1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Dourlen P, Kilinc D, Landrieu I, Chapuis J, Lambert JC. BIN1 and Alzheimer's disease: the tau connection. Trends Neurosci 2025; 48:349-361. [PMID: 40268578 DOI: 10.1016/j.tins.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/25/2025]
Abstract
Bridging integrator 1 (BIN1) is a ubiquitously expressed protein that plays a critical role in endocytosis, trafficking and cytoskeletal dynamics. In 2010, BIN1 gene was reported as a major genetic risk factor for Alzheimer's disease (AD), which shifted the focus on its physiological and pathophysiological roles in the brain (at a time when data available were scarce). In this review, we discuss the multiple cerebral roles of BIN1, especially in regulating synaptic function, and the strong link between BIN1 and tau pathology, supported by recent evidence ranging from genetic and clinical/postmortem observations to molecular interactions.
Collapse
Affiliation(s)
- Pierre Dourlen
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Devrim Kilinc
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Isabelle Landrieu
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France; CNRS EMR9002-BSI-Integrative Structural Biology, Lille, France
| | - Julien Chapuis
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jean-Charles Lambert
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France.
| |
Collapse
|
3
|
Davidson O, Lee ML, Kam JP, Brush M, Rajesh A, Blazes M, Arterburn DE, Duerr E, Gibbons LE, Crane PK, Lee CS. Associations between dementia and exposure to topical glaucoma medications. J Alzheimers Dis 2025; 103:679-686. [PMID: 39834248 PMCID: PMC12036566 DOI: 10.1177/13872877241305745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND Some studies have suggested that glaucoma may be associated with neurodegeneration and a higher risk of dementia. OBJECTIVE To evaluate whether exposure to different categories of topical glaucoma medications is associated with differential dementia risks in people with glaucoma. METHODS We used data from Adult Changes in Thought, a population-based, prospective cohort study that follows cognitively normal older adults from Kaiser Permanente Washington (KPWA) until Alzheimer's disease (AD) and related dementia development. We included participants with a diagnosis of glaucoma, KPWA pharmacy records of filling topical glaucoma medication (alpha-adrenergic agonists [AAA], beta-adrenergic antagonists, miotics, carbonic anhydrase inhibitors [CAI], and prostaglandins) and at least 10 years of pharmacy records. Eight-year sliding windows were derived for each medication class by computing days on each medication starting 10 years earlier and excluding the most recent 2 years. Cox regression used all 5 classes of medication simultaneously to predict AD and all-cause dementia. RESULTS We included 521 participants (mean age 78 [range 65-96], 62% female) with APOE genotype data. Beta-adrenergic antagonists were the most frequently prescribed (n = 431) followed by prostaglandins (351), AAA (239), CAI (162), and miotics (142). Adjusting for time-varying exposure to other glaucoma medications, APOE, demographics, and smoking, each year of use of alpha-adrenergic agonists in an 8-year window was associated with a higher risk of developing dementia (HR = 1.33, 95% CI = 1.03-1.72). CONCLUSIONS Among older adults with treated glaucoma, exposure to alpha-adrenergic agonists appears to be associated with risk for developing all-cause dementia.
Collapse
Affiliation(s)
- Oliver Davidson
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Michael L Lee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jason P Kam
- Kaiser Permanente Washington, Seattle, WA, USA
| | | | - Anand Rajesh
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Marian Blazes
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - David E Arterburn
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Eric Duerr
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| |
Collapse
|
4
|
Taddei RN, E Duff K. Synapse vulnerability and resilience underlying Alzheimer's disease. EBioMedicine 2025; 112:105557. [PMID: 39891995 PMCID: PMC11833146 DOI: 10.1016/j.ebiom.2025.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025] Open
Abstract
Synapse preservation is key for healthy cognitive ageing, and synapse loss represents a critical anatomical basis of cognitive dysfunction in Alzheimer's disease (AD), predicting dementia onset, severity, and progression. Synapse loss is viewed as a primary pathologic event, preceding neuronal loss and brain atrophy in AD. Synapses may, therefore, represent one of the earliest and clinically most meaningful targets of the neuropathologic processes driving AD dementia. The synapse loss in AD is highly selective and targets particularly vulnerable synapses while leaving others, termed resilient, largely unaffected. Yet, the anatomic and molecular hallmarks of the vulnerable and resilient synapse populations and their association with AD neuropathologic changes (e.g. amyloid-β plaques and tau tangles) and memory dysfunction remain poorly understood. Characterising the selectively vulnerable and resilient synapses in AD may be key to understanding the mechanisms of cognitive preservation versus loss and enable the development of robust biomarkers and disease-modifying therapies for dementia.
Collapse
Affiliation(s)
- Raquel N Taddei
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, USA; UK Dementia Research Institute at UCL, Institute of Neurology, University College London, UK.
| | - Karen E Duff
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, UK
| |
Collapse
|
5
|
Șovrea AS, Boșca AB, Dronca E, Constantin AM, Crintea A, Suflețel R, Ștefan RA, Ștefan PA, Onofrei MM, Tschall C, Crivii CB. Non-Drug and Non-Invasive Therapeutic Options in Alzheimer's Disease. Biomedicines 2025; 13:84. [PMID: 39857667 PMCID: PMC11760896 DOI: 10.3390/biomedicines13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches. Singly or as an applied technique to change the permeability of the blood-brain-barrier (BBB), FUS and TPS have demonstrated the benefits of use in treating AD in animal and human studies. Adipose-derived stem Cells (ADSCs), gene therapy, and many other alternative methods (diet, sleep pattern, physical exercise, nanoparticle delivery) are also new potential treatments since multimodal approaches represent the modern trend in this disorder research therapies.
Collapse
Affiliation(s)
- Alina Simona Șovrea
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Adina Bianca Boșca
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Eleonora Dronca
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Anne-Marie Constantin
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Andreea Crintea
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Rada Suflețel
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Roxana Adelina Ștefan
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Paul Andrei Ștefan
- Radiology and Imaging Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania;
| | - Mădălin Mihai Onofrei
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Christoph Tschall
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Carmen-Bianca Crivii
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| |
Collapse
|
6
|
Ellis C, Ward NL, Rice M, Ball NJ, Walle P, Najdek C, Kilinc D, Lambert JC, Chapuis J, Goult BT. The structure of an amyloid precursor protein/talin complex indicates a mechanical basis of Alzheimer's disease. Open Biol 2024; 14:240185. [PMID: 39591990 PMCID: PMC11597407 DOI: 10.1098/rsob.240185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Misprocessing of amyloid precursor protein (APP) is one of the major causes of Alzheimer's disease. APP comprises a large extracellular region, a single transmembrane helix and a short cytoplasmic tail containing an NPxY motif (normally referred to as the YENPTY motif). Talins are synaptic scaffold proteins that connect the cytoskeletal machinery to the plasma membrane via binding NPxY motifs in the cytoplasmic tail of integrins. Here, we report the crystal structure of an APP/talin1 complex identifying a new way to couple the cytoskeletal machinery to synaptic sites through APP. Proximity ligation assay (PLA) confirmed the close proximity of talin1 and APP in primary neurons, and talin1 depletion had a dramatic effect on APP processing in cells. Structural modelling reveals APP might form an extracellular meshwork that mechanically couples the cytoskeletons of the pre- and post-synaptic compartments. We propose APP processing represents a mechanical signalling pathway whereby under tension, the cleavage sites in APP have varying accessibility to cleavage by secretases. This leads us to propose a new hypothesis for Alzheimer's, where misregulated APP dynamics result in loss of the mechanical integrity of the synapse, corruption and loss of mechanical binary data, and excessive generation of toxic plaque-forming Aβ42 peptide.
Collapse
Affiliation(s)
- Charles Ellis
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Natasha L. Ward
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Matthew Rice
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Neil J. Ball
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Pauline Walle
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Chloé Najdek
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Devrim Kilinc
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Julien Chapuis
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
7
|
Choi JH, Lee J, Kang U, Chang H, Cho KH. Network dynamics-based subtyping of Alzheimer's disease with microglial genetic risk factors. Alzheimers Res Ther 2024; 16:229. [PMID: 39415193 PMCID: PMC11481771 DOI: 10.1186/s13195-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The potential of microglia as a target for Alzheimer's disease (AD) treatment is promising, yet the clinical and pathological diversity within microglia, driven by genetic factors, poses a significant challenge. Subtyping AD is imperative to enable precise and effective treatment strategies. However, existing subtyping methods fail to comprehensively address the intricate complexities of AD pathogenesis, particularly concerning genetic risk factors. To address this gap, we have employed systems biology approaches for AD subtyping and identified potential therapeutic targets. METHODS We constructed patient-specific microglial molecular regulatory network models by utilizing existing literature and single-cell RNA sequencing data. The combination of large-scale computer simulations and dynamic network analysis enabled us to subtype AD patients according to their distinct molecular regulatory mechanisms. For each identified subtype, we suggested optimal targets for effective AD treatment. RESULTS To investigate heterogeneity in AD and identify potential therapeutic targets, we constructed a microglia molecular regulatory network model. The network model incorporated 20 known risk factors and crucial signaling pathways associated with microglial functionality, such as inflammation, anti-inflammation, phagocytosis, and autophagy. Probabilistic simulations with patient-specific genomic data and subsequent dynamics analysis revealed nine distinct AD subtypes characterized by core feedback mechanisms involving SPI1, CASS4, and MEF2C. Moreover, we identified PICALM, MEF2C, and LAT2 as common therapeutic targets among several subtypes. Furthermore, we clarified the reasons for the previous contradictory experimental results that suggested both the activation and inhibition of AKT or INPP5D could activate AD through dynamic analysis. This highlights the multifaceted nature of microglial network regulation. CONCLUSIONS These results offer a means to classify AD patients by their genetic risk factors, clarify inconsistent experimental findings, and advance the development of treatments tailored to individual genotypes for AD.
