1
|
Wannemacher R, Stegmann F, Eikelberg D, Bühler M, Li D, Kohale SK, Asawapattanakul T, Ebbecke T, Raulf MK, Baumgärtner W, Lepenies B, Gerhauser I. Infection of a β-galactosidase-deficient mouse strain with Theiler's murine encephalomyelitis virus reveals limited immunological dysregulations in this lysosomal storage disease. Front Immunol 2025; 16:1467207. [PMID: 40270964 PMCID: PMC12014673 DOI: 10.3389/fimmu.2025.1467207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction A hallmark of many lysosomal storage diseases (LSD) is the alteration of immune responses, often starting before the onset of clinical disease. The present study aimed to investigate how GM1 gangliosidosis impacted the course of an acute central nervous system (CNS) virus infection before the clinical onset of LSD. Methods For this purpose, Glb1 -/- and wildtype control mice (both C57BL/6 background) were intracerebrally infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) at the age of 5 weeks and sacrificed 4, 7, 14 and 98 days post infection, respectively. Histology, immunohistochemistry, and flow cytometry was used to assess viral load and immune cell activation and infiltration. Results Both wildtype and Glb1 -/- mice were able to clear the virus from the CNS and did not develop any clinical symptoms of TMEV-associated disease, thus indicating no overt alteration in susceptibility to TMEV infection. However, in the early phase post infection, Glb1 -/- mice displayed a slightly delayed T cell response as well as an increase in the number and activation of CNS microglia. Discussion These results suggest that already in the early stage of disease (before clinical onset) GM1 gangliosidosis causes an impaired T cell response and microglial hyperreactivity.
Collapse
Affiliation(s)
- Rouven Wannemacher
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Bühler
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sayali Kalidas Kohale
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Thanaporn Asawapattanakul
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Tim Ebbecke
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marie-Kristin Raulf
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Parasitology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Chair of Biochemistry and Chemistry, Veterinary Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
2
|
Biddeci G, Spinelli G, Colomba P, Duro G, Anania M, Francofonte D, Di Blasi F. Fabry Disease and Inflammation: Potential Role of p65 iso5, an Isoform of the NF-κB Complex. Cells 2025; 14:230. [PMID: 39937021 PMCID: PMC11817417 DOI: 10.3390/cells14030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disease, caused by mutations in the GLA gene on the X chromosome, resulting in a deficiency of the lysosomal enzyme α-GAL. This leads to the progressive accumulation of Gb3 in cells, causing multi-systemic effects. FD has been classified as a subgroup of autoinflammatory diseases. NF-κB is a family of ubiquitous and inducible transcription factors that play critical roles in inflammation, in which the p65/p50 heterodimer is the most abundant. The glucocorticoid receptor (GR) represents the physiological antagonists in the inflammation process. A novel spliced variant of p65, named p65 iso5, which can bind the dexamethasone, enhancing GR activity, has been found. This study investigates the potential role of p65 iso5 in the inflammation of subjects with FD. We evaluated in peripheral blood mononuclear cells (PBMCs), from over 100 FD patients, the p65 iso5 mRNA level, and the protein expression. The results showed significantly lower p65 iso5 mRNA and protein expression levels compared to controls. These findings, along with the ability of p65 iso5 to bind dexamethasone and the regulation of the glucocorticoid response in the opposite way of p65, strongly suggest the involvement of p65 iso5 in the inflammatory response in FD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Di Blasi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.B.); (G.S.); (P.C.); (G.D.); (M.A.); (D.F.)
| |
Collapse
|
3
|
Guffon N, Burton BK, Ficicioglu C, Magner M, Gil-Campos M, Lopez-Rodriguez MA, Jayakar P, Lund AM, Tal G, Garcia-Ortiz JE, Stepien KM, Ellaway C, Al-Hertani W, Giugliani R, Cathey SS, Hennermann JB, Lampe C, McNutt M, Lagler FB, Scarpa M, Sutton VR, Muschol N. Monitoring and integrated care coordination of patients with alpha-mannosidosis: A global Delphi consensus study. Mol Genet Metab 2024; 142:108519. [PMID: 39024860 DOI: 10.1016/j.ymgme.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Current literature lacks consensus on initial assessments and routine follow-up care of patients with alpha-mannosidosis (AM). A Delphi panel was conducted to generate and validate recommendations on best practices for initial assessment, routine follow-up care, and integrated care coordination of patients with AM. METHODS A modified Delphi method involving 3 rounds of online surveys was used. An independent administrator and 2 nonvoting physician co-chairs managed survey development, anonymous data collection, and analysis. A multidisciplinary panel comprising 20 physicians from 12 countries responded to 57 open-ended questions in the first survey. Round 2 consisted of 11 ranking questions and 44 voting statements. In round 3, panelists voted to validate 60 consensus statements. The panel response rate was ≥95% in all 3 rounds. Panelists used 5-point Likert scales to indicate importance (score of ≥3) or agreement (score of ≥4). Consensus was defined a priori as ≥75% agreement with ≥75% of panelists voting. RESULTS Consensus was reached on 60 statements, encompassing 3 key areas: initial assessments, routine follow-up care, and treatment-related follow-up. The panel agreed on the type and frequency of assessments related to genetic testing, baseline evaluations, quality of life, biochemical measures, affected body systems, treatment received, and integrated care coordination in patients with AM. Forty-nine statements reached 90% to 100% consensus, 8 statements reached 80% to 85% consensus, and 1 statement reached 75% consensus. Two statements each reached consensus on 15 baseline assessments to be conducted at the initial follow-up visit after diagnosis in pediatric and adult patients. CONCLUSION This is the first Delphi study providing internationally applicable, best-practice recommendations for monitoring patients with AM that may improve their care and well-being.
Collapse
Affiliation(s)
- Nathalie Guffon
- Reference Centre for Inherited Metabolic Diseases (CERLYMM), Hospices Civils of Lyon (HCL), Lyon, France.
| | - Barbara K Burton
- Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Can Ficicioglu
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Magner
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Mercedes Gil-Campos
- Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Spanish Network for Research of Excellence in Obesity (CIBEROBN), Córdoba, Spain
| | - Monica A Lopez-Rodriguez
- Hospital Universitario Ramón Y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Rigshospitalet, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Galit Tal
- Metabolic Clinic and Pediatric Department "B", Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jose Elias Garcia-Ortiz
- Division of Genetics, Centro de Investigación Biomédica de Occidente (CIBO) del Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Mexico
| | - Karolina M Stepien
- Adult Inherited Metabolic Diseases, Northern Care Alliance National Health Service (NHS) Foundation Trust, Salford Royal Organization, Salford, UK
| | | | - Walla Al-Hertani
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Giugliani
- Federal University of Rio Grande do Sul (UFRGS), Hospital de Clinicas de Porto Alegre (HCPA), National Institute of Population Medical Genetics (INAGEMP), Diagnósticos da América S.A. (DASA) and Center for Comprehensive Care and Training in Rare Diseases (CASA DOS RAROS), Porto Alegre, Brazil
| | | | | | - Christina Lampe
- Center for Pediatric Neurology, Muscular Diseases and Social Pediatrics, Giessen University Hospital, Giessen, Germany
| | - Markey McNutt
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Florian B Lagler
- Institute for Inherited Metabolic Diseases & Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Italy
| | - V Reid Sutton
- Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Nicole Muschol
- International Center for Lysosomal Disorders (ICLD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024; 11:1420067. [PMID: 38932991 PMCID: PMC11199868 DOI: 10.3389/fcvm.2024.1420067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fabry disease, a multisystem X-linked disorder caused by mutations in the alpha-galactosidase gene. This leads to the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), culminating in various clinical signs and symptoms that significantly impact quality of life. Although treatments such as enzyme replacement, oral chaperone, and emerging therapies like gene therapy exist; delayed diagnosis often curtails their effectiveness. Our review highlights the importance of delineating the stages of inflammation in Fabry disease to enhance the timing and efficacy of diagnosis and interventions, particularly before the progression to fibrosis, where treatment options are less effective. Inflammation is emerging as an important aspect of the pathogenesis of Fabry disease. This is thought to be predominantly mediated by the innate immune response, with growing evidence pointing towards the potential involvement of adaptive immune mechanisms that remain poorly understood. Highlighted by the fact that Fabry disease shares immune profiles with systemic autoinflammatory diseases, blurring the distinctions between these disorders and highlighting the need for a nuanced understanding of immune dynamics. This insight is crucial for developing targeted therapies and improving the administration of current treatments like enzyme replacement. Moreover, our review discusses the complex interplay between these inflammatory processes and current treatments, such as the challenges posed by anti-drug antibodies. These antibodies can attenuate the effectiveness of therapies, necessitating more refined approaches to mitigate their impact. By advancing our understanding of the molecular changes, inflammatory mediators and causative factors that drive inflammation in Fabry disease, we aim to clarify their role in the disease's progression. This improved understanding will help us see how these processes fit into the current landscape of Fabry disease. Additionally, it will guide the development of more effective diagnostic and therapeutic approaches, ultimately improving patient care.
