1
|
Farromeque Vásquez SC, Arbeláez LG, Rojano B, Schinella G, Maiztegui B, Francini F. Isoespintanol Isolated from Oxandra cf. xylopioides (Annonaceae) Leaves Ameliorates Pancreatic Dysfunction and Improves Insulin Sensitivity in Murine Model of Fructose-Induced Prediabetes. PLANTS (BASEL, SWITZERLAND) 2025; 14:745. [PMID: 40094747 PMCID: PMC11901537 DOI: 10.3390/plants14050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
In rats, a fructose-rich diet triggers endocrine-metabolic disturbances similar to those present in human prediabetes. We evaluated the protective effect of isoespintanol, a monoterpene isolated from Oxandra cf. xylopioides (Annonaceae), on pancreatic islet. Rats were kept for three weeks with a standard commercial diet and tap water (C), plus 10% fructose (F), or F plus isoespintanol (I; 10 mg/kg, i.p.). Glycemia, triglyceridemia, total cholesterol, HDL-cholesterol, insulin resistance index (IRX), and glucose tolerance tests were determined. Glucose-stimulated insulin secretion (GSIS) and gene expression of insulin signalling mediators (insulin receptor -IR-, IRS1/2, PI3K), oxidative stress (SOD-2, GPx, GSR, 3'-nitrotyrosine), inflammation (TNF-α, IL-1β, PAI-1), mitochondrial function (Bcl-2, mtTFA, PGC-1α), and apoptosis markers were evaluated in pancreatic islets. The F group increased triglyceridemia, non-HDL-cholesterol, and IRX, and decreased HDL-cholesterol and impaired glucose tolerance, with alterations reversed by isoespintanol administration (p < 0.05). Isoespintanol normalized higher GSIS recorded in the F group. F decreased mRNA levels of insulin signalling mediators and mitochondrial function markers, and increased the expression of inflammatory, apoptotic, and oxidative stress markers, alterations that were significantly reversed by isoespintanol. Current results suggest that isoespintanol improved insular oxidative stress and inflammation by affecting the IR-PI3K pathway, which plays a pivotal role in insulin resistance development, underlying its therapeutic potential for the prevention of type 2 diabetes before its onset (prediabetes).
Collapse
Affiliation(s)
- Sherley Catherine Farromeque Vásquez
- CENEXA (Centre for Experimental and Applied Endocrinology—UNLP CONICET CCT La Plata—CEAS CICPBA), School of Medicine, Street 60 and 120, La Plata 1900, Argentina; (S.C.F.V.); (B.M.)
| | - Luisa González Arbeláez
- CIC (Centre for Cardiovascular Research—UNLP CONICET CCT La Plata), School of Medicine, Street 60 and 120, La Plata 1900, Argentina;
| | - Benjamín Rojano
- Universidad Nacional de Colombia, Sede Medellín, Facultad de Ciencias, Laboratorio de Ciencia de Alimentos, Medellín 050012, Colombia;
| | - Guillermo Schinella
- UNLP—School of Medicine, Cathedra Basic Pharmacology, Street 60 and 120, La Plata 1900, Argentina;
- UNAJ-CICPBA, Institute of Health Sciences, Av. Calchaquí 6200, Florencio Varela 1888, Argentina
| | - Bárbara Maiztegui
- CENEXA (Centre for Experimental and Applied Endocrinology—UNLP CONICET CCT La Plata—CEAS CICPBA), School of Medicine, Street 60 and 120, La Plata 1900, Argentina; (S.C.F.V.); (B.M.)
| | - Flavio Francini
- CENEXA (Centre for Experimental and Applied Endocrinology—UNLP CONICET CCT La Plata—CEAS CICPBA), School of Medicine, Street 60 and 120, La Plata 1900, Argentina; (S.C.F.V.); (B.M.)
| |
Collapse
|
2
|
Oka T, Fujita A, Kawai H, Obuchi SP, Sasai H, Hirano H, Ihara K, Fujiwara Y, Tanaka M, Kato K. Urinary odor molecules in the Otassha Study can distinguish patients with sarcopenia: A pilot study. Geriatr Gerontol Int 2025; 25:307-315. [PMID: 39827441 DOI: 10.1111/ggi.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
AIM To identify sarcopenia markers in urinary odor. METHODS We performed solid-phase microextraction from the headspace and gas chromatography-mass spectrometry analysis of urinary volatile organic compounds (VOCs) in 71 healthy individuals and 68 patients diagnosed with sarcopenia according to the Asian Working Group on Sarcopenia 2019 criteria. The mass-to-charge ratios (m/z) of 10 VOCs with a significant difference in the total ion chromatogram of 220 VOCs detected in this study were compared by U-test. To calculate the predictive values for sarcopenia, binomial logistic regression analyses were conducted with sarcopenia (0, 1) as the dependent variable and the m/z values of each of the 10 VOCs and all 10 VOCs as independent variables. Receiver operating characteristic (ROC) curves for predictive values were generated to evaluate diagnostic accuracy. The correlations between the predictive value and handgrip strength, usual gait speed, and skeletal muscle mass were assessed using Pearson's r. RESULTS We identified 10 VOCs (p-xylene, 1-butanol, d-limonene, nonanal, pyrrole, γ-butyrolactone, texanol isomer, octanoic acid, nonanoic acid, and diisobutyl phthalate) as candidate biomarkers in urine. The ROC curve analysis showed high diagnostic accuracy of the predictive values of the 10 VOCs for sarcopenia (area under the curve = 0.866, 95% confidence interval: 0.829-0.942; sensitivity, 80.9%; specificity, 81.7%). Additionally, the predictive values significantly correlated with handgrip strength (male: r = -0.505, P < 0.0001; female: r = -0.568, P < 0.0001). CONCLUSIONS This study identified 10 urinary VOCs as possible non-invasive biomarkers for sarcopenia, offering insights into its onset mechanism and potential therapeutic targets. Geriatr Gerontol Int 2025; 25: 307-315.
Collapse
Affiliation(s)
- Takuya Oka
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Akiko Fujita
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Hisashi Kawai
- Research Team for Human Care, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shuichi P Obuchi
- Research Team for Human Care, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Hiroyuki Sasai
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Hirohiko Hirano
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kazushige Ihara
- Graduate School of Medicine, Hirosaki University, Hirosaki-shi, Japan
| | - Yoshinori Fujiwara
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masashi Tanaka
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiko Kato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
3
|
Yang Q, Fan L, Hao E, Hou X, Deng J, Du Z, Xia Z. Construction of an explanatory model for predicting hepatotoxicity: a case study of the potentially hepatotoxic components of Gardenia jasminoides. Drug Chem Toxicol 2025; 48:107-119. [PMID: 38938098 DOI: 10.1080/01480545.2024.2364905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024]
Abstract
It is well-known that the hepatotoxicity of drugs can significantly influence their clinical use. Despite their effective therapeutic efficacy, many drugs are severely limited in clinical applications due to significant hepatotoxicity. In response, researchers have created several machine learning-based hepatotoxicity prediction models for use in drug discovery and development. Researchers aim to predict the potential hepatotoxicity of drugs to enhance their utility. However, current hepatotoxicity prediction models often suffer from being unverified, and they fail to capture the detailed toxicological structures of predicted hepatotoxic compounds. Using the 56 chemical constituents of Gardenia jasminoides as examples, we validated the trained hepatotoxicity prediction model through literature reviews, principal component analysis (PCA), and structural comparison methods. Ultimately, we successfully developed a model with strong predictive performance and conducted visual validation. Interestingly, we discovered that the predicted hepatotoxic chemical constituents of Gardenia possess both toxic and therapeutic effects, which are likely dose-dependent. This discovery greatly contributes to our understanding of the dual nature of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qi Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
| | - Lili Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongshang Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Jia R, Hou Y, Zhang L, Li B, Zhu J. Effects of Berberine on Lipid Metabolism, Antioxidant Status, and Immune Response in Liver of Tilapia ( Oreochromis niloticus) under a High-Fat Diet Feeding. Antioxidants (Basel) 2024; 13:548. [PMID: 38790653 PMCID: PMC11117941 DOI: 10.3390/antiox13050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Berberine, a natural alkaloid found abundantly in various medicinal plants, exhibits antioxidative, anti-inflammatory, and lipid metabolism-regulatory properties. Nonetheless, its protective effects and the molecular mechanisms underlying liver injury in fish have not been fully elucidated. The aims of this study were to investigate the antioxidative, anti-inflammatory, and lipid metabolism-regulating effects of berberine against high-fat diet (HFD)-induced liver damage and to clarify the underlying molecular mechanisms. Tilapia were fed diets containing two doses of berberine (50 and 100 mg/kg diet) alongside high fat for 60 days. The results showed that berberine treatments (50 and/or 100 mg/kg) significantly reduced elevated aminotransferases, triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) in the plasma. In the liver, berberine treatments significantly increased the expression of peroxisome proliferator-activated receptor α (pparα) and carnitine palmitoyltransferase 1 (cpt-1) genes, leading to a reduction in lipid accumulation. Meanwhile, berberine treatment suppressed lipid peroxidation formation and enhanced antioxidant capacity. Berberine upregulated the mRNA levels of erythroid 2-related factor 2 (nrf2) and its downstream genes including heme oxygenase 1 (ho-1) and glutathione-S-transferase (gstα). Additionally, berberine attenuated the inflammation by inhibiting the expression of toll-like receptor 2 (tlr2), myeloid differential protein-88 (myd88), relb, and inflammatory cytokines such as interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α), and il-8. In summary, this study suggested that berberine offers protection against HFD-induced liver damage in tilapia via regulating lipid metabolism, antioxidant status, and immune response. This protective effect may be attributed to the modulation of the Nrf2, TLR2/MyD88/NF-κB, and PPARα signaling pathways.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liqiang Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
5
|
Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, Parhar IS, Ogawa S, Hwa WE. 1H NMR metabolomics insights into comparative diabesity in male and female zebrafish and the antidiabetic activity of DL-limonene. Sci Rep 2024; 14:3823. [PMID: 38360784 PMCID: PMC10869695 DOI: 10.1038/s41598-023-45608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 02/17/2024] Open
Abstract
Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University, 65779-7738, Alaqiq, Saudi Arabia
| | - Norazlan Mohmad Misnan
- Institute for Medical Research Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, UiTM Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Gao S, Chen X, Yu Z, Du R, Chen B, Wang Y, Cai X, Xu J, Chen J, Duan H, Cai Y, Zheng G. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154836. [PMID: 37119760 DOI: 10.1016/j.phymed.2023.154836] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Liver is a vital organ responsible for metabolizing and detoxifying both endogenous and exogenous substances in the body. However, it is susceptible to damage from chemical and natural toxins. The high incidence and mortality rates of liver disease and its associated complications impose a significant economic burden and survival pressure on patients and their families. Various liver diseases exist, including cholestasis, viral and non-viral hepatitis, fatty liver disease, drug-induced liver injury, alcoholic liver injury, and severe end-stage liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocellular carcinoma (CCA). Recent research has shown that flavonoids found in Citri Reticulatae Pericarpium (CRP) have the potential to normalize blood glucose, cholesterol levels, and liver lipid levels. Additionally, these flavonoids exhibit anti-inflammatory properties, prevent oxidation and lipid peroxidation, and reduce liver toxicity, thereby preventing liver injury. Given these promising findings, it is essential to explore the potential of active components in CRP for developing new drugs to treat liver diseases. OBJECTIVE Recent studies have revealed that flavonoids, including hesperidin (HD), hesperetin (HT), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangerine (TN), and erodcyol (ED), are the primary bioactive components in CRP. These flavonoids exhibit various therapeutic effects on liver injury, including anti-oxidative stress, anti-cytotoxicity, anti-inflammatory, anti-fibrosis, and anti-tumor mechanisms. In this review, we have summarized the research progress on the hepatoprotective effects of HD, HT, NIN, NOB, NRG, TN, ED and limonene (LIM), highlighting their underlying molecular mechanisms. Despite their promising effects, the current clinical application of these active ingredients in CRP has some limitations. Therefore, further studies are needed to explore the full potential of these flavonoids and develop new therapeutic strategies for liver diseases. METHODS For this review, we conducted a systematic search of three databases (ScienceNet, PubMed, and Science Direct) up to July 2022, using the search terms "CRP active ingredient," "liver injury," and "flavonoids." The search data followed the PRISMA standard. RESULTS Our findings indicate that flavonoids found in CRP can effectively reduce drug-induced liver injury, alcoholic liver injury, and non-alcoholic liver injury. These therapeutic effects are mainly attributed to the ability of flavonoids to improve liver resistance to oxidative stress and inflammation while normalizing cholesterol and liver lipid levels by exhibiting anti-free radical and anti-lipid peroxidation properties. CONCLUSION Our review provides new insights into the potential of active components in CRP for preventing and treating liver injury by regulating various molecular targets within different cell signaling pathways. This information can aid in the development of novel therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Long-Term Ingestion of Sicilian Black Bee Chestnut Honey and/or D-Limonene Counteracts Brain Damage Induced by High Fat-Diet in Obese Mice. Int J Mol Sci 2023; 24:ijms24043467. [PMID: 36834882 PMCID: PMC9966634 DOI: 10.3390/ijms24043467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is linked to neurodegeneration, which is mainly caused by inflammation and oxidative stress. We analyzed whether the long-term intake of honey and/or D-limonene, which are known for their antioxidant and anti-inflammatory actions, when ingested separately or in combination, can counteract the neurodegeneration occurring in high fat diet (HFD)-induced obesity. After 10 weeks of HFD, mice were divided into: HFD-, HFD + honey (HFD-H)-, HFD + D-limonene (HFD-L)-, HFD + honey + D-limonene (HFD-H + L)-fed groups, for another 10 weeks. Another group was fed a standard diet (STD). We analyzed the brain neurodegeneration, inflammation, oxidative stress, and gene expression of Alzheimer's disease (AD) markers. The HFD animals showed higher neuronal apoptosis, upregulation of pro-apoptotic genes Fas-L, Bim P27 and downregulation of anti-apoptotic factors BDNF and BCL2; increased gene expression of the pro-inflammatory IL-1β, IL-6 and TNF-α and elevated oxidative stress markers COX-2, iNOS, ROS and nitrite. The honey and D-limonene intake counteracted these alterations; however, they did so in a stronger manner when in combination. Genes involved in amyloid plaque processing (APP and TAU), synaptic function (Ache) and AD-related hyperphosphorylation were higher in HFD brains, and significantly downregulated in HFD-H, HFD-L and HFD-H + L. These results suggest that honey and limonene ingestion counteract obesity-related neurodegeneration and that joint consumption is more efficacious than a single administration.
Collapse
|
8
|
Barré T, Di Marzo V, Marcellin F, Burra P, Carrieri P. Expanding Research on Cannabis-Based Medicines for Liver Steatosis: A Low-Risk High-Reward Way Out of the Present Deadlock? Cannabis Cannabinoid Res 2023; 8:5-11. [PMID: 35420457 PMCID: PMC9942183 DOI: 10.1089/can.2022.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) constitute global and growing epidemics that result in therapeutic dead ends. There is an urgent need for new and accessible treatments to improve and widen both preventive and curative approaches against NAFLD. The endocannabinoid system (ECS) is recognized as a complex signaling apparatus closely related to metabolic disorders and is a key target for treating NAFLD. Despite a lack of conclusive clinical trials, observational and pre-clinical studies highlight putative benefits of phytocannabinoids on liver steatosis through multiple pathways. Owing to both its safety profile and its diversity of active compounds acting primarily (although not exclusively) on the ECS-and its expanded version, the endocannabinoidome, the Cannabis plant should be considered a major prospect in the treatment of NAFLD. However, seizing this opportunity, and intensifying clinical research in this direction, will require overcoming both scientific and nonscientific barriers.
Collapse
Affiliation(s)
- Tangui Barré
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Vincenzo Di Marzo
- Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy
- Endocannabinoid Research Group, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF-Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Québec, Canada
| | - Fabienne Marcellin
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Patrizia Burra
- Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua Italy
| | - Patrizia Carrieri
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
- Address correspondence to: Patrizia Carrieri, PhD, Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Faculté de Médecine de la Timone, Aile Bleue, 35 Boulevard Jean Moulin, 13005 Marseille, France,
| |
Collapse
|
9
|
Wang Z, Zhu Y, Xia L, Li J, Song M, Yang C. Exercise-Induced ADAR2 Protects against Nonalcoholic Fatty Liver Disease through miR-34a. Nutrients 2022; 15:nu15010121. [PMID: 36615779 PMCID: PMC9824461 DOI: 10.3390/nu15010121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing health problem that is closely associated with insulin resistance and hereditary susceptibility. Exercise is a beneficial approach to NAFLD. However, the relief mechanism of exercise training is still unknown. In this study, mice on a normal diet or a high-fat diet (HFD), combined with Nω-nitro-L-arginine methyl ester, hydrochloride (L-NAME) mice, were either kept sedentary or were subjected to a 12-week exercise running scheme. We found that exercise reduced liver steatosis in mice with diet-induced NAFLD. The hepatic adenosine deaminases acting on RNA 2 (ADAR2) were downregulated in NAFLD and were upregulated in the liver after 12-week exercise. Next, overexpression of ADAR2 inhibited and suppression promoted lipogenesis in HepG2 cells treated with oleic acid (OA), respectively. We found that ADAR2 could down-regulate mature miR-34a in hepatocytes. Functional reverse experiments further proved that miR-34a mimicry eliminated the suppression of ADAR2 overexpression in lipogenesis in vitro. Moreover, miR-34a inhibition and mimicry could also affect lipogenesis in hepatocytes. In conclusion, exercise-induced ADAR2 protects against lipogenesis during NAFLD by editing miR-34a. RNA editing mediated by ADAR2 may be a promising therapeutic candidate for NAFLD.
Collapse
Affiliation(s)
- Zhijing Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaru Zhu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lu Xia
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (J.L.); (M.S.); (C.Y.)
| | - Meiyi Song
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (J.L.); (M.S.); (C.Y.)
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (J.L.); (M.S.); (C.Y.)
| |
Collapse
|
10
|
Identification of D-Limonene Metabolites by LC-HRMS: An Exploratory Metabolic Switching Approach in a Mouse Model of Diet-Induced Obesity. Metabolites 2022; 12:metabo12121246. [PMID: 36557284 PMCID: PMC9780935 DOI: 10.3390/metabo12121246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic switching has been raised as an important phenomenon to be studied in relation to xenobiotic metabolites, since the dose of the exposure determines the formation of metabolites and their bioactivity. Limonene is a monoterpene mostly found in citrus fruits with health activity, and its phase II metabolites and activity are still not clear. The aim of this work was to evaluate the effects of D-limonene in the development of diet-induced obesity in mice and to investigate metabolites that could be generated in a study assessing different doses of supplementation. Animals were induced to obesity and supplemented with 0.1% or 0.8% D-limonene added to the feed. Limonene phase I and II metabolites were identified in liver and urine by LC-ESI-qToF-MS/MS. To the best of our knowledge, in this study three new phase I metabolites and ten different phase II metabolites were first attributed to D-limonene. Supplementation with 0.1% D-limonene was associated with lower weight gain and a trend to lower accumulation of adipose tissue deposits. The metabolites limonene-8,9-diol, perillic acid and perillic acid-8,9-diol should be explored in future research as anti-obesogenic agents as they were the metabolites most abundant in the urine of mice that received 0.1% D-limonene in their feed.
Collapse
|
11
|
Ghasemi-Gojani E, Kovalchuk I, Kovalchuk O. Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies. Trends Endocrinol Metab 2022; 33:828-849. [PMID: 36280497 DOI: 10.1016/j.tem.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| | - Olga Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| |
Collapse
|
12
|
Mahmoud MF, Elmaghraby AM, Ali N, Mostafa I, El-Shazly AM, Abdelfattah MA, Sobeh M. Black pepper oil (Piper nigrum L.) mitigates dexamethasone induced pancreatic damage via modulation of oxidative and nitrosative stress. Biomed Pharmacother 2022; 153:113456. [PMID: 36076569 PMCID: PMC9350854 DOI: 10.1016/j.biopha.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/06/2022] Open
Abstract
Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.
Collapse
|
13
|
Akhavan-Mahdavi S, Sadeghi R, Faridi Esfanjani A, Hedayati S, Shaddel R, Dima C, Malekjani N, Boostani S, Jafari SM. Nanodelivery systems for d-limonene; techniques and applications. Food Chem 2022; 384:132479. [DOI: 10.1016/j.foodchem.2022.132479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022]
|
14
|
Zhang W, Lin H, Cheng W, Huang Z, Zhang W. Protective Effect and Mechanism of Plant-Based Monoterpenoids in Non-alcoholic Fatty Liver Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4839-4859. [PMID: 35436113 DOI: 10.1021/acs.jafc.2c00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective effect of plant active ingredients against non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prominent, and the terpenoids have always been the main active compounds in Chinese herbal medicine exerting hepatoprotective effects. However, the related pharmacological effects, especially for monoterpenoids or iridoid glycosides, which have obvious effects on improvement of NAFLD, have not been systematically analyzed. The objective of this review is to systematically examine the molecular mechanisms of monoterpenoids in NAFLD. The signaling pathways of peroxisome proliferator-activated receptor, insulin, nuclear factor κB, toll-like receptor, adipocytokine, RAC-α serine/threonine protein kinase, mammalian target of rapamycin, 5'-AMP-activated protein kinase, and autophagy have been proven to mediate this protective effect. We further compared the experimental data from animal models, including the dosage of these monoterpenoids in detail, and demonstrated that they are effective and safe candidate drugs for NAFLD. This review provides a reference for the development of NAFLD drugs as well as a research guideline for the potential uses of plant monoterpenoids.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
15
|
Wang QS, Li M, Li X, Zhang NW, Hu HY, Zhang LL, Ren JN, Fan G, Pan SY. Protective effect of orange essential oil on the formation of non-alcoholic fatty liver disease caused by high-fat diet. Food Funct 2022; 13:933-943. [PMID: 35005749 DOI: 10.1039/d1fo03793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.
Collapse
Affiliation(s)
- Qing-Shan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Na-Wei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui-Yan Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
17
|
Valerii MC, Turroni S, Ferreri C, Zaro M, Sansone A, Dalpiaz A, Botti G, Ferraro L, Spigarelli R, Bellocchio I, D’Amico F, Spisni E. Effect of a Fiber D-Limonene-Enriched Food Supplement on Intestinal Microbiota and Metabolic Parameters of Mice on a High-Fat Diet. Pharmaceutics 2021; 13:1753. [PMID: 34834168 PMCID: PMC8620497 DOI: 10.3390/pharmaceutics13111753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Several studies showed that D-Limonene can improve metabolic parameters of obese mice via various mechanisms, including intestinal microbiota modulation. Nevertheless, its effective doses often overcome the acceptable daily intake, rising concerns about toxicity. In this study we administered to C57BL/6 mice for 84 days a food supplement based on D-Limonene, adsorbed on dietary fibers (FLS), not able to reach the bloodstream, to counteract the metabolic effects of a high-fat diet (HFD). Results showed that daily administration of D-Limonene (30 and 60 mg/kg body weight) for 84 days decreased the weight gain of HFD mice. After 84 days we observed a statistically significant difference in weight gain in the group of mice receiving the higher dose of FLS compared to HFD mice (35.24 ± 4.56 g vs. 40.79 ± 3.28 g, p < 0.05). Moreover, FLS at both doses tested was capable of lowering triglyceridemia and also fasting glycemia at the higher dose. Some insights on the relevant fatty acid changes in hepatic tissues were obtained, highlighting the increased polyunsaturated fatty acid (PUFA) levels even at the lowest dose. FLS was also able to positively modulate the gut microbiota and prevent HFD-associated liver steatosis in a dose-dependent manner. These results demonstrate that FLS at these doses can be considered non-toxic and could be an effective tool to counteract diet-induced obesity and ameliorate metabolic profile in mice.
Collapse
Affiliation(s)
- Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy;
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.)
| | - Michela Zaro
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.)
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (A.D.); (G.B.)
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (A.D.); (G.B.)
| | - Luca Ferraro
- LTTA Center, Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Irene Bellocchio
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Federica D’Amico
- Department of Medical and Surgical Sciences, University of Bologna, Via Zamboni 33, 40138 Bologna, Italy;
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| |
Collapse
|
18
|
Multiunit In Vitro Colon Model for the Evaluation of Prebiotic Potential of a Fiber Plus D-Limonene Food Supplement. Foods 2021; 10:foods10102371. [PMID: 34681420 PMCID: PMC8535099 DOI: 10.3390/foods10102371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The search for new fiber supplements that can claim to be "prebiotic" is expanding fast, as the role of prebiotics and intestinal microbiota in well-being has been well established. This work explored the prebiotic potential of a novel fiber plus D-Limonene supplement (FLS) in comparison to fructooligosaccharides (FOS) over distal colonic fermentation with the in vitro model MICODE (multi-unit in vitro colon gut model). During fermentation, volatilome characterization and core microbiota quantifications were performed, then correlations among volatiles and microbes were interpreted. The results indicated that FLS generated positive effects on the host gut model, determining: (i) eubiosis; (ii) increased abundance of beneficial bacteria, as Bifidobacteriaceae; (iii) production of beneficial compounds, as n-Decanoic acid; (iv) reduction in detrimental bacteria, as Enterobaceteriaceae; (v) reduction in detrimental compounds, as skatole. The approach that we followed permitted us to describe the prebiotic potential of FLS and its ability to steadily maintain the metabolism of colon microbiota over time. This aspect is two-faced and should be investigated further because if a fast microbial turnover and production of beneficial compounds is a hallmark of a prebiotic, the ability to reduce microbiota changes and to reduce imbalances in the productions of microbial metabolites could be an added value to FLS. In fact, it has been recently demonstrated that these aspects could serve as an adjuvant in metabolic disorders and cognitive decline.
Collapse
|
19
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
de Alvarenga JFR, Genaro B, Costa BL, Purgatto E, Manach C, Fiamoncini J. Monoterpenes: current knowledge on food source, metabolism, and health effects. Crit Rev Food Sci Nutr 2021; 63:1352-1389. [PMID: 34387521 DOI: 10.1080/10408398.2021.1963945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Monoterpenes, volatile metabolites produced by plants, are involved in the taste and aroma perception of fruits and vegetables and have been used for centuries in gastronomy, as food preservatives and for therapeutic purposes. Biological activities such as antimicrobial, analgesic and anti-inflammatory are well-established for some of these molecules. More recently, the ability of monoterpenes to regulate energy metabolism, and exert antidiabetic, anti-obesity and gut microbiota modulation activities have been described. Despite their promising health effects, the lack of reliable quantification of monoterpenes in food, hindered the investigation of their role as dietary bioactive compounds in epidemiological studies. Moreover, only few studies have documented the biotransformation of these compounds and identified the monoterpene metabolites with biological activity. This review presents up-to-date knowledge about the occurrence of monoterpenes in food, their bioavailability and potential role in the modulation of intermediate metabolism and inflammation, focusing on novel findings of molecular mechanisms, underlining research gaps and new avenues to be explored.
Collapse
Affiliation(s)
- José Fernando Rinaldi de Alvarenga
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Brunna Genaro
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Lamesa Costa
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Jarlei Fiamoncini
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Park JH, Bok MK, Kim J, Maeng S, Kim SH, Jung JH, Lee HJ, Lim H. Effect of an extract of Pinus koraiensis leaves, Lycium chinense fruit, and Saururus chinensis (Lour.) Baill. leaves on liver function in excessive drinkers: A randomized, double-blind, placebo-controlled trial. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Hamdi A, Halouani A, Aouf I, Viaene J, Marzouk B, Kraiem J, Jaïdane H, Heyden YV. Cytotoxicity and Antiviral Activities of Haplophyllum tuberculatum Essential Oils, Pure Compounds, and Their Combinations against Coxsackievirus B3 and B4. PLANTA MEDICA 2021; 87:827-835. [PMID: 34293806 DOI: 10.1055/a-1538-5289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Haplophyllum tuberculatum is a plant commonly used in folk medicine to treat several diseases including vomiting, nausea, infections, rheumatism, and gastric pains. In the current study, H. tuberculatum essential oils, hydrosols, the pure compounds R-(+)-limonene, S-(-)-limonene, and 1-octanol, as well as their combinations R-(+)-limonene/1-octanol and S-(-)-limonene/1-octanol, were screened for their cytotoxicity on HEp-2 cells after 24, 48, and 72 h, and then tested for their activity against Coxsackievirus B3 and B4 (CV-B3 and CV-B4) at 3 different moments: addition of the plant compounds before, after, or together with virus inoculation. Results showed that the samples were more cytotoxic after 72 h than after 24 h or 48 h cell contact. However, the combinations R-(+)-limonene/1-octanol and S-(-)-limonene/1-octanol showed less effect on HEp-2 cells than pure R-(+)-limonene and S-(-)-limonene after 24 h, 48 h, and 72 h. 1-octanol exhibited the highest concentration causing 50% cytotoxicity (CC50) on HEp-2 cells after 24 h (CC50 = 93 µg/mL) and 48 h (CC50 = 83 µg/mL). The antiviral assays showed that the tested samples exhibited potent inhibition of CV-B. IC50 values ranged from 0.66 µg/mL to 28.4 µg/mL. In addition, CV-B3 was more sensitive than CV-B4. Both CV-B strains are more inhibited when cells were pretreated with the plant compounds. The hydrosols have no effect, neither on HEp-2 cells nor on the virus. 1-octanol, S-(-), and R-(+)-limonene/1-octanol had important selectivity indexes over time. Although essential oils had potent antiviral activity, they can be considered for application in the pretreatment of cells. However, 1-octanol and the combinations are within the safety limits, and thus, they can be used as an active natural antiviral agent for CV-B3 and CV-B4 inhibition.
Collapse
Affiliation(s)
- Assia Hamdi
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Tunisia
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Belgium
| | - Aymen Halouani
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Ines Aouf
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Belgium
| | - Belsem Marzouk
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Jamil Kraiem
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Hela Jaïdane
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Belgium
| |
Collapse
|
23
|
Babaeenezhad E, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A, Dezfoulian O, Ahmadvand H. D-Limonene Alleviates Acute Kidney Injury Following Gentamicin Administration in Rats: Role of NF- κB Pathway, Mitochondrial Apoptosis, Oxidative Stress, and PCNA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670007. [PMID: 33510839 PMCID: PMC7822690 DOI: 10.1155/2021/6670007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Clinical application of gentamicin (GM) is well known to be associated with the development of acute kidney injury (AKI). This study was the first to investigate the possible protective effects of D-limonene (D-lim) on AKI following GM administration in rats. 32 rats arranged in four groups (n = 8): (1) the control group received saline intraperitoneally (0.5 ml/day) and orally (0.5 ml/day), (2) the D-lim group received D-lim (100 mg/kg) orally and saline (0.5 ml/day) intraperitoneally, (3) the GM group received GM (100 mg/kg/day) intraperitoneally and saline (0.5 ml/day) orally, and (4) the treated group received intraperitoneal GM (100 mg/kg) and oral D-lim (100 mg/kg). All treatments were performed daily for 12 consecutive days. Results revealed that D-lim ameliorated GM-induced AKI, oxidative stress, mitochondrial apoptosis, and inflammation. D-lim showed nephroprotective effects as reflected by the decrease in serum urea and creatinine and improvement of renal histopathological changes. D-lim alleviated GM-induced oxidative stress by increasing the activities of renal catalase, serum and renal glutathione peroxidase, and renal superoxide dismutase and decreasing renal malondialdehyde and serum nitric oxide levels. Intriguingly, D-lim suppressed mitochondrial apoptosis by considerably downregulating Bax and caspase-3 (Casp-3) mRNA and protein expressions and markedly enhancing Bcl2 mRNA and protein expressions. Furthermore, D-lim significantly decreases GM-induced inflammatory response through downregulation of NF-κB, IL-6, and TNF-α mRNA and/or protein expressions and decrease in renal myeloperoxidase activity. Finally, D-lim remarkably downregulated PCNA protein expression in the treated group compared with the GM group. In brief, this study showed that D-lim alleviated AKI following GM administration in rats, partially through its antioxidant, anti-inflammatory, and antiapoptotic activities as well as downregulation of PCNA expression.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Davood Fattahi
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nasri
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolhakim Amini
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
24
|
Ghaeni Pasavei A, Mohebbati R, Jalili-Nik M, Mollazadeh H, Ghorbani A, Nosrati Tirkani A, Taraz Jamshidi S, Hashemy SI, Heidarian Miri H, Soukhtanloo M. Effects of Rhus coriaria L. hydroalcoholic extract on the lipid and antioxidant profile in high fat diet-induced hepatic steatosis in rats. Drug Chem Toxicol 2021; 44:75-83. [PMID: 33319629 DOI: 10.1080/01480545.2018.1533024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Oxidative stress is related to increased fat deposition in the liver, known as hepatic steatosis. The present study is an evaluation of the anti-oxidative and antihyperlipidemic effects of the hydroalcoholic extract of Rhus coriaria L. (HARE) in rats on a high-fat diet (HFD). Twenty male Wistar rats were divided into four groups: control, HFD, HFD + HARE 50 mg/kg/day, and HFD + HARE 250 mg/kg/day for 12 weeks. Animals were weighed weekly and treated with the HARE extract for 12 weeks by gavage. Subsequently, the histopathological changes, oxidative markers, and lipid profile were evaluated. Statistical analysis was performed using the one-way analysis of variance (ANOVA) for multiple comparisons. First, the active ingredients of the extract were determined by HPLC. Then, the levels in the serum lipid profile (TG, cholesterol, HDL, and LDL) in rats fed with the HFD + HARE were analyzed where a significant reduction was observed. The HFD proved to increase the activity of the liver enzymes, the serum lipid levels, and the malondialdehyde (MDA) level. The ferric-reducing antioxidant activity power (FRAP), catalase (CAT), and superoxide dismutase (SOD) catalytic activity were reduced in the liver homogenate of HFD rats compared to the controls. Additionally, the aforementioned liver enzymes activities were reduced in response to HARE. Evaluation of oxidative stress determined a reduction in the MDA level while a raised FRAP was confirmed. In accordance with the present results, histopathological observations have also demonstrated that HARE ameliorated grade-1 hepatic steatosis induced by HFD. Taken together, the findings of this study introduce HARE as a future potential therapeutic agent in treating hepatic steatosis and reducing oxidative damages of an HFD in the liver.
Collapse
Affiliation(s)
- Abdolmomen Ghaeni Pasavei
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nosrati Tirkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Taraz Jamshidi
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Heidarian Miri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Anandakumar P, Kamaraj S, Vanitha MK. D-limonene: A multifunctional compound with potent therapeutic effects. J Food Biochem 2020; 45:e13566. [PMID: 33289132 DOI: 10.1111/jfbc.13566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
D-limonene or 4-isopropenyl-1-methylcyclohexene (C10 H16 ) is a monocyclic monoterpene abundant in citrus plants like lemon, orange, and grape. The application of D-limonene in the form of flavor and fragrance additive in perfumes, soaps, foods, and beverages is consistently increased due to its high-quality fragrance property. This review is intended to analyze and delineate every possible available evidence and details about D-limonene with the special focus on its therapeutic efficacy. Many studies have reported that D-limonene effectively plays a valuable role in the prevention of several chronic and degenerative diseases. This review provides worthy information about the beneficial effects of D-limonene such as antioxidant, antidiabetic, anticancer, anti-inflammatory, cardioprotective, gastroprotective, hepatoprotective, immune modulatory, anti-fibrotic, anti-genotoxic etc. This could in turn help in the application of D-limonene for clinical studies. PRACTICAL IMPLICATIONS: Various plant families contain Terpenes as their secondary metabolites. Monoterpenes constitute an important part of these secondary metabolites. D-limonene is a well-identified monoterpene that is commonly applied as a fragrance ingredient in essential oils. D-limonene is known to possess remarkable biological activities. It can be effectively used for treating various ailments and diseases. Due to its diverse functions, it can be efficiently utilized for human health.
Collapse
Affiliation(s)
- Pandi Anandakumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Sattu Kamaraj
- Department of Biotechnology, Periyar University, PG Extension Centre, Dharmapuri, Tamilnadu, India
| | - Manickam Kalappan Vanitha
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, Tamilnadu, India
| |
Collapse
|
26
|
In Silico Prediction of the Mode of Action of Viola odorata in Diabetes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2768403. [PMID: 33490239 PMCID: PMC7803256 DOI: 10.1155/2020/2768403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background The metabolic syndrome increases the risk of different diseases such as type 2 diabetes. The prevalence of metabolic syndrome has rapidly grown and affected more than 230 million people worldwide. Viola odorata is a traditionally used plant for the treatment of diabetes; however, its mechanism to manage diabetes is still unknown. Purpose This study was designed to systematically assess the mechanism of action of Viola odorata in diabetes. Methods An extensive literature search was made to establish an ingredient-target database of Viola odorata. Of these, targets related to diabetes were identified and used to develop a protein-protein interaction network (PPIN) by utilizing the STITCH database. The obtained PPIN was assessed through Gene Ontology (GO) enrichment analysis based on ClueGO plugin. Results According to the acquired data, there were about 143 chemical constituents present in Viola odorata having 119 protein targets. Of these, 31 targets were established to give the pharmacological effect against diabetes. The UniProt database was used for screening of 31 targets, out of which Homo sapiens contained 22 targets. Ultimately, 207 GO terms, grouped into 41 clusters, were found by gene analysis, and most of them were found to be linked with diabetes. According to findings, several proteins including TP53, BCL2, CDKN1A, 1L6, CCND1, CDKN2A, and RB1 have a significant role in the treatment of diabetes by Viola odorata. Conclusion The possible activity of Viola odorata in the management of diabetes may be mediated by several molecular mechanisms, including the glutamine metabolic process, IRE1-mediated unfolded protein response, and pentose metabolic process.
Collapse
|
27
|
Feng T, Zhang Q, Li Q, Zhu T, Lv W, Yu H, Qian B. LUAD transcriptomic profile analysis of d-limonene and potential lncRNA chemopreventive target. Food Funct 2020; 11:7255-7265. [PMID: 32776051 DOI: 10.1039/d0fo00809e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
d-Limonene, a type of natural extract obtained from citrus oils, was reported to have anti-cancer effects and be well-tolerated by cancer patients. Despite arousing interest as a cancer chemopreventive substance, the transcriptomic profile of d-limonene in humans is poorly understood. Based on the results of the transcriptomic profiling, a lncRNA named protein disulfide isomerase family A member three pseudogene (PDIA3P1) was found to be regulated by d-limonene. PDIA3P1 is an oncogene verified by three lung adenocarcinoma (LUAD) datasets. The knockdown of PDIA3P1 with siRNA decreased the viability, invasion, migration, and proliferation of LUAD cells. Based on The Cancer Genome Atlas (TCGA) LUAD datasets, PDIA3P1 regulates functions and pathways mainly including lipid metabolism, immunity, and the change of the chromosome structure. This study comprehensively performs the transcriptomic analysis of the d-limonene regulation on LUAD, and reveals that PDIA3P1 may be the mediator in helping d-limonene to prevent and suppress LUAD via lipid metabolism, immunity pathway, and the change in the chromosome structure.
Collapse
Affiliation(s)
- Tienan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Al-Otaibi SN, Alshammari GM, AlMohanna FH, Al-Khalifa AS, Yahya MA. Antihyperlipidemic and hepatic antioxidant effects of Leek leaf methanol extract in high fat diet-fed rats. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1792355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Setah Naif Al-Otaibi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir Muslem Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Falah Hassan AlMohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital Research Centre, Riyadh, Saudi Arabia
| | - Abdulrahman Saleh Al-Khalifa
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Amini R, Asle-Rousta M, Aghazadeh S. Hepatoprotective effect of limonene against chronic immobilization induced liver damage in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2053-2059. [PMID: 32514601 DOI: 10.1007/s00210-020-01915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Prolonged immobilization may impair the physiological functions of various organs of the body, including the liver, brain, and heart. In this study, we investigated the hepatoprotective effect of limonene (a monoterpene) in male rats exposed to chronic immobilization. Rats were exposed to immobilization stress (6 h/21 days) and received limonene (10 mg/kg, oral gavage) during this period. Chronic immobilization increased the levels of liver enzymes alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase in serum. Increased levels of malondialdehyde and decreased glutathione content were also observed in the liver tissue of immobilized rats. Expression of TNF-α, IL-1β, IL-6, and NF-κB mRNA was increased, and infiltrated cells were also observed in the liver parenchyma in rats exposed to chronic immobilization. Limonene prevented all these changes in immobilized rats. These results suggest that limonene, due to its antioxidant and anti-inflammatory effects, rescues the liver from damages caused by chronic immobilization.
Collapse
Affiliation(s)
- Rahim Amini
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Safieh Aghazadeh
- Department of Biochemistry, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
30
|
Younis NS. D-Limonene mitigate myocardial injury in rats through MAPK/ERK/NF-κB pathway inhibition. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:259-266. [PMID: 32392917 PMCID: PMC7193911 DOI: 10.4196/kjpp.2020.24.3.259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the primary reason of mortality, among which myocardial infarction (MI) is the most dominant and prevalent. This study was considered to examine D-Limonene protective action against isoproterenol (ISO) induced MI. Wister male rats were dispersed into four groups. Normal and D-Limonene control group in which rats administered saline or D-Limonene. ISO control animals were administered saline for 21 days then challenged with ISO (85 mg/kg, subcutaneously) on 20th and 21st day for MI induction. D-Limonene pretreated group in which animals were pretreated with D-Limonene 50 mg/kg orally for 21 days then administered ISO on 20th and 21st day. MI prompted variations were assessed by myocardial infarction area determination, blood pressure (BP) alterations, cardiac injury biomarkers and inflammatory mediators measurements. For more depth investigation, both the apoptotic status was evaluated via measuring mRNA expression of Bcl-2 and Bax as well as mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signal transduction were investigated via Western blotting. MI group revealed significant infarcted area, blood pressure alterations, myocardial injury enzymes intensification together with inflammatory cytokines amplification. MI was associated with activation of MAPK-ERK signal pathway and apoptotic status within the myocardium. On the other hand, pretreated with D-Limonene demonstrated deterred infracted area, reduced myocardial enzymes, improved BP indices, lessened inflammatory levels. Furthermore, D-Limonene pretreatment caused a decline in MAPK proteins pathway and Bax relative mRNA expression, while intensifying Bcl-2 mRNA expression promoting that D-Limonene may constrain MI induced myocardial apoptosis. D-Limonene mitigated MI injury through MAPK/NF-κB pathway inhibition and anti-apoptotic effect.
Collapse
Affiliation(s)
- Nancy Safwat Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hasa 31982, Kingdom of Saudi Arabia
- Department of Pharmacology, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
31
|
(+)-Limonene 1,2-Epoxide-Loaded SLNs: Evaluation of Drug Release, Antioxidant Activity, and Cytotoxicity in an HaCaT Cell Line. Int J Mol Sci 2020; 21:ijms21041449. [PMID: 32093358 PMCID: PMC7073088 DOI: 10.3390/ijms21041449] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
In this work, we developed a solid lipid nanoparticle (SLN) formulation with (+)-limonene 1,2-epoxide and glycerol monostearate (Lim-SLNs), stabilized with Poloxamer® 188 in aqueous dispersion to modify the release profile of the loaded monoterpene derivative. We also evaluated the role of SLNs in lipid peroxidation and cytotoxicity in a spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (the HaCaT cell line). For the cell viability assay, the colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used. Lim-SLNs with a loading capacity and encapsulation efficiency of 0.39% and 63%, respectively, were produced by high pressure homogenization. A mean particle size of 194 ± 3.4 nm and polydispersity index of 0.244 were recorded for the loaded Lim-SLNs, as compared to 203 ± 1.5 nm (PI 0.213) for the non-loaded (blank) SLNs. The loading of the monoterpene derivative into glycerol monostearate SLNs fitted into the zero-order kinetics, and ameliorated both lipid peroxidation and cytotoxicity in a keratinocyte cell line. A promising formulation for antioxidant and anti-tumoral activities is here proposed.
Collapse
|
32
|
Durço AO, de Souza DS, Heimfarth L, Miguel-Dos-Santos R, Rabelo TK, Oliveira Barreto TD, Rhana P, Santos Santana MN, Braga WF, Santos Cruz JD, Lauton-Santos S, Santana-Filho VJD, Barreto RDSS, Guimarães AG, Alvarez-Leite JI, Quintans Júnior LJ, Vasconcelos CMLD, Santos MRVD, Barreto AS. d-Limonene Ameliorates Myocardial Infarction Injury by Reducing Reactive Oxygen Species and Cell Apoptosis in a Murine Model. JOURNAL OF NATURAL PRODUCTS 2019; 82:3010-3019. [PMID: 31710486 DOI: 10.1021/acs.jnatprod.9b00523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Myocardial infarction (MI) leads to high mortality, and pharmacological or percutaneous primary interventions do not significantly inhibit ischemia/reperfusion injuries, particularly those caused by oxidative stress. Recently, research groups have evaluated several naturally occurring antioxidant compounds for possible use as therapeutic alternatives to traditional treatments. Studies have demonstrated that d-limonene (DL), a monoterpene of citrus fruits, possesses antioxidant and cardiovascular properties. Thus, this work sought to elucidate the mechanisms of protection of DL in an isoproterenol-induced murine MI model. It was observed that DL (10 μmol) attenuated 40% of the ST elevation, reduced the infarct area, prevented histological alterations, abolished completely oxidative stress damage, restored superoxide dismutase activity, and suppressed pro-apoptotic enzymes. In conclusion, the present study demonstrated that DL produces cardioprotective effects from isoproterenol-induced myocardial infarction in Swiss mice through suppression of apoptosis.
Collapse
Affiliation(s)
- Aimée Obolari Durço
- Department of Health Education , Federal University of Sergipe , Lagarto 49100-000 , Brazil
| | - Diego Santos de Souza
- Department of Physiology , Federal University of Sergipe , São Cristovão 49100-000 , Brazil
| | - Luana Heimfarth
- Department of Physiology , Federal University of Sergipe , São Cristovão 49100-000 , Brazil
| | | | - Thallita Kelly Rabelo
- Department of Health Education , Federal University of Sergipe , Lagarto 49100-000 , Brazil
| | - Tatiane de Oliveira Barreto
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | - Paula Rhana
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | | | - Weslley Fernandes Braga
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | - Jader Dos Santos Cruz
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | - Sandra Lauton-Santos
- Department of Physiology , Federal University of Sergipe , São Cristovão 49100-000 , Brazil
| | | | | | | | | | | | | | | | - André Sales Barreto
- Department of Health Education , Federal University of Sergipe , Lagarto 49100-000 , Brazil
| |
Collapse
|
33
|
Li D, Wu H, Dou H. Weight loss effect of sweet orange essential oil microcapsules on obese SD rats induced by high-fat diet. Biosci Biotechnol Biochem 2019; 83:923-932. [DOI: 10.1080/09168451.2019.1578640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Obesity is one of the most common and major health concerns worldwide. Weight management through dietary supplements with natural plant extracts has become the focus of current research. Sweet orange essential oil (SOEO) is a natural plant extract, with many bioactivities. In order to evaluate the weight loss effect of SOEO microcapsules and investigate the underlying mechanism, we fed high-fat diet-induced obese SD rats with SOEO microcapsules for 15 days and found that SOEO microcapsules reduced body weight gain by 41.4%, decreased total cholesterol level, alleviated liver and adipose tissue pathological alteration. The results of fluorescence quantitative PCR revealed that decreasing the expression of peroxisome proliferators-activated receptor-γ, upregulating of uncoupling protein 2, hormone sensitive lipase and carnitine palmitoyltransferase I, inhibiting the expression of acetyl-CoA carboxylase appear to be the mechanism of SOEO microcapsules to lose weight. This study suggests that SOEO microcapsule is a potential dietary supplement for weight loss.
Abbreviations: SOEO: sweet orange essential oil; TC: total cholesterol; TG: triglyceride; LDL-c: low-density lipoprotein cholesterol; HDL-c: high-density lipoprotein cholesterol; PPARα: peroxisome proliferators-activated receptor-α; PPARγ: peroxisome proliferators-activated receptor-γ; UCP2: uncoupling protein 2; HSL: hormone sensitive lipase; CPT1: carnitine palmitoyltransferase I; ACC: acetyl-CoA carboxylase; NPY: neuropeptide Y; LEP: leptin; INS: insulin; ALT: alanine aminotransferase; AST: aspartate aminotransferase.
Collapse
Affiliation(s)
- Dahu Li
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Houjiu Wu
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Huating Dou
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
34
|
Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:209-238. [PMID: 31351526 DOI: 10.1016/bs.afnr.2019.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease, characterized by elevated levels of blood glucose and insufficiency in production and action of insulin is the seventh leading cause of death worldwide. Numerous studies have shown that diabetes mellitus is associated with increased formation of free radicals and decrease in antioxidant potential. In the patients with diabetes mellitus, the levels of antioxidant parameters are found to decrease, hence in many studies phytochemicals which can exert antioxidant and free radical scavenging activities, are suggested to improve the insulin sensitivity. Several phytoactive compounds such as flavonoids, lignans, prophenylphenols, are also found to combat the complications of diabetes. This chapter mainly focuses on the relationship between diabetes mellitus and preventive roles of various phytochemicals on diabetes via their antioxidant properties.
Collapse
Affiliation(s)
- Merve Bacanli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey.
| | - Sevtap Aydin Dilsiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Nurşen Başaran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - A Ahmet Başaran
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
35
|
An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem 2019; 276:680-691. [DOI: 10.1016/j.foodchem.2018.10.068] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023]
|
36
|
R-Limonene Enhances Differentiation and 2-Deoxy-D-Glucose Uptake in 3T3-L1 Preadipocytes by Activating the Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4573254. [PMID: 30250490 PMCID: PMC6140011 DOI: 10.1155/2018/4573254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Adipocyte is an important place for lipid storage. Defects in lipid storage in adipocytes can lead to lipodystrophy and lipid accumulation in muscle, liver, and other organs. It is the condition of mixed dyslipidemia which may favor the development of insulin resistance via lipotoxic mechanisms. Our objective of the study was to investigate the potential role of R-limonene (LM) on differentiation, lipid storage, and 2-deoxy-D-glucose (2DG) uptake in 3T3-L1 preadipocytes. Genes and proteins associated with differentiation, lipid accumulation, 2DG uptake and its signaling pathways in the adipocytes were analyzed using qPCR and western blot methods. LM treatment increased differentiation, lipid accumulation, and the expression of adipogenic and lipogenic markers such as C/EBP-α, C/EBP-β, PPARγ, SREBP-1, RXR, FAS, and adiponectin. However, the LM concentration at 10μM decreased (p < 0.05) adipogenesis and lipogenesis via regulating key transcriptional factors. LM treatment increased activation of Akt by increasing its phosphorylation, but p44/42 activation was not altered. MK-2206, an Akt specific inhibitor, reduced the activation of Akt phosphorylation whereas LM treatment aborted the MK-2206 mediated inhibition of Akt activation. LM enhanced glucose uptake in differentiated adipocytes. Overall data suggested that LM treatment favored lipid storage and glucose uptake in adipocytes via activation of key transcriptional factors through activation of Akt phosphorylation in 3T3-L1 adipocytes.
Collapse
|
37
|
Soundharrajan I, Kim DH, Srisesharam S, Kuppusamy P, Sivanesan R, Choi KC. Limonene promotes osteoblast differentiation and 2-deoxy-d-glucose uptake through p38MAPK and Akt signaling pathways in C2C12 skeletal muscle cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 45:41-48. [PMID: 29573911 DOI: 10.1016/j.phymed.2018.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Limonene is a cyclic monoterpene (CTL) found in citrus fruits and many plant kingdoms. It has attracted attention as potential molecule due to its diverse biological activities. However, molecular mechanism involved in the osteogenic induction of CTL in C2C12 skeletal muscle cells remain unclear. PURPOSE Skeletal development maintains the bone homeostasis through bone remodeling process. It coordinated between the osteoblast and osteoblast process. Osteoporosis is one of the most common bone diseases caused by a systemic reduction in bone mass. Recent osteoporosis treatment is based on the use of anti-resorptive and bone forming drugs. However, long term use of these drugs is associated with serious side effects and strategies on the discovery of lead compounds from natural products for osteoblast differentiation are urgently needed. Therefore, we planned to find out the role of CTL on osteoblast differentiation and glucose uptake in C2C12 cells and its effect on signaling pathways. METHODS Cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, genes, and proteins associated with osteoblast activation and glucose utilization were analysed. RESULTS CTL did not affect the cell viability. CTL significantly increased ALP activity, calcium depositions and the expression of osteogenic specific genes such as Myogenin, Myogenic differentiation 1 (MyoD), ALP, Run-related transcription factor 2(RUNX2), osteocalcin (OCN). In addition, CTL induced the mRNA expression of bone morphogenetic proteins (BMP-2 BMP-4 BMP-6 BMP-7 BMP-9). CTL treatment enhanced 2-Deoxy-d-glucose (2DG) uptake. Moreover, CTL stimulated the activation of p38 mitogen activated protein kinase (p38MAPK), Protein kinase B (Akt), Extracellular signal related kinase (ERKs) by increasing phosphorylation. CTL treatment abolished p38 inhibitor (SB203580) mediated inhibition of osteoblast differentiation, but no effect was noted by ERKs specific inhibitor (PD98059). CONCLUSION These results suggest that limonene induces osteoblast differentiation and glucose uptake through activating p38MAPK and Akt signaling pathways, confirming the molecular basis of the osteoblast differentiation by limonene in C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Da Hye Kim
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 980-8577, Japan
| | - Srigopalram Srisesharam
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | | | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
| |
Collapse
|
38
|
Han X, Beaumont C, Rodriguez D, Bahr T. Black pepper (Piper nigrum) essential oil demonstrates tissue remodeling and metabolism modulating potential in human cells. Phytother Res 2018; 32:1848-1852. [PMID: 29770504 DOI: 10.1002/ptr.6110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/09/2018] [Accepted: 04/11/2018] [Indexed: 11/06/2022]
Abstract
Very few studies have investigated the biological activities of black pepper essential oil (BPEO) in human cells. Therefore, in the current study, we examined the biological activities of BPEO in cytokine-stimulated human dermal fibroblasts by analyzing the levels of 17 important protein biomarkers pertinent to inflammation and tissue remodeling. BPEO exhibited significant antiproliferative activity in these skin cells and significantly inhibited the production of Collagen I, Collagen III, and plasminogen activator inhibitor 1. In addition, we studied the effect of BPEO on the regulation of genome-wide expression and found that BPEO diversely modulated global gene expression. Further analysis showed that BPEO affected many important genes and signaling pathways closely related to metabolism, inflammation, tissue remodeling, and cancer signaling. This study is the first to provide evidence of the biological activities of BPEO in human dermal fibroblasts. The data suggest that BPEO possesses promising potential to modulate the biological processes of tissue remodeling, wound healing, and metabolism. Although further research is required, BPEO appears to be a good therapeutic candidate for a variety of health conditions including wound care and metabolic diseases. Research into the biological and pharmacological mechanisms of action of BPEO and its major active constituents is recommended.
Collapse
Affiliation(s)
- Xuesheng Han
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| | - Cody Beaumont
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| | - Damian Rodriguez
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| | - Tyler Bahr
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| |
Collapse
|
39
|
Yu X, Lin H, Wang Y, Lv W, Zhang S, Qian Y, Deng X, Feng N, Yu H, Qian B. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. Onco Targets Ther 2018; 11:1833-1847. [PMID: 29670359 PMCID: PMC5894671 DOI: 10.2147/ott.s155716] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose d-limonene is a plant extract with widespread application, and it has been recently reported to have antiproliferative and proapoptotic effects on cancer cells. However, the mechanisms by which d-limonene achieves these effects, especially in lung cancer, are not entirely clear. Therefore, the goal of this study was to examine the effects of d-limonene on lung cancer and explore its mechanisms of action. Methods We examined the therapeutic effects of d-limonene on lung cancer cells and in a xenograft animal model by characterizing its effects on the pathways of apoptosis and autophagy. Cell proliferation was measured using the Cell Counting Kit-8, and apoptosis was determined by flow cytometric analysis. Levels of LC3 puncta, an autophagy marker, were analyzed by laser scanning confocal microscopy. Autophagy and apoptosis-related gene expression were assessed by real-time quantitative polymerase chain reaction and Western blot. Results d-limonene inhibited the growth of lung cancer cells and suppressed the growth of transplanted tumors in nude mice. Expression of apoptosis and autophagy-related genes were increased in tumors after treatment with d-limonene. Furthermore, the use of chloroquine, an autophagy inhibitor, and knockdown of the atg5 gene, suppressed the apoptosis induced by d-limonene. Conclusion d-limonene may have a therapeutic effect on lung cancer as it can induce apoptosis of lung cancer cells by promoting autophagy.
Collapse
Affiliation(s)
- Xiao Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Lin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobei Deng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital & Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Ahmad SB, Rehman MU, Fatima B, Ahmad B, Hussain I, Ahmad SP, Farooq A, Muzamil S, Razzaq R, Rashid SM, Ahmad Bhat S, Mir MUR. Antifibrotic effects of D-limonene (5(1-methyl-4-[1-methylethenyl]) cyclohexane) in CCl 4 induced liver toxicity in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:361-369. [PMID: 29251412 DOI: 10.1002/tox.22523] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
This study was designed to assess the potential antifibrotic effect of D-Limonene-a component of volatile oils extracted from citrus plants. D-limonene is reported to have numerous therapeutic properties. CCl4 -intduced model of liver fibrosis in Wistar rats is most widely used model to study chemopreventive studies. CCl4 -intoxication significantly increased serum aminotransferases and total cholesterol these effects were prevented by cotreatment with D-Limonene. Also, CCl4 -intoxication caused depletion of glutathione and other antioxidant enzymes while D-Limonene preserved them within normal values. Hydroxyproline and malondialdehyde content was increased markedly by CCl4 treatment while D-Limonene prevented these alterations. Levels of TNF-α, TGF-β, and α-SMA were also assessed; CCl4 increased the expression of α-SMA, NF-κB and other downstream inflammatory cascade while D-Limonene co-treatment inhibited them. Collectively these findings indicate that D-Limonene possesses potent antifibrotic effect which may be attributed to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Sheikh Bilal Ahmad
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Muneeb U Rehman
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Bilques Fatima
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Bilal Ahmad
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Ishraq Hussain
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Pervaiz Ahmad
- Department of Statistics, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, 190006, India
| | - Adil Farooq
- RAKCOPS, RAK Medical & Health Sciences University, Ras AL Khaimah, UAE-11172
| | - Showkeen Muzamil
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Rahil Razzaq
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Showkat Ahmad Bhat
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor Ur Rahman Mir
- Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K), Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
41
|
Limonene: Aroma of innovation in health and disease. Chem Biol Interact 2018; 283:97-106. [PMID: 29427589 DOI: 10.1016/j.cbi.2018.02.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Natural products obtained in dietary components may aid the prevention and treatment of a variety of diseases. Reports in the scientific literature have demonstrated that the consumption of terpenes is a successful alternative in the treatment of several diseases, triggering beneficial biological effects in clinical and preclinical studies. The monoterpene limonene is largely used in alimentary items, cleaning products, and it is one of the most frequent fragrances used in cosmetics formulation. The therapeutic effects of limonene have been extensively studied, proving anti-inflammatory, antioxidant, antinociceptive, anticancer, antidiabetic, antihyperalgesic, antiviral, and gastroprotective effects, among other beneficial effects in health. In this review, we collected, presented, and analyzed evidence from the scientific literature regarding the usage of limonene and its activities and underlying mechanisms involved in combating diseases. The highlighting of limonene applications could develop a useful targeting of innovative research in this field as well as the development of a limonene-based phytomedicine which could be used in a variety of conditions of health and disease.
Collapse
|
42
|
Wang X, Li G, Shen W. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Exp Ther Med 2017; 15:699-706. [PMID: 29399074 PMCID: PMC5772658 DOI: 10.3892/etm.2017.5509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of disability and death world-wide and there is currently a lack of effective treatments for acute stroke. D-Limonene is a common natural monocyclic monoterpene possessing various activities. The present study aimed to evaluate the therapeutic efficacy of D-limonene against ischemia-associated cerebral injury in hypertensive SHRsp rats. Although systolic blood pressure was not altered by ischemia, D-Limonene decreased the systolic blood pressure of SHRsp rats following stroke. Induction of stroke resulted in increased escape latency time, decreased time spent in the target quadrant in the probe trial, decreased capacity to distinguish between familiar objects and novel objects, and increased sensory neglect in the SHRsp rat, however these symptoms were significantly inhibited by D-limonene. D-limonene also decreased the cerebral infarct size in the SHRsp rats following stroke. D-Limonene markedly decreased the mRNA expression of interleukin-1β, monocyte chemoattractant protein-1 and cyclooxygenase-2 in SHRsp rats following stroke. The mRNA expression of vascular endothelial growth factor in the brain of SHRsp rats following stroke was significantly increased by D-Limonene. D-Limonene increased the activities of superoxide dismutase and catalase, decreased the malondialdehyde level, increased glutathione content and reduced the DHE-staining in SHRsp rats following stroke. Overall, inhibition of cerebral inflammation, vascular remodeling and antioxidant activities of D-Limonene may be involved in the protective effects against ischemia-induced damage in SHRsp rats. The present study identified D-Limonene as a potential therapeutic candidate for treatment of stroke-associated cerebral and vascular damage under conditions of hypertension.
Collapse
Affiliation(s)
- Xifeng Wang
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Gang Li
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Wei Shen
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
43
|
Bacanlı M, Anlar HG, Aydın S, Çal T, Arı N, Ündeğer Bucurgat Ü, Başaran AA, Başaran N. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem Toxicol 2017; 110:434-442. [PMID: 28923438 DOI: 10.1016/j.fct.2017.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/19/2023]
Abstract
It is known that diabetes causes some complications including alterations in lipid profile, hepatic enzyme levels but also it causes oxidative stress. Limonene, a major component of Citrus oils, has important health beneficial effects in lowering the level of oxidative stress due to its antioxidant activity. The aim of this study was to investigate the effects of D-limonene on streptozotocin (STZ)-induced diabetes in Wistar albino rats. For this purpose, DNA damage was evaluated by alkaline comet assay. Changes in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSHPx) and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), total glutathione (GSH), malondialdehyde (MDA), insulin, total bilirubin and BCA protein, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT), high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol and triglyceride were also evaluated. D-limonene treatment was found to significantly decrease DNA damage, GR enzyme activities and MDA levels and significantly increase GSH levels and CAT, SOD and GSH-Px enzyme activities and altered lipid and liver enzyme parameters in diabetic rats. According to our results, it seems that D-limonene might have a role in the prevention of the complication of diabetes in rats.
Collapse
Affiliation(s)
- Merve Bacanlı
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, Turkey.
| | - Hatice Gül Anlar
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, Turkey
| | - Sevtap Aydın
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, Turkey
| | - Tuğbagül Çal
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, Turkey; Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 61080, Trabzon, Turkey
| | - Nuray Arı
- Ankara University, Faculty of Pharmacy, Department of Pharmacology, 06100, Ankara, Turkey
| | - Ülkü Ündeğer Bucurgat
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, Turkey
| | - A Ahmet Başaran
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100 Ankara, Turkey
| | - Nurşen Başaran
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, Turkey
| |
Collapse
|
44
|
Zárybnický T, Boušová I, Ambrož M, Skálová L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch Toxicol 2017; 92:1-13. [DOI: 10.1007/s00204-017-2062-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
|
45
|
Baselga-Escudero L, Souza-Mello V, Pascual-Serrano A, Rachid T, Voci A, Demori I, Grasselli E. Beneficial effects of the Mediterranean spices and aromas on non-alcoholic fatty liver disease. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Doğan A, Çelik İ. Healing effects of sumac (Rhus coriaria) in streptozotocin-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2016; 54:2092-102. [PMID: 26957014 DOI: 10.3109/13880209.2016.1145702] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Context Sumac [Rhus coriaria L. (RC) (Anacardiaceae)] is used as a folk medicine in the treatment of diabetes in Turkey. Objective This study investigates the in vivo healing and protective effects of lyophilized extract sumac against streptozotocin (STZ)-induced diabetic complications. Materials and methods Toxicity test was conducted in three different dosages (250, 500 and 1000 mg/kg of plant extracts, respectively). Six groups of seven rats each were used in experiments. Groups were designed as Normal control, Diabetic (DM), DM + AC-20 mg/kg, DM + Extract-100 mg/kg, DM + Extract 250 mg/kg and DM + Extract 500 mg/kg group. Experimental diabetes [50 mg/kg, intraperitoneal (i.p.)] was induced by STZ. The effects of oral administration of the extract for 21 d on the level of serum glucose, insulin, C-peptide, lipid profile (LP), hepatic and renal damage biomarkers (HRDB), diabetic serum biomarkers (DSB), glycosylated haemoglobin (HbA1c), antioxidant defence system constituents (ADSCs), malondialdehyde (MDA) and α-glucosidase activity in small intestine tissue were evaluated. Results The extract decreased the levels of blood glucose in diabetic groups (an average of 31%). Triglyceride, total cholesterol, high-density lipoprotein and low-density lipoprotein levels were balanced by plant extract (500 mg/kg) supplementation in the diabetic group. Decreased levels of aspartate aminotransferase (89%), alanine aminotransferase (91%), lactate dehydrogenase (35%), alkaline phosphatase (47%), creatinine (25%) and urea (29%) were detected in plant extract (500 mg/kg) supplemented diabetic group. Additionally, a considerable increase in the HRDB, DSB, LP, MDA and fluctuated ADSC levels were restored in RC-extract supplemented groups. Conclusion RC lyophilized extract has a healing effect on diabetes and diabetes-related complications.
Collapse
Affiliation(s)
- Abdulahad Doğan
- a Faculty of Science, Department of Biology , Yuzuncu Yil University , Van , Turkey
| | - İsmail Çelik
- b Faculty of Science, Department of Molecular Biology and Genetics , Yuzuncu Yil University , Van , Turkey
| |
Collapse
|
47
|
Endothelium- and smooth muscle-dependent vasodilator effects of Citrus aurantium L. var. amara: Focus on Ca(2+) modulation. Biomed Pharmacother 2016; 82:467-71. [PMID: 27470386 DOI: 10.1016/j.biopha.2016.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022] Open
Abstract
Neroli, the essential oil of Citrus aurantium L. var. amara, is a well-characterized alleviative agent used to treat cardiovascular symptoms. However, because it has been found to have multiple effects, its mechanism of action requires further exploration. We sought to clarify the mechanism underlying the actions of neroli in mouse aorta. In aortic rings from mice precontracted with prostaglandin F2 alpha, neroli induced vasodilation. However, relaxation effect of neroli was decreased in endothelium-denuded ring or pre-incubation with the nitric oxide synthase inhibitor NG-Nitro-l-arginine-methyl ester (L-NAME). And also, neroli-induced relaxation was also partially reversed by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), a soluble guanylyl cyclase (sGC) inhibitor. In addition, neroli inhibited extracellular Ca(2+)-dependent, depolarization-induced contraction, an effect that was concentration dependent. Pretreatment with the non-selective cation channel blocker, Ni(2+), attenuated neroli-induced relaxation, whereas the K(+) channel blocker, tetraethylammonium chloride, had no effect. In the presence of verapamil, added to prevent Ca(2+) influx via smooth muscle voltage-gated Ca(2+) channels, neroli-induced relaxation was reduced by the ryanodine receptor (RyR) inhibitor ruthenium red. Our findings further indicate that the endothelial component of neroli-induced vasodilation is partly mediated by the NO-sGC pathway, whereas the smooth muscle component involves modulation of intracellular Ca(2+) concentration through inhibition of cation channel-mediated extracellular Ca(2+) influx and store-operated Ca(2+) release mediated by the RyR signaling pathway.
Collapse
|
48
|
Taghizadeh M, Memarzadeh MR, Abedi F, Sharifi N, Karamali F, Fakhrieh Kashan Z, Asemi Z. The Effect of Cumin cyminum L. Plus Lime Administration on Weight Loss and Metabolic Status in Overweight Subjects: A Randomized Double-Blind Placebo-Controlled Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e34212. [PMID: 27781121 PMCID: PMC5065707 DOI: 10.5812/ircmj.34212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/27/2015] [Accepted: 01/11/2016] [Indexed: 01/19/2023]
Abstract
Background Limited data are available regarding the effects of combined administration of Cumin cyminum L. and lime on weight loss and metabolic profiles among subjects with overweight subjects. Objectives The current study aimed to assess the effects of combined administration of Cumin cyminum L. and lime on weight loss and metabolic profiles among subjects with overweight. Patients and Methods This randomized double-blind placebo-controlled clinical trial was conducted on 72 subjects with overweight, aged 18 - 50 years old. Participants were randomly divided into three groups: Group A received high-dose Cumin cyminum L. and lime capsules (75 mg each, n = 24), group B low-dose Cumin cyminum L. and lime capsules (25 mg each, n = 24) and group C placebos (n = 24) twice daily for eight weeks. Results After eight weeks of intervention, compared with low-dose C. cyminum L. plus lime and placebo, taking high-dose C. cyminum L. plus lime resulted in significant weight loss (in the high-dose group: -2.1 ± 1.7 vs. in the low-dose group: -1.2 ± 1.5 and in the placebo group: + 0.2 ± 1.3 kg, respectively; P < 0.001) and body mass index (-0.8 ± 0.6 vs. -0.5 ± 0.5 and +0.1 ± 0.5 kg/m2, respectively; P < 0.001). In addition, administration of high-dose C. cyminum L. plus lime compared with low-dose C. cyminum L. plus lime and placebo, led to a significant reduction in fasting plasma glucose (FPG) (P < 0.001) and a significant rise in quantitative insulin sensitivity check index (QUICKI) (+ 0.02 ± 0.02 vs. + 0.01 ± 0.02 and 0.01 ± 0.01, respectively; P = 0.01). Moreover, a significant decrease in serum triglycerides (-14.1 ± 56.2 vs. +13.9 ± 36.8 and + 10.6 ± 25.1 mg/dL; respectively; P = 0.03), total-cholesterol (-18.4 ± 28.6 vs. +8.6 ± 28.5 and -1.0 ± 24.8 mg/dL; respectively; P = 0.004) and low density lipoproteins- (LDL)-cholesterol levels (-11.8 ± 20.7 vs. +6.5 ± 23.2 and -2.9 ± 20.4 mg/dL, respectively; P = 0.01) was observed following the consumption of high-dose C. cyminum L. plus lime compared with low-dose C. cyminum L. plus lime and placebo. Conclusions Results of the current study indicated that taking high-dose C. cyminum L. plus lime for eight weeks among subjects with overweight had beneficial effects on weight, BMI, FPG, QUICKI, triglycerides, total-cholesterol and LDL-cholesterol levels.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | | | - Fatemeh Abedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Fatemeh Karamali
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, IR Iran
| | - Zohreh Fakhrieh Kashan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
- Corresponding Author: Zatollah Asemi, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran. Tel: +98-31-55463378, Fax: +98-31-55463377, E-mail:
| |
Collapse
|
49
|
Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes. Life Sci 2016; 153:198-206. [DOI: 10.1016/j.lfs.2016.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022]
|
50
|
Seyithanoğlu M, Öner-İyidoğan Y, Doğru-Abbasoğlu S, Tanrıkulu-Küçük S, Koçak H, Beyhan-Özdaş Ş, Koçak-Toker N. The effect of dietary curcumin and capsaicin on hepatic fetuin-A expression and fat accumulation in rats fed on a high-fat diet. Arch Physiol Biochem 2016; 122:94-102. [PMID: 26706937 DOI: 10.3109/13813455.2015.1120753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Effects of curcumin (turmeric) and capsaicin (red pepper) on hepatic fat accumulation and fetuin-A expression in rats fed high-fat diet (HFD) is aimed to be investigated. Male Sprague-Dawley rats received HFD (60% of total calories from fat) and 0.15 g capsaicin/kg HFD and/or 1.5 g curcumin/kg HFD for 16 weeks. Hepatic AMPK, p-AMPK and fetuin-A expressions were determined by western blotting, liver lipid levels were measured with colorimetric methods and serum fetuin-A, insulin, leptin and adiponectin levels were detected using commercial ELISA kits. HFD increased hepatic lipid levels, fetuin-A expression and serum leptin, insülin and fetuin-A levels. Curcumin and capsaicin treatments significantly reduced hepatic fat accumulation and leptin levels; liver fetuin-A expression was decreased significantly by the curcumin treatment. Curcumin and capsaicin treatments attenuated hepatic fat accumulation and increased leptin levels related to inflammation. The suppression of hepatic fetuin-A expression is observed to be especially sensitive to curcumin.
Collapse
Affiliation(s)
- Muhammed Seyithanoğlu
- a Department of Biochemistry , Istanbul Faculty of Medicine, Istanbul University , Çapa , Istanbul , Turkey
| | - Yıldız Öner-İyidoğan
- a Department of Biochemistry , Istanbul Faculty of Medicine, Istanbul University , Çapa , Istanbul , Turkey
| | - Semra Doğru-Abbasoğlu
- a Department of Biochemistry , Istanbul Faculty of Medicine, Istanbul University , Çapa , Istanbul , Turkey
| | | | | | - Şule Beyhan-Özdaş
- c Department of Medical Biology and Genetic , Faculty of Medicine, Istanbul Bilim University , Esentepe , Istanbul , Turkey
| | - Necla Koçak-Toker
- a Department of Biochemistry , Istanbul Faculty of Medicine, Istanbul University , Çapa , Istanbul , Turkey
| |
Collapse
|