using F12 advanced intercross lines with major locus Tir1 fixed for the susceptible allele. BMC Genomics 2010; 11:394. [PMID: 20569426 PMCID: PMC2898758 DOI: 10.1186/1471-2164-11-394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/22/2010] [Indexed: 11/29/2022] Open
Abstract
Background Trypanosomosis is the most economically important disease constraint to livestock productivity in Africa. A number of trypanotolerant cattle breeds are found in West Africa, and identification of the genes conferring trypanotolerance could lead to effective means of genetic selection for trypanotolerance. In this context, high resolution mapping in mouse models are a promising approach to identifying the genes associated with trypanotolerance. In previous studies, using F2 C57BL/6J × A/J and C57BL/6J × BALB/cJ mouse resource populations, trypanotolerance QTL were mapped within a large genomic intervals of 20-40 cM to chromosomes MMU17, 5 and 1, and denoted Tir1, Tir2 and Tir3 respectively. Subsequently, using F6 C57BL/6J × A/J and C57BL/6J × BALB/cJ F6 advanced intercross lines (AIL), Tir1 was fine mapped to a confidence interval (CI) of less than 1 cM, while Tir2 and Tir3, were mapped within 5-12 cM. Tir1 represents the major trypanotolerance QTL. Results In order to improve map resolutions of Tir2 and Tir3, an F12 C57BL/6J × A/J AIL population fixed for the susceptible alleles at Tir1 QTL was generated. An F12 C57BL/6J × A/J AIL population, fixed for the resistant alleles at Tir1 QTL was also generated to provide an additional estimate of the gene effect of Tir1. The AIL populations homozygous for the resistant and susceptible Tir1 alleles and the parental controls were challenged with T. congolense and followed for survival times over 180 days. Mice from the two survival extremes of the F12 AIL population fixed for the susceptible alleles at Tir1 were genotyped with a dense panel of microsatellite markers spanning the Tir2 and Tir3 genomic regions and QTL mapping was performed. Tir2 was fine mapped to less than 1 cM CI while Tir3 was mapped to three intervals named Tir3a, Tir3b and Tir3c with 95% confidence intervals (CI) of 6, 7.2 and 2.2 cM, respectively. Conclusions The mapped QTL regions encompass genes that are vital to innate immune response and can be potential candidate genes for the underlying QTL.
Collapse
Affiliation(s)
- Joseph K Nganga
- International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | | | | |
Collapse
|
17
|
Milner LC, Buck KJ. Identifying quantitative trait loci (QTLs) and genes (QTGs) for alcohol-related phenotypes in mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:173-204. [PMID: 20813243 DOI: 10.1016/s0074-7742(10)91006-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcoholism is a complex clinical disorder with genetic and environmental contributions. Although no animal model duplicates alcoholism, models for specific factors, such as the withdrawal syndrome, are useful to identify potential genetic determinants of liability in humans. Murine models have been invaluable to identify quantitative trait loci (QTLs) that influence a variety of alcohol responses. However, the QTL regions are typically large, at least initially, and contain numerous genes, making identification of the causal quantitative trait gene(s) (QTGs) challenging. Here, we present QTG identification strategies currently used in the field of alcohol genetics and discuss relevance to alcoholic human populations.
Collapse
Affiliation(s)
- Lauren C Milner
- Department of Behavioral Neuroscience, VA Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
18
|
Allelic variation in the Tyk2 and EGF genes as potential genetic determinants of CNS repair. Proc Natl Acad Sci U S A 2009; 107:792-7. [PMID: 20080754 DOI: 10.1073/pnas.0906589107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The potential for endogenous remyelination and axonal protection can be an important factor in determining disease outcome in demyelinating diseases like multiple sclerosis. In many multiple sclerosis (MS) patients CNS repair fails or is incomplete whereas in others the disease is accompanied by extensive repair of demyelinated lesions. We have described significant differences in the ability of two strains of mice to repair CNS damage following Theiler's virus-induced demyelination: FVB/NJ (FVB) mice repair damaged myelin spontaneously and completely, whereas B10.D1-H2(q)/SgJ (B10.Q) mice are deficient in the repair process. A QTL analysis was performed to identify genetic loci that differentially regulate CNS repair following chronic demyelination in these strains and two QTL were detected: one on chromosome 3 with a LOD score of 9.3 and a second on chromosome 9 with a LOD score of 14.0. The mouse genes for epidermal growth factor (EGF) and Tyk2 are encoded within the QTL on chromosomes 3 and 9, respectively. Sequence polymorphisms between the FVB and B10.Q strains at both the EGF and Tyk2 loci define functional variations consistent with roles for these genes in regulating myelin repair. EGF is a key regulator of cell growth and development and we show a sevenfold increase in EGF expression in FVB compared to B10.Q mice. Tyk2 is a Janus kinase that plays a central role in controlling the T(H)1 immune response and we show that attenuation of Tyk2 function correlates with enhanced CNS repair.
Collapse
|
19
|
Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 2009; 29:11662-73. [PMID: 19759313 DOI: 10.1523/jneurosci.1413-09.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we map a quantitative trait locus (QTL) with a large effect on predisposition to barbiturate (pentobarbital) withdrawal to a 0.44 Mb interval of mouse chromosome 1 syntenic with human 1q23.2. We report a detailed analysis of the genes within this interval and show that it contains 15 known and predicted genes, 12 of which demonstrate validated genotype-dependent transcript expression and/or nonsynonymous coding sequence variation that may underlie the influence of the QTL on withdrawal. These candidates are involved in diverse cellular functions including intracellular trafficking, potassium conductance and spatial buffering, and multimolecular complex dynamics, and indicate both established and novel aspects of neurobiological response to sedative-hypnotics. This work represents a substantial advancement toward identification of the gene(s) that underlie the phenotypic effects of the QTL. We identify Kcnj9 as a particularly promising candidate and report the development of a Kcnj9-null mutant model that exhibits significantly less severe withdrawal from pentobarbital as well as other sedative-hypnotics (zolpidem and ethanol) versus wild-type littermates. Reduced expression of Kcnj9, which encodes GIRK3 (Kir3.3), is associated with less severe sedative-hypnotic withdrawal. A multitude of QTLs for a variety of complex traits, including diverse responses to sedative-hypnotics, have been detected on distal chromosome 1 in mice, and as many as four QTLs on human chromosome 1q have been implicated in human studies of alcohol dependence. Thus, our results will be primary to additional efforts to identify genes involved in a wide variety of behavioral responses to sedative-hypnotics and may directly facilitate progress in human genetics.