Collapse
Affiliation(s)
- Jae Hyuk Choi
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jonghoon Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Uiryong Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongjun Chang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Zhang B, Zhao J, Yan C, Bai Y, Guo P, Wang C, Wang Z, Du G, Liu A. Combination of RNA-seq and proteomics reveals the mechanism of DL0410 treatment in APP/PS1 transgenic mouse model of Alzheimer's disease. Biomed Pharmacother 2024; 177:116940. [PMID: 38925020 DOI: 10.1016/j.biopha.2024.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
There is a lack of a systematic understanding of the specific mechanism of action of DL0410 in AD treatment. In this study, the combination of RNA-seq and proteomics was firstly employed to uncover the mechanism of action of DL0410 in APP/PS1 transgenic mice. The results of behavioral tests showed that oral administration of DL0410 for 8 weeks improved memory and cognition of APP/PS1 mice. DL0410 significantly reduced β-amyloid deposition and resulted in significant upregulation of synaptophysin, PSD95 and NMDAR/ CaMKⅡ signaling pathway in the hippocampus and cortex, indicating that DL0410 improved synaptic plasticity in APP/PS1 mice, which agrees with the results of RNA-seq and proteomics. Furthermore, the enrichment results of differentially expressed genes identified by RNA-seq and proteomics demonstrate the potential protective effects of DL0410 against oxidative stress and mitochondrial dysfunction. As expected, DL0410 dose-dependently ameliorated oxidative damage and markedly increased the expression of PGC-1α, TFAM, SOD1 and SOD2. Mitochondrial high-resolution respirometry results revealed that mitochondrial respiratory function was significantly improved in APP/PS1 mice administered with DL0410. In addition, DL0410 treatment reduced oxidative damage, strengthened antioxidant system and improved mitochondrial function in Aβ-induced HT22 cells. Altogether, our findings suggest the potential of DL0410 as a novel candidate for AD treatment.
Collapse
Affiliation(s)
- Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Qilu Hospital of Shandong University, Qingdao 266000, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Caiqin Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiming Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Sahelijo N, Rajagopalan P, Qian L, Rahman R, Priyadarshi D, Goldstein D, Thomopoulos SI, Bennett DA, Farrer LA, Stein TD, Shen L, Huang H, Nho K, Andrew SJ, Davatzikos C, Thompson PM, Tcw J, Jun GR. Brain Cell-based Genetic Subtyping and Drug Repositioning for Alzheimer Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.21.24309255. [PMID: 38947056 PMCID: PMC11213108 DOI: 10.1101/2024.06.21.24309255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Alzheimer's Disease (AD) is characterized by its complex and heterogeneous etiology and gradual progression, leading to high drug failure rates in late-stage clinical trials. In order to better stratify individuals at risk for AD and discern potential therapeutic targets we employed a novel procedure utilizing cell-based co-regulated gene networks and polygenic risk scores (cbPRSs). After defining genetic subtypes using extremes of cbPRS distributions, we evaluated correlations of the genetic subtypes with previously defined AD subtypes defined on the basis of domain-specific cognitive functioning and neuroimaging biomarkers. Employing a PageRank algorithm, we identified priority gene targets for the genetic subtypes. Pathway analysis of priority genes demonstrated associations with neurodegeneration and suggested candidate drugs currently utilized in diabetes, hypertension, and epilepsy for repositioning in AD. Experimental validation utilizing human induced pluripotent stem cell (hiPSC)-derived astrocytes demonstrated the modifying effects of estradiol, levetiracetam, and pioglitazone on expression of APOE and complement C4 genes, suggesting potential repositioning for AD.
Collapse
|
10
|
Abdallah AE. Review on anti-alzheimer drug development: approaches, challenges and perspectives. RSC Adv 2024; 14:11057-11088. [PMID: 38586442 PMCID: PMC10995770 DOI: 10.1039/d3ra08333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Alzheimer is an irreversible progressive neurodegenerative disease that causes failure of cerebral neurons and disability of the affected person to practice normal daily life activities. There is no concrete evidence to identify the exact reason behind the disease, so several relevant hypotheses emerged, highlighting many possible therapeutic targets, such as acetylcholinesterase, cholinergic receptors, N-methyl d-aspartate receptors, phosphodiesterase, amyloid β protein, protein phosphatase 2A, glycogen synthase kinase-3 beta, β-secretase, γ-secretase, α-secretase, serotonergic receptors, glutaminyl cyclase, tumor necrosis factor-α, γ-aminobutyric acid receptors, and mitochondria. All of these targets have been involved in the design of new potential drugs. An extensive number of these drugs have been studied in clinical trials. However, only galantamine, donepezil, and rivastigmine (ChEIs), memantine (NMDA antagonist), and aducanumab and lecanemab (selective anti-Aβ monoclonal antibodies) have been approved for AD treatment. Many drugs failed in the clinical trials to such an extent that questions have been posed about the significance of some of the aforementioned targets. On the contrary, the data of other drugs were promising and shed light on the significance of their targets for the development of new potent anti-alzheimer drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University 11884 Cairo Egypt
| |
Collapse
|
11
|
Zhang Q, Liu J, Liu H, Ao L, Xi Y, Chen D. Genome-wide epistasis analysis reveals gene-gene interaction network on an intermediate endophenotype P-tau/Aβ 42 ratio in ADNI cohort. Sci Rep 2024; 14:3984. [PMID: 38368488 PMCID: PMC10874417 DOI: 10.1038/s41598-024-54541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly worldwide. The exact etiology of AD, particularly its genetic mechanisms, remains incompletely understood. Traditional genome-wide association studies (GWAS), which primarily focus on single-nucleotide polymorphisms (SNPs) with main effects, provide limited explanations for the "missing heritability" of AD, while there is growing evidence supporting the important role of epistasis. In this study, we performed a genome-wide SNP-SNP interaction detection using a linear regression model and employed multiple GPUs for parallel computing, significantly enhancing the speed of whole-genome analysis. The cerebrospinal fluid (CSF) phosphorylated tau (P-tau)/amyloid-[Formula: see text] (A[Formula: see text]) ratio was used as a quantitative trait (QT) to enhance statistical power. Age, gender, and clinical diagnosis were included as covariates to control for potential non-genetic factors influencing AD. We identified 961 pairs of statistically significant SNP-SNP interactions, explaining a high-level variance of P-tau/A[Formula: see text] level, all of which exhibited marginal main effects. Additionally, we replicated 432 previously reported AD-related genes and found 11 gene-gene interaction pairs overlapping with the protein-protein interaction (PPI) network. Our findings may contribute to partially explain the "missing heritability" of AD. The identified subnetwork may be associated with synaptic dysfunction, Wnt signaling pathway, oligodendrocytes, inflammation, hippocampus, and neuronal cells.
Collapse
Affiliation(s)
- Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Junfeng Liu
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China
| | - Lang Ao
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Dandan Chen
- School of Automation Engineering, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China.
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China.
| |
Collapse
|
12
|
Gunter NB, Gebre RK, Graff-Radford J, Heckman MG, Jack CR, Lowe VJ, Knopman DS, Petersen RC, Ross OA, Vemuri P, Ramanan VK. Machine Learning Models of Polygenic Risk for Enhanced Prediction of Alzheimer Disease Endophenotypes. Neurol Genet 2024; 10:e200120. [PMID: 38250184 PMCID: PMC10798228 DOI: 10.1212/nxg.0000000000200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
Background and Objectives Alzheimer disease (AD) has a polygenic architecture, for which genome-wide association studies (GWAS) have helped elucidate sequence variants (SVs) influencing susceptibility. Polygenic risk score (PRS) approaches show promise for generating summary measures of inherited risk for clinical AD based on the effects of APOE and other GWAS hits. However, existing PRS approaches, based on traditional regression models, explain only modest variation in AD dementia risk and AD-related endophenotypes. We hypothesized that machine learning (ML) models of polygenic risk (ML-PRS) could outperform standard regression-based PRS methods and therefore have the potential for greater clinical utility. Methods We analyzed combined data from the Mayo Clinic Study of Aging (n = 1,791) and the Alzheimer's Disease Neuroimaging Initiative (n = 864). An AD PRS was computed for each participant using the top common SVs obtained from a large AD dementia GWAS. In parallel, ML models were trained using those SV genotypes, with amyloid PET burden as the primary outcome. Secondary outcomes included amyloid PET positivity and clinical diagnosis (cognitively unimpaired vs impaired). We compared performance between ML-PRS and standard PRS across 100 training sessions with different data splits. In each session, data were split into 80% training and 20% testing, and then five-fold cross-validation was used within the training set to ensure the best model was produced for testing. We also applied permutation importance techniques to assess which genetic factors contributed most to outcome prediction. Results ML-PRS models outperformed the AD PRS (r2 = 0.28 vs r2 = 0.24 in test set) in explaining variation in amyloid PET burden. Among ML approaches, methods accounting for nonlinear genetic influences were superior to linear methods. ML-PRS models were also more accurate when predicting amyloid PET positivity (area under the curve [AUC] = 0.80 vs AUC = 0.63) and the presence of cognitive impairment (AUC = 0.75 vs AUC = 0.54) compared with the standard PRS. Discussion We found that ML-PRS approaches improved upon standard PRS for prediction of AD endophenotypes, partly related to improved accounting for nonlinear effects of genetic susceptibility alleles. Further adaptations of the ML-PRS framework could help to close the gap of remaining unexplained heritability for AD and therefore facilitate more accurate presymptomatic and early-stage risk stratification for clinical decision-making.