Collapse
Affiliation(s)
- Hibba Kurdi
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Lucia Lavalle
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| | - James C. C. Moon
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Derralynn Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
5
|
Turkmen K, Baloglu I, Aykut T, Demir S, Altın E, Akguzel ZA, Kocabas M, Yerlikaya FH. The Relationship between Serum TWEAK Levels and Carotid Intima-media Thickness in Patients with Fabry Disease. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:406-415. [PMID: 38995299 DOI: 10.4103/1319-2442.397202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Fabry disease (FD) is associated with inflammation, proteinuria, and chronic kidney disease. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) plays an important role in inflammation in diabetic nephropathy and lupus nephritis. Since there is a close relationship linking serum TWEAK (sTWEAK), inflammation, and carotid intima-media thickness (CIMT) in various kidney diseases, we aimed to determine the relationship between sTWEAK levels and CIMT in subjects with and without proteinuria in a cross-sectional study involving 15 FD patients (seven females, eight males) and seven healthy controls (four females, three males). There were no differences in age, sex, estimated glomerular filtration rate, and biochemical parameters (serum glucose, albumin, creatinine, uric acid, C-reactive protein (CRP), low-density lipoprotein, and high-density lipoprotein) between FD patients and healthy controls. The spot urine protein-creatinine ratios of healthy controls and FD patients were 90 mg/g and 185 mg/g, respectively (P = 0.022). STWEAK levels were higher in FD patients than in healthy controls (P = 0.007). The CIMT of FD patients and healthy controls was 0.55 ± 0.14 mm and 0.42 ± 0.04 mm, respectively (P = 0.007). STWEAK was positively correlated with CRP and CIMT, and negatively with proteinuria (P = 0.005, P = 0.013, and P = 0.018, respectively). In the multivariate analysis, only sTWEAK was an independent variable of increased CIMT. We demonstrated that sTWEAK and CIMT were increased in FD patients. STWEAK might have a role in the pathogenesis of subclinical atherosclerosis in FD.
Collapse
Affiliation(s)
- Kultigin Turkmen
- Department of Internal Medicine, Division of Nephrology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Baloglu
- Department of Internal Medicine, Division of Nephrology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Talat Aykut
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Salih Demir
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ebru Altın
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Zeynep Aybike Akguzel
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Muhammet Kocabas
- Department of Internal Medicine, Division of Endocrinology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Fatma Humeyra Yerlikaya
- Department of Biochemistry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| |
Collapse
|
6
|
Sen Sarma M, Tripathi PR. Natural history and management of liver dysfunction in lysosomal storage disorders. World J Hepatol 2022; 14:1844-1861. [PMID: 36340750 PMCID: PMC9627439 DOI: 10.4254/wjh.v14.i10.1844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
Lysosomal storage disorders (LSD) are a rare group of genetic disorders. The major LSDs that cause liver dysfunction are disorders of sphingolipid lipid storage [Gaucher disease (GD) and Niemann-Pick disease] and lysosomal acid lipase deficiency [cholesteryl ester storage disease and Wolman disease (WD)]. These diseases can cause significant liver problems ranging from asymptomatic hepatomegaly to cirrhosis and portal hypertension. Abnormal storage cells initiate hepatic fibrosis in sphingolipid disorders. Dyslipidemia causes micronodular cirrhosis in lipid storage disorders. These disorders must be keenly differentiated from other chronic liver diseases and non-alcoholic steatohepatitis that affect children and young adults. GD, Niemann-Pick type C, and WD also cause neonatal cholestasis and infantile liver failure. Genotype and liver phenotype correlation is variable in these conditions. Patients with LSD may survive up to 4-5 decades except for those with neonatal onset disease. The diagnosis of all LSD is based on enzymatic activity, tissue histology, and genetic testing. Enzyme replacement is possible in GD and Niemann-Pick types A and B though there are major limitations in the outcome. Those that progress invariably require liver transplantation with variable outcomes. The prognosis of Niemann-Pick type C and WD is universally poor. Enzyme replacement therapy has a promising role in cholesteryl ester storage disease. This review attempts to outline the natural history of these disorders from a hepatologist’s perspective to increase awareness and facilitate better management of these rare disorders.
Collapse
Affiliation(s)
- Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Parijat Ram Tripathi
- Department of Pediatric Gastroenterology, Ankura Hospital for Women and Children, Hyderabad 500072, India
| |
Collapse
|
7
|
El-Amawy HS, Dawoud H. Lysosomal storage diseases in the era of COVID-19: a report of an Egyptian case of alpha-fucosidosis and a summary of the lysosomal storage diseases-COVID-19 relationship. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:138. [PMID: 37521839 PMCID: PMC9483389 DOI: 10.1186/s43042-022-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We present a case of alpha-fucosidosis, a lysosomal storage disorder, from Egypt. The report also includes a brief review of the COVID-19 and lysosomal storage diseases relationship. CASE PRESENTATION A female patient aged 18 years, diagnosed with type II fucosidosis, based on the cutaneous signs, characteristic facies, and systemic symptoms, and diagnosis was confirmed using genetic analysis. The patient died from COVID-19 pneumonia during the COVID-19 pandemic after getting the infection from her father and being hospitalized. CONCLUSIONS Patients with lysosomal storage diseases with local or systemic immune suppression may be predisposed to respiratory complications of COVID-19. Intense care with protective guidelines should be applied to those patients.
Collapse
Affiliation(s)
| | - Heba Dawoud
- Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Oliveira Miranda C. Mesenchymal stem cells for lysosomal storage and polyglutamine disorders: Possible shared mechanisms. Eur J Clin Invest 2022; 52:e13707. [PMID: 34751953 DOI: 10.1111/eci.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/28/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mesenchymal stem cells' (MSC) therapeutic potential has been investigated for the treatment of several neurodegenerative diseases. The fact these cells can mediate a beneficial effect in different neurodegenerative contexts strengthens their competence to target diverse mechanisms. On the other hand, distinct disorders may share similar mechanisms despite having singular neuropathological characteristics. METHODS We have previously shown that MSC can be beneficial for two disorders, one belonging to the groups of Lysosomal Storage Disorders (LSDs) - the Krabbe Disease or Globoid Cell Leukodystrophy, and the other to the family of Polyglutamine diseases (PolyQs) - the Machado-Joseph Disease or Spinocerebellar ataxia type 3. We gave also input into disease characterization since neuropathology and MSC's effects are intrinsically associated. This review aims at describing MSC's multimode of action in these disorders while emphasizing to possible mechanistic alterations they must share due to the accumulation of cellular toxic products. RESULTS Lysosomal storage disorders and PolyQs have different aetiology and associated symptoms, but both result from the accumulation of undegradable products inside neuronal cells due to inefficient clearance by the endosomal/lysosomal pathway. Moreover, numerous cellular mechanisms that become compromised latter are also shared by these two disease groups. CONCLUSIONS Here, we emphasize MSC's effect in improving proteostasis and autophagy cycling turnover, neuronal survival, synaptic activity and axonal transport. LSDs and PolyQs, though rare in their predominance, collectively affect many people and require our utmost dedication and efforts to get successful therapies due to their tremendous impact on patient s' lives and society.