Collapse
|
20
|
Radcliffe RA, Erwin VG, Bludeau P, Deng X, Fay T, Floyd KL, Deitrich RA. A major QTL for acute ethanol sensitivity in the alcohol tolerant and non-tolerant selected rat lines. GENES, BRAIN, AND BEHAVIOR 2009; 8:611-25. [PMID: 19500156 PMCID: PMC2880637 DOI: 10.1111/j.1601-183x.2009.00496.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Alcohol Tolerant and Alcohol Non-Tolerant rats (AT, ANT) were selectively bred for ethanol-induced ataxia as measured on the inclined plane. Here we report on a quantitative trait locus (QTL) study in an F(2) intercross population derived from inbred AT and ANT (IAT, IANT) and a follow-up study of congenics that were bred to examine one of the mapped QTLs. Over 1200 F(2) offspring were tested for inclined plane sensitivity, acute tolerance on the inclined plane, duration of the loss of righting reflex (LORR) and blood ethanol at regain of the righting reflex (BECRR). F(2) rats that were in the upper and lower 20% for inclined plane sensitivity were genotyped with 78 SSLP markers. Significant QTLs for inclined plane sensitivity were mapped on chromosomes 8 and 20; suggestive QTLs were mapped on chromosomes 1, 2 and 3. Highly significant QTLs for LORR duration (LOD = 12.4) and BECRR (LOD = 5.7) were mapped to the same locus on chromosome 1. Breeding and testing of reciprocal congenic lines confirmed the chromosome 1 LORR/BECRR QTL. A series of recombinant congenic sub-lines were bred to fine-map this QTL. Current results have narrowed the QTL to an interval of between 5 and 20 Mb. We expect to be able to narrow the interval to less than 5 Mb with additional genotyping and continued breeding of recombinant sub-congenic lines.
Collapse
Affiliation(s)
- R A Radcliffe
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kamens HM, McKinnon CS, Li N, Helms ML, Belknap JK, Phillips TJ. The alpha 3 subunit gene of the nicotinic acetylcholine receptor is a candidate gene for ethanol stimulation. GENES, BRAIN, AND BEHAVIOR 2009; 8:600-9. [PMID: 18826434 PMCID: PMC2888607 DOI: 10.1111/j.1601-183x.2008.00444.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alcohol and nicotine are coabused, and preclinical and clinical data suggest that common genes may influence responses to both drugs. A gene in a region of mouse chromosome 9 that includes a cluster of three nicotinic acetylcholine receptor (nAChR) subunit genes influences the locomotor stimulant response to ethanol. The current studies first used congenic mice to confirm the influential gene on chromosome 9. Congenic F(2) mice were then used to more finely map the location. Gene expression of the three subunit genes was quantified in strains of mice that differ in response to ethanol. Finally, the locomotor response to ethanol was examined in mice heterozygous for a null mutation of the alpha 3 nAChR subunit gene (Chrna3). Congenic data indicate that a gene on chromosome 9, within a 46 cM region that contains the cluster of nAChR subunit genes, accounts for 41% of the genetic variation in the stimulant response to ethanol. Greater expression of Chrna3 was found in whole brain and dissected brain regions relevant to locomotor behavior in mice that were less sensitive to ethanol-induced stimulation compared to mice that were robustly stimulated; the other two nAChR subunit genes in the gene cluster (alpha 5 and beta 4) were not differentially expressed. Locomotor stimulation was not expressed on the genetic background of Chrna3 heterozygous (+/-) and wild-type (+/+) mice; +/- mice were more sensitive than +/+ mice to the locomotor depressant effects of ethanol. Chrna3 is a candidate gene for the acute locomotor stimulant response to ethanol that deserves further examination.
Collapse
Affiliation(s)
| | - C. S. McKinnon
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center, Portland, OR, USA
| | - N Li
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center, Portland, OR, USA
| | - M. L. Helms
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center, Portland, OR, USA
| | - J. K. Belknap
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center, Portland, OR, USA
| | - T. J. Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center, Portland, OR, USA
| |
Collapse
|
22
|
Su Z, Ishimori N, Chen Y, Leiter EH, Churchill GA, Paigen B, Stylianou IM. Four additional mouse crosses improve the lipid QTL landscape and identify Lipg as a QTL gene. J Lipid Res 2009; 50:2083-94. [PMID: 19436067 DOI: 10.1194/jlr.m900076-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify genes controlling plasma HDL and triglyceride levels, quantitative trait locus (QTL) analysis was performed in one backcross, (NZO/H1Lt x NON/LtJ) x NON/LtJ, and three intercrosses, C57BL/6J x DBA/2J, C57BL/6J x C3H/HeJ, and NZB/B1NJ x NZW/LacJ. HDL concentrations were affected by 25 QTL distributed on most chromosomes (Chrs); those on Chrs 1, 8, 12, and 16 were newly identified, and the remainder were replications of previously identified QTL. Triglyceride concentrations were controlled by nine loci; those on Chrs 1, 2, 3, 7, 16, and 18 were newly identified QTL, and the remainder were replications. Combining mouse crosses with haplotype analysis for the HDL QTL on Chr 18 reduced the list of candidates to six genes. Further expression analysis, sequencing, and quantitative complementation testing of these six genes identified Lipg as the HDL QTL gene on distal Chr 18. The data from these crosses further increase the ability to perform haplotype analyses that can lead to the identification of causal lipid genes.
Collapse
Affiliation(s)
- Zhiguang Su
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kozell L, Belknap JK, Hofstetter JR, Mayeda A, Buck KJ. Mapping a locus for alcohol physical dependence and associated withdrawal to a 1.1 Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. GENES BRAIN AND BEHAVIOR 2008; 7:560-7. [PMID: 18363856 DOI: 10.1111/j.1601-183x.2008.00391.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force perpetuating continued alcohol use/abuse. Although no animal model duplicates alcoholism, models for specific factors, like the withdrawal syndrome, are useful to identify potential determinants of liability in humans. We previously detected quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal following chronic or acute alcohol exposure to a large region of chromosome 1 in mice (Alcdp1 and Alcw1, respectively). Here, we provide the first confirmation of Alcw1 in a congenic strain, and, using interval-specific congenic strains, narrow its position to a minimal 1.1 Mb (maximal 1.7 Mb) interval syntenic with human chromosome 1q23.2-23.3. We also report the development of a small donor segment congenic that confirms capture of a gene(s) affecting physical dependence after chronic alcohol exposure within this small interval. This congenic will be invaluable for determining whether this interval harbors a gene(s) involved in additional alcohol responses for which QTLs have been detected on distal chromosome 1, including alcohol consumption, alcohol-conditioned aversion and -induced ataxia. The possibility that this QTL plays an important role in such diverse responses to alcohol makes it an important target. Moreover, human studies have identified markers on chromosome 1q associated with alcoholism, although this association is still suggestive and mapped to a large region. Thus, the fine mapping of this QTL and analyses of the genes within the QTL interval can inform developing models for genetic determinants of alcohol dependence in humans.
Collapse
Affiliation(s)
- L Kozell
- Department of Veterans Affairs Medical Center, Portland, OR, USA
| | | | | | | | | |
Collapse
|
24
|
Zhu W, Fan Z, Zhang C, Guo Z, Zhao Y, Zhou Y, Li K, Xing Z, Chen G, Liang Y, Jin L, Xiao J. A dominant X-linked QTL regulating pubertal timing in mice found by whole genome scanning and modified interval-specific congenic strain analysis. PLoS One 2008; 3:e3021. [PMID: 18725948 PMCID: PMC2516528 DOI: 10.1371/journal.pone.0003021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown. METHODOLOGY/PRINCIPAL FINDINGS We performed a genome-wide scanning for linkage in reciprocal crosses between two strains, C3H/HeJ (C3H) and C57BL6/J (B6), which differed significantly in the pubertal timing. Vaginal opening (VO) was used to characterize pubertal timing in female mice, and the age at VO of all female mice (two parental strains, F1 and F2 progeny) was recorded. A genome-wide search was performed in 260 phenotypically extreme F2 mice out of 464 female progeny of the F1 intercrosses to identify quantitative trait loci (QTLs) controlling this trait. A QTL significantly associated was mapped to the DXMit166 marker (15.5 cM, LOD = 3.86, p<0.01) in the reciprocal cross population (C3HB6F2). This QTL contributed 2.1 days to the timing of VO, which accounted for 32.31% of the difference between the original strains. Further study showed that the QTL was B6-dominant and explained 10.5% of variation to this trait with a power of 99.4% at an alpha level of 0.05.The location of the significant ChrX QTL found by genome scanning was then fine-mapped to a region of approximately 2.5 cM between marker DXMit68 and rs29053133 by generating and phenotyping a panel of 10 modified interval-specific congenic strains (mISCSs). CONCLUSIONS/SIGNIFICANCE Such findings in our study lay a foundation for positional cloning of genes regulating the timing of puberty, and also reveal the fact that chromosome X (the sex chromosome) does carry gene(s) which take part in the regulative pathway of the pubertal timing in mice.
Collapse
Affiliation(s)
- Wangsheng Zhu
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Zhongpeng Fan
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Chao Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Zhengxia Guo
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Ying Zhao
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- Shanghai British SIPPR/BK Lab Animal Ltd, Shanghai, People's Republic of China
| | - Yuxun Zhou
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Kai Li
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Zhenghong Xing
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- Shanghai British SIPPR/BK Lab Animal Ltd, Shanghai, People's Republic of China
| | - Guoqiang Chen
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- Shanghai British SIPPR/BK Lab Animal Ltd, Shanghai, People's Republic of China
| | - Yinming Liang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Li Jin
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- School of Life Science, Fudan University, Shanghai, People's Republic of China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
Pravenec M, Petretto E. Insight into the genetics of hypertension, a core component of the metabolic syndrome. Curr Opin Clin Nutr Metab Care 2008; 11:393-7. [PMID: 18541997 DOI: 10.1097/mco.0b013e32830366f6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To provide insight into genetics of essential hypertension, including discussion of methods used both in human and animal experimental studies and interpretation of results. RECENT FINDINGS On the basis of recent progress in sequencing of human genome, detection of millions of single nucleotide polymorphism markers, determination of the extend of linkage disequilibrium (haplotypes), efficient genotyping technology, collection of DNA from thousands of rigorously phenotyped patients and controls and designing sound statistical methods, genome-wide associations studies were widely applied to analyses of common diseases including essential hypertension for the first time in 2007. Concurrently, new experimental approaches combined gene expression profiling with linkage and correlation analyses to identify quantitative trait loci underlying complex traits at the molecular level. SUMMARY These new approaches yielded new exciting results but also posed questions regarding data analyses, interpretation and clinical significance.
Collapse
Affiliation(s)
- Michal Pravenec
- aInstitute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
26
|
Bennett B, Carosone-Link P, Beeson M, Gordon L, Phares-Zook N, Johnson TE. Genetic dissection of quantitative trait locus for ethanol sensitivity in long- and short-sleep mice. GENES BRAIN AND BEHAVIOR 2008; 7:659-68. [PMID: 18363857 DOI: 10.1111/j.1601-183x.2008.00403.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interval-specific congenic strains (ISCS) allow fine mapping of a quantitative trait locus (QTL), narrowing its confidence interval by an order of magnitude or more. In earlier work, we mapped four QTL specifying differential ethanol sensitivity, assessed by loss of righting reflex because of ethanol (LORE), in the inbred long-sleep (ILS) and inbred short-sleep (ISS) strains, accounting for approximately 50% of the genetic variance for this trait. Subsequently, we generated reciprocal congenic strains in which each full QTL interval from ILS was bred onto the ISS background and vice versa. An earlier paper reported construction and results of the ISCS on the ISS background; here, we describe this process and report results on the ILS background. We developed multiple ISCS for each Lore QTL in which the QTL interval was broken into a number of smaller intervals. For each of the four QTL regions (chromosomes 1, 2, 11 and 15), we were successful in reducing the intervals significantly. Multiple, positive strains were overlapped to generate a single, reduced interval. Subsequently, this reduced region was overlaid on previous reductions from the ISS background congenics, resulting in substantial reductions in all QTL regions by approximately 75% from the initial mapping study. Genes with sequence or expression polymorphisms in the reduced intervals are potential candidates; evidence for these is presented. Genetic background effects can be important in detection of single QTL; combining this information with the generation of congenics on both backgrounds, as described here, is a powerful approach for fine mapping QTL.
Collapse
Affiliation(s)
- B Bennett
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309-0447, USA
| | | | | | | | | | | |
Collapse
|
27
|
Johnson KR, Zheng QY, Noben-Trauth K. Strain background effects and genetic modifiers of hearing in mice. Brain Res 2006; 1091:79-88. [PMID: 16579977 PMCID: PMC2858224 DOI: 10.1016/j.brainres.2006.02.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/31/2006] [Accepted: 02/04/2006] [Indexed: 11/20/2022]
Abstract
Genetic modifiers can be detected in mice by looking for strain background differences in inheritance or phenotype of a mutation. They can be mapped by analyses of appropriate linkage crosses and congenic lines, and modifier genes of large effect can be identified by positional-candidate gene testing. Inbred strains of mice vary widely in onset and severity of age-related hearing loss (AHL), an important consideration when assessing hearing in mutant mice. At least 8 mapped loci and a mitochondrial variant (mt-Tr) are known to contribute to AHL in mouse strains; one locus (ahl) has been identified as a variant of the cadherin 23 gene (Cdh23(753A/G)). This variant also was shown to modify hearing loss associated with the Atp2b2(dfw-2J) and Mass1(frings) mutations. The hearing modifier (Moth1) of tubby (Tub(tub)) mutant mice was shown to be a strain variant of the Mtap1a gene. Human hearing modifiers include DFNM1, which suppresses recessive deafness DFNB26, and a nuclear gene that modulates the severity of hearing loss associated with a mitochondrial mutation. Recently, a variant of the human ATP2B2 gene was shown to exacerbate hearing loss in individuals homozygous for a CDH23 mutation, similar to the Atp2b2(dfw-2J)-Cdh23(753A/G) interaction affecting hearing in mice. Because modifier genes and digenic inheritance are not always distinguishable, we also include in this review several examples of digenic inheritance of hearing loss that have been reported in both mice and humans.
Collapse
|
28
|
Fehr C, Shirley RL, Crabbe JC, Belknap JK, Buck KJ, Phillips TJ. The Syntaxin Binding Protein 1 Gene (Stxbp1
) Is a Candidate for an Ethanol Preference Drinking Locus on Mouse Chromosome 2. Alcohol Clin Exp Res 2006; 29:708-20. [PMID: 15897714 DOI: 10.1097/01.alc.0000164366.18376.ef] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously mapped a quantitative trait locus (QTL) for ethanol preference drinking to mouse chromosome 2 (mapped with high confidence, LOD = 15.5, p = 3 x 10(-16)). The specific gene(s) in the QTL interval responsible for phenotypic variation in ethanol preference drinking has not been identified. METHODS In the current study, we investigated the association of the syntaxin binding protein 1 gene (Stxbp1) with ethanol preference drinking and other ethanol traits using a panel of B6 x D2 (BXD) recombinant inbred (RI) strains derived from the C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains. Confirmation analyses for ethanol consumption and withdrawal were performed using a large B6D2 F2 cross, short-term selected lines derived from the B6 and D2 progenitor strains, and standard inbred strains. RESULTS BXD RI strain analysis detected provisional associations between Stxbp1 molecular variants and ethanol consumption, as well as severity of acute ethanol withdrawal, ethanol-conditioned taste aversion, and ethanol-induced hypothermia. Confirmation analyses using three independent genetic models supported the involvement of Stxbp1 in ethanol preference drinking but not in ethanol withdrawal. CONCLUSIONS Stxbp1 encodes a Sec1/Munc18-type protein essential for vesicular neurotransmitter release. The present study provides supporting evidence for the involvement of Stxbp1 in ethanol preference drinking.
Collapse
Affiliation(s)
- Christoph Fehr
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, and US Department of Veterans Affairs Medical Center, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
29
|
Matthews DB, Bhave SV, Belknap JK, Brittingham C, Chesler EJ, Hitzemann RJ, Hoffmann PL, Lu L, McWeeney S, Miles MF, Tabakoff B, Williams RW. Complex Genetics of Interactions of Alcohol and CNS Function and Behavior. Alcohol Clin Exp Res 2006; 29:1706-19. [PMID: 16205371 DOI: 10.1097/01.alc.0000179209.44407.df] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This work summarizes the proceedings of a symposium at the 2004 RSA Meeting in Vancouver, Canada. The organizers were R. W. Williams and D. B. Matthews; the Chair was M. F. Miles. The presentations were (1) WebQTL: A resource for analysis of gene expression variation and the genetic dissection of alcohol related phenotypes, by E. J. Chesler, (2) The marriage of microarray and qtl analyses: what's to gain, by J. K. Belknap, (3) Use of WebQTL to identify QTLs associated with footshock stress and ethanol related behaviors, by D. B. Matthews, (4) A high throughput strategy for the detection of quantitative trait genes, by R. J. Hitzemann, and (5) The use of gene arrays in conjunction with transgenic and selected animals to understand anxiety in alcoholism, by. B. Tabakoff.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Backcrossing is a well-known and long established breeding scheme where a characteristic is introgressed from a donor parent into the genomic background of a recurrent parent. The various uses of backcrossing in modern genetics, particularly with the help of molecular markers, are reviewed here. Selection in backcross programmes is used to either improve the genetic value of plant and animal populations or fine map quantitative trait loci. Both cases are helpful in our understanding of the genetic bases of quantitative traits variation.
Collapse
Affiliation(s)
- Frédéric Hospital
- INRA, UMR de Génétique Végétale, Ferme du Moulon, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Darvasi A. Dissecting complex traits: the geneticists' ‘Around the world in 80 days’. Trends Genet 2005; 21:373-6. [PMID: 15913834 DOI: 10.1016/j.tig.2005.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/17/2005] [Accepted: 05/03/2005] [Indexed: 11/22/2022]
Abstract
The identification of genes mildly affecting quantitative phenotypes constitutes a difficult task that has almost always eluded application, particularly in behavioral phenotypes. Recently, the first study that identified a gene underlying a QTL affecting anxiety was published. In the course of that study, novel approaches were developed that can significantly reduce the time required to identify such genes. The identification of genes affecting complex traits is expected to provide significant insights into the biochemical mechanisms underlying these poorly understood traits.
Collapse
Affiliation(s)
- Ariel Darvasi
- The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
32
|
Haraldsson MK, dela Paz NG, Kuan JG, Gilkeson GS, Theofilopoulos AN, Kono DH. Autoimmune alterations induced by the New Zealand Black Lbw2 locus in BWF1 mice. THE JOURNAL OF IMMUNOLOGY 2005; 174:5065-73. [PMID: 15814738 DOI: 10.4049/jimmunol.174.8.5065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The New Zealand Black (NZB) Lbw2 locus (lupus NZB x New Zealand White (NZW) 2 locus) was previously linked to mortality and glomerulonephritis, but not to IgG autoantibodies, suggesting that it played a role in a later disease stage. To define its contribution, (NZB x NZW)F1 hybrids (BWF1) containing two, one, or no copies of this locus were generated. Lack of the NZB Lbw2 indeed reduced mortality and glomerulonephritis, but not serum levels of total and anti-DNA IgG Abs. There were, however, significant reductions in the B cell response to LPS, total and anti-DNA IgM and IgG Ab-forming cells, IgM Ab levels, and glomerular Ig deposits. Furthermore, although serum IgG autoantibody levels correlated poorly with kidney IgG deposits, the number of spontaneous IgG Ab-forming cells had a significant correlation. Genome-wide mapping of IgM anti-chromatin levels identified only Lbw2, and analysis of subinterval congenics tentatively reduced Lbw2 to approximately 5 Mb. Because no known genes associated with B cell activation and lupus are in this interval, Lbw2 probably represents a novel B cell activation gene. These findings establish the importance of Lbw2 in the BWF1 hybrid and indicate that Lbw2, by enhancing B cell hyperactivity, promotes the early polyclonal activation of B cells and subsequent production of autoantibodies.
Collapse
Affiliation(s)
- Maria K Haraldsson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
33
|
Jerez-Timaure NC, Eisen EJ, Pomp D. Fine mapping of a QTL region with large effects on growth and fatness on mouse chromosome 2. Physiol Genomics 2005; 21:411-22. [PMID: 15769905 DOI: 10.1152/physiolgenomics.00256.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We combined the use of a congenic line and recombinant progeny testing (RPT) to characterize and fine map a previously identified region of distal mouse chromosome 2 (MMU2) harboring quantitative trait loci (QTL) with large effects on growth and fatness. The congenic line [M16i.B6-(D2Mit306-D2Mit52); MB2] was created using an inbred line (M16i) derived from a line that had undergone long-term selection for rapid weight gain (M16) as the recipient for an approximately 38-cM region on MMU2 from the inbred line C57BL/6J. A large F2 cohort (1,200 mice) originating from a cross between MB2 and M16i was created, and 40 F2 males with defined recombinations within the QTL region were used to produce 665 segregating progeny. Linkage analysis of the F2 population detected QTL with very large effects on body weight, body fat, lean tissue mass, bone mineral density, and liver weight. Confidence intervals of the QTL were narrowed to regions of 1.5-4.5 cM. Analysis of progeny of the recombinant F2 males confirmed the existence of the QTL and further contributed to localization of their map positions. These efforts confirmed the presence of QTL with major effect on MMU2, narrowed the estimated region harboring the QTL from 38 to 12 cM, and further characterized phenotypic effects of the QTL, effectively culminating in a significantly decreased pool of positional candidate genes potentially representing these genes controlling predisposition to growth and fatness.
Collapse
Affiliation(s)
- Nancy C Jerez-Timaure
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583-0908, USA
| | | | | |
Collapse
|
34
|
Hultqvist M, Holmdahl R. Ncf1 (p47phox) polymorphism determines oxidative burst and the severity of arthritis in rats and mice. Cell Immunol 2005; 233:97-101. [PMID: 15936744 DOI: 10.1016/j.cellimm.2005.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 12/20/2022]
Abstract
Identifying genes that regulate polygenic diseases influenced by the environment such as rheumatoid arthritis (RA), has so far proven to be difficult. By using an alternative approach, i.e., linkage analysis using relevant animal models we succeeded in finding the Ncf1 gene residing in the Pia4 quantitative trait locus to be responsible for the severity of pristane induced arthritis in rats. The influence of another mutation in the mouse Ncf1 gene showed the same association between decreased oxidative burst and enhanced arthritis. In this case the mutation affected a splice site giving a non-detectable oxidative burst response and enhanced collagen induced arthritis as well as myelin oligodendrocyte protein induced experimental autoimmune encephalomyelitis. These findings open up new possibilities for new treatments for autoimmune diseases, i.e., RA, targeting the NADPH oxidase pathway.
Collapse
Affiliation(s)
- Malin Hultqvist
- Section for Medical Inflammation Research, Lund University, Lund, Sweden
| | | |
Collapse
|
35
|
Stylianou IM, Christians JK, Keightley PD, Bünger L, Clinton M, Bulfield G, Horvat S. Genetic complexity of an obesity QTL ( Fob3) revealed by detailed genetic mapping. Mamm Genome 2005; 15:472-81. [PMID: 15181539 DOI: 10.1007/s00335-004-3039-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 01/26/2004] [Indexed: 12/17/2022]
Abstract
Obesity is proving to be a serious health concern in the developed world as well as an unwanted component of growth in livestock production. While recent advances in genetics have identified a number of monogenic causes of obesity, these are responsible for only a small proportion of human cases of obesity. By divergent selection for high and low fat content over 60 generations, we have created Fat (F) and Lean (L) lines of mice that represent a model of polygenic obesity similar to the situation in human populations. From previous crosses of these lines, four body fat quantitative trait loci (QTL) were identified. We have created congenic lines (F(chr15L)), by recurrent marker-assisted backcrossing, to introgress the QTL region with the highest LOD score, Fob3 on Chr 15, from the L-Iine into the F-line background. We have further mapped this QTL by progeny testing of recombinants, produced from crosses between the F-line and congenic F(chrl5L) mice, showing that the Fob3 QTL region is a composite of at least two smaller effect QTL-the proximal QTL Fob3a is a late-onset obesity QTL, whereas the distal Fob3b is an early-onset obesity QTL.
Collapse
|
36
|
Shifman S, Darvasi A. Mouse inbred strain sequence information and yin-yang crosses for quantitative trait locus fine mapping. Genetics 2004; 169:849-54. [PMID: 15520253 PMCID: PMC1449093 DOI: 10.1534/genetics.104.032474] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The shared ancestry of mouse inbred strains, together with the availability of sequence and phenotype information, is a resource that can be used to map quantitative trait loci (QTL). The difficulty in using only sequence information lies in the fact that in most instances the allelic state of the QTL cannot be unambiguously determined in a given strain. To overcome this difficulty, the performance of multiple crosses between various inbred strains has been proposed. Here we suggest and evaluate a general approach, which consists of crossing the two strains used initially to map the QTL and any new strain. We have termed these crosses "yin-yang," because they are complementary in nature as shown by the fact that the QTL will necessarily segregate in only one of the crosses. We used the publicly available SNP database of chromosome 16 to evaluate the mapping resolution achievable through this approach. Although on average the improvement of mapping resolution using only four inbred strains was relatively small (i.e., reduction of the QTL-containing interval by half at most), we found a great degree of variability among different regions of chromosome 16 with regard to mapping resolution. This suggests that with a large number of strains in hand, selecting a small number of strains may provide a significant contribution to the fine mapping of QTL.
Collapse
Affiliation(s)
- Sagiv Shifman
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
37
|
|
38
|
Stoehr JP, Byers JE, Clee SM, Lan H, Boronenkov IV, Schueler KL, Yandell BS, Attie AD. Identification of major quantitative trait loci controlling body weight variation in ob/ob mice. Diabetes 2004; 53:245-9. [PMID: 14693723 DOI: 10.2337/diabetes.53.1.245] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The adipocyte hormone leptin constitutes an important component of the regulation of energy homeostasis; leptin-deficient animals, such as obese mice, are strikingly overweight. The seemingly uninhibited weight gain in obese mice belies the fact that control of energy homeostasis remains under precise, heritably modifiable control. Herein, we report large, heritable differences in body weight and food intake between BTBR-ob/ob and B6-ob/ob mice. We have identified two loci, called modifier of obese (Moo1 and Moo2), that explain the majority of the heritable variance in (BTBR x B6) F(2)-ob/ob mice. Using interval-specific congenic mouse lines, we mapped Moo1 to an 8-Mb segment of chromosome 2 and demonstrated that Moo1 exerts its effects primarily by regulating total fat mass. Although null alleles of leptin are rare, the majority of overweight adults are leptin resistant, suggesting that leptin-independent pathways, such as those studied here, are important regulators of energy homeostasis. Thus, the identification of these loci may provide important new insights into the pathogenesis of human obesity.
Collapse
Affiliation(s)
- Jonathan P Stoehr
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fischer G, Ibrahim SM, Brockmann GA, Pahnke J, Bartocci E, Thiesen HJ, Serrano-Fernández P, Möller S. Expressionview: visualization of quantitative trait loci and gene-expression data in Ensembl. Genome Biol 2003; 4:R77. [PMID: 14611663 PMCID: PMC329133 DOI: 10.1186/gb-2003-4-11-r77] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 07/30/2003] [Accepted: 09/02/2003] [Indexed: 11/03/2022] Open
Abstract
We present here a software tool for combined visualization of gene-expression data and quantitative trait loci (QTL). The application is implemented as an extension to the Ensembl project and caters for a direct transition from microarray experiments of gene or protein expression levels to the genomic context of individual genes and QTL. It supports the visualization of gene clusters and the selection of functional candidate genes in the context of research on complex traits.
Collapse
Affiliation(s)
- Gertrud Fischer
- University of Rostock, Institute of Immunology, Joachim-Jungius-Strasse 9, 18059 Rostock, Germany
| | - Saleh M Ibrahim
- University of Rostock, Institute of Immunology, Joachim-Jungius-Strasse 9, 18059 Rostock, Germany
| | - Gudrun A Brockmann
- Research Institute for Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Jens Pahnke
- University of Zurich, Institute of Neuropathology, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Ezio Bartocci
- University of Camerino, Department of Computer Science and Mathematics, Via Madonna delle Carceri, 62032, Camerino (MC), Italy
| | - Hans-Jürgen Thiesen
- University of Rostock, Institute of Immunology, Joachim-Jungius-Strasse 9, 18059 Rostock, Germany
| | - Pablo Serrano-Fernández
- University of Rostock, Institute of Immunology, Joachim-Jungius-Strasse 9, 18059 Rostock, Germany
| | - Steffen Möller
- University of Rostock, Institute of Immunology, Joachim-Jungius-Strasse 9, 18059 Rostock, Germany
| |
Collapse
|
40
|
Abstract
Positional cloning of susceptibility genes in complex diseases like rheumatoid arthritis in humans is hampered by aspects like genetic heterogeneity and environmental variations, while genetic studies in animal models contain several advantages. With animal models, the environment can be controlled, the genetic complexity of the disease is minimized and the disease onset can be predicted, which simplify diagnosis and characterization. We use pristane-induced arthritis in rats to investigate the inheritance of arthritis. Until now, we have identified 15 loci that significantly predispose rats to the development of arthritis. One of these arthritis loci has been isolated and confirmed to be caused by a polymorphism in the Ncf1 gene. In this review, we outline the methods used to identify Ncf1 as one single susceptibility gene in a complex puzzle of inherited factors that render susceptibility to a complex autoimmune disorder like arthritis.
Collapse
Affiliation(s)
- P Olofsson
- Section for Medical Inflammation Research, Lund University, Sölvegatan 19, S-22184 Lund, Sweden
| | | |
Collapse
|
41
|
Ronin Y, Korol A, Shtemberg M, Nevo E, Soller M. High-resolution mapping of quantitative trait loci by selective recombinant genotyping. Genetics 2003; 164:1657-66. [PMID: 12930769 PMCID: PMC1462674 DOI: 10.1093/genetics/164.4.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Selective recombinant genotyping (SRG) is a three-stage procedure for high-resolution mapping of a QTL that has previously been mapped to a known confidence interval (target C.I.). In stage 1, a large mapping population is accessed and phenotyped, and a proportion, P, of the high and low tails is selected. In stage 2, the selected individuals are genotyped for a pair of markers flanking the target C.I., and a group of R individuals carrying recombinant chromosomes in the target interval are identified. In stage 3, the recombinant individuals are genotyped for a set of M markers spanning the target C.I. Extensive simulations showed that: (1) Standard error of QTL location (SEQTL) decreased when QTL effect (d) or population size (N) increased, but was constant for given "power factor" (PF = d(2)N); (2) increasing the proportion selected in the tails beyond 0.25 had only a negligible effect on SEQTL; and (3) marker spacing in the target interval had a remarkably powerful effect on SEQTL, yielding a reduction of up to 10-fold in going from highest (24 cM) to lowest (0.29 cM) spacing at given population size and QTL effect. At the densest marker spacing, SEQTL of 1.0-0.06 cM were obtained at PF = 500-16,000. Two new genotyping procedures, the half-section algorithm and the golden section/half-section algorithm, allow the equivalent of complete haplotyping of the target C.I. in the recombinant individuals to be achieved with many fewer data points than would be required by complete individual genotyping.
Collapse
Affiliation(s)
- Y Ronin
- Institute of Evolution, University of Haifa, Mount Carmel, 31095 Haifa, Israel
| | | | | | | | | |
Collapse
|
42
|
Denny P, Hopes E, Gingles N, Broman KW, McPheat W, Morten J, Alexander J, Andrew PW, Brown SDM. A major locus conferring susceptibility to infection by Streptococcus pneumoniae in mice. Mamm Genome 2003; 14:448-53. [PMID: 12925893 DOI: 10.1007/s00335-002-2261-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 03/14/2003] [Indexed: 10/26/2022]
Abstract
We have studied the genetics of susceptibility to infection by Streptococcus pneumoniae in mice. Linkage analysis of the F(2) generation from a cross between resistant BALB/cO1aHsd and susceptible CBA/CaO1aHsd strains allowed us to map a major locus controlling the development of bacteremia and survival after intranasal infection.
Collapse
Affiliation(s)
- Paul Denny
- MRC UK Mouse Genome Centre & Mammalian Genetics Unit, Harwell, Oxon, OX11 0RD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marshall KE, Godden EL, Yang F, Burgers S, Buck KJ, Sikela JM. In silico discovery of gene-coding variants in murine quantitative trait loci using strain-specific genome sequence databases. Genome Biol 2002; 3:RESEARCH0078. [PMID: 12537567 PMCID: PMC151180 DOI: 10.1186/gb-2002-3-12-research0078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Revised: 10/17/2002] [Accepted: 10/22/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The identification of genes underlying complex traits has been aided by quantitative trait locus (QTL) mapping approaches, which in turn have benefited from advances in mammalian genome research. Most recently, whole-genome draft sequences and assemblies have been generated for mouse strains that have been used for a large fraction of QTL mapping studies. Here we show how such strain-specific mouse genome sequence databases can be used as part of a high-throughput pipeline for the in silico discovery of gene-coding variations within murine QTLs. As a test of this approach we focused on two QTLs on mouse chromosomes 1 and 13 that are involved in physical dependence on alcohol. RESULTS Interstrain alignment of sequences derived from the relevant mouse strain genome sequence databases for 199 QTL-localized genes spanning 210,020 base-pairs of coding sequence identified 21 genes with different coding sequences for the progenitor strains. Several of these genes, including four that exhibit strong phenotypic links to chronic alcohol withdrawal, are promising candidates to underlie these QTLs. CONCLUSIONS This approach has wide general utility, and should be applicable to any of the several hundred mouse QTLs, encompassing over 60 different complex traits, that have been identified using strains for which relatively complete genome sequences are available.
Collapse
Affiliation(s)
- Kriste E Marshall
- Department of Pharmacology and Human Medical Genetics Program, University of Colorado Health Sciences Center, Denver CO 80262, USA
| | | | | | | | | | | |
Collapse
|
44
|
Bennett B, Beeson M, Gordon L, Carosone-Link P, Johnson TE. Genetic Dissection of Quantitative Trait Loci Specifying Sedative/Hypnotic Sensitivity to Ethanol: Mapping With Interval-Specific Congenic Recombinant Lines. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02463.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Luo ZW, Wu CI, Kearsey MJ. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics 2002; 161:915-29. [PMID: 12072485 PMCID: PMC1462151 DOI: 10.1093/genetics/161.2.915] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dissecting quantitative genetic variation into genes at the molecular level has been recognized as the greatest challenge facing geneticists in the twenty-first century. Tremendous efforts in the last two decades were invested to map a wide spectrum of quantitative genetic variation in nearly all important organisms onto their genome regions that may contain genes underlying the variation, but the candidate regions predicted so far are too coarse for accurate gene targeting. In this article, the recurrent selection and backcross (RSB) schemes were investigated theoretically and by simulation for their potential in mapping quantitative trait loci (QTL). In the RSB schemes, selection plays the role of maintaining the recipient genome in the vicinity of the QTL, which, at the same time, are rapidly narrowed down over multiple generations of backcrossing. With a high-density linkage map of DNA polymorphisms, the RSB approach has the potential of dissecting the complex genetic architecture of quantitative traits and enabling the underlying QTL to be mapped with the precision and resolution needed for their map-based cloning to be attempted. The factors affecting efficiency of the mapping method were investigated, suggesting guidelines under which experimental designs of the RSB schemes can be optimized. Comparison was made between the RSB schemes and the two popular QTL mapping methods, interval mapping and composite interval mapping, and showed that the scenario of genomic distribution of QTL that was unlocked by the RSB-based mapping method is qualitatively distinguished from those unlocked by the interval mapping-based methods.
Collapse
Affiliation(s)
- Z W Luo
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, England.
| | | | | |
Collapse
|
46
|
Huang TT, Raineri I, Eggerding F, Epstein CJ. Transgenic and mutant mice for oxygen free radical studies. Methods Enzymol 2002; 349:191-213. [PMID: 11912909 DOI: 10.1016/s0076-6879(02)49335-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Ting-Ting Huang
- Department of Pediatrics, Genetics Division, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
47
|
Congenic mapping of alcohol and pentobarbital withdrawal liability loci to a <1 centimorgan interval of murine chromosome 4: identification of Mpdz as a candidate gene. J Neurosci 2002. [PMID: 11978849 DOI: 10.1523/jneurosci.22-09-03730.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Risk for onset of alcoholism is related to genetic differences in acute alcohol withdrawal liability. We previously mapped a locus responsible for 26% of the genetic variance in acute alcohol withdrawal convulsion liability to a >35 centimorgan (cM) interval of murine chromosome 4. Here, we narrow the position of this locus to a <1 cM interval (approximately 1.8 megabase, containing 15 genes and/or predicted genes) using a combination of novel, interval-specific congenic strains and recombinant progeny testing. We report the development of a small-donor-segment congenic strain, which confirms capture of a gene affecting alcohol withdrawal within the <1 cM interval. We also confirm a pentobarbital withdrawal locus within this interval, suggesting that the same gene may influence predisposition to physiological dependence on alcohol and a barbiturate. This congenic strain will be invaluable for determining whether this interval also harbors a gene(s) underlying other quantitative trait loci mapped to chromosome 4, including loci affecting voluntary alcohol consumption, alcohol-induced ataxia, physical dependence after chronic alcohol exposure, and seizure response to pentylenetetrazol or an audiogenic stimulus. To date, Mpdz, which encodes the multiple PSD95/DLG/ZO-1 (PDZ) domain protein (MPDZ), is the only gene within the interval shown to have allelic variants that differ in coding sequence and/or expression. Sequence analysis of 15 standard inbred mouse strains identifies six Mpdz haplotypes that predict three MPDZ protein variants. These analyses, and evidence using interval-specific congenic lines, show that alcohol withdrawal severity is genetically correlated with MPDZ status, indicating that MPDZ variants may influence alcohol withdrawal liability.
Collapse
|
48
|
Mott R, Flint J. Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 2002; 160:1609-18. [PMID: 11973314 PMCID: PMC1462050 DOI: 10.1093/genetics/160.4.1609] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a method to simultaneously detect and fine map quantitative trait loci (QTL) that is especially suited to the mapping of modifier loci in mouse mutant models. The method exploits the high level of historical recombination present in a heterogeneous stock (HS), an outbred population of mice derived from known founder strains. The experimental design is an F(2) cross between the HS and a genetically distinct line, such as one carrying a knockout or transgene. QTL detection is performed by a standard genome scan with approximately 100 markers and fine mapping by typing the same animals using densely spaced markers over those candidate regions detected by the scan. The analysis uses an extension of the dynamic-programming technique employed previously to fine map QTL in HS mice. We show by simulation that a QTL accounting for 5% of the total variance can be detected and fine mapped with >50% probability to within 3 cM by genotyping approximately 1500 animals.
Collapse
Affiliation(s)
- Richard Mott
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, OX3 7BN, United Kingdom.
| | | |
Collapse
|
49
|
Abstract
Phenotypic variation for quantitative traits results from the segregation of alleles at multiple quantitative trait loci (QTL) with effects that are sensitive to the genetic, sexual, and external environments. Major challenges for biology in the post-genome era are to map the molecular polymorphisms responsible for variation in medically, agriculturally, and evolutionarily important complex traits; and to determine their gene frequencies and their homozygous, heterozygous, epistatic, and pleiotropic effects in multiple environments. The ease with which QTL can be mapped to genomic intervals bounded by molecular markers belies the difficulty in matching the QTL to a genetic locus. The latter requires high-resolution recombination or linkage disequilibrium mapping to nominate putative candidate genes, followed by genetic and/or functional complementation and gene expression analyses. Complete genome sequences and improved technologies for polymorphism detection will greatly advance the genetic dissection of quantitative traits in model organisms, which will open avenues for exploration of homologous QTL in related taxa.
Collapse
Affiliation(s)
- T F Mackay
- Department of Genetics, North Carolina State University, Raleigh, Box 7614, North Carolina 27695, USA.
| |
Collapse
|
50
|
Farmer MA, Sundberg JP, Bristol IJ, Churchill GA, Li R, Elson CO, Leiter EH. A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice. Proc Natl Acad Sci U S A 2001; 98:13820-5. [PMID: 11707574 PMCID: PMC61125 DOI: 10.1073/pnas.241258698] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colitic lesions are much more severe in C3H/HeJBir (C3H) than C57BL/6J (B6) mice after 10 backcrosses of a disrupted interleukin-10 (Il10) gene. This study identified cytokine deficiency-induced colitis susceptibility (Cdcs) modifiers by using quantitative trait locus (QTL) analysis. A segregating F(2) population (n = 408) of IL-10-deficient mice was genotyped and necropsied at 6 weeks of age. A major C3H-derived colitogenic QTL (Cdcs1) on chromosome (Chr.) 3 contributed to lesions in both cecum [logarithm of odds ratio (LOD) = 14.6)] and colon (LOD = 26.5) as well as colitis-related phenotypes such as spleen/body weight ratio, mesenteric lymph node/body weight ratio, and secretory IgA levels. Evidence for other C3H QTL on Chr. 1 (Cdcs2) and Chr. 2 (Cdcs3) was obtained. Cdcs1 interacted epistatically or contributed additively with loci on other chromosomes. The resistant B6 background also contributed colitogenic QTL: Cdcs4 (Chr. 8), Cdcs5 (Chr. 17, MHC), and Cdcs6 (Chr. 18). Epistatic interactions between B6 QTL on Chr. 8 and 18 contributing to cecum hyperplasia were particularly striking. In conclusion, a colitogenic susceptibility QTL on Chr. 3 has been shown to exacerbate colitis in combination with modifiers contributed from both parental genomes. The complex nature of interactions among loci in this mouse model system, coupled with separate deleterious contributions from both parental strains, illustrates why detection of human inflammatory bowel disease linkages has proven to be so difficult. A human ortholog of the Chr. 3 QTL, if one exists, would map to Chr. 4q or 1p.
Collapse
Affiliation(s)
- M A Farmer
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | |
Collapse
|