Collapse
Affiliation(s)
- Nathaniel B Gunter
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Robel K Gebre
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Jonathan Graff-Radford
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Michael G Heckman
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Clifford R Jack
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Val J Lowe
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - David S Knopman
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Ronald C Petersen
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Owen A Ross
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Prashanthi Vemuri
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Vijay K Ramanan
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| |
Collapse
|
13
|
Zhang J, Wang Y, Zhang Y, Yao J. Genome-wide association study in Alzheimer's disease: a bibliometric and visualization analysis. Front Aging Neurosci 2023; 15:1290657. [PMID: 38094504 PMCID: PMC10716290 DOI: 10.3389/fnagi.2023.1290657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Thousands of research studies concerning genome-wide association studies (GWAS) in Alzheimer's disease (AD) have been published in the last decades. However, a comprehensive understanding of the current research status and future development trends of GWAS in AD have not been clearly shown. In this study, we tried to gain a systematic overview of GWAS in AD by bibliometric and visualization analysis. METHODS The literature search terms are: ("genome-wide analysis" or "genome-wide association study" or "whole-genome analysis") AND ("Alzheimer's Disease" or "Alzheimer Disease"). Relevant publications were extracted from the Web of Science Core Collection (WoSCC) database. Collected data were further analyzed using VOSviewer, CiteSpace and R package Bibliometrix. The countries, institutions, authors and scholar collaborations were investigated. The co-citation analysis of publications was visualized. In addition, research hotspots and fronts were examined. RESULTS A total of 1,350 publications with 59,818 citations were identified. The number of publications and citations presented a significant rising trend since 2013. The United States was the leading country with an overwhelming number of publications (775) and citations (42,237). The University of Washington and Harvard University were the most prolific institutions with 101 publications each. Bennett DA was the most influential researcher with the highest local H-index. Neurobiology of Aging was the journal with the highest number of publications. Aβ, tau, immunity, microglia and DNA methylation were research hotspots. Disease and causal variants were research fronts. CONCLUSION The most frequently studied AD pathogenesis and research hotspots are (1) Aβ and tau, (2) immunity and microglia, with TREM2 as a potential immunotherapy target, and (3) DNA methylation. The research fronts are (1) looking for genetic similarities between AD and other neurological diseases and syndromes, and (2) searching for causal variants of AD. These hotspots suggest noteworthy directions for future studies on AD pathogenesis and genetics, in which basic research regarding immunity is promising for clinical conversion. The current under-researched directions are (1) GWAS in AD biomarkers based on large sample sizes, (2) studies of causal variants of AD, and (3) GWAS in AD based on non-European populations, which need to be strengthened in the future.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinuo Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Youn K, Ho CT, Jun M. Investigating the Potential Anti-Alzheimer's Disease Mechanism of Marine Polyphenols: Insights from Network Pharmacology and Molecular Docking. Mar Drugs 2023; 21:580. [PMID: 37999404 PMCID: PMC10672357 DOI: 10.3390/md21110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Marine polyphenols, including eckol(EK), dieckol(DK), and 8,8'-bieckol(BK), have attracted attention as bioactive ingredients for preventing Alzheimer's disease (AD). Since AD is a multifactorial disorder, the present study aims to provide an unbiased elucidation of unexplored targets of AD mechanisms and a systematic prediction of effective preventive combinations of marine polyphenols. Based on the omics data between each compound and AD, a protein-protein interaction (PPI) network was constructed to predict potential hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to provide further biological insights. In the PPI network of the top 10 hub genes, AKT1, SRC, EGFR, and ESR1 were common targets of EK and BK, whereas PTGS2 was a common target of DK and BK. GO and KEGG pathway analysis revealed that the overlapped genes between each compound and AD were mainly enriched in EGFR tyrosine kinase inhibitor resistance, the MAPK pathway, and the Rap1 and Ras pathways. Finally, docking validation showed stable binding between marine polyphenols and their top hub gene via the lowest binding energy and multiple interactions. The results expanded potential mechanisms and novel targets for AD, and also provided a system-level insight into the molecular targets of marine polyphenols against AD.
Collapse
Affiliation(s)
- Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
15
|
Passaro ML, Matarazzo F, Abbadessa G, Pezone A, Porcellini A, Tranfa F, Rinaldi M, Costagliola C. Glaucoma as a Tauopathy-Is It the Missing Piece in the Glaucoma Puzzle? J Clin Med 2023; 12:6900. [PMID: 37959365 PMCID: PMC10650423 DOI: 10.3390/jcm12216900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disorder affecting the visual system which can result in vision loss and blindness. The pathogenetic mechanisms underlying glaucomatous optic neuropathy are ultimately enigmatic, prompting ongoing investigations into its potential shared pathogenesis with other neurodegenerative neurological disorders. Tauopathies represent a subclass of neurodegenerative diseases characterized by the abnormal deposition of tau protein within the brain and consequent microtubule destabilization. The extended spectrum of tauopathies includes conditions such as frontotemporal dementias, progressive supranuclear palsy, chronic traumatic encephalopathy, and Alzheimer's disease. Notably, recent decades have witnessed emerging documentation of tau inclusion among glaucoma patients, providing substantiation that this ocular disease may similarly manifest features of tauopathies. These studies found that: (i) aggregated tau inclusions are present in the somatodendritic compartment of RGCs in glaucoma patients; (ii) the etiology of the disease may affect tau splicing, phosphorylation, oligomerization, and subcellular localization; and (iii) short interfering RNA against tau, administered intraocularly, significantly decreased retinal tau accumulation and enhanced RGC somas and axon survival, demonstrating a crucial role for tau modifications in ocular hypertension-induced neuronal injury. Here, we examine the most recent evidence surrounding the interplay between tau protein dysregulation and glaucomatous neurodegeneration. We explore the novel perspective of glaucoma as a tau-associated disorder and open avenues for cross-disciplinary collaboration and new treatment strategies.
Collapse
Affiliation(s)
- Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | | | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Antonio Pezone
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Antonio Porcellini
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| |
Collapse
|
16
|
Zeng Y, Cao S, Li N, Tang J, Lin G. Identification of key lipid metabolism-related genes in Alzheimer's disease. Lipids Health Dis 2023; 22:155. [PMID: 37736681 PMCID: PMC10515010 DOI: 10.1186/s12944-023-01918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) represents profound degenerative conditions of the brain that cause significant deterioration in memory and cognitive function. Despite extensive research on the significant contribution of lipid metabolism to AD progression, the precise mechanisms remain incompletely understood. Hence, this study aimed to identify key differentially expressed lipid metabolism-related genes (DELMRGs) in AD progression. METHODS Comprehensive analyses were performed to determine key DELMRGs in AD compared to controls in GSE122063 dataset from Gene Expression Omnibus. Additionally, the ssGSEA algorithm was utilized for estimating immune cell levels. Subsequently, correlations between key DELMRGs and each immune cell were calculated specifically in AD samples. The key DELMRGs expression levels were validated via two external datasets. Furthermore, gene set enrichment analysis (GSEA) was utilized for deriving associated pathways of key DELMRGs. Additionally, miRNA-TF regulatory networks of the key DELMRGs were constructed using the miRDB, NetworkAnalyst 3.0, and Cytoscape software. Finally, based on key DELMRGs, AD samples were further segmented into two subclusters via consensus clustering, and immune cell patterns and pathway differences between the two subclusters were examined. RESULTS Seventy up-regulated and 100 down-regulated DELMRGs were identified. Subsequently, three key DELMRGs (DLD, PLPP2, and PLAAT4) were determined utilizing three algorithms [(i) LASSO, (ii) SVM-RFE, and (iii) random forest]. Specifically, PLPP2 and PLAAT4 were up-regulated, while DLD exhibited downregulation in AD cerebral cortex tissue. This was validated in two separate external datasets (GSE132903 and GSE33000). The AD group exhibited significantly altered immune cell composition compared to controls. In addition, GSEA identified various pathways commonly associated with three key DELMRGs. Moreover, the regulatory network of miRNA-TF for key DELMRGs was established. Finally, significant differences in immune cell levels and several pathways were identified between the two subclusters. CONCLUSION This study identified DLD, PLPP2, and PLAAT4 as key DELMRGs in AD progression, providing novel insights for AD prevention/treatment.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Nannan Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Juan Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
17
|
Nassan M, Daghlas I, Piras IS, Rogalski E, Reus LM, Pijnenburg Y, Cuddy LK, Saxena R, Mesulam MM, Huentelman M. Evaluating the association between genetically proxied ACE inhibition and dementias. Alzheimers Dement 2023; 19:3894-3901. [PMID: 37023267 DOI: 10.1002/alz.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
INTRODUCTION Angiotensin-converting enzyme (ACE) has been implicated in the metabolism of amyloid beta; however, the causal effect of ACE inhibition on risk of Alzheimer's disease (AD) dementia and other common dementias is largely unknown. METHODS We examined the causal association of genetically proxied ACE inhibition with four types of dementias using a two-sample Mendelian randomization (MR) approach. RESULTS Genetically proxied ACE inhibition was associated with increased risk of AD dementia (odds ratio per one standard deviation reduction in serum ACE [95% confidence interval]; 1.07 [1.04-1.10], P = 5 × 10-07 ) and frontotemporal dementia (1.16 [1.04-1.29], P = 0.01) but not with Lewy body dementia or vascular dementia (P > 0.05). These findings were independently replicated and remained consistent in sensitivity analyses. DISCUSSION This comprehensive MR study provided genetic evidence for an association between ACE inhibition and the risk for AD and frontotemporal dementias. These results should encourage further studies of the neurocognitive effects of ACE inhibition. HIGHLIGHTS This study evaluated genetically proxied angiotensin-converting enzyme (ACE) inhibition association with dementias. The results suggest an association between ACE inhibition and Alzheimer's disease. The results suggest an association between ACE inhibition and frontotemporal dementia. Those associations can be interpreted as potentially causal.
Collapse
Affiliation(s)
- Malik Nassan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, Illinois, USA
| | - Iyas Daghlas
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Tgen, Phoenix, Arizona, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, Illinois, USA
| | - Lianne M Reus
- Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leah K Cuddy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, Illinois, USA
| | - Matt Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Tgen, Phoenix, Arizona, USA
| |
Collapse
|
18
|
Juul Rasmussen I, Frikke-Schmidt R. Modifiable cardiovascular risk factors and genetics for targeted prevention of dementia. Eur Heart J 2023; 44:2526-2543. [PMID: 37224508 PMCID: PMC10481783 DOI: 10.1093/eurheartj/ehad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Dementia is a major global challenge for health and social care in the 21st century. A third of individuals >65 years of age die with dementia, and worldwide incidence numbers are projected to be higher than 150 million by 2050. Dementia is, however, not an inevitable consequence of old age; 40% of dementia may theoretically be preventable. Alzheimer's disease (AD) accounts for approximately two-thirds of dementia cases and the major pathological hallmark of AD is accumulation of amyloid-β. Nevertheless, the exact pathological mechanisms of AD remain unknown. Cardiovascular disease and dementia share several risk factors and dementia often coexists with cerebrovascular disease. In a public health perspective, prevention is crucial, and it is suggested that a 10% reduction in prevalence of cardiovascular risk factors could prevent more than nine million dementia cases worldwide by 2050. Yet this assumes causality between cardiovascular risk factors and dementia and adherence to the interventions over decades for a large number of individuals. Using genome-wide association studies, the entire genome can be scanned for disease/trait associated loci in a hypothesis-free manner, and the compiled genetic information is not only useful for pinpointing novel pathogenic pathways but also for risk assessments. This enables identification of individuals at high risk, who likely will benefit the most from a targeted intervention. Further optimization of the risk stratification can be done by adding cardiovascular risk factors. Additional studies are, however, highly needed to elucidate dementia pathogenesis and potential shared causal risk factors between cardiovascular disease and dementia.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Valverde-Salazar V, Ruiz-Gabarre D, García-Escudero V. Alzheimer's Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:1460. [PMID: 37507998 PMCID: PMC10376369 DOI: 10.3390/antiox12071460] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterised by a marked decline of both memory and cognition, along with pathophysiological hallmarks including amyloid beta peptide (Aβ) accumulation, tau protein hyperphosphorylation, neuronal loss and inflammation in the brain. Additionally, oxidative stress caused by an imbalance between free radicals and antioxidants is considered one of the main risk factors for AD, since it can result in protein, lipid and nucleic acid damage and exacerbate Aβ and tau pathology. To date, there is a lack of successful pharmacological approaches to cure or even ameliorate the terrible impact of this disease. Due to this, dietary compounds with antioxidative and anti-inflammatory properties acquire special relevance as potential therapeutic agents. In this context, green tea, and its main bioactive compound, epigallocatechin-3-gallate (EGCG), have been targeted as a plausible option for the modulation of AD. Specifically, EGCG acts as an antioxidant by regulating inflammatory processes involved in neurodegeneration such as ferroptosis and microglia-induced cytotoxicity and by inducing signalling pathways related to neuronal survival. Furthermore, it reduces tau hyperphosphorylation and aggregation and promotes the non-amyloidogenic route of APP processing, thus preventing the formation of Aβ and its subsequent accumulation. Taken together, these results suggest that EGCG may be a suitable candidate in the search for potential therapeutic compounds for neurodegenerative disorders involving inflammation and oxidative stress, including Alzheimer's disease.
Collapse
Affiliation(s)
- Víctor Valverde-Salazar
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Vega García-Escudero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, 28031 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
20
|
Lambert JC, Ramirez A, Grenier-Boley B, Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease. Mol Psychiatry 2023; 28:2716-2727. [PMID: 37131074 PMCID: PMC10615767 DOI: 10.1038/s41380-023-02076-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
21
|
Huang YR, Xie XX, Yang J, Sun XY, Niu XY, Yang CG, Li LJ, Zhang L, Wang D, Liu CY, Hou SJ, Jiang CY, Xu YM, Liu RT. ArhGAP11A mediates amyloid-β generation and neuropathology in an Alzheimer's disease-like mouse model. Cell Rep 2023; 42:112624. [PMID: 37302068 DOI: 10.1016/j.celrep.2023.112624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Amyloid-β (Aβ) plays an important role in the neuropathology of Alzheimer's disease (AD), but some factors promoting Aβ generation and Aβ oligomer (Aβo) neurotoxicity remain unclear. We here find that the levels of ArhGAP11A, a Ras homology GTPase-activating protein, significantly increase in patients with AD and amyloid precursor protein (APP)/presenilin-1 (PS1) mice. Reducing the ArhGAP11A level in neurons not only inhibits Aβ generation by decreasing the expression of APP, PS1, and β-secretase (BACE1) through the RhoA/ROCK/Erk signaling pathway but also reduces Aβo neurotoxicity by decreasing the expressions of apoptosis-related p53 target genes. In APP/PS1 mice, specific reduction of the ArhGAP11A level in neurons significantly reduces Aβ production and plaque deposition and ameliorates neuronal damage, neuroinflammation, and cognitive deficits. Moreover, Aβos enhance ArhGAP11A expression in neurons by activating E2F1, which thus forms a deleterious cycle. Our results demonstrate that ArhGAP11A may be involved in AD pathogenesis and that decreasing ArhGAP11A expression may be a promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Ya-Ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Xiu Xie
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Medical Key Laboratory of Neurogenetic and Neurodegenerative Disease, Zhengzhou 450052, Henan, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Ningxia University, Yinchuan 750021, Ningxia, China
| | - Cheng-Gang Yang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, China; Department of Research and Development, Gu'an Bojian Bio-Technology Co., Ltd., Langfang 065000, Hebei, China
| | - Ling-Jie Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lun Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dan Wang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, China
| | - Chun-Yu Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Shandong Agricultural University, Tai'an 271000, Shandong, China
| | - Sheng-Jie Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Yang Jiang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Key Laboratory of Cerebrovascular Disease of Henan Province, Zhengzhou 450052, Henan, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
22
|
Ecarnot F, Boccardi V, Calcagno A, Franceschi C, Fülop T, Itzhaki RF, Michel JP, Panza F, Rainero I, Solfrizzi V, Ticinesi A, Veronese N, Maggi S. Dementia, infections and vaccines: 30 years of controversy. Aging Clin Exp Res 2023; 35:1145-1160. [PMID: 37160649 PMCID: PMC10169152 DOI: 10.1007/s40520-023-02409-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30 years in light of emerging evidence, and we present evidence in support of the implication of infection in dementia, notably Alzheimer's disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed. We then review the genetic basis for neuroinflammation and dementia, highlighting the genes that are currently the focus of investigation as potential targets for therapy. Next, we describe the antimicrobial hypothesis of dementia, notably the intriguing possibility that amyloid beta may itself possess antimicrobial properties. We further describe the clinical relevance of the gut-brain axis in dementia, the mechanisms by which infection can move from the intestine to the brain, and recent findings regarding dysbiosis patterns in patients with AD. We review the involvement of specific pathogens in neurological disorders, i.e. SARS-CoV-2, human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV1), and influenza. Finally, we look at the role of vaccination to prevent dementia. In conclusion, there is a large body of evidence supporting the involvement of various infectious pathogens in the pathogenesis of dementia, but large-scale studies with long-term follow-up are needed to elucidate the role that infection may play, especially before subclinical or clinical disease is present.
Collapse
Affiliation(s)
- Fiona Ecarnot
- EA3920, University of Franche-Comté, 25000, Besancon, France
- Department of Cardiology, University Hospital Besancon, 3-8 Boulevard Fleming, 25000, Besancon, France
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod, Russia
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Tamas Fülop
- Department of Medicine, Geriatrics Division, Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Innocenzo Rainero
- Dementia Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Internal Medicine, University of Palermo, Palermo, Italy.
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
23
|
Schork NJ, Elman JA. Pathway-specific polygenic risk scores correlate with clinical status and Alzheimer's-related biomarkers. RESEARCH SQUARE 2023:rs.3.rs-2583037. [PMID: 36909609 PMCID: PMC10002839 DOI: 10.21203/rs.3.rs-2583037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Background: APOE is the largest genetic risk factor for sporadic Alzheimer's disease (AD), but there is a substantial polygenic component as well. Polygenic risk scores (PRS) can summarize small effects across the genome but may obscure differential risk associated with different molecular processes and pathways. Variability at the genetic level may contribute to the extensive phenotypic heterogeneity of Alzheimer's disease (AD). Here, we examine polygenic risk impacting specific pathways associated with AD and examined its relationship with clinical status and AD biomarkers of amyloid, tau, and neurodegeneration (A/T/N). Methods: A total of 1,411 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) with genotyping data were included. Sets of variants identified from a pathway analysis of AD GWAS summary statistics were combined into clusters based on their assigned pathway. We constructed pathway-specific PRSs for each participant and tested their associations with diagnostic status (AD vs cognitively normal), abnormal levels of amyloid and ptau (positive vs negative), and hippocampal volume. The APOE region was excluded from all PRSs, and analyses controlled for APOE -ε4 carrier status. Results: Thirteen pathway clusters were identified relating to categories such as immune response, amyloid precursor processing, protein localization, lipid transport and binding, tyrosine kinase, and endocytosis. Eight pathway-specific PRSs were significantly associated with AD dementia diagnosis. Amyloid-positivity was associated with endocytosis and fibril formation, response misfolded protein, and regulation protein tyrosine PRSs. Ptau positivity and hippocampal volume were both related to protein localization and mitophagy PRS, and ptau positivity was additionally associated with an immune signaling PRS. A global AD PRS showed stronger associations with diagnosis and all biomarkers compared to pathway PRSs, suggesting a strong synergistic effect of all loci contributing to the global AD PRS. Conclusions: Pathway PRS may contribute to understanding separable disease processes, but do not appear to add significant power for predictive purposes. These findings demonstrate that, although genetic risk for AD is widely distributed, AD-phenotypes may be preferentially associated with risk in specific pathways. Defining genetic risk along multiple dimensions at the individual level may help clarify the etiological heterogeneity in AD.
Collapse
|
24
|
Schork NJ, Elman JA. Pathway-Specific Polygenic Risk Scores Correlate with Clinical Status and Alzheimer's Disease-Related Biomarkers. J Alzheimers Dis 2023; 95:915-929. [PMID: 37661888 PMCID: PMC10697039 DOI: 10.3233/jad-230548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND APOE is the largest genetic risk factor for Alzheimer's disease (AD), but there is a substantial polygenic component. Polygenic risk scores (PRS) can summarize small effects across the genome but may obscure differential risk across molecular processes and pathways that contribute to heterogeneity of disease presentation. OBJECTIVE We examined polygenic risk impacting specific AD-associated pathways and its relationship with clinical status and biomarkers of amyloid, tau, and neurodegeneration (A/T/N). METHODS We analyzed data from 1,411 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We applied pathway analysis and clustering to identify AD-associated "pathway clusters" and construct pathway-specific PRSs (excluding the APOE region). We tested associations with diagnostic status, abnormal levels of amyloid and ptau, and hippocampal volume. RESULTS Thirteen pathway clusters were identified, and eight pathway-specific PRSs were significantly associated with AD diagnosis. Amyloid-positivity was associated with endocytosis and fibril formation, response misfolded protein, and regulation protein tyrosine PRSs. Ptau positivity and hippocampal volume were both related to protein localization and mitophagy PRS, and ptau-positivity was also associated with an immune signaling PRS. A global AD PRS showed stronger associations with diagnosis and all biomarkers compared to pathway PRSs. CONCLUSIONS Pathway PRS may contribute to understanding separable disease processes, but do not add significant power for predictive purposes. These findings demonstrate that AD-phenotypes may be preferentially associated with risk in specific pathways, and defining genetic risk along multiple dimensions may clarify etiological heterogeneity in AD. This approach to delineate pathway-specific PRS can be used to study other complex diseases.
Collapse
Affiliation(s)
- Nicholas J. Schork
- The Translational Genomics Research Institute, Quantitative Medicine and Systems Biology, Phoenix, AZ, USA
- Department of Psychiatry University of California, San Diego, La Jolla, CA, USA
| | - Jeremy A. Elman
- Department of Psychiatry University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
25
|
Khot KB, Gopan G, Bandiwadekar A, Jose J. Current advancements related to phytobioactive compounds based liposomal delivery for neurodegenerative diseases. Ageing Res Rev 2023; 83:101806. [PMID: 36427765 DOI: 10.1016/j.arr.2022.101806] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Neurodegenerative diseases are the most widely affected disease condition in an aging population. The treatment available reduces the elevated manifestations but is ineffective due to the drug's poor bioavailability, plasma stability, and permeability across the blood-brain barrier (BBB). Until now, no therapeutic compound has been able to stop the progression of neurodegenerative disease. Even the available therapeutic moiety manages it with possible adverse effects up to the later stage. Hence, phytobioactive compounds of plant origin offer effective treatment strategies against neurodegenerative diseases. The only difficulty of these phytobioactive compounds is permeability across the BBB. Engineered nanocarriers such as liposomes provide high lipid permeability across BBB. Liposomes have unique physicochemical properties that are widely investigated for their application in diagnosing and treating neurodegenerative diseases. The surface modification on liposomes by peptides, antibodies, and RNA aptamers offers receptor targeting. These brain-targeted approaches by liposomes improve the efficacy of phytoconstituents. Additional surface modification methods are utilized on liposomes, which increases the brain-targeted delivery of phytobioactive compounds. The marketing strategy of the liposomal delivery system is in its peak mode, where it has the potential to modify the existing therapy. This review will summarize the brain target liposomal delivery of phytobioactive compounds as a novel disease-modifying agent for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Gopika Gopan
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
26
|
Liu Y, Si ZZ, Zou CJ, Mei X, Li XF, Luo H, Shen Y, Hu J, Li XX, Wu L. Targeting neuroinflammation in Alzheimer’s disease: from mechanisms to clinical applications. Neural Regen Res 2023; 18:708-715. [DOI: 10.4103/1673-5374.353484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Ando K, Nagaraj S, Küçükali F, de Fisenne MA, Kosa AC, Doeraene E, Lopez Gutierrez L, Brion JP, Leroy K. PICALM and Alzheimer's Disease: An Update and Perspectives. Cells 2022; 11:3994. [PMID: 36552756 PMCID: PMC9776874 DOI: 10.3390/cells11243994] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aβ transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Siranjeevi Nagaraj
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB Antwerp, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Andreea-Claudia Kosa
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Emilie Doeraene
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Lidia Lopez Gutierrez
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
28
|
Galluzzi S, Pievani M, Zanetti O, Benussi L, Frisoni GB, Di Maria E. Disclosure of Genetic Risk Factors for Alzheimer's Disease to Cognitively Healthy Individuals-From Current Practice towards a Personalised Medicine Scenario. Biomedicines 2022; 10:biomedicines10123177. [PMID: 36551936 PMCID: PMC9775740 DOI: 10.3390/biomedicines10123177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a genetically complex disorder. In addition to the relatively small number of pathogenic variants causing autosomal dominant AD, many others have been associated with the much more common sporadic form. The E4 allele of the Apolipoprotein E (APOE) is the first discovered genetic risk factor for AD. In addition, more than 70 genetic risk loci contributing to AD have been identified. Current guidelines do not recommend AD susceptibility genetic testing in cognitively healthy adults because the implications for clinical care are limited. However, secondary prevention clinical trials of disease-modifying therapies enrol individuals based on genetic criteria, and participants are often informed of APOE testing results. Moreover, the availability of direct-to-consumer genetic testing allows individuals to learn their own AD genetic risk profile without medical supervision. A number of research protocols for AD susceptibility genetic testing have been proposed. In Italy, disclosure processes and protocols beyond those developed for inherited dementia have not been established yet. We reviewed the literature on the current practice and clinical issues related to disclosing AD genetic risk to cognitively healthy individuals and provide suggestions that may help to develop specific guidelines at the national level.
Collapse
Affiliation(s)
- Samantha Galluzzi
- Laboratory Alzheimer’s Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Michela Pievani
- Laboratory Alzheimer’s Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Orazio Zanetti
- Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | | | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205 Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Emilio Di Maria
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- University Unit of Medical Genetics, Galliera Hospital, 16128 Genoa, Italy
- Correspondence:
| |
Collapse
|
29
|
Erdogan Orhan I, Deniz FSS, Salmas RE, Irmak S, Acar OO, Turgut GC, Sen A, Zbancioc AM, Luca SV, Skiba A, Skalicka-Woźniak K, Tataringa G. Evaluation of Anti-Alzheimer Activity of Synthetic Coumarins by Combination of in Vitro and in Silico Approaches. Chem Biodivers 2022; 19:e202200315. [PMID: 36282001 DOI: 10.1002/cbdv.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
Series of synthetic coumarin derivatives (1-16) were tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes linked to the pathology of Alzheimer's disease (AD). Compound 16 was the most active AChE inhibitor with IC50 32.23±2.91 μM, while the reference (galantamine) had IC50 =1.85±0.12 μM. Compounds 9 (IC50 75.14±1.82 μM), 13 (IC50 =16.14±0.43 μM), were determined to be stronger BChE inhibitors than the reference galantamine (IC50 =93.53±2.23 μM). The IC50 value of compound 16 for BChE inhibition (IC50 =126.56±11.96 μM) was slightly higher than galantamine. The atomic interactions between the ligands and the key amino acids inside the binding cavities were simulated to determine their ligand-binding positions and free energies. The three inhibitory coumarins (9, 13, 16) were next tested for their effects on the genes associated with AD using human neuroblastoma (SH-SY5Y) cell lines. Our data indicate that they could be considered for further evaluation as new anti-Alzheimer drug candidates.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | - F Sezer Senol Deniz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | | | - Sule Irmak
- Pamukkale University, Faculty of Arts & Sciences, Department of Biology, 20070, Denizli, Turkey
| | - Ozden Ozgun Acar
- Pamukkale University, Seed Breeding & Genetics Application Research Center, 20070, Denizli, Turkey
| | - Gurbet Celik Turgut
- Pamukkale University, Faculty of Applied Sciences, Organic Agriculture Management, Civril, 20680, Denizli, Turkey
| | - Alaattin Sen
- Pamukkale University, Faculty of Arts & Sciences, Department of Biology, 20070, Denizli, Turkey
- Abdullah Gul University, Faculty of Life and Natural Sciences, Department of Molecular Biology and Genetics, 38080, Kayseri, Turkey
| | - Ana-Maria Zbancioc
- University of Medicine and Pharmacy Grigore T. Popa Iasi, Faculty of Pharmacy, Romania
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093, Lublin, Poland
| | | | - Gabriela Tataringa
- University of Medicine and Pharmacy Grigore T. Popa Iasi, Faculty of Pharmacy, Romania
| |
Collapse
|
30
|
Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci 2022; 79:585. [PMID: 36348101 PMCID: PMC11803048 DOI: 10.1007/s00018-022-04614-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
31
|
Yuan B, Liu M, Gong Y, Wang Z, Jin X, Xie G, Zhu M, Zhang X, Luo S, Qu Q, Zhu Y, Wang M, Jin Y, Li B, Wang W. Sodium butyrate exerts antioxidant stress effects and attenuates Aβ25-35-induced cytotoxicity in PC12 cells. Arch Biochem Biophys 2022; 731:109448. [DOI: 10.1016/j.abb.2022.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
32
|
Maki T, Sawahata M, Akutsu I, Amaike S, Hiramatsu G, Uta D, Izuo N, Shimizu T, Irie K, Kume T. APP Knock-In Mice Produce E22P-Aβ Exhibiting an Alzheimer's Disease-like Phenotype with Dysregulation of Hypoxia-Inducible Factor Expression. Int J Mol Sci 2022; 23:13259. [PMID: 36362046 PMCID: PMC9654501 DOI: 10.3390/ijms232113259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that requires further pathological elucidation to establish effective treatment strategies. We previously showed that amyloid β (Aβ) toxic conformer with a turn at positions 22-23 is essential for forming highly toxic oligomers. In the present study, we evaluated phenotypic changes with aging in AD model AppNL-P-F/NL-P-F (NL-P-F) mice with Swedish mutation (NL), Iberian mutation (F), and mutation (P) overproducing E22P-Aβ, a mimic of toxic conformer utilizing the knock-in technique. Furthermore, the role of the toxic conformer in AD pathology was investigated. NL-P-F mice produced soluble toxic conformers from an early age. They showed impaired synaptic plasticity, glial cell activation, and cognitive decline, followed by the accumulation of Aβ plaques and tau hyperphosphorylation. In addition, the protein expression of hypoxia-inducible factor (HIF)-1α was increased, and gene expression of HIF-3α was decreased in NL-P-F mice. HIF dysregulation due to the production of soluble toxic conformers may be involved in AD pathology in NL-P-F mice. This study could reveal the role of a highly toxic Aβ on AD pathogenesis, thereby contributing to the development of a novel therapeutic strategy targeting the toxic conformer.
Collapse
Affiliation(s)
- Takahito Maki
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masahito Sawahata
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Ichiro Akutsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Shohei Amaike
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Genki Hiramatsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Kitashirakawa-Oiwake-Cho, Kyoto 606-8502, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
33
|
Hernández-Lorenzo L, Hoffmann M, Scheibling E, List M, Matías-Guiu JA, Ayala JL. On the limits of graph neural networks for the early diagnosis of Alzheimer's disease. Sci Rep 2022; 12:17632. [PMID: 36271229 PMCID: PMC9587223 DOI: 10.1038/s41598-022-21491-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease whose molecular mechanisms are activated several years before cognitive symptoms appear. Genotype-based prediction of the phenotype is thus a key challenge for the early diagnosis of AD. Machine learning techniques that have been proposed to address this challenge do not consider known biological interactions between the genes used as input features, thus neglecting important information about the disease mechanisms at play. To mitigate this, we first extracted AD subnetworks from several protein-protein interaction (PPI) databases and labeled these with genotype information (number of missense variants) to make them patient-specific. Next, we trained Graph Neural Networks (GNNs) on the patient-specific networks for phenotype prediction. We tested different PPI databases and compared the performance of the GNN models to baseline models using classical machine learning techniques, as well as randomized networks and input datasets. The overall results showed that GNNs could not outperform a baseline predictor only using the APOE gene, suggesting that missense variants are not sufficient to explain disease risk beyond the APOE status. Nevertheless, our results show that GNNs outperformed other machine learning techniques and that protein-protein interactions lead to superior results compared to randomized networks. These findings highlight that gene interactions are a valuable source of information in predicting disease status.
Collapse
Affiliation(s)
- Laura Hernández-Lorenzo
- Department of Computer Architecture and Automation, Computer Science Faculty, Complutense University of Madrid, 28040, Madrid, Spain.
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, 28040, Madrid, Spain.
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
| | - Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
| | - Evelyn Scheibling
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Jordi A Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, 28040, Madrid, Spain
| | - Jose L Ayala
- Department of Computer Architecture and Automation, Computer Science Faculty, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
34
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
35
|
Trumbore CN, Raghunandan A. An Alzheimer's Disease Mechanism Based on Early Pathology, Anatomy, Vascular-Induced Flow, and Migration of Maximum Flow Stress Energy Location with Increasing Vascular Disease. J Alzheimers Dis 2022; 90:33-59. [PMID: 36155517 DOI: 10.3233/jad-220622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper suggests a chemical mechanism for the earliest stages of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) flow stresses provide the energy needed to induce molecular conformation changes leading to AD by initiating amyloid-β (Aβ) and tau aggregation. Shear and extensional flow stresses initiate aggregation in the laboratory and in natural biophysical processes. Energy-rich CSF flow regions are mainly found in lower brain regions. MRI studies reveal flow stress "hot spots" in basal cisterns and brain ventricles that have chaotic flow properties that can distort molecules such as Aβ and tau trapped in these regions into unusual conformations. Such fluid disturbance is surrounded by tissue deformation. There is strong mapping overlap between the locations of these hot spots and of early-stage AD pathology. Our mechanism creates pure and mixed protein dimers, followed by tissue surface adsorption, and long-term tissue agitation ultimately inducing chemical reactions forming more stable, toxic oligomer seeds that initiate AD. It is proposed that different flow stress energies and flow types in different basal brain regions produce different neurotoxic aggregates. Proliferating artery hardening is responsible for enhanced heart systolic pulses that drive energetic CSF pulses, whose critical maximum systolic pulse energy location migrates further from the heart with increasing vascular disease. Two glymphatic systems, carotid and basilar, are suggested to contain the earliest Aβ and tau AD disease pathologies. A key to the proposed AD mechanism is a comparison of early chronic traumatic encephalopathy and AD pathologies. Experiments that test the proposed mechanism are needed.
Collapse
Affiliation(s)
- Conrad N Trumbore
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Aditya Raghunandan
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
36
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
37
|
Deng Y, Song H, Xiao Y, Zhao Y, Chu L, Ding J, Shen X, Qi X. High-Throughput Sequencing to Investigate lncRNA-circRNA-miRNA-mRNA Networks Underlying the Effects of Beta-Amyloid Peptide and Senescence on Astrocytes. Front Genet 2022; 13:868856. [PMID: 35646066 PMCID: PMC9133720 DOI: 10.3389/fgene.2022.868856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are widely distributed in the central nervous system and play an essential role in the function of neuronal cells. Associations between astrocytes and Alzheimer's disease (AD) have been noted, and recent work has implicated circular RNA (circRNA) and long non-coding RNA (lncRNA) in the development of AD. However, few reports have investigated which lncRNA and circRNA are involved in the influence of amyloid beta (Aβ) and senescence on astrocytes. This study therefore examines changes at the transcriptome level to explore the effects of Aβ and senescence on astrocytes. Primary cultured astrocytes were treated with Aβ and cultured for 90 days in vitro, and high-throughput sequencing was performed to identify differentially expressed RNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed genes were associated with the focal adhesion signaling pathway, extracellular matrix receptor signaling pathway, and the extracellular matrix. The protein-protein interaction network was then constructed, and 103 hub genes were screened out; most of these were strongly associated with the expression of the extracellular matrix, extracellular matrix receptor signaling pathway, and focal adhesion. Two competing endogenous RNA networks were constructed based on the selected hub gene and differential RNAs, and we identified multiple competing endogenous RNA regulatory axes that were involved in the effects of Aβ and senescence on astrocytes. This is the first study to explore the molecular regulation mechanism of Aβ and senescence on primary astrocytes from the perspective of the whole transcriptome. In uncovering the signaling pathways and biological processes involved in the effects of Aβ and senescence on astrocytes, this work provides novel insights into the pathogenesis of AD at the level of competing endogenous RNA network regulation.
Collapse
Affiliation(s)
- Yuxin Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yi Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Liangzao Chu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
38
|
Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V, Holmans PA, Boland A, Damotte V, van der Lee SJ, Costa MR, Kuulasmaa T, Yang Q, de Rojas I, Bis JC, Yaqub A, Prokic I, Chapuis J, Ahmad S, Giedraitis V, Aarsland D, Garcia-Gonzalez P, Abdelnour C, Alarcón-Martín E, Alcolea D, Alegret M, Alvarez I, Álvarez V, Armstrong NJ, Tsolaki A, Antúnez C, Appollonio I, Arcaro M, Archetti S, Pastor AA, Arosio B, Athanasiu L, Bailly H, Banaj N, Baquero M, Barral S, Beiser A, Pastor AB, Below JE, Benchek P, Benussi L, Berr C, Besse C, Bessi V, Binetti G, Bizarro A, Blesa R, Boada M, Boerwinkle E, Borroni B, Boschi S, Bossù P, Bråthen G, Bressler J, Bresner C, Brodaty H, Brookes KJ, Brusco LI, Buiza-Rueda D, Bûrger K, Burholt V, Bush WS, Calero M, Cantwell LB, Chene G, Chung J, Cuccaro ML, Carracedo Á, Cecchetti R, Cervera-Carles L, Charbonnier C, Chen HH, Chillotti C, Ciccone S, Claassen JAHR, Clark C, Conti E, Corma-Gómez A, Costantini E, Custodero C, Daian D, Dalmasso MC, Daniele A, Dardiotis E, Dartigues JF, de Deyn PP, de Paiva Lopes K, de Witte LD, Debette S, Deckert J, Del Ser T, et alBellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V, Holmans PA, Boland A, Damotte V, van der Lee SJ, Costa MR, Kuulasmaa T, Yang Q, de Rojas I, Bis JC, Yaqub A, Prokic I, Chapuis J, Ahmad S, Giedraitis V, Aarsland D, Garcia-Gonzalez P, Abdelnour C, Alarcón-Martín E, Alcolea D, Alegret M, Alvarez I, Álvarez V, Armstrong NJ, Tsolaki A, Antúnez C, Appollonio I, Arcaro M, Archetti S, Pastor AA, Arosio B, Athanasiu L, Bailly H, Banaj N, Baquero M, Barral S, Beiser A, Pastor AB, Below JE, Benchek P, Benussi L, Berr C, Besse C, Bessi V, Binetti G, Bizarro A, Blesa R, Boada M, Boerwinkle E, Borroni B, Boschi S, Bossù P, Bråthen G, Bressler J, Bresner C, Brodaty H, Brookes KJ, Brusco LI, Buiza-Rueda D, Bûrger K, Burholt V, Bush WS, Calero M, Cantwell LB, Chene G, Chung J, Cuccaro ML, Carracedo Á, Cecchetti R, Cervera-Carles L, Charbonnier C, Chen HH, Chillotti C, Ciccone S, Claassen JAHR, Clark C, Conti E, Corma-Gómez A, Costantini E, Custodero C, Daian D, Dalmasso MC, Daniele A, Dardiotis E, Dartigues JF, de Deyn PP, de Paiva Lopes K, de Witte LD, Debette S, Deckert J, Del Ser T, Denning N, DeStefano A, Dichgans M, Diehl-Schmid J, Diez-Fairen M, Rossi PD, Djurovic S, Duron E, Düzel E, Dufouil C, Eiriksdottir G, Engelborghs S, Escott-Price V, Espinosa A, Ewers M, Faber KM, Fabrizio T, Nielsen SF, Fardo DW, Farotti L, Fenoglio C, Fernández-Fuertes M, Ferrari R, Ferreira CB, Ferri E, Fin B, Fischer P, Fladby T, Fließbach K, Fongang B, Fornage M, Fortea J, Foroud TM, Fostinelli S, Fox NC, Franco-Macías E, Bullido MJ, Frank-García A, Froelich L, Fulton-Howard B, Galimberti D, García-Alberca JM, García-González P, Garcia-Madrona S, Garcia-Ribas G, Ghidoni R, Giegling I, Giorgio G, Goate AM, Goldhardt O, Gomez-Fonseca D, González-Pérez A, Graff C, Grande G, Green E, Grimmer T, Grünblatt E, Grunin M, Gudnason V, Guetta-Baranes T, Haapasalo A, Hadjigeorgiou G, Haines JL, Hamilton-Nelson KL, Hampel H, Hanon O, Hardy J, Hartmann AM, Hausner L, Harwood J, Heilmann-Heimbach S, Helisalmi S, Heneka MT, Hernández I, Herrmann MJ, Hoffmann P, Holmes C, Holstege H, Vilas RH, Hulsman M, Humphrey J, Biessels GJ, Jian X, Johansson C, Jun GR, Kastumata Y, Kauwe J, Kehoe PG, Kilander L, Ståhlbom AK, Kivipelto M, Koivisto A, Kornhuber J, Kosmidis MH, Kukull WA, Kuksa PP, Kunkle BW, Kuzma AB, Lage C, Laukka EJ, Launer L, Lauria A, Lee CY, Lehtisalo J, Lerch O, Lleó A, Longstreth W, Lopez O, de Munain AL, Love S, Löwemark M, Luckcuck L, Lunetta KL, Ma Y, Macías J, MacLeod CA, Maier W, Mangialasche F, Spallazzi M, Marquié M, Marshall R, Martin ER, Montes AM, Rodríguez CM, Masullo C, Mayeux R, Mead S, Mecocci P, Medina M, Meggy A, Mehrabian S, Mendoza S, Menéndez-González M, Mir P, Moebus S, Mol M, Molina-Porcel L, Montrreal L, Morelli L, Moreno F, Morgan K, Mosley T, Nöthen MM, Muchnik C, Mukherjee S, Nacmias B, Ngandu T, Nicolas G, Nordestgaard BG, Olaso R, Orellana A, Orsini M, Ortega G, Padovani A, Paolo C, Papenberg G, Parnetti L, Pasquier F, Pastor P, Peloso G, Pérez-Cordón A, Pérez-Tur J, Pericard P, Peters O, Pijnenburg YAL, Pineda JA, Piñol-Ripoll G, Pisanu C, Polak T, Popp J, Posthuma D, Priller J, Puerta R, Quenez O, Quintela I, Thomassen JQ, Rábano A, Rainero I, Rajabli F, Ramakers I, Real LM, Reinders MJT, Reitz C, Reyes-Dumeyer D, Ridge P, Riedel-Heller S, Riederer P, Roberto N, Rodriguez-Rodriguez E, Rongve A, Allende IR, Rosende-Roca M, Royo JL, Rubino E, Rujescu D, Sáez ME, Sakka P, Saltvedt I, Sanabria Á, Sánchez-Arjona MB, Sanchez-Garcia F, Juan PS, Sánchez-Valle R, Sando SB, Sarnowski C, Satizabal CL, Scamosci M, Scarmeas N, Scarpini E, Scheltens P, Scherbaum N, Scherer M, Schmid M, Schneider A, Schott JM, Selbæk G, Seripa D, Serrano M, Sha J, Shadrin AA, Skrobot O, Slifer S, Snijders GJL, Soininen H, Solfrizzi V, Solomon A, Song Y, Sorbi S, Sotolongo-Grau O, Spalletta G, Spottke A, Squassina A, Stordal E, Tartan JP, Tárraga L, Tesí N, Thalamuthu A, Thomas T, Tosto G, Traykov L, Tremolizzo L, Tybjærg-Hansen A, Uitterlinden A, Ullgren A, Ulstein I, Valero S, Valladares O, Broeckhoven CV, Vance J, Vardarajan BN, van der Lugt A, Dongen JV, van Rooij J, van Swieten J, Vandenberghe R, Verhey F, Vidal JS, Vogelgsang J, Vyhnalek M, Wagner M, Wallon D, Wang LS, Wang R, Weinhold L, Wiltfang J, Windle G, Woods B, Yannakoulia M, Zare H, Zhao Y, Zhang X, Zhu C, Zulaica M, Farrer LA, Psaty BM, Ghanbari M, Raj T, Sachdev P, Mather K, Jessen F, Ikram MA, de Mendonça A, Hort J, Tsolaki M, Pericak-Vance MA, Amouyel P, Williams J, Frikke-Schmidt R, Clarimon J, Deleuze JF, Rossi G, Seshadri S, Andreassen OA, Ingelsson M, Hiltunen M, Sleegers K, Schellenberg GD, van Duijn CM, Sims R, van der Flier WM, Ruiz A, Ramirez A, Lambert JC. New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet 2022; 54:412-436. [PMID: 35379992 PMCID: PMC9005347 DOI: 10.1038/s41588-022-01024-z] [Show More Authors] [Citation(s) in RCA: 1190] [Impact Index Per Article: 396.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
Collapse
Affiliation(s)
- Céline Bellenguez
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, the Netherlands
| | - Luca Kleineidam
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Adam C Naj
- Department of Biostatistics, Epidemiology, and Informatics, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Benjamin Grenier-Boley
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Victor Andrade
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Vincent Damotte
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marcos R Costa
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Itziar de Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amber Yaqub
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Ivana Prokic
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Julien Chapuis
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- LACDR, Leiden, the Netherlands
| | - Vilmantas Giedraitis
- Department of Public Health and Carins Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Dag Aarsland
- Centre of Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Pablo Garcia-Gonzalez
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carla Abdelnour
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Surgery, Biochemistry and Molecular Biology, School of Medicine, University of Málaga, Málaga, Spain
| | - Daniel Alcolea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ignacio Alvarez
- Fundació Docència i Recerca MútuaTerrassa and Movement Disorders Unit, Department of Neurology, University Hospital MútuaTerrassa, Terrassa, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Anthoula Tsolaki
- First Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Alzheimer Hellas, Thessaloniki, Greece
| | - Carmen Antúnez
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ildebrando Appollonio
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca'Granda, Ospedale Policlinico, Milan, Italy
| | - Silvana Archetti
- Department of Laboratory Diagnostics, III Laboratory of Analysis, Brescia Hospital, Brescia, Italy
| | - Alfonso Arias Pastor
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Henri Bailly
- EA 4468, Université de Paris, APHP, Hôpital Broca, Paris, France
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Miquel Baquero
- Servei de Neurologia, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Sandra Barral
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Unit of Neurology, University of Parma and AOU, Parma, Italy
- Clinic of Neurology, UH 'Alexandrovska', Medical University - Sofia, Sofia, Bulgaria
| | - Alexa Beiser
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
| | - Ana Belén Pastor
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Jennifer E Below
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Penelope Benchek
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudine Berr
- Neuropsychiatry: Epidemiological and Clinical Research, PSNREC, Université de Montpellier, INSERM U1061, Montpellier, France
| | - Céline Besse
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- MAC - Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Rafael Blesa
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Paola Bossù
- Experimental Neuro-psychobiology Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Catherine Bresner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Keeley J Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Luis Ignacio Brusco
- Centro de Neuropsiquiatría y Neurología de la Conducta (CENECON), Facultad de Medicina, Universidad de Buenos Aires (UBA), C.A.B.A., Buenos Aires, Argentina
- Departamento Ciencias Fisiológicas UAII, Facultad de Medicina, UBA, C.A.B.A., Buenos Aires, Argentina
- Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, Argentina
| | - Dolores Buiza-Rueda
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Katharina Bûrger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität (LMU), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Vanessa Burholt
- Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
- Wales Centre for Ageing & Dementia Research, Swansea University, Wales, New Zealand
| | - William S Bush
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Miguel Calero
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- UFIEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura B Cantwell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Geneviève Chene
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux, France
- Pole Santé Publique, CHU de Bordeaux, Bordeaux, France
| | - Jaeyoon Chung
- Medicine Biomedical Genetics Boston University School of Medicine, Boston, MA, USA
| | - Michael L Cuccaro
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica- CIBERER-IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Cervera-Carles
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Hung-Hsin Chen
- Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Simona Ciccone
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Jurgen A H R Claassen
- Radboudumc Alzheimer Center, Department of Geriatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Schlieren, Switzerland
| | - Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Anaïs Corma-Gómez
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Emanuele Costantini
- Department of Neuroscience, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Delphine Daian
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Peter Paul de Deyn
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Katia de Paiva Lopes
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, University Bordeaux, INSERM, Bordeaux, France
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Teodoro Del Ser
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Nicola Denning
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Anita DeStefano
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Janine Diehl-Schmid
- Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Mónica Diez-Fairen
- Fundació Docència i Recerca MútuaTerrassa and Movement Disorders Unit, Department of Neurology, University Hospital MútuaTerrassa, Terrassa, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Paolo Dionigi Rossi
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Emmanuelle Duron
- EA 4468, Université de Paris, APHP, Hôpital Broca, Paris, France
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Carole Dufouil
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux, France
- Pole Santé Publique, CHU de Bordeaux, Bordeaux, France
| | | | - Sebastiaan Engelborghs
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, UZ Brussel, Brussels, Belgium
| | - Valentina Escott-Price
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Ana Espinosa
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität (LMU), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | | | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | | | - Marta Fernández-Fuertes
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Raffaele Ferrari
- Laboratory of Neurogenetics, Department of Internal Medicine, Texas Tech University Health Science Center, Lubbock, TX, USA
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Evelyn Ferri
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Bertrand Fin
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Peter Fischer
- Department of Psychiatry, Social Medicine Center East- Donauspital, Vienna, Austria
| | - Tormod Fladby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Klaus Fließbach
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Myriam Fornage
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan Fortea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Emlio Franco-Macías
- Unidad de Demencias, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - María J Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Ana Frank-García
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Hospital Universitario la Paz, Madrid, Spain
| | - Lutz Froelich
- Department of Geriatric Psychiatry, Central Institute for Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Brian Fulton-Howard
- Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Galimberti
- Fondazione IRCCS Ca'Granda, Ospedale Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Jose Maria García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Pablo García-González
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | | | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ina Giegling
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Giaccone Giorgio
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oliver Goldhardt
- Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Duber Gomez-Fonseca
- Department of Biostatistics, Epidemiology, and Informatics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Caroline Graff
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Emma Green
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Timo Grimmer
- Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michelle Grunin
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamar Guetta-Baranes
- Human Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham, UK
| | - Annakaisa Haapasalo
- AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Harald Hampel
- GRC 21, Alzheimer Precision Medicine Initiative (APMI), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Olivier Hanon
- EA 4468, Université de Paris, APHP, Hôpital Broca, Paris, France
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute for Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Janet Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Isabel Hernández
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Clive Holmes
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Raquel Huerto Vilas
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jack Humphrey
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Xueqiu Jian
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Charlotte Johansson
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Gyungah R Jun
- Medicine Biomedical Genetics Boston University School of Medicine, Boston, MA, USA
| | - Yuriko Kastumata
- Biostatistics, University of Kentucky College of Public Health, Lexington, KY, USA
| | - John Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Patrick G Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lena Kilander
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Anne Kinhult Ståhlbom
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, UK
- Research & Development, UnitStockholms Sjukhem, Stockholm, Sweden
| | - Anne Koivisto
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Neurosciences, University of Helsinki and Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mary H Kosmidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Pavel P Kuksa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian W Kunkle
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Lenore Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute of Aging, The National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program/National Institute on Aging/National Institutes of Health, Bethesda, MD, USA
| | - Alessandra Lauria
- Geriatrics Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Chien-Yueh Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jenni Lehtisalo
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Praha, Czechia
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Alberto Lleó
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - William Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Adolfo Lopez de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA-Servicio Vasco de Salud, San Sebastian, Spain
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Malin Löwemark
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lauren Luckcuck
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Kathryn L Lunetta
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Yiyi Ma
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Neurology, Columbia University, New York, NY, USA
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | | | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Center for Alzheimer Research, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Marco Spallazzi
- Unit of Neurology, University of Parma and AOU, Parma, Italy
| | - Marta Marquié
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Rachel Marshall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Eden R Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Angel Martín Montes
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Hospital Universitario la Paz, Madrid, Spain
| | - Carmen Martínez Rodríguez
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alun Meggy
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Shima Mehrabian
- Clinic of Neurology, UH 'Alexandrovska', Medical University - Sofia, Sofia, Bulgaria
| | - Silvia Mendoza
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Manuel Menéndez-González
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen, Germany
| | - Merel Mol
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clinic, Barcelona, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, FIL-CONICET, Buenos Aires, Argentina
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA-Servicio Vasco de Salud, San Sebastian, Spain
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Thomas Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Carolina Muchnik
- Centro de Neuropsiquiatría y Neurología de la Conducta (CENECON), Facultad de Medicina, Universidad de Buenos Aires (UBA), C.A.B.A., Buenos Aires, Argentina
- Laboratorio de Bioquímica Molecular, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, UBA, C.A.B.A, Buenos Aires, Argentina
| | | | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tiia Ngandu
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Adelina Orellana
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Michela Orsini
- Department of Neuroscience, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gemma Ortega
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alessandro Padovani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Goran Papenberg
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Florence Pasquier
- Resources and Research Memory Center (MRRC) of Distalz, LicendUniversity of Lille, INSERM, CHU Lille, UMR1172, Lille, France
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa and Movement Disorders Unit, Department of Neurology, University Hospital MútuaTerrassa