Collapse
Affiliation(s)
- Catarina Oliveira Miranda
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Chen F, Guo S, Li X, Liu S, Wang L, Zhang VW, Xu H, Huang Z, Ying Y, Shu S. Case Report: Be Aware of “New” Features of Niemann–Pick Disease: Insights From Two Pediatric Cases. Front Genet 2022; 13:845246. [PMID: 35360843 PMCID: PMC8961870 DOI: 10.3389/fgene.2022.845246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
Niemann–Pick disease is a relatively common lysosomal storage disease. Cholestatic liver disease is a typical clinical phenotype of Niemann–Pick disease in infancy. The diagnosis is traditionally based on Niemann–Pick cells in bone marrow smears or liver biopsies. Treatment for cholestatic liver disease mainly includes ursodeoxycholic acid and liver protection drugs. Here, we reported two cases of Niemann–Pick disease type C, diagnosed by genetic analysis during early infancy. Besides cholestatic jaundice, the two patients also exhibited signs of immune system hyperactivity, such as elevated immunoglobulins or multiple autoantibodies, which might require the application of glucocorticoids. In addition, three novel missense variants of the NPC1 gene were identified. The findings suggest that immune activation should be considered as a “new” clinical phenotype of lysosomal storage diseases.
Collapse
Affiliation(s)
- Fan Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Guo
- Department of Gastroenterology, Wuhan Children’s Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuesong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- AmCare Genomics Lab, Guangzhou, China
| | | | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanqin Ying, ; Sainan Shu,
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanqin Ying, ; Sainan Shu,
| |
Collapse
|
10
|
Paramasivam P, Franke C, Stöter M, Höijer A, Bartesaghi S, Sabirsh A, Lindfors L, Arteta MY, Dahlén A, Bak A, Andersson S, Kalaidzidis Y, Bickle M, Zerial M. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J Cell Biol 2022; 221:e202110137. [PMID: 34882187 PMCID: PMC8666849 DOI: 10.1083/jcb.202110137] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023] Open
Abstract
Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.
Collapse
Affiliation(s)
- Prasath Paramasivam
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Höijer
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Boston, MA
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
11
|
Francelle L, Mazzulli JR. Neuroinflammation in aucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson’s disease. Brain Res 2022; 1780:147798. [PMID: 35063468 PMCID: PMC9126024 DOI: 10.1016/j.brainres.2022.147798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases (LSDs) are rare genetic disorders caused by a disruption in cellular clearance, resulting in pathological storage of undegraded lysosomal substrates. Recent clinical and genetic studies have uncovered links between multiple LSDs and common neurodegenerative diseases such as Parkinson's disease (PD). Here, we review recent literature describing the role of glia cells and neuroinflammation in PD and LSDs, including Gaucher disease (GD) and neuronal ceroid lipofuscinosis (NCL), and highlight converging inflammation pathways that lead to neuron loss. Recent data indicates that lysosomal dysfunction and accumulation of storage materials can initiate the activation of glial cells, through interaction with cell surface or cytosolic pattern recognition receptors that detect pathogenic aggregates of cellular debris. Activated glia cells could act to protect neurons through the elimination of toxic protein or lipid aggregates early in the disease process. However prolonged glial activation that occurs over several decades in chronic-age related neurodegeneration could induce the inappropriate elimination of synapses, leading to neuron loss. These studies provide mechanistic insight into the relationship between lysosomal dysfunction and glial activation, and offer novel therapeutic pathways for the treatment of PD and LSDs focused on reducing neuroinflammation and mitigating cell loss.
Collapse
|
12
|
Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021; 9:790568. [PMID: 34957117 PMCID: PMC8703004 DOI: 10.3389/fcell.2021.790568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.
Collapse
Affiliation(s)
- Fernanda Cabrera-Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Hady-Cohen R, Dragoumi P, Barca D, Plecko B, Lerman-Sagie T, Zafeiriou D. Safety and recommendations for vaccinations of children with inborn errors of metabolism. Eur J Paediatr Neurol 2021; 35:93-99. [PMID: 34673402 DOI: 10.1016/j.ejpn.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/18/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022]
Abstract
Inborn errors of metabolism (IEM) are genetic disorders due to a defective metabolic pathway. The incidence of each disorder is variable and depends on the respective population. Some disorders such as urea cycle disorders (UCD) and organic acidurias, pose a high risk for a metabolic crisis culminating in a life-threatening event, especially during infections; thus, vaccines may play a crucial role in prevention. However, there are different triggers for decompensations including the notion that vaccines themselves can activate fever and malaise. Additionally, many of the IEM include immunodeficiency, placing the patients at an increased risk for infectious diseases and possibly a weaker response to immunizations. Since metabolic crises and vaccine regimens intersect in the first years of life, the question whether to vaccinate the child occupies parents and medical staff. Many metabolic experts hesitate to vaccinate IEM patients, disregarding the higher risk from the direct infections. In this paper we summarize the published data regarding the safety and recommendations for vaccinations in IEM patients, with reference to the risk for decompensations and to the immunogenic component.
Collapse
Affiliation(s)
- R Hady-Cohen
- Pediatric Neurology Unit and Magen Rare Disease Center, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - P Dragoumi
- 1(st) Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Medical School, Thessaloniki, Greece
| | - D Barca
- Pediatric Neurology Clinic, Alexandru Obregia Hospital Pediatric Neurology Discipline II, Clinical Neurosciences Department, "Carol Davila" University of Medicine, Bucharest, Romania
| | - B Plecko
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - T Lerman-Sagie
- Pediatric Neurology Unit and Magen Rare Disease Center, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - D Zafeiriou
- 1(st) Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Medical School, Thessaloniki, Greece.
| |
Collapse
|
14
|
Sadhukhan T, Bagh MB, Sadhukhan S, Appu AP, Mondal A, Iiben JR, Li T, Coon SL, Mukherjee AB. Ablation of microRNA-155 and neuroinflammation in a mouse model of CLN1-disease. Biochem Biophys Res Commun 2021; 571:137-144. [PMID: 34325129 DOI: 10.1016/j.bbrc.2021.07.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL), also known as CLN1-disease, is a devastating neurodegenerative lysosomal storage disorder (LSD), caused by inactivating mutations in the CLN1 gene. The Cln1-/- mice, which mimic INCL, manifest progressive neuroinflammation contributing to neurodegeneration. However, the underlying mechanism of neuroinflammation in INCL and in Cln1-/- mice has remained elusive. Previously, it has been reported that microRNA-155 (miR-155) regulates inflammation and miR profiling in Cln1-/- mouse brain showed that the level of miR-155 was upregulated. Thus, we sought to determine whether ablation of miR-155 in Cln1-/- mice may suppress neuroinflammation in these mice. Towards this goal, we generated Cln1-/-/miR-155-/- double-knockout mice and evaluated the inflammatory signatures in the brain. We found that the brains of double-KO mice manifest progressive neuroinflammatory changes virtually identical to those found in Cln1-/- mice. We conclude that ablation of miR-155 in Cln1-/- mice does not alter the neuroinflammatory trajectory in INCL mouse model.
Collapse
Affiliation(s)
- Tamal Sadhukhan
- Section on Developmental Genetics, Division on Translational Medicine, USA.
| | - Maria B Bagh
- Section on Developmental Genetics, Division on Translational Medicine, USA
| | - Sriparna Sadhukhan
- Section on Developmental Genetics, Division on Translational Medicine, USA
| | - Abhilash P Appu
- Section on Developmental Genetics, Division on Translational Medicine, USA
| | - Avisek Mondal
- Section on Developmental Genetics, Division on Translational Medicine, USA
| | - James R Iiben
- Molecular Genomics Core (HNT417), Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, 20892-1830, USA
| | - Tianwei Li
- Molecular Genomics Core (HNT417), Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, 20892-1830, USA
| | - Steven L Coon
- Molecular Genomics Core (HNT417), Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, 20892-1830, USA
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division on Translational Medicine, USA.
| |
Collapse
|
15
|
Sadhukhan T, Bagh MB, Appu AP, Mondal A, Zhang W, Liu A, Mukherjee AB. In a mouse model of INCL reduced S-palmitoylation of cytosolic thioesterase APT1 contributes to microglia proliferation and neuroinflammation. J Inherit Metab Dis 2021; 44:1051-1069. [PMID: 33739454 DOI: 10.1002/jimd.12379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 01/19/2023]
Abstract
S-palmitoylation is a reversible posttranslational modification in which a 16-carbon saturated fatty acid (generally palmitate) is attached to specific cysteine residues in polypeptides via thioester linkage. Dynamic S-palmitoylation (palmitoylation-depalmitoylation), like phosphorylation-dephosphorylation, regulates the function of numerous proteins, especially in the brain. While a family of 23 palmitoyl-acyl transferases (PATS), commonly known as ZDHHCs, catalyze S-palmitoylation of proteins, the thioesterases, localized either in the cytoplasm (eg, APT1) or in the lysosome (eg, PPT1) mediate depalmitoylation. Previously, we reported that APT1 requires dynamic S-palmitoylation for shuttling between the cytosol and the plasma membrane. APT1 depalmitoylated H-Ras to regulate its signaling pathway that stimulates cell proliferation. Although we demonstrated that APT1 catalyzed its own depalmitoylation, the ZDHHC(s) that S-palmitoylated APT1 had remained unidentified. We report here that ZDHHC5 and ZDHHC23 catalyze APT1 S-palmitoylation. Intriguingly, lysosomal Ppt1-deficiency in Cln1-/- mouse, a reliable animal model of INCL, markedly reduced ZDHHC5 and ZDHHC23 levels. Remarkably, in the brain of these mice decreased ZDHHC5 and ZDHHC23 levels suppressed membrane-bound APT1, thereby, increasing plasma membrane-localized H-Ras, which activated its signaling pathway stimulating microglia proliferation. Increased inflammatory cytokines produced by microglia together with increased complement C1q level contributed to the transformation of astrocytes to neurotoxic A1 phenotype. Importantly, neuroinflammation was ameliorated by treatment of Cln1-/- mice with a PPT1-mimetic small molecule, N-tert(Butyl)hydroxylamine (NtBuHA). Our results revealed a novel pathway to neuropathology in an INCL mouse model and uncovered a previously unrecognized mechanism of the neuroprotective actions of NtBuHA and its potential as a drug target.
Collapse
Affiliation(s)
- Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Maria B Bagh
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Abhilash P Appu
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zhang
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Mantle D, Heaton RA, Hargreaves IP. Coenzyme Q10 and Immune Function: An Overview. Antioxidants (Basel) 2021; 10:759. [PMID: 34064686 PMCID: PMC8150987 DOI: 10.3390/antiox10050759] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of important roles in the cell that are required for optimal functioning of the immune system. These include its essential role as an electron carrier in the mitochondrial respiratory chain, enabling the process of oxidative phosphorylation to occur with the concomitant production of ATP, together with its role as a potential lipid-soluble antioxidant, protecting the cell against free radical-induced oxidation. Furthermore, CoQ10 has also been reported to have an anti-inflammatory role via its ability to repress inflammatory gene expression. Recently, CoQ10 has also been reported to play an important function within the lysosome, an organelle central to the immune response. In view of the differing roles CoQ10 plays in the immune system, together with the reported ability of CoQ10 supplementation to improve the functioning of this system, the aim of this article is to review the current literature available on both the role of CoQ10 in human immune function and the effect of CoQ10 supplementation on this system.
Collapse
Affiliation(s)
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Iain P. Hargreaves
- School of Pharmacy, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
17
|
Rosa NS, Bento JCDB, Caparbo VDF, Pereira RMR. Increased Serum Interleukin-6 and Tumor Necrosis Factor Alpha Levels in Fabry Disease: Correlation with Disease Burden. Clinics (Sao Paulo) 2021; 76:e2643. [PMID: 34287477 PMCID: PMC8266164 DOI: 10.6061/clinics/2021/e2643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/01/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Fabry disease (FD) is an X-linked lysosomal disease caused by variants of the GLA gene; the formation of defective alpha-galactosidase A contributes to the accumulation of substrates in several organs. Chronic inflammation is thought to contribute to organ damage in FD patients. METHODS In total, 36 classic FD patients (15 men/21 women) and 25 healthy controls (20 men/8 women) were assessed. The Mainz Severity Score Index (MSSI) was established after conducting interviews with the patients and chart review. Serum IL-6, IL-1β, and TNF-α levels were evaluated in both groups. RESULTS The mean age (years) for FD patients was 43.1±15.4 and that for the controls was 47.4±12.2 (p>0.05). Twenty-two patients (59.5%) were treated with enzyme replacement therapy (ERT). Serum IL-6 and TNF-α levels were significantly higher in FD patients than in the controls. Patients treated with ERT had higher serum IL-6 and TNF-α levels than those not treated with ERT. There was no difference in the serum IL-1β levels between patients treated with ERT and those who were not. The MSSI scores in the patients were correlated with serum levels of IL-6 (r=0.60, p<0.001) and TNF-α (r=0.45, p<0.001). CONCLUSION FD was associated with elevated serum levels of IL-6 and TNF-α in this cohort. The FD patients treated with ERT, particularly, women, exhibited higher levels of serum IL-6 and TNF-α than those not treated with ERT; the serum IL-6 and TNF-α levels were correlated with the MSSI scores reflecting greater disease burden.
Collapse
Affiliation(s)
- Nilton Salles Rosa
- Divisao de Reumatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | - Valéria de Falco Caparbo
- Divisao de Reumatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
18
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
19
|
Turkmen K, Baloglu I. Fabry disease: where are we now? Int Urol Nephrol 2020; 52:2113-2122. [DOI: 10.1007/s11255-020-02546-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
|
20
|
Dimitriou E, Paschali E, Kanariou M, Michelakakis H. Prevalence of antibodies to ganglioside and Hep 2 in Gaucher, Niemann - Pick type C and Sanfilippo diseases. Mol Genet Metab Rep 2019; 20:100477. [PMID: 31194046 PMCID: PMC6554541 DOI: 10.1016/j.ymgmr.2019.100477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/02/2022] Open
Abstract
Lysosomal Storage Diseases (LSDs) are rare genetic diseases, the majority of which are caused by specific lysosomal enzyme deficiencies and all are characterized by malfunctioning lysosomes. Lysosomes are key regulators of many different cellular processes and are vital for the function of the immune system. Several studies have shown the coexistence of LSDs and immune abnormalities. In this study, we investigated the presence of autoantibodies in the plasma of patients with Gaucher disease (GD; n = 6), Sanfilippo Syndrome B (SFB; n = 8) and Niemann - Pick type C disease (NPC; n = 5) before and following Miglustat treatment (n = 3). All were examined for antibodies to antigens of Hep-2 cells and antiganglioside antibodies (AGSA). No autoantibodies were detected in GD patients. 3/8 SFB patients showed only AGSA (2/3 IgM / IgG; 1/3 IgG), 3/8 only anti-Sm E/F and 2/8 showed both IgM / IgG or IgG AGSA and anti-Sm E/F. 3/5 NPC patients showed AGSA (2/3 IgM and IgG, 1/3 IgM) and one anti-Sm E/F and IgM AGSA. Following treatment one patient with no AGSA developed IgM AGSA and two with both IgG and IgM showed only IgG AGSA. In our study, investigating similar numbers of patients, autoantibodies were observed in NPC and SFB patients but not in GD patients. Our findings suggest that, independently of the development of an autoimmune disease in patients with LSDs, there seems to be an autoimmune activation that differs in different disorders. Further studies including more patients, also at different stages of disease and treatment, are needed in order to get further insight into the immune irregularities associated with different LSDs and their significance.
Collapse
Key Words
- AGSA, Antiganglioside antibodies
- AMA-M2, antimitochondrial antibodies to M2 antigen
- Autoimmunity
- GD, Gaucher disease
- Gaucher disease
- Immunoglobulins
- Jo-1, Histidyl-tRNA synthetase antigen
- Ku:Ku antigen(p70/p80)CENP A,B,C, Centromere proteins A,B,C
- LSDs, Lysosomal storage diseases
- NPC, Niemann Pick type C disease
- Niemann pick type C disease
- PM-Scl-70, Polymyositis - Scleroderma-70
- RNP, ribonucleoprotein
- SFB, Sanfilippo B syndrome
- SS-A, Sjögren's antigen A
- SS-B, Sjögren's syndrome antigen B
- Sanfilippo B syndrome
- Scl-70, Scleroderma-70
- Sm, Smith antigen (B,B′,D,E,F,G proteins)
- rib-P-Protein, Ribosomal P protein
Collapse
Affiliation(s)
- Evangelia Dimitriou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Evangelia Paschali
- Department of Immunology and Histocompatibility Specialized Center & Referral Center for Primary Immunodeficiencies, Paediatric Immunology, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Maria Kanariou
- Department of Immunology and Histocompatibility Specialized Center & Referral Center for Primary Immunodeficiencies, Paediatric Immunology, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| |
Collapse
|
21
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Lysosome motility and distribution: Relevance in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1076-1087. [DOI: 10.1016/j.bbadis.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
23
|
Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet 2018; 64:127-137. [PMID: 30451936 DOI: 10.1038/s10038-018-0534-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis (MPS) is a group of inherited conditions involving metabolic dysfunction. Lysosomal enzyme deficiency leads to the accumulation of glycosaminoglycan (GAG) resulting in systemic symptoms, and is categorized into seven types caused by deficiency in one of eleven different enzymes. The pathophysiological mechanism of these diseases has been investigated, indicating impaired autophagy in neuronal damage initiation, association of activated microglia and astrocytes with the neuroinflammatory processes, and involvement of tauopathy. A new inherited error of metabolism resulting in a multisystem disorder with features of the MPS was also identified. Additionally, new therapeutic methods are being developed that could improve conventional therapies, such as new recombinant enzymes that can penetrate the blood brain barrier, hematopoietic stem cell transplantation with reduced intensity conditioning, gene therapy using a viral vector system or gene editing, and substrate reduction therapy. In this review, we discuss the recent developments in MPS research and provide a framework for developing strategies.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, Department of Pediatrics, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| |
Collapse
|
24
|
Aspectos actuales de la enfermedad de Fabry. Med Clin (Barc) 2018. [DOI: 10.1016/j.medcli.2018.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Abstract
Enzymes are attractive as immunotherapeutics because they can catalyze shifts in the local availability of immunostimulatory and immunosuppressive signals. Clinical success of enzyme immunotherapeutics frequently hinges upon achieving sustained biocatalysis over relevant time scales. The time scale and location of biocatalysis are often dictated by the location of the substrate. For example, therapeutic enzymes that convert substrates distributed systemically are typically designed to have a long half-life in circulation, whereas enzymes that convert substrates localized to a specific tissue or cell population can be more effective when designed to accumulate at the target site. This Topical Review surveys approaches to improve enzyme immunotherapeutic efficacy via chemical modification, encapsulation, and immobilization that increases enzyme accumulation at target sites or extends enzyme half-life in circulation. Examples provided illustrate "replacement therapies" to restore deficient enzyme function, as well as "enhancement therapies" that augment native enzyme function via supraphysiologic doses. Existing FDA-approved enzyme immunotherapies are highlighted, followed by discussion of emerging experimental strategies such as those designed to enhance antitumor immunity or resolve inflammation.
Collapse
Affiliation(s)
- Shaheen A Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Sabrina L Freeman
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
26
|
Could enzyme replacement therapy promote immune tolerance in Gaucher disease type 1? Blood Cells Mol Dis 2018; 68:200-202. [DOI: 10.1016/j.bcmd.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/20/2022]
|
27
|
Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease. Sci Rep 2018; 8:157. [PMID: 29317695 PMCID: PMC5760709 DOI: 10.1038/s41598-017-18405-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
Gaucher disease is a lysosomal storage disease characterized by the malfunction of glucocerebrosidase resulting in the accumulation of glucosylceramide and other sphingolipids in certain cells. Although the disease symptoms are usually attributed to the storage of undigested substrate in lysosomes, here we show that glycosphingolipids accumulating in the plasma membrane cause profound changes in the properties of the membrane. The fluidity of the sphingolipid-enriched membrane decreased accompanied by the enlargement of raft-like ordered membrane domains. The mobility of non-raft proteins and lipids was severely restricted, while raft-resident components were only mildly affected. The rate of endocytosis of transferrin receptor, a non-raft protein, was significantly retarded in Gaucher cells, while the endocytosis of the raft-associated GM1 ganglioside was unaffected. Interferon-γ-induced STAT1 phosphorylation was also significantly inhibited in Gaucher cells. Atomic force microscopy revealed that sphingolipid accumulation was associated with a more compliant membrane capable of producing an increased number of nanotubes. The results imply that glycosphingolipid accumulation in the plasma membrane has significant effects on membrane properties, which may be important in the pathogenesis of Gaucher disease.
Collapse
|
28
|
Sadik CD, Bischof J, van Beek N, Dieterich A, Benoit S, Sárdy M, Worm M, Meller S, Gläser R, Zillikens D, Homey B, Setterfield J, Minassian D, Schmidt E, Dart J, Ibrahim SM. Genomewide association study identifies GALC
as susceptibility gene for mucous membrane pemphigoid. Exp Dermatol 2017; 26:1214-1220. [DOI: 10.1111/exd.13464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology; University of Lübeck; Lübeck Germany
| | - Julia Bischof
- Lübeck Institute of Experimental Dermatology; University of Lübeck; Lübeck Germany
| | - Nina van Beek
- Department of Dermatology, Allergy, and Venereology; University of Lübeck; Lübeck Germany
| | - Anabelle Dieterich
- Department of Dermatology, Allergy, and Venereology; University of Lübeck; Lübeck Germany
| | - Sandrine Benoit
- Department of Dermatology, Venereology and Allergology; University Hospital Würzburg; Würzburg Germany
| | - Miklós Sárdy
- Department of Dermatology and Allergy; Ludwig Maximilian University; Munich Germany
| | - Margitta Worm
- Department of Dermatology, Allergy, and Venereology; Charité; Berlin Germany
| | - Stephan Meller
- Department of Dermatology; Heinrich Heine University; Düsseldorf Germany
| | - Regine Gläser
- Department of Dermatology, Venereology, and Allergy; Christian Albrechts University zu Kiel; Kiel Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology; University of Lübeck; Lübeck Germany
| | - Bernhard Homey
- Department of Dermatology; Heinrich Heine University; Düsseldorf Germany
| | - Jane Setterfield
- Guy's and St Thomas's NHS Foundation Trust and King's College London; London UK
| | | | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology; University of Lübeck; Lübeck Germany
| | - John Dart
- Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology; London UK
| | - Saleh M. Ibrahim
- Lübeck Institute of Experimental Dermatology; University of Lübeck; Lübeck Germany
| | | | | |
Collapse
|
29
|
Gumus E, Haliloglu G, Karhan AN, Demir H, Gurakan F, Topcu M, Yuce A. Niemann-Pick disease type C in the newborn period: a single-center experience. Eur J Pediatr 2017; 176:1669-1676. [PMID: 28951965 DOI: 10.1007/s00431-017-3020-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
UNLABELLED Niemann-Pick disease type C (NPC) is a neurovisceral lysosomal storage disorder with a great variation in clinical spectrum and age at presentation. Clinical features of 10 NPC patients who presented in the newborn period between 1993 and 2015 at our center were retrospectively analyzed. Males and females were equally distributed; there was a history of parental consanguinity (n = 8) and first-degree relative with NPC (n = 3). Patients were symptomatic between 1 and 10 days (mean 3.6 ± 2.6 days). Age at diagnosis was between 1 and 30 days (mean 14.6 ± 13.3 days). Laboratory work-up included bone marrow aspiration (n = 8) and/or filipin staining (n = 4). Confirmation was done by molecular analysis, indicating NPC1 (n = 8) and NPC2 (n = 2) mutations. All patients had neonatal cholestasis and hepatosplenomegaly. Pulmonary involvement (n = 9) and fetal ascites (n = 2) were additional accompanying features. All but one died due to pulmonary complications (n = 6) and liver insufficiency (n = 3) between 1.5 and 36 months of age (mean 8.1 ± 10.8 months). Currently, one patient is alive at the age of 11 months without any neurological deficit. CONCLUSIONS Neonatal presentation is a rare form of NPC with exclusively visceral involvement in the newborn period and poor prognosis leading to premature death due to pulmonary complications and liver failure. What is known: • Neonatal presentation is a rare form of NPC with exclusively visceral involvement in the newborn period and poor prognosis leading to premature death. • Progressive liver disease is the most common cause of death among neonatal-onset NPC patients. What is new: • Natural course of neonatal-onset NPC may show variations. • Pulmonary involvement should be considered as an important cause of death in neonatal-onset cases, and appropriate precautions should be taken to prevent complications of respiratory insufficiency and airway infections.
Collapse
Affiliation(s)
- Ersin Gumus
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey.
| | - Goknur Haliloglu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Asuman Nur Karhan
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey
| | - Hulya Demir
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey
| | - Figen Gurakan
- Department of Pediatrics, VKV American Hospital, Istanbul, Turkey
| | - Meral Topcu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Aysel Yuce
- Department of Pediatric Gastroenterology, Hacettepe University Children's Hospital, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
30
|
Odler B, Cseh Á, Constantin T, Fekete G, Losonczy G, Tamási L, Benke K, Szilveszter B, Müller V. Long time enzyme replacement therapy stabilizes obstructive lung disease and alters peripheral immune cell subsets in Fabry patients. THE CLINICAL RESPIRATORY JOURNAL 2017; 11:942-950. [PMID: 26763180 DOI: 10.1111/crj.12446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Fabry disease is an X-linked lysosomal storage disorder, causing accumulation of globotriaosylceramid in different organs. Glycolipids are activators of different immune cell subsets the resulting inflammation is responsible for organ damage. Pulmonary involvement leads to airway inflammation; however, data on severity, as well as the effect of enzyme replacement therapy on lung function parameters and changes in peripheral immune cell subsets on lung involvement are sparse. METHODS Seven Fabry patients and four carriers underwent detailed clinical examinations screening for pulmonary manifestations. Repetitive measurements were performed on five patients on ERT (average follow-up 5 years). Patients with Fabry disease and control volunteers were included into peripheral blood cell measurements. RESULTS Lung involvement was present in all patients. Symptoms suggestive for lung disease were mild, however, obstructive ventilatory disorder, dominantly affecting small airways accompanied by hyperinflation was demonstrated in all affected patients. ERT resulted in small improvement of FEV1 in most treated patients. Decreased ratio of myeloid DC, Th17 cells while increase in T helper (Th)1 cells, and no change in Th2 and regulatory T (Treg) cells were detected in Fabry patients. CONCLUSIONS Fabry disease results mainly in mild symptoms related to lung involvement, characterized by moderate non-reversible obstructive ventilatory disorder. Stabilization of airway obstruction during follow-up was observed using ERT in most patients, emphasizing the importance of this treatment in respect of pulmonary manifestations. Changes of immune cell subsets in the peripheral blood might play a role in inflammatory process, including small airways in Fabry patient's lung.
Collapse
Affiliation(s)
- Balázs Odler
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Áron Cseh
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamás Constantin
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Lilla Tamási
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Kálmán Benke
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Bálint Szilveszter
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
- Semmelweis University, MTA-SE Lendület Cardiovascular Imaging Research Group, Heart and Vascular Center, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol Genet Metab 2017; 122:19-27. [PMID: 28947349 DOI: 10.1016/j.ymgme.2017.09.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023]
Abstract
Lysosomal storage diseases are usually considered to be pathologies in which the passive deposition of unwanted materials leads to functional changes in lysosomes. Lysosomal deposition of unmetabolized glycolipid substrates stimulates the activation of pathogenic cascades, including immunological processes, and particularly the activation of inflammation. In lysosomal storage diseases, the inflammatory response is continuously being activated because the stimulus cannot be eliminated. Consequently, inflammation becomes a chronic process. Lysosomes play a role in many steps of the immune response. Leukocyte perturbation and over-expression of immune molecules have been reported in Fabry disease. Innate immunity is activated by signals originating from dendritic cells via interactions between toll-like receptors and globotriaosylceramide (Gb3) and/or globotriaosylsphingosine (lyso-Gb3). Evidence indicates that these glycolipids can activate toll-like receptors, thus triggering inflammation and fibrosis cascades. In the kidney, Gb3 deposition is associated with the increased release of transforming growth factor beta and with epithelial-to-mesenchymal cell transition, leading to the over-expression of pro-fibrotic molecules and to renal fibrosis. Interstitial fibrosis is also a typical feature of heart involvement in Fabry disease. Endomyocardial biopsies show infiltration of lymphocytes and macrophages, suggesting a role for inflammation in causing tissue damage. Inflammation is present in all tissues and may be associated with other potentially pathologic processes such as apoptosis, impaired autophagy, and increases in pro-oxidative molecules, which could all contribute synergistically to tissue damage. In Fabry disease, the activation of chronic inflammation over time leads to organ damage. Therefore, enzyme replacement therapy must be started early, before this process becomes irreversible.
Collapse
Affiliation(s)
- Paula Rozenfeld
- IIFP (Instituto de Estudios Inmunológicos y Fisiopatológicos) UNLP, CONICET, Facultad de Ciencias Exactas, Buenos Aires, Argentina.
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Belcolle Hospital, Viterbo, Italy.
| |
Collapse
|
32
|
Schussler E, Yang A, Lyons JJ, Milner JD, Wang J. Persistent tryptase elevation in a patient with Gaucher disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 6:697-699. [PMID: 29033258 DOI: 10.1016/j.jaip.2017.08.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Edith Schussler
- Division of Pulmonology, Allergy & Immunology, Department of Pediatrics, Weill Cornell Medical College, New York, NY.
| | - Amy Yang
- Division of Medical Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Julie Wang
- Division of Allergy & Immunology, Department of Pediatrics, Icahn School of Medicine, New York, NY
| |
Collapse
|
33
|
Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1360182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hemanth R. Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| |
Collapse
|
34
|
Zahran AM, Eltayeb AA, Elsayh KI, Saad K, Ahmad FA, Ibrahim AIM. Activated and Memory T Lymphocytes in Children with Gaucher Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:263-269. [PMID: 27638481 DOI: 10.1007/s00005-016-0421-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
Gaucher disease (GD) is the most prevalent lysosomal storage disorder. Gaucher disease is associated with remarkable alterations in the immune system, and GD patients are more susceptible to infections and are at a higher risk of developing autoimmune disorders and malignancies. In a case-control study, we used three-color flow cytometric immunophenotyping for determination of the frequency of lymphocyte subpopulations and activated T lymphocytes among 18 children with GD1 under enzyme replacement therapy managed in Assiut University Hospitals. We found significant increases in the frequencies of total lymphocytes, CD19+, CD3+, CD4+, and CD8+ in children with GD1 when compared to healthy control. The frequencies of activated T lymphocytes (CD3+HLA-DR+), activated T-helper cells (CD4+HLA-DR+), and activated T-suppressor/cytotoxic cells (CD8+HLA-DR+) were significantly higher in GD1 as compared to healthy children. Our data show that the increased proportion of activated T lymphocytes in children with GD1 raises the issue of their possible involvement in the pathogenesis of the immune dysfunction seen in these patients. Our data suggested that the activated T lymphocytes could play a role in the clinical course of GD1. The relationship of these cells to immune disorders in GD1 children remains to be determined.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Azza A Eltayeb
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Khalid I Elsayh
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| | | | - Ahmad I M Ibrahim
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
35
|
Serrano D, Ghobadi F, Boulay G, Ilangumaran S, Lavoie C, Ramanathan S. GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes. Front Immunol 2017; 8:94. [PMID: 28223986 PMCID: PMC5293772 DOI: 10.3389/fimmu.2017.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
T lymphocytes from Gimap5lyp/lyp rats carrying a recessive mutation in the GTPase of immune-associated protein 5 (Gimap5) gene undergo spontaneous apoptosis. Molecular mechanisms underlying this survival defect are not yet clear. We have shown that Gimap5lyp/lyp T lymphocytes display reduced calcium influx following T cell antigen receptor (TCR) stimulation that was associated with impaired buffering of calcium by mitochondria. Here, we investigated the subcellular localization of GIMAP5 and its influence on Ca2+ response in HEK293T cells and T lymphocytes. The more abundantly expressed GIMAP5v2 localizes to the lysosome and certain endosomal vesicles. Gimap5lyp/lyp T lymphocytes showed increased accumulation of calcium in the lysosomes as evidenced by Gly-Phe β-naphthylamide (GPN) triggered Ca2+ release. As a corollary, GPN-induced Ca2+ flux was decreased in HEK293T cells expressing GIMAP5v2. Strikingly, TCR stimulation of rat, mouse, and human T lymphocytes increased lysosomal calcium content. Overall, our findings show that lysosomes modulate cellular Ca2+ response during T cell activation and that GIMAP5 regulates the lysosomal Ca2+ compartment in T lymphocytes.
Collapse
Affiliation(s)
- Daniel Serrano
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Farnaz Ghobadi
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Guylain Boulay
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lavoie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
36
|
Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Gaucher disease: Progress and ongoing challenges. Mol Genet Metab 2017; 120:8-21. [PMID: 27916601 PMCID: PMC5425955 DOI: 10.1016/j.ymgme.2016.11.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Over the past decades, tremendous progress has been made in the field of Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Many of the colossal achievements took place during the course of the sixty-year tenure of Dr. Roscoe Brady at the National Institutes of Health. These include the recognition of the enzymatic defect involved, the isolation and characterization of the protein, the localization and characterization of the gene and its nearby pseudogene, as well as the identification of the first mutant alleles in patients. The first treatment for Gaucher disease, enzyme replacement therapy, was conceived of, developed and tested at the Clinical Center of the National Institutes of Health. Advances including recombinant production of the enzyme, the development of mouse models, pioneering gene therapy experiments, high throughput screens of small molecules and the generation of induced pluripotent stem cell models have all helped to catapult research in Gaucher disease into the twenty-first century. The appreciation that mutations in the glucocerebrosidase gene are an important risk factor for parkinsonism further expands the impact of this work. However, major challenges still remain, some of which are described here, that will provide opportunities, excitement and discovery for the next generations of Gaucher investigators.
Collapse
Affiliation(s)
- Pramod K Mistry
- Yale University School of Medicine, Department of Internal Medicine, 333 Cedar Street, LMP 1080, P.O. Box 208019, New Haven, CT 06520-8019, United States.
| | - Grisel Lopez
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, United States.
| | - Norman W Barton
- Therapeutic Area Head Neuroscience, Shire plc, 300 Shire Way, Lexington, MA 02421, United States.
| | - Neal J Weinreb
- University of Miami Miller School of Medicine, Department of Human Genetics and Medicine (Hematology), UHealth Sylvester Coral Springs, 8170 Royal Palm Boulevard, Coral Springs, FL 33065, United States.
| | - Ellen Sidransky
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| |
Collapse
|
37
|
Astudillo L, Therville N, Colacios C, Ségui B, Andrieu-Abadie N, Levade T. Glucosylceramidases and malignancies in mammals. Biochimie 2016; 125:267-80. [DOI: 10.1016/j.biochi.2015.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023]
|
38
|
Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell 2016; 165:921-35. [PMID: 27114033 DOI: 10.1016/j.cell.2016.04.001] [Citation(s) in RCA: 537] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
Abstract
Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.
Collapse
|
39
|
Drugan C, Drugan TC, Miron N, Grigorescu-Sido P, Naşcu I, Cătană C. Evaluation of neopterin as a biomarker for the monitoring of Gaucher disease patients. ACTA ACUST UNITED AC 2016; 21:379-86. [PMID: 26903266 DOI: 10.1080/10245332.2016.1144336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Biomarker research is an important area of investigation in Gaucher disease, caused by an inherited deficiency of a lysosomal enzyme, glucocerebrosidase. We evaluated the usefulness of neopterin, as a novel biomarker reflecting chronic inflammation and immune system activation in Gaucher disease and analysed its evolution in response to enzyme replacement therapy (ERT). METHODS Circulating plasma neopterin levels in 31 patients with non-neuronopathic Gaucher disease were measured before and after the onset of ERT and were compared with those of 18 healthy controls. Plasma chitotriosidase activity was also monitored, as a reference biomarker, against which we evaluated the evolution of neopterin. RESULTS Neopterin levels were significantly increased in treatment-naïve patients (mean 11.90 ± 5.82 nM) compared with controls (6.63 ± 5.59 nM, Mann-Whitney U test P = 0.001), but returned to normal levels (6.92 ± 4.66 nM) following ERT. Investigating the diagnostic value of neopterin by receiver operating characteristic analysis, we found a cut-off value of 7.613 nM that corresponds to an area under the curve of 0.780 and indicates a good discrimination capacity, with a sensitivity of 0.774 and a specificity of 0.778. DISCUSSION Our results suggest that measurement of circulating neopterin may be considered as a novel test for the confirmation of diagnosis and monitoring of the efficacy of therapeutic intervention in Gaucher disease. Plasma neopterin levels reflect the global accumulation and activation of Gaucher cells and the extent of chronic immune activation in this disorder. CONCLUSION Neopterin may be an alternative storage cell biomarker in Gaucher disease, especially in chitotriosidase-deficient patients.
Collapse
Affiliation(s)
- Cristina Drugan
- a Department of Medical Biochemistry , "Iuliu Haţieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Tudor C Drugan
- b Department of Medical Informatics and Biostatistics , "Iuliu Haţieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Nicolae Miron
- c Department of Clinical Immunology , "Iuliu Haţieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Paula Grigorescu-Sido
- d Department of Paediatrics, Paediatric Clinic I , "Iuliu Haţieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ioana Naşcu
- d Department of Paediatrics, Paediatric Clinic I , "Iuliu Haţieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Cristina Cătană
- a Department of Medical Biochemistry , "Iuliu Haţieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
40
|
Köberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol 2016; 39:28-36. [PMID: 26895312 DOI: 10.1016/j.ceb.2016.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) are important transmembrane proteins of the innate immune system that detect invading pathogens and subsequently orchestrate an immune response. The ensuing inflammatory processes are connected to lipid metabolism at multiple levels. Here, we describe different aspects of how membrane lipids can shape the response of TLRs. Recent reports have uncovered the role of individual lipid species on membrane protein function and mouse models have contributed to the understanding of how changes in lipid metabolism alter TLR signaling, endocytosis, and cytokine secretion. Finally, we discuss the importance of systematic approaches to identify the function of individual lipid species or the composition of membrane lipids in TLR-related processes.
Collapse
Affiliation(s)
- Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
41
|
CD4+CD25highFoxp3+ Treg deficiency in a Brazilian patient with Gaucher disease and lupus nephritis. Hum Immunol 2016; 77:196-200. [DOI: 10.1016/j.humimm.2015.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022]
|
42
|
Bettman N, Avivi I, Rosenbaum H, Bisharat L, Katz T. Impaired migration capacity in monocytes derived from patients with Gaucher disease. Blood Cells Mol Dis 2015; 55:180-6. [DOI: 10.1016/j.bcmd.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 10/02/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
|
43
|
Wang F, Muller S. Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol 2015; 6:252. [PMID: 26042127 PMCID: PMC4437184 DOI: 10.3389/fimmu.2015.00252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a constitutive intracellular degradation pathway, displays essential role in the homeostasis of immune cells, antigen processing and presentation, and many other immune processes. Perturbation of autophagy has been shown to be related to several autoimmune syndromes, including systemic lupus erythematosus. Therefore, modulating autophagy processes appears most promising for therapy of such autoimmune diseases. Autophagy can be said non-selective or selective; it is classified into three main forms, namely macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA), the former process being by far the most intensively investigated. The role of CMA remains largely underappreciated in autoimmune diseases, even though CMA has been claimed to play pivotal functions into major histocompatibility complex class II-mediated antigen processing and presentation. Therefore, hereby, we give a special focus on CMA as a therapeutic target in autoimmune diseases, based in particular on our most recent experimental results where a phosphopeptide modulates lupus disease by interacting with CMA regulators. We propose that specifically targeting lysosomes and lysosomal pathways, which are central in autophagy processes and seem to be altered in certain autoimmune diseases such as lupus, could be an innovative approach of efficient and personalized treatment.
Collapse
Affiliation(s)
- Fengjuan Wang
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France
| | - Sylviane Muller
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France ; University of Strasbourg Institute for Advanced Study , Strasbourg , France
| |
Collapse
|
44
|
Abstract
OBJECTIVE To give a detailed characterization of pain in a large cohort of patients with Fabry disease. PATIENTS AND METHODS In this single-center, retrospective study we performed a detailed analysis of pain prevalence and characteristics of 132 patients with Fabry disease. Data were obtained by screening all medical records and using standardized extraction forms. Missing data were completed by telephone interviews. RESULTS We show that men and women with Fabry disease frequently experience pain, mostly starting in early childhood. Pain is typically episodic with pain attacks being the predominant phenotype. The most frequent localization is in the distal extremities, the most often named pain quality is "burning." Fabry pain is triggerable by physical activity and thermal stimuli and improves over time. Frequently used acute pain medication consists of nonsteroidal antirheumatics and nonopioid analgesics. Long-term medications such as drugs used to treat neuropathic pain syndromes are rarely taken by Fabry patients. CONCLUSIONS Pain in Fabry disease affects both sexes and has a complex phenotype that requires comprehensive assessment. Current pain questionnaires fail to cover the entire scope of Fabry pain. Although basically neuropathic, some types of Fabry pain may respond to nonsteroidal antirheumatics and nonopioid analgesics.
Collapse
|
45
|
Vairo F, Sperb-Ludwig F, Wilke M, Michellin-Tirelli K, Netto C, Neto EC, Schwartz I. Osteopontin: a potential biomarker of Gaucher disease. Ann Hematol 2015; 94:1119-25. [PMID: 25875742 DOI: 10.1007/s00277-015-2354-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Gaucher disease (GD) is one of the most prevalent lysosomal storage disorders and the disorder that has the greatest immune system involvement. Pathologic lipid accumulation in macrophages accounts for a small amount of the additional tissue mass in the liver and spleen. The additional increase may be related to an inflammatory response because Gaucher cells secrete inflammatory mediators. Osteopontin (OPN) is a protein identified in cancer cells and in bone cells that is produced by several types of immune cells including T-cells and macrophages. We report here elevated OPN levels in the plasma of type 1 GD patients and its sensitive response to enzyme replacement therapy. The mean OPN value of GD patients receiving ERT was similar to the values of controls and patients with other lysosomal disorders. When comparing untreated and treated GD patients, the p value was <0.001. In GD, OPN appears to be more sensitive to ERT than chitotriosidase and can be used during the follow-up of patients who are chitotriosidase deficient. Additional extended studies are required to relate variations in the OPN levels to clinical findings and response to therapy in GD patients.
Collapse
Affiliation(s)
- Filippo Vairo
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil,
| | | | | | | | | | | | | |
Collapse
|
46
|
Alroy J, Garganta C, Wiederschain G. Secondary biochemical and morphological consequences in lysosomal storage diseases. BIOCHEMISTRY (MOSCOW) 2014; 79:619-36. [DOI: 10.1134/s0006297914070049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Ge W, Li D, Gao Y, Cao X. The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 2014; 34:415-31. [DOI: 10.3109/08830185.2014.936587] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Thakur SA, Nyska A, White KL, Smith MJ, Auttachoat W, Germolec DR. Immunomodulatory activity of orphan drug Elmiron® in female B6C3F1/N mice. Food Chem Toxicol 2014; 68:196-203. [PMID: 24657363 DOI: 10.1016/j.fct.2014.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Interstitial cystitis (IC) is a chronic disorder characterized by bladder discomfort and urinary urgency in the absence of identifiable infection. Despite the expanding use in IC treatment and other chronic conditions, the effects of Elmiron® treatment on immune system remain unknown. Therefore, female B6C3F1/N mice were orally administered Elmiron® daily for 28-days at doses of 63, 125, 250, 500 or 1000mg/kg to evaluate its immunomodulatory effects. Mice treated with Elmiron® had a significant increase in absolute numbers of splenic macrophages (63, 500 and 1000mg/kg) and natural killer (NK) cells (250 and 1000mg/kg). Elmiron® treatment did not affect the humoral immune response or T cell proliferative response. However, innate immune responses such as phagocytosis by liver macrophages (1000mg/kg) and NK cell activity were enhanced (500 and 1000mg/kg). Further analysis using a disease resistance model showed that Elmiron®-treated mice demonstrated significantly increased anti-tumor activity against B16F10 melanoma cells at the 500 and 1000mg/kg doses. Collectively, we conclude that Elmiron® administration stimulates the immune system, increasing numbers of specific cell populations and enhancing macrophage phagocytosis and NK cell activity in female B6C3F1/N mice. This augmentation may have largely contributed to the reduced number of B16F10 melanoma tumors.
Collapse
Affiliation(s)
- Sheetal A Thakur
- Toxicology Branch, Division of National Toxicology Program, National Institute of Environmental Health Sciences, NIH, RTP, NC, United States.
| | - Abraham Nyska
- Integrated Laboratory Systems, RTP, NC, United States
| | - Kimber L White
- Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew J Smith
- Virginia Commonwealth University, Richmond, VA, United States
| | | | - Dori R Germolec
- Toxicology Branch, Division of National Toxicology Program, National Institute of Environmental Health Sciences, NIH, RTP, NC, United States.
| |
Collapse
|
49
|
McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, Butters T, Jury EC. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 2014; 124:712-24. [PMID: 24463447 DOI: 10.1172/jci69571] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft-associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE.
Collapse
|
50
|
Archer LD, Langford-Smith KJ, Bigger BW, Fildes JE. Mucopolysaccharide diseases: a complex interplay between neuroinflammation, microglial activation and adaptive immunity. J Inherit Metab Dis 2014; 37:1-12. [PMID: 23653226 DOI: 10.1007/s10545-013-9613-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Mucopolysaccharide (MPS) diseases are lysosomal storage disorders (LSDs) caused by deficiencies in enzymes required for glycosaminoglycan (GAG) catabolism. Mucopolysaccharidosis I (MPS I), MPS IIIA, MPS IIIB and MPS VII are deficient in the enzymes α-L-Iduronidase, Heparan-N-Sulphatase, N-Acetylglucosaminidase and Beta-Glucuronidase, respectively. Enzyme deficiency leads to the progressive multi-systemic build-up of heparan sulphate (HS) and dermatan sulphate (DS) within cellular lysosomes, followed by cell, tissue and organ damage and in particular neurodegeneration. Clinical manifestations of MPS are well established; however as lysosomes represent vital components of immune cells, it follows that lysosomal accumulation of GAGs could affect diverse immune functions and therefore influence disease pathogenesis. Theoretically, MPS neurodegeneration and GAGs could be substantiating a threat of danger and damage to alert the immune system for cellular clearance, which due to the progressive nature of MPS storage would propagate disease pathogenesis. Innate immunity appears to have a key role in MPS; however the extent of adaptive immune involvement remains to be elucidated. The current literature suggests a complex interplay between neuroinflammation, microglial activation and adaptive immunity in MPS disease.
Collapse
Affiliation(s)
- Louise D Archer
- The Transplant Centre, UHSM, University of Manchester, Manchester, England, UK
| | | | | | | |
Collapse
|