1
|
Lagan E, Gannon D, Silva AJ, Bibawi P, Doherty AM, Nimmo D, McCole R, Monger C, Genesi GL, Vanderlinden A, Innes JA, Jones CLE, Yang L, Chen B, van Mierlo G, Jansen PWTC, Pednekar C, Von Kriegsheim A, Wynne K, Sánchez-Rivera FJ, Soto-Feliciano YM, Carcaboso AM, Vermeulen M, Oliviero G, Chen CW, Phillips RE, Bracken AP, Brien GL. A specific form of cPRC1 containing CBX4 is co-opted to mediate oncogenic gene repression in diffuse midline glioma. Mol Cell 2025:S1097-2765(25)00405-8. [PMID: 40403727 DOI: 10.1016/j.molcel.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Diffuse midline glioma (DMG) is a fatal childhood brain tumor characterized primarily by mutant histone H3 (H3K27M). H3K27M causes a global reduction in Polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation (H3K27me3). Paradoxically, PRC2 is essential in DMG cells, although the downstream molecular mechanisms are poorly understood. Here, we have discovered a specific form of canonical PRC1 (cPRC1) containing CBX4 and PCGF4 that drives oncogenic gene repression downstream of H3K27me3 in DMG cells. Via a novel functional region, CBX4 preferentially associates with PCGF4-containing cPRC1. The characteristic H3K27me3 landscape in DMG rewires the distribution of cPRC1 complexes, with CBX4/PCGF4-cPRC1 accumulating at H3K27me3-enriched CpG islands. Despite comprising <5% of cPRC1 in DMG cells, the unique repressive functions of CBX4/PCGF4-cPRC1 are essential for DMG growth. Our findings link the altered distribution of H3K27me3 to imbalanced cPRC1 function, which drives oncogenic gene repression in DMG, highlighting potential therapeutic opportunities for this incurable childhood brain cancer.
Collapse
Affiliation(s)
- Eimear Lagan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dáire Gannon
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Ademar Jesus Silva
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Bibawi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony M Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Darragh Nimmo
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel McCole
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Giovani Luiz Genesi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aurelie Vanderlinden
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James A Innes
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Charlotte L E Jones
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Bryan Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Chinmayi Pednekar
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, UK
| | - Alexander Von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, UK
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Francisco J Sánchez-Rivera
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yadira M Soto-Feliciano
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angel M Carcaboso
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Giorgio Oliviero
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Richard E Phillips
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
3
|
Johnston MJ, Lee JJY, Hu B, Nikolic A, Hasheminasabgorji E, Baguette A, Paik S, Chen H, Kumar S, Chen CCL, Jessa S, Balin P, Fong V, Zwaig M, Michealraj KA, Chen X, Zhang Y, Varadharajan S, Billon P, Juretic N, Daniels C, Rao AN, Giannini C, Thompson EM, Garami M, Hauser P, Pocza T, Ra YS, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska W, Perek-Polnik M, Agnihotri S, Mack S, Ellezam B, Weil A, Rich J, Bourque G, Chan JA, Yong VW, Lupien M, Ragoussis J, Kleinman C, Majewski J, Blanchette M, Jabado N, Taylor MD, Gallo M. TULIPs decorate the three-dimensional genome of PFA ependymoma. Cell 2024; 187:4926-4945.e22. [PMID: 38986619 DOI: 10.1016/j.cell.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.
Collapse
Affiliation(s)
- Michael J Johnston
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elham Hasheminasabgorji
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada
| | - Seungil Paik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Haifen Chen
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Sachin Kumar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada
| | - Polina Balin
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Vernon Fong
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Melissa Zwaig
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | | | - Xun Chen
- Department of Anatomy and Cell Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Yanlin Zhang
- School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Srinidhi Varadharajan
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pierre Billon
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nikoleta Juretic
- Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Caterina Giannini
- Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Miklos Garami
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Peter Hauser
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Timea Pocza
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Young Shin Ra
- Department of Neurosurgery, University of Ulsan, Asan Medical Center, Seoul 05505, South Korea
| | - Byung-Kyu Cho
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Kyu-Chang Wang
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Ji Yeoun Lee
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, University of Warsaw, 04-730 Warsaw, Poland
| | - Marta Perek-Polnik
- Department of Oncology, The Children's Memorial Health Institute, University of Warsaw, 04-730 Warsaw, Poland
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States of America
| | - Stephen Mack
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Alex Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Jeremy Rich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - V Wee Yong
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Claudia Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Mathieu Blanchette
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada; School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3A 3J1, Canada.
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Wang B, Yan M, Han B, Liu X, Liu P. Impact of Molecular Subgroups on Prognosis and Survival Outcomes in Posterior Fossa Ependymomas: A Retrospective Study of 412 Cases. Neurosurgery 2024; 95:651-659. [PMID: 38529997 DOI: 10.1227/neu.0000000000002923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Posterior fossa ependymomas (PFEs) are rare brain tumors classified as PF-EPN-A (PFA) and PF-EPN-B (PFB) subgroups. The study aimed to evaluate the prognosis and survival outcomes in PFEs, with a focus on the impact of molecular subgroups. METHODS A retrospective study was conducted on 412 patients with PFEs. Kaplan-Meier survival analyses were conducted to evaluate the overall survival (OS) and progression-free survival. Cox regression analyses were conducted to assess the prognostic factors. A nomogram was developed to predict the OS rates of PFEs. RESULTS The study revealed significant differences between PFA and PFB in patient and tumor characteristics. PFAs were associated with poorer OS (hazard ratios [HR] 3.252, 95% CI 1.777-5.950, P < .001) and progression-free survival (HR 4.144, 95% CI 2.869-5.985, P < .001). World Health Organization grade 3 was associated with poorer OS (HR 2.389, 95% CI 1.236-4.617, P = .010). As for treatment patterns, gross total resection followed by radiotherapy or the combination of radiotherapy and chemotherapy yielded the most favorable OS for PFA ( P = .025 for both), whereas gross total resection followed by radiotherapy rather than observation showed improved OS for PFB ( P = .046). The nomogram demonstrated a high degree of accuracy and discrimination capacity for the prediction of OS rates for up to 10 years. In addition, 6 cases of PFA (3.51%) with H3K27M mutations were identified. CONCLUSION PFAs demonstrate worse prognosis and survival outcomes compared with PFBs. Both PFAs and PFBs necessitate maximal resection followed by intensive adjuvant therapies in long-term effects.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Minjun Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing , China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing , China
| |
Collapse
|
5
|
Blasco-Santana L, Colmenero I. Molecular and Pathological Features of Paediatric High-Grade Gliomas. Int J Mol Sci 2024; 25:8498. [PMID: 39126064 PMCID: PMC11312892 DOI: 10.3390/ijms25158498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Paediatric high-grade gliomas are among the most common malignancies found in children. Despite morphological similarities to their adult counterparts, there are profound biological and molecular differences. Furthermore, and thanks to molecular biology, the diagnostic pathology of paediatric high-grade gliomas has experimented a dramatic shift towards molecular classification, with important prognostic implications, as is appropriately reflected in both the current WHO Classification of Tumours of the Central Nervous System and the WHO Classification of Paediatric Tumours. Emphasis is placed on histone 3, IDH1, and IDH2 alterations, and on Receptor of Tyrosine Kinase fusions. In this review we present the current diagnostic categories from the diagnostic pathology perspective including molecular features.
Collapse
Affiliation(s)
- Luis Blasco-Santana
- Pathology Department, Hospital Infantil Universitario del Niño Jesús, Avenida de Menéndez Pelayo, 65, 28009 Madrid, Spain
| | - Isabel Colmenero
- Pathology Department, Hospital Infantil Universitario del Niño Jesús, Avenida de Menéndez Pelayo, 65, 28009 Madrid, Spain
| |
Collapse
|
6
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
7
|
Bertero L, Mangherini L, Ricci AA, Cassoni P, Sahm F. Molecular neuropathology: an essential and evolving toolbox for the diagnosis and clinical management of central nervous system tumors. Virchows Arch 2024; 484:181-194. [PMID: 37658995 PMCID: PMC10948579 DOI: 10.1007/s00428-023-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Molecular profiling has transformed the diagnostic workflow of CNS tumors during the last years. The latest WHO classification of CNS tumors (5th edition), published in 2021, pushed forward the integration between histopathological features and molecular hallmarks to achieve reproducible and clinically relevant diagnoses. To address these demands, pathologists have to appropriately deal with multiple molecular assays mainly including DNA methylation profiling and DNA/RNA next generation sequencing. Tumor classification by DNA methylation profiling is now a critical tool for many diagnostic tasks in neuropathology including the assessment of complex cases, to evaluate novel tumor types and to perform tumor subgrouping in hetereogenous entities like medulloblastoma or ependymoma. DNA/RNA NGS allow the detection of multiple molecular alterations including single nucleotide variations, small insertions/deletions (InDel), and gene fusions. These molecular markers can provide key insights for diagnosis, for example, if a tumor-specific mutation is detected, but also for treatment since targeted therapies are progressively entering the clinical practice. In the present review, a brief, but comprehensive overview of these tools will be provided, discussing their technical specifications, diagnostic value, and potential limitations. Moreover, the importance of molecular profiling will be shown in a representative series of CNS neoplasms including both the most frequent tumor types and other selected entities for which molecular characterization plays a critical role.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
8
|
Gödicke S, Kresbach C, Ehlert M, Obrecht D, Altendorf L, Hack K, von Hoff K, Carén H, Melcher V, Kerl K, Englinger B, Filbin M, Pajtler KW, Gojo J, Pietsch T, Rutkowski S, Schüller U. Clinically relevant molecular hallmarks of PFA ependymomas display intratumoral heterogeneity and correlate with tumor morphology. Acta Neuropathol 2024; 147:23. [PMID: 38265527 PMCID: PMC10808473 DOI: 10.1007/s00401-023-02682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
Posterior fossa type A (PF-EPN-A, PFA) ependymoma are aggressive tumors that mainly affect children and have a poor prognosis. Histopathology shows significant intratumoral heterogeneity, ranging from loose tissue to often sharply demarcated, extremely cell-dense tumor areas. To determine molecular differences in morphologically different areas and to understand their clinical significance, we analyzed 113 PF-EPN-A samples, including 40 corresponding relapse samples. Cell-dense areas ranged from 0 to 100% of the tumor area and displayed a higher proportion of proliferating tumor cells (p < 0.01). Clinically, cell density was associated with poor progression-free and overall survival (pPFS = 0.0026, pOS < 0.01). Molecularly, tumor areas with low and high cell density showed diverging DNA methylation profiles regarding their similarity to distinct previously discovered PF-EPN-A subtypes in 9/21 cases. Prognostically relevant chromosomal changes at 1q and 6q showed spatial heterogeneity within single tumors and were significantly enriched in cell-dense tumor areas as shown by single-cell RNA (scRNA)-sequencing as well as copy number profiling and fluorescence in situ hybridization (FISH) analyses of different tumor areas. Finally, spatial transcriptomics revealed cell-dense areas of different tumors to be more similar than various different areas of the same tumor. High-density areas distinctly overexpressed genes encoding histone proteins, WNT5A, TGFB1, or IGF2. Relapsing tumors displayed a higher proportion of cell-dense areas (p = 0.036), a change in PF-EPN-A methylation subtypes (13/32 patients), and novel chromosome 1q gains and 6q losses (12/32 cases) compared to corresponding primary tumors. Our data suggest that PF-EPN-A ependymomas habor a previously unrecognized intratumoral heterogeneity with clinical implications, which has to be accounted for when selecting diagnostic material, inter alia, by histological evaluation of the proportion of cell-dense areas.
Collapse
Affiliation(s)
- Swenja Gödicke
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Catena Kresbach
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Max Ehlert
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lea Altendorf
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Karoline Hack
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Helena Carén
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, 1090, Vienna, Austria
| | - Mariella Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
9
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Hansford JR, Eisenstat DD. No safe harbors for recurrent posterior fossa group A ependymoma: A time for change in risk assignment? Neuro Oncol 2023; 25:1868-1870. [PMID: 37487035 PMCID: PMC10547506 DOI: 10.1093/neuonc/noad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Jordan R Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- Precision Cancer Medicine, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - David D Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, Victoria, Australia
- Stem Cell Biology, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Shapiro JA, Gaonkar KS, Spielman SJ, Savonen CL, Bethell CJ, Jin R, Rathi KS, Zhu Y, Egolf LE, Farrow BK, Miller DP, Yang Y, Koganti T, Noureen N, Koptyra MP, Duong N, Santi M, Kim J, Robins S, Storm PB, Mack SC, Lilly JV, Xie HM, Jain P, Raman P, Rood BR, Lulla RR, Nazarian J, Kraya AA, Vaksman Z, Heath AP, Kline C, Scolaro L, Viaene AN, Huang X, Way GP, Foltz SM, Zhang B, Poetsch AR, Mueller S, Ennis BM, Prados M, Diskin SJ, Zheng S, Guo Y, Kannan S, Waanders AJ, Margol AS, Kim MC, Hanson D, Van Kuren N, Wong J, Kaufman RS, Coleman N, Blackden C, Cole KA, Mason JL, Madsen PJ, Koschmann CJ, Stewart DR, Wafula E, Brown MA, Resnick AC, Greene CS, Rokita JL, Taroni JN, Children’s Brain Tumor Network, Pacific Pediatric Neuro-Oncology Consortium. OpenPBTA: The Open Pediatric Brain Tumor Atlas. CELL GENOMICS 2023; 3:100340. [PMID: 37492101 PMCID: PMC10363844 DOI: 10.1016/j.xgen.2023.100340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 07/27/2023]
Abstract
Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.
Collapse
Affiliation(s)
- Joshua A. Shapiro
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Krutika S. Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie J. Spielman
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Rowan University, Glassboro, NJ 08028, USA
| | - Candace L. Savonen
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Chante J. Bethell
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S. Rathi
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. Egolf
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bailey K. Farrow
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel P. Miller
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Tejaswi Koganti
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nighat Noureen
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Mateusz P. Koptyra
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nhat Duong
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Shannon Robins
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Phillip B. Storm
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen C. Mack
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jena V. Lilly
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongbo M. Xie
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Payal Jain
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian R. Rood
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Rishi R. Lulla
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
| | - Javad Nazarian
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| | - Adam A. Kraya
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zalman Vaksman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Allison P. Heath
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cassie Kline
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura Scolaro
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gregory P. Way
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Steven M. Foltz
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anna R. Poetsch
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Brian M. Ennis
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Prados
- University of California, San Francisco, San Francisco, CA 94115, USA
| | - Sharon J. Diskin
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shrivats Kannan
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J. Waanders
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashley S. Margol
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Meen Chul Kim
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Derek Hanson
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Nicholas Van Kuren
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jessica Wong
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca S. Kaufman
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Noel Coleman
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher Blackden
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kristina A. Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer L. Mason
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peter J. Madsen
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carl J. Koschmann
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Eric Wafula
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A. Brown
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Adam C. Resnick
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Casey S. Greene
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jaclyn N. Taroni
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Children’s Brain Tumor Network
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Rowan University, Glassboro, NJ 08028, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
- University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pacific Pediatric Neuro-Oncology Consortium
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Rowan University, Glassboro, NJ 08028, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
- University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
13
|
Andrade AF, Chen CCL, Jabado N. Oncohistones in brain tumors: the soil and seed. Trends Cancer 2023; 9:444-455. [PMID: 36933956 PMCID: PMC11075889 DOI: 10.1016/j.trecan.2023.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Recurrent somatic mutations in histone 3 (H3) variants (termed 'oncohistones') have been identified in high-grade gliomas (HGGs) in children and young adults and induce tumorigenesis through disruption of chromatin states. Oncohistones occur with exquisite neuroanatomical specificity and are associated with specific age distribution and epigenome landscapes. Here, we review the known intrinsic ('seed') and the extrinsic ('soil') factors needed for their optimal oncogenic effect and highlight the many unresolved questions regarding their effects on development and crosstalk with the tumor microenvironment. The 'seed and soil' analogy, used to explain tumor metastatic niches, also applies to oncohistones, which mainly thrive and flourish in specific chromatin states during very narrow windows of development, creating exquisite vulnerabilities, which could provide effective therapies for these deadly cancers.
Collapse
Affiliation(s)
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Pediatrics, McGill University, Montreal, QC, H3A 0C7, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
14
|
Vallero SG, Bertero L, Morana G, Sciortino P, Bertin D, Mussano A, Ricci FS, Peretta P, Fagioli F. Pediatric diffuse midline glioma H3K27- altered: A complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol 2023; 12:1082062. [PMID: 36727064 PMCID: PMC9885151 DOI: 10.3389/fonc.2022.1082062] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
The 2021 World Health Organization Classification of Tumors of the Central Nervous System, Fifth Edition (WHO-CNS5), has strengthened the concept of tumor grade as a combination of histologic features and molecular alterations. The WHO-CNS5 tumor type "Diffuse midline glioma, H3K27-altered," classified within the family of "Pediatric-type diffuse high-grade gliomas," incarnates an ideally perfect integrated diagnosis in which location, histology, and genetics clearly define a specific tumor entity. It tries to evenly characterize a group of neoplasms that occur primarily in children and midline structures and that have a dismal prognosis. Such a well-defined pathological categorization has strongly influenced the pediatric oncology community, leading to the uniform treatment of most cases of H3K27-altered diffuse midline gliomas (DMG), based on the simplification that the mutation overrides the histological, radiological, and clinical characteristics of such tumors. Indeed, multiple studies have described pediatric H3K27-altered DMG as incurable tumors. However, in biology and clinical practice, exceptions are frequent and complexity is the rule. First of all, H3K27 mutations have also been found in non-diffuse gliomas. On the other hand, a minority of DMGs are H3K27 wild-type but have a similarly poor prognosis. Furthermore, adult-type tumors may rarely occur in children, and differences in prognosis have emerged between adult and pediatric H3K27-altered DMGs. As well, tumor location can determine differences in the outcome: patients with thalamic and spinal DMG have significantly better survival. Finally, other concomitant molecular alterations in H3K27 gliomas have been shown to influence prognosis. So, when such additional mutations are found, which one should we focus on in order to make the correct clinical decision? Our review of the current literature on pediatric diffuse midline H3K27-altered DMG tries to address such questions. Indeed, H3K27 status has become a fundamental supplement to the histological grading of pediatric gliomas; however, it might not be sufficient alone to exhaustively define the complex biological behavior of DMG in children and might not represent an indication for a unique treatment strategy across all patients, irrespective of age, additional molecular alterations, and tumor location.
Collapse
Affiliation(s)
- Stefano Gabriele Vallero
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy,*Correspondence: Stefano Gabriele Vallero,
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Morana
- Neuroradiology Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Paola Sciortino
- Department of Neuroradiology, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Daniele Bertin
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Anna Mussano
- Radiotherapy Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Federica Silvia Ricci
- Child and Adolescent Neuropsychiatry Division, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Peretta
- Pediatric Neurosurgery Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Franca Fagioli
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy,Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Mariet C, Castel D, Grill J, Saffroy R, Dangouloff-Ros V, Boddaert N, Llamas-Guttierrez F, Chappé C, Puget S, Hasty L, Chrétien F, Métais A, Varlet P, Tauziède-Espariat A. Posterior fossa ependymoma H3 K27-mutant: an integrated radiological and histomolecular tumor analysis. Acta Neuropathol Commun 2022; 10:137. [PMID: 36104744 PMCID: PMC9476256 DOI: 10.1186/s40478-022-01442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractPosterior fossa group A ependymomas (EPN_PFA) are characterized by a loss of H3 K27 trimethylation due to either EZHIP overexpression or H3 p.K27M mutation, similar to H3 K27-altered diffuse midline gliomas (DMG), but in reverse proportions. Very little data is available in the literature concerning H3 K27M-mutant EPN_PFA. Here, we retrospectively studied a series of nine pediatric tumors initially diagnosed as H3 K27M-mutant EPN_PFA to compare them to EZHIP-overexpressing EPN_PFA in terms of radiology, follow-up, histopathology, and molecular biology (including DNA-methylation profiling). Seven tumors clustered within EPN_PFA by DNA-methylation analysis and t-distributed stochastic neighbor embedding. Among the two remaining cases, one was reclassified as a DMG and the last was unclassified. H3 K27M-mutant EPN_PFA cases were significantly older than their counterparts with an EZHIP overexpression. Radiological and histopathological central review of our seven H3 K27M-mutant EPN_PFA cases found them to be similar to their counterparts with an EZHIP overexpression. Sequencing analyses revealed HIST1H3B (n = 2), HIST1H3C (n = 2), H3F3A (n = 1), and HIST1H3D (n = 1) K27M mutations (no sequencing analysis available for the last case which was immunopositive for H3K27M). Consequently, HIST1H3C/D mutations are more frequently observed in EPN_PFA than in classic pontine DMG, H3K27-mutant. Overall survival and event-free survival of EZHIP-overexpressing and H3 K27M-mutant EPN_PFA were similar. After surgery and radiation therapy, 5/7 patients were alive at the end of the follow-up. In summary, the diagnosis of EPN_PFA must include tumor location, growth pattern, Olig2 expression, and DNA-methylation profiling before it can be differentiated from DMG, H3 K27-altered.
Collapse
|
16
|
Varlet P. Cas No1 : gliome diffus de la ligne mediane. Ann Pathol 2022; 42:383-385. [DOI: 10.1016/j.annpat.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
|
17
|
Deshmukh S, Ptack A, Krug B, Jabado N. Oncohistones: a roadmap to stalled development. FEBS J 2022; 289:1315-1328. [PMID: 33969633 PMCID: PMC9990449 DOI: 10.1111/febs.15963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 01/18/2023]
Abstract
Since the discovery of recurrent mutations in histone H3 variants in paediatric brain tumours, so-called 'oncohistones' have been identified in various cancers. While their mechanism of action remains under active investigation, several studies have shed light on how they promote genome-wide epigenetic perturbations. These findings converge on altered post-translational modifications on two key lysine (K) residues of the H3 tail, K27 and K36, which regulate several cellular processes, including those linked to cell differentiation during development. We will review how these oncohistones affect the methylation of cognate residues, but also disrupt the distribution of opposing chromatin marks, creating genome-wide epigenetic changes which participate in the oncogenic process. Ultimately, tumorigenesis is promoted through the maintenance of a progenitor state at the expense of differentiation in defined cellular and developmental contexts. As these epigenetic disruptions are reversible, improved understanding of oncohistone pathogenicity can result in needed alternative therapies.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Adam Ptack
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
19
|
Jenseit A, Camgöz A, Pfister SM, Kool M. EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma. Acta Neuropathol 2022; 143:1-13. [PMID: 34762160 PMCID: PMC8732814 DOI: 10.1007/s00401-021-02382-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022]
Abstract
Ependymomas (EPN) are tumors of the central nervous system (CNS) that can arise in the supratentorial brain (ST-EPN), hindbrain or posterior fossa (PF-EPN) or anywhere in the spinal cord (SP-EPN), both in children and adults. Molecular profiling studies have identified distinct groups and subtypes in each of these anatomical compartments. In this review, we give an overview on recent findings and new insights what is driving PFA ependymomas, which is the most common group. PFA ependymomas are characterized by a young median age at diagnosis, an overall balanced genome and a bad clinical outcome (56% 10-year overall survival). Sequencing studies revealed no fusion genes or other highly recurrently mutated genes, suggesting that the disease is epigenetically driven. Indeed, recent findings have shown that the characteristic global loss of the repressive histone 3 lysine 27 trimethylation (H3K27me3) mark in PFA ependymoma is caused by aberrant expression of the enhancer of zeste homolog inhibitory protein (EZHIP) or in rare cases by H3K27M mutations, which both inhibit EZH2 thereby preventing the polycomb repressive complex 2 (PRC2) from spreading H3K27me3. We present the current status of the ongoing work on EZHIP and its essential role in the epigenetic disturbance of PFA biology. Comparisons to the oncohistone H3K27M and its role in diffuse midline glioma (DMG) are drawn, highlighting similarities but also differences between the tumor entities and underlying mechanisms. A strong focus is to point out missing information and to present directions of further research that may result in new and improved therapies for PFA ependymoma patients.
Collapse
Affiliation(s)
- Anne Jenseit
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aylin Camgöz
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Larrew T, Saway BF, Lowe SR, Olar A. Molecular Classification and Therapeutic Targets in Ependymoma. Cancers (Basel) 2021; 13:cancers13246218. [PMID: 34944845 PMCID: PMC8699461 DOI: 10.3390/cancers13246218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Ependymoma is a biologically diverse tumor wherein molecular classification has superseded traditional histological grading based on its superior ability to characterize behavior, prognosis, and possible targeted therapies. The current, updated molecular classification of ependymoma consists of ten distinct subgroups spread evenly among the spinal, infratentorial, and supratentorial compartments, each with its own distinct clinical and molecular characteristics. In this review, the history, histopathology, standard of care, prognosis, oncogenic drivers, and hypothesized molecular targets for all subgroups of ependymoma are explored. This review emphasizes that despite the varied behavior of the ependymoma subgroups, it remains clear that research must be performed to further elucidate molecular targets for these tumors. Although not all ependymoma subgroups are oncologically aggressive, development of targeted therapies is essential, particularly for cases where surgical resection is not an option without causing significant morbidity. The development of molecular therapies must rely on building upon our current understanding of ependymoma oncogenesis, as well as cultivating transfer of knowledge based on malignancies with similar genomic alterations.
Collapse
Affiliation(s)
- Thomas Larrew
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | - Brian Fabian Saway
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | | | - Adriana Olar
- NOMIX Laboratories, Denver, CO 80218, USA
- Correspondence: or
| |
Collapse
|
21
|
Dottermusch M, Uksul N, Knappe UJ, Erdlenbruch B, Wefers AK. An H3F3A K27M-mutation in a sonic hedgehog medulloblastoma. Brain Pathol 2021; 32:e13024. [PMID: 34747078 PMCID: PMC9048514 DOI: 10.1111/bpa.13024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nesrin Uksul
- Department of Neurosurgery, Johannes Wesling Klinikum, University Hospital of Ruhruniversität Bochum, Minden, Germany
| | - Ulrich J Knappe
- Department of Neurosurgery, Johannes Wesling Klinikum, University Hospital of Ruhruniversität Bochum, Minden, Germany
| | - Bernhard Erdlenbruch
- Johannes Wesling Klinikum Minden, University Department for Children and Adolescents, Ruhr University Hospital, Bochum, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Abstract
ABSTRACT The classification, diagnosis, and biological understanding of high-grade gliomas has been transformed by an evolving understanding of glioma biology. High-grade gliomas, in particular, have exemplified the impact of molecular alterations in pathology. The discovery of mutations in a key metabolic enzyme (IDH), histone genes (H3-3A), and large-scale chromosome changes (+7/-10, 1p/19q) are examples of specific alterations that now supplant traditional histologic interpretation. Here, we review established and recently defined types of adult and pediatric high-grade gliomas with discussion of key molecular alterations that have been leveraged for subclassification, grading, or prognosis.
Collapse
|
23
|
Biczok A, Strübing FL, Eder JM, Egensperger R, Schnell O, Zausinger S, Neumann JE, Herms J, Tonn JC, Dorostkar MM. Molecular diagnostics helps to identify distinct subgroups of spinal astrocytomas. Acta Neuropathol Commun 2021; 9:119. [PMID: 34193285 PMCID: PMC8244211 DOI: 10.1186/s40478-021-01222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Primary spinal cord astrocytomas are rare, hence few data exist about the prognostic significance of molecular markers. Here we analyze a panel of molecular alterations in association with the clinical course. Histology and genome sequencing was performed in 26 spinal astrocytomas operated upon between 2000 and 2020. Next-generation DNA/RNA sequencing (NGS) and methylome analysis were performed to determine molecular alterations. Histology and NGS allowed the distinction of 5 tumor subgroups: glioblastoma IDH wildtype (GBM); diffuse midline glioma H3 K27M mutated (DMG-H3); high-grade astrocytoma with piloid features (HAP); diffuse astrocytoma IDH mutated (DA), diffuse leptomeningeal glioneural tumors (DGLN) and pilocytic astrocytoma (PA). Within all tumor entities GBM (median OS: 5.5 months), DMG-H3 (median OS: 13 months) and HAP (median OS: 8 months) showed a fatal prognosis. DMG-H3 tend to emerge in adolescence whereas GBM and HAP develop in the elderly. HAP are characterized by CDKN2A/B deletion and ATRX mutation. 50% of PA tumors carried a mutation in the PIK3CA gene which is seemingly associated with better outcome (median OS: PIK3CA mutated 107.5 vs 45.5 months in wildtype PA). This exploratory molecular profiling of spinal cord astrocytomas allows to identify distinct subgroups by combining molecular markers and histomorphology. DMG-H3 tend to develop in adolescence with a similar dismal prognosis like GBM and HAP in the elderly. We here describe spinal HAP with a distinct molecular profile for the first time.
Collapse
|
24
|
Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol 2021; 31:814-828. [PMID: 34092471 DOI: 10.1016/j.tcb.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.
Collapse
Affiliation(s)
- Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada; The Research Institute of the McGill University Health Center, Montreal, H4A 3J, Canada.
| |
Collapse
|
25
|
Leske H, Dalgleish R, Lazar AJ, Reifenberger G, Cree IA. A common classification framework for histone sequence alterations in tumours: an expert consensus proposal. J Pathol 2021; 254:109-120. [PMID: 33779999 DOI: 10.1002/path.5666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
The description of genetic alterations in tumours is of increasing importance. In human genetics, and in pathology reports, sequence alterations are given using the human genome variation society (HGVS) guidelines for the description of such variants. However, there is less adherence to these guidelines for sequence variations in histone genes. Due to early cleavage of the N-terminal methionine in most histones, the description of histone sequence alterations follows their own nomenclature and differs from the HGVS-compliant numbering by omitting this first amino acid. Next generation sequencing reports, however, follow the HGVS guidelines and as a result, an unambiguous description of sequence variants in histones cannot be provided. The coexistence of these two nomenclatures leads to confusions for pathologists, oncologists, and researchers. This review provides an overview of tumour entities with sequence alterations of the H3-3A gene (HGNC ID = HGNC:4764), highlights the problems associated with the coexistence of these two nomenclatures, and proposes a standard for the reporting of histone sequence variants that allows an unambiguous description of these variants according to HGVS principles. We hope that scientific journals will adopt the new notation, and that both geneticists and pathologists will include it in their reports. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- University of Oslo (UiO), Oslo, Norway
| | - Raymond Dalgleish
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Ian A Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| |
Collapse
|
26
|
Ryzhova MV, Galstyan SA, Starovoitov DV, Snigireva GP, Zubova IV, Golanov AV, Pronin IN, Pavlova GV, Mertsalova MP, Belov AI, Kalinin PL, Serova NK. [Intraosseous metastasis of K27-mutant glioma]. Arkh Patol 2021; 83:40-44. [PMID: 34041895 DOI: 10.17116/patol20218303140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glioma metastasis outside the central nervous system is a quite rare phenomenon. The disease in a young woman manifested itself as back pain and loss of vision in the left eye. Magnetic resonance imaging (MRI) revealed a tumor of the optic nerve; positron emission tomography showed multiple secondary bone changes. At the same time, MRI detected no signs of neoplasm in the midline brain structures (the brain stem and subcortical nuclei) and spinal cord. Two biopsies (superior iliac spine trephine biopsy and optic nerve tumor biopsy) were performed. There were similar histological tumors; the optic nerve tumor was found to have K27M mutation in the H3F3A gene, whereas the metastatic tumor lacked this mutation (possibly due to the quality and quantity of DNA isolated from the tumor cells). The interesting features of this case are the simultaneous detection of primary and metastatic tumors before receiving any treatment and the absence of the K27M mutation in the H3F3A gene in the metastasis.
Collapse
Affiliation(s)
- M V Ryzhova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - S A Galstyan
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - D V Starovoitov
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - G P Snigireva
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - I V Zubova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - A V Golanov
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - I N Pronin
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - G V Pavlova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - M P Mertsalova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - A I Belov
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - P L Kalinin
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - N K Serova
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| |
Collapse
|
27
|
Abstract
Pediatric gliomas are biologically distinct from adult gliomas. Although recent literature uncovered new genetic alterations, the prognostic implications of these discoveries are still unclear. This article provides an update on the histologic and molecular features with prognostic and/or therapeutic implications in pediatric gliomas.
Collapse
Affiliation(s)
- Jared Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Bader 104, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Evaluating H3F3A K27M and G34R/V somatic mutations in a cohort of pediatric brain tumors of different and rare histologies. Childs Nerv Syst 2021; 37:375-382. [PMID: 32766947 DOI: 10.1007/s00381-020-04852-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Somatic mutations on H3 histone are currently considered a genetic hallmark for midline pediatric high-grade gliomas (HGGs). Yet, different tumor histologies have been occasionally described to carry these mutations. Since histone modifications can lead to major epigenetic changes with direct impact on prognosis and treatment, we thought to investigate the occurrence of H3F3A K27M and G34R/V mutations in a cohort of pediatric tumors which included HGGs, low-grade gliomas, ependymomas, medulloblastomas, and a series of rare brain tumor lesions of different histologies. METHODS A total of 82 fresh-frozen pediatric brain tumor samples were evaluated. PCR or RT-PCR followed by Sanger sequencing for the exon 2 of H3F3A (containing both K27 and G34 hotspots) were obtained and aligned to human genome. Loss of trimethylation mark (H3K27me3) in H3F3A/K27M-mutant samples was confirmed by immunohistochemistry. RESULTS We found H3F3A/K27M mutation in 2 out of 9 cases of HGGs; no H3F3A/K27M mutations were detected in low-grade gliomas (27), ependymomas (n = 10), medulloblastomas (n = 21), or a series of rare pediatric brain tumors which included meningiomas, dysembryoplastic neuroepithelial tumors (DNETs), central nervous system (CNS) germ-cell tumors, choroid plexus tumors, cortical hamartoma, subcortical tubers, and schwannomas (n = 15). H3F3A/G34R/V mutation was not observed in any of the samples. CONCLUSIONS Our investigation reinforces the low frequency of H3F3A somatic mutations outside the HGG setting. Interestingly, an atypical focal brainstem glioma carrying H3F3A K27M mutation that showed protracted clinical course with late-onset tumor progression was identified.
Collapse
|
29
|
Nambirajan A, Sharma A, Rajeshwari M, Boorgula MT, Doddamani R, Garg A, Suri V, Sarkar C, Sharma MC. EZH2 inhibitory protein (EZHIP/Cxorf67) expression correlates strongly with H3K27me3 loss in posterior fossa ependymomas and is mutually exclusive with H3K27M mutations. Brain Tumor Pathol 2020; 38:30-40. [PMID: 33130928 DOI: 10.1007/s10014-020-00385-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
The PFA molecular subgroup of posterior fossa ependymomas (PF-EPNs) shows poor outcome. H3K27me3 (me3) loss by immunohistochemistry (IHC) is a surrogate marker for PFA wherein its loss is attributed to overexpression of Cxorf67/EZH2 inhibitory protein (EZHIP), C17orf96, and ATRX loss. We aimed to subgroup PF-EPNs using me3 IHC and study correlations of the molecular subgroups with other histone related proteins, 1q gain, Tenascin C and outcome. IHC for me3, acetyl-H3K27, H3K27M, ATRX, EZH2, EZHIP, C17orf96, Tenascin-C, and fluorescence in-situ hybridisation for chromosome 1q25 locus were performed on an ambispective PF-EPN cohort (2003-2019). H3K27M-mutant gliomas were included for comparison. Among 69 patients, PFA (me3 loss) constituted 64%. EZHIP overexpression and 1q gain were exclusive to PFA seen in 72% and 19%, respectively. Tenascin C was more frequently positive in PFA (p = 0.02). H3K27M expression and ATRX loss were noted in one case of PFA-EPN each. All H3K27M-mutant gliomas (n = 8) and PFA-EPN (n = 1) were EZHIP negative. C17orf96 and acetyl-H3K27 expression did not correlate with me3 loss. H3K27me3 is a robust surrogate for PF-EPN molecular subgrouping. EZHIP overexpression was exclusive to PFA EPNs and was characteristically absent in midline gliomas and the rare PFA harbouring H3K27M mutations representing mutually exclusive pathways leading to me3 loss.
Collapse
Affiliation(s)
- Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Agrima Sharma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Madhu Rajeshwari
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Meher Tej Boorgula
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
30
|
Hübner JM, Müller T, Papageorgiou DN, Mauermann M, Krijgsveld J, Russell RB, Ellison DW, Pfister SM, Pajtler KW, Kool M. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol 2020; 21:878-889. [PMID: 30923826 DOI: 10.1093/neuonc/noz058] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Posterior fossa A (PFA) ependymomas are one of 9 molecular groups of ependymoma. PFA tumors are mainly diagnosed in infants and young children, show a poor prognosis, and are characterized by a lack of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark. Recently, we reported overexpression of chromosome X open reading frame 67 (CXorf67) as a hallmark of PFA ependymoma and showed that CXorf67 can interact with enhancer of zeste homolog 2 (EZH2), thereby inhibiting polycomb repressive complex 2 (PRC2), but the mechanism of action remained unclear. METHODS We performed mass spectrometry and peptide modeling analyses to identify the functional domain of CXorf67 responsible for binding and inhibition of EZH2. Our findings were validated by immunocytochemistry, western blot, and methyltransferase assays. RESULTS We find that the inhibitory mechanism of CXorf67 is similar to diffuse midline gliomas harboring H3K27M mutations. A small, highly conserved peptide sequence located in the C-terminal region of CXorf67 mimics the sequence of K27M mutated histones and binds to the SET domain (Su(var)3-9/enhancer-of-zeste/trithorax) of EZH2. This interaction blocks EZH2 methyltransferase activity and inhibits PRC2 function, causing de-repression of PRC2 target genes, including genes involved in neurodevelopment. CONCLUSIONS Expression of CXorf67 is an oncogenic mechanism that drives H3K27 hypomethylation in PFA tumors by mimicking K27M mutated histones. Disrupting the interaction between CXorf67 and EZH2 may serve as a novel targeted therapy for PFA tumors but also for other tumors that overexpress CXorf67. Based on its function, we have renamed CXorf67 as "EZH Inhibitory Protein" (EZHIP).
Collapse
Affiliation(s)
- Jens-Martin Hübner
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Torsten Müller
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Mauermann
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Robert B Russell
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Bioquant, Heidelberg University, Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| |
Collapse
|
31
|
Tauziède-Espariat A, Debily MA, Castel D, Grill J, Puget S, Roux A, Saffroy R, Pagès M, Gareton A, Chrétien F, Lechapt E, Dangouloff-Ros V, Boddaert N, Varlet P. The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts. Acta Neuropathol Commun 2020; 8:104. [PMID: 32646492 PMCID: PMC7346460 DOI: 10.1186/s40478-020-00974-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023] Open
|
32
|
Michealraj KA, Kumar SA, Kim LJY, Cavalli FMG, Przelicki D, Wojcik JB, Delaidelli A, Bajic A, Saulnier O, MacLeod G, Vellanki RN, Vladoiu MC, Guilhamon P, Ong W, Lee JJY, Jiang Y, Holgado BL, Rasnitsyn A, Malik AA, Tsai R, Richman CM, Juraschka K, Haapasalo J, Wang EY, De Antonellis P, Suzuki H, Farooq H, Balin P, Kharas K, Van Ommeren R, Sirbu O, Rastan A, Krumholtz SL, Ly M, Ahmadi M, Deblois G, Srikanthan D, Luu B, Loukides J, Wu X, Garzia L, Ramaswamy V, Kanshin E, Sánchez-Osuna M, El-Hamamy I, Coutinho FJ, Prinos P, Singh S, Donovan LK, Daniels C, Schramek D, Tyers M, Weiss S, Stein LD, Lupien M, Wouters BG, Garcia BA, Arrowsmith CH, Sorensen PH, Angers S, Jabado N, Dirks PB, Mack SC, Agnihotri S, Rich JN, Taylor MD. Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell 2020; 181:1329-1345.e24. [PMID: 32445698 PMCID: PMC10782558 DOI: 10.1016/j.cell.2020.04.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 01/24/2023]
Abstract
Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.
Collapse
Affiliation(s)
- Kulandaimanuvel Antony Michealraj
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sachin A Kumar
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Florence M G Cavalli
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - David Przelicki
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John B Wojcik
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z2, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Maria C Vladoiu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Paul Guilhamon
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Winnie Ong
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Yanqing Jiang
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Borja L Holgado
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alex Rasnitsyn
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ahmad A Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cory M Richman
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kyle Juraschka
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Joonas Haapasalo
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Y Wang
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Pasqualino De Antonellis
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hiromichi Suzuki
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Polina Balin
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kaitlin Kharas
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Randy Van Ommeren
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Olga Sirbu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Avesta Rastan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stacey L Krumholtz
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle Ly
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Geneviève Deblois
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dilakshan Srikanthan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Betty Luu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Loukides
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia Garzia
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - María Sánchez-Osuna
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ibrahim El-Hamamy
- Computational Biology Program, Adaptive Oncology Theme, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Fiona J Coutinho
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Sheila Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Laura K Donovan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lincoln D Stein
- Computational Biology Program, Adaptive Oncology Theme, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z2, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Stephen C Mack
- Texas Children's Hospital Cancer Center, Department of Pediatrics, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, TX 77030, USA.
| | - Sameer Agnihotri
- Department of Neurological Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
33
|
Is H3K27me3 status really a strong prognostic indicator for pediatric posterior fossa ependymomas? A single surgeon, single center experience. Childs Nerv Syst 2020; 36:941-949. [PMID: 32025869 DOI: 10.1007/s00381-020-04518-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE Posterior fossa ependymomas (PFE) are among the most frequently occurring solid tumors in children. Their definitive treatment is surgical excision and adjuvant radio-chemotherapy. This study aimed to investigate prognostic effects of age, H3K27me3 status, extent of resection, radiation treatment (RT), Ki67 index, WHO grade, and ATRX and H3K27M mutations in PFE patients. METHODS This retrospective study included 42 pediatric patients with PFE who had undergone operation at our institution between 1996 and 2018. Patient demographics and treatment information were obtained from patient notes. Information on radiological location of tumors (median vs paramedian), extent of tumor resection, and recurrence was obtained from preoperative and postoperative magnetic resonance imaging. Formalin-fixed paraffin-embedded tumor samples were evaluated for H3K27me3 immunostaining, Ki67 index, WHO grades, and ATRX and H3K27M mutations. Tumor samples with global reduction in H3K27me3 were grouped as posterior fossa ependymoma group A (PFA) and those with H3K27me3 nuclear immunopositivity as posterior fossa ependymoma group B (PFB). We evaluated the cohort's 5-year progression-free survival (PFS) and overall survival (OS). RESULTS There were 20 (47.6%) female and 22 (52.4%) male patients in the cohort. The mean age of patients was 4.4 (range, 0.71-14.51) years. Overall, tumors in 31 (73.8%) and 11 (26.2%) patients were found to be PFA and PFB, respectively. There was no statistically significant age or sex difference between PFA and PFB. All patients received chemotherapy, whereas only 28 (66.6%) received RT. The WHO grades of PFA were statistically higher than those of PFB. There was no significant difference between PFA and PFB in terms of extent of resection, disease recurrence, and survival parameters. Nine of 42 tumor samples had ATRX mutations. One patient with PFA showed H3K27M mutation. Age, WHO grade, H3K27me3 status, and RT had no effect on patients' PFS and OS. Patients with total surgical excisions had significantly better PFS and OS rates. Those with Ki67 < 50% also had better OS rates. CONCLUSIONS Determining H3K27me3 status by immunohistochemistry is a widely accepted method for molecular subgrouping of PFEs. Most of the reports in the literature state that molecular subgroups of PFEs have significantly different clinical outcomes. However, in our present series, we have shown that the extent of surgical excision is still the most important prognostic indicator in PFEs. We also conclude that the prognostic effect of H3K27me3 status-based molecular subgrouping may be minimized with a more aggressive surgical strategy followed in PFAs.
Collapse
|
34
|
Meredith DM. Advances in Diagnostic Immunohistochemistry for Primary Tumors of the Central Nervous System. Adv Anat Pathol 2020; 27:206-219. [PMID: 30720470 DOI: 10.1097/pap.0000000000000225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As genomic characterization becomes increasingly necessary for accurate diagnosis of tumors of the central nervous system, identification of rapidly assessible biomarkers is equally important to avoid excessive cost and delay in initiation of therapy. This article reviews novel immunohistochemical markers that may be used to determine mutation status, activation of signaling pathways, druggable targets, and cell lineage in many diverse tumor types. In particular, recently added entities to the 2016 WHO classification of central nervous system tumors will be addressed, including IDH-mutant gliomas, diffuse midline glioma, epithelioid glioblastoma, angiocentric glioma, RELA-rearranged ependymoma, embryonal tumors (medulloblastoma, atypical teratoid/rhabdoid tumor, pineoblastoma, embryonal tumor with multilayered rosettes, and other genetically defined high-grade neuroepithelial tumors), and meningiomas associated with germline alterations.
Collapse
|
35
|
Fomchenko EI, Erson-Omay EZ, Kundishora AJ, Hong CS, Daniel AA, Allocco A, Duy PQ, Darbinyan A, Marks AM, DiLuna ML, Kahle KT, Huttner A. Genomic alterations underlying spinal metastases in pediatric H3K27M-mutant pineal parenchymal tumor of intermediate differentiation: case report. J Neurosurg Pediatr 2020; 25:121-130. [PMID: 31653819 DOI: 10.3171/2019.8.peds18664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 08/21/2019] [Indexed: 11/06/2022]
Abstract
Pediatric midline tumors are devastating high-grade lesions with a dismal prognosis and no curative surgical options. Here, the authors report the clinical presentation, surgical management, whole-exome sequencing (WES), and clonality analysis of a patient with a radically resected H3K27M-mutant pineal parenchymal tumor (PPT) and spine metastases consistent with PPT of intermediate differentiation (PPTID). They identified somatic mutations in H3F3A (H3K27M), FGFR1, and NF1 both in the original PPT and in the PPTID metastases. They also found 12q amplification containing CDK4/MDM2 and chromosome 17 loss of heterozygosity overlapping with NF1 that resulted in biallelic NF1 loss. They noted a hypermutated phenotype with increased C>T transitions within the PPTID metastases and 2p amplification overlapping with the MYCN locus. Clonality analysis detected three founder clones maintained during progression and metastasis. Tumor clones present within the PPTID metastases but not the pineal midline tumor harbored mutations in APC and TIMP2.While the majority of H3K27M mutations are found in pediatric midline gliomas, it is increasingly recognized that this mutation is present in a wider range of lesions with a varied morphological appearance. The present case appears to be the first description of H3K27M mutation in PPTID. Somatic mutations in H3F3A, FGFR1, and NF1 have been suggested to be driver mutations in pediatric midline gliomas. Their clonality and presence in over 80% of tumor cells in our patient's PPTID are consistent with similarly crucial roles in early tumorigenesis, with progression mediated by copy number variations and chromosomal aberrations involving known oncogenes and tumor suppressors. The roles of APC and TIMP2 mutations in progression and metastasis remain to be investigated.
Collapse
Affiliation(s)
| | | | | | | | - Ava A Daniel
- 8Yale College, Yale University, New Haven, Connecticut
| | | | | | | | | | | | - Kristopher T Kahle
- Departments of1Neurosurgery
- 4Centers for Mendelian Genomics and Yale Program on Neurogenetics, Yale School of Medicine; and
- 5Pediatrics
- 6Cellular & Molecular Physiology, and
| | | |
Collapse
|
36
|
Lester A, McDonald KL. Intracranial ependymomas: molecular insights and translation to treatment. Brain Pathol 2020; 30:3-12. [PMID: 31433520 PMCID: PMC8018002 DOI: 10.1111/bpa.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ependymomas are primary central nervous system tumors (CNS), arising within the posterior fossa and supratentorial regions of the brain, and in the spine. Over the last decade, research has resulted in substantial insights into the molecular characteristics of ependymomas, and significant advances have been made in the establishment of a molecular classification system. Ependymomas both within and between the three CNS regions in which they arise, have been shown to contain distinct genetic, epigenetic and cytogenic aberrations, with at least three molecularly distinct subgroups identified within each region. However, these advances in molecular characterization have yet to be translated into clinical practice, with the standard treatment for ependymoma patients largely unchanged. This review summarizes the advances made in the molecular characterization of intracranial ependymomas, outlines the progress made in establishing preclinical models and proposes strategies for moving toward subgroup-specific preclinical investigations and treatment.
Collapse
Affiliation(s)
- Ashleigh Lester
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| | - Kerrie L. McDonald
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| |
Collapse
|
37
|
Jain SU, Do TJ, Lund PJ, Rashoff AQ, Diehl KL, Cieslik M, Bajic A, Juretic N, Deshmukh S, Venneti S, Muir TW, Garcia BA, Jabado N, Lewis PW. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat Commun 2019; 10:2146. [PMID: 31086175 PMCID: PMC6513997 DOI: 10.1038/s41467-019-09981-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Posterior fossa type A (PFA) ependymomas exhibit very low H3K27 methylation and express high levels of EZHIP (Enhancer of Zeste Homologs Inhibitory Protein, also termed CXORF67). Here we find that a conserved sequence in EZHIP is necessary and sufficient to inhibit PRC2 catalytic activity in vitro and in vivo. EZHIP directly contacts the active site of the EZH2 subunit in a mechanism similar to the H3 K27M oncohistone. Furthermore, expression of H3 K27M or EZHIP in cells promotes similar chromatin profiles: loss of broad H3K27me3 domains, but retention of H3K27me3 at CpG islands. We find that H3K27me3-mediated allosteric activation of PRC2 substantially increases the inhibition potential of EZHIP and H3 K27M, providing a mechanism to explain the observed loss of H3K27me3 spreading in tumors. Our data indicate that PFA ependymoma and DIPG are driven in part by the action of peptidyl PRC2 inhibitors, the K27M oncohistone and the EZHIP 'oncohistone-mimic', that dysregulate gene silencing to promote tumorigenesis.
Collapse
Affiliation(s)
- Siddhant U Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Truman J Do
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Peder J Lund
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Q Rashoff
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Katharine L Diehl
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Shriya Deshmukh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA.
| |
Collapse
|
38
|
Rodriguez FJ, Brosnan-Cashman JA, Allen SJ, Vizcaino MA, Giannini C, Camelo-Piragua S, Webb M, Matsushita M, Wadhwani N, Tabbarah A, Hamideh D, Jiang L, Chen L, Arvanitis LD, Alnajar HH, Barber JR, Rodríguez-Velasco A, Orr B, Heaphy CM. Alternative lengthening of telomeres, ATRX loss and H3-K27M mutations in histologically defined pilocytic astrocytoma with anaplasia. Brain Pathol 2018; 29:126-140. [PMID: 30192422 DOI: 10.1111/bpa.12646] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Anaplasia may be identified in a subset of tumors with a presumed pilocytic astrocytoma (PA) component or piloid features, which may be associated with aggressive behavior, but the biologic basis of this change remains unclear. Fifty-seven resections from 36 patients (23 M, 13 F, mean age 32 years, range 3-75) were included. A clinical diagnosis of NF1 was present in 8 (22%). Alternative lengthening of telomeres (ALT) was assessed by telomere-specific FISH and/or CISH. A combination of immunohistochemistry, DNA sequencing and FISH were used to study BRAF, ATRX, CDKN2A/p16, mutant IDH1 p.R132H and H3-K27M proteins. ALT was present in 25 (69%) cases and ATRX loss in 20 (57%), mostly in the expected association of ALT+/ATRX- (20/24, 83%) or ALT-/ATRX+ (11/11, 100%). BRAF duplication was present in 8 (of 26) (31%). H3-K27M was present in 5 of 32 (16%) cases, all with concurrent ATRX loss and ALT. ALT was also present in 9 (of 11) cases in the benign PA precursor, 7 of which also had ATRX loss in both the precursor and the anaplastic tumor. In a single pediatric case, ALT and ATRX loss developed in the anaplastic component only, and in another adult case, ALT was present in the PA-A component only, but ATRX was not tested. Features associated with worse prognosis included subtotal resection, adult vs. pediatric, presence of a PA precursor preceding a diagnosis of anaplasia, necrosis, presence of ALT and ATRX expression loss. ALT and ATRX loss, as well as alterations involving the MAPK pathway, are frequent in PA with anaplasia at the time of development of anaplasia or in their precursors. Additionally, a small subset of PA with anaplasia have H3-K27M mutations. These findings further support the concept that PA with anaplasia is a neoplasm with heterogeneous genetic features and alterations typical of both PA and diffuse gliomas.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacqueline A Brosnan-Cashman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sariah J Allen
- Department of Pathology, UMAE, Pediatric Hospital CMN SXXI IMSS, Mexico City, Mexico
| | - M Adelita Vizcaino
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caterina Giannini
- Department of Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | | | - Milad Webb
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Nitin Wadhwani
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Abeer Tabbarah
- Department of Pathology, American University of Beirut, Lebanon
| | - Dima Hamideh
- Department of Pediatric Oncology, American University of Beirut, Lebanon
| | - Liqun Jiang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Hussein H Alnajar
- Department of Pathology, Rush University Medical Center, Chicago, IL
| | - John R Barber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Alicia Rodríguez-Velasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pathology, UMAE, Pediatric Hospital CMN SXXI IMSS, Mexico City, Mexico
| | - Brent Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
39
|
H3 K27M-mutant gliomas in adults vs. children share similar histological features and adverse prognosis. Clin Neuropathol 2018; 37 (2018):53-63. [PMID: 29393845 PMCID: PMC5822176 DOI: 10.5414/np301085] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background:H3 K27M mutation was originally described in pediatric diffuse intrinsic pontine gliomas (DIPGs), but has been recently recognized to occur also in adult midline diffuse gliomas, as well as midline tumors with other morphologies, including gangliogliomas (GGs), anaplastic GGs, pilocytic astrocytomas (PAs), and posterior fossa ependymomas. In a few patients with H3 K27M-mutant tumors with these alternate morphologies, longer survival has been reported, making grading difficult for the neuropathologist. Few series compare tumors in adult vs. pediatric cohorts; we report our 4-year experience. Materials and methods: Text Word database searches using “H3 K27M” in reports generated between January 2013 and November 10, 2017 were used to identify patients. Clinical and histological features as well as survival were evaluated for each case. Results: 28 H3 K27M-mutant tumors were identified, with equal numbers of adults (13) vs. children (15). For adults, mean and median age was 52 years (range = 27 – 81 years), 2 decades older than a recently-published adult series. Tumors involved thalamic (adult = 7; pediatric = 7), spinal cord (adult = 4; pediatric = 2), pons (adult = 1; pediatric = 6), and hypothalamic (n = 1) sites. Other morphologies at presentation included pure GG (n = 3, pediatric) and PA (n = 1, adult). One adult and 1 pediatric patient each presented with leptomeningeal dissemination or developed leptomeningeal dissemination within 1 year after diagnosis, with transformation from PA or GG histology to glioblastoma. Mean survival was 9.3 (adults) vs. 8.9 (pediatric) months. Patients with tumors of other morphologies (GG, PA) did not enjoy extended survival. Conclusion:H3 K27M-mutant tumors can affect patients at advanced ages, may show leptomeningeal dissemination at time of presentation, and “pure” GG or PA morphology is not rare. Regardless of patient age or tumor morphology, patients fare equally poorly.
Collapse
|
40
|
Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol 2018; 136:227-237. [PMID: 30019219 DOI: 10.1007/s00401-018-1888-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Posterior fossa ependymoma comprise three distinct molecular variants, termed PF-EPN-A (PFA), PF-EPN-B (PFB), and PF-EPN-SE (subependymoma). Clinically, they are very disparate and PFB tumors are currently being considered for a trial of radiation avoidance. However, to move forward, unraveling the heterogeneity within PFB would be highly desirable. To discern the molecular heterogeneity within PFB, we performed an integrated analysis consisting of DNA methylation profiling, copy-number profiling, gene expression profiling, and clinical correlation across a cohort of 212 primary posterior fossa PFB tumors. Unsupervised spectral clustering and t-SNE analysis of genome-wide methylation data revealed five distinct subtypes of PFB tumors, termed PFB1-5, with distinct demographics, copy-number alterations, and gene expression profiles. All PFB subtypes were distinct from PFA and posterior fossa subependymomas. Of the five subtypes, PFB4 and PFB5 are more discrete, consisting of younger and older patients, respectively, with a strong female-gender enrichment in PFB5 (age: p = 0.011, gender: p = 0.04). Broad copy-number aberrations were common; however, many events such as chromosome 2 loss, 5 gain, and 17 loss were enriched in specific subtypes and 1q gain was enriched in PFB1. Late relapses were common across all five subtypes, but deaths were uncommon and present in only two subtypes (PFB1 and PFB3). Unlike the case in PFA ependymoma, 1q gain was not a robust marker of poor progression-free survival; however, chromosome 13q loss may represent a novel marker for risk stratification across the spectrum of PFB subtypes. Similar to PFA ependymoma, there exists a significant intertumoral heterogeneity within PFB, with distinct molecular subtypes identified. Even when accounting for this heterogeneity, extent of resection remains the strongest predictor of poor outcome. However, this biological heterogeneity must be accounted for in future preclinical modeling and personalized therapies.
Collapse
|
41
|
Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B, Hübner JM, Ramaswamy V, Jia S, Dalton JD, Haupfear K, Rogers HA, Punchihewa C, Lee R, Easton J, Wu G, Ritzmann TA, Chapman R, Chavez L, Boop FA, Klimo P, Sabin ND, Ogg R, Mack SC, Freibaum BD, Kim HJ, Witt H, Jones DTW, Vo B, Gajjar A, Pounds S, Onar-Thomas A, Roussel MF, Zhang J, Taylor JP, Merchant TE, Grundy R, Tatevossian RG, Taylor MD, Pfister SM, Korshunov A, Kool M, Ellison DW. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 2018; 136:211-226. [PMID: 29909548 DOI: 10.1007/s00401-018-1877-0] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/10/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, 69120, Heidelberg, Germany
| | - Ji Wen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Martin Sill
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wilda Orisme
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bo Tang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jens-Martin Hübner
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Vijay Ramaswamy
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Sujuan Jia
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - James D Dalton
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kelly Haupfear
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hazel A Rogers
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | | | - Ryan Lee
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy A Ritzmann
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Rebecca Chapman
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Lukas Chavez
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Fredrick A Boop
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Noah D Sabin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert Ogg
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephen C Mack
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hendrik Witt
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, 69120, Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Baohan Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stan Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Ruth G Tatevossian
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Stefan M Pfister
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, 69120, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - David W Ellison
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
42
|
Lee SC. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics. Arch Pathol Lab Med 2018; 142:804-814. [PMID: 29775073 DOI: 10.5858/arpa.2017-0449-ra] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.
Collapse
Affiliation(s)
- Sunhee C Lee
- From the Department of Pathology, Albert Einstein College of Medicine, and the Department of Neuropathology, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
43
|
cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 2018; 135:639-642. [PMID: 29497819 DOI: 10.1007/s00401-018-1826-y] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/16/2023]
|
44
|
Abstract
PURPOSE OF REVIEW To synthesize, integrate, and comment on recent research developments to our understanding of the molecular basis of ependymoma (EPN), and to place this in context with current treatment and research efforts. RECENT FINDINGS Our recent understanding of the histologically defined molecular entity EPN has rapidly advanced through genomic, transcriptomic, and epigenomic profiling studies. SUMMARY These advancements lay the groundwork for development of future EPN biomarkers, models, and therapeutics. Our review discusses these discoveries and their impact on our clinical understanding of this disease. Lastly, we offer insight into clinical and research areas requiring further validation, and open questions remaining in the field.
Collapse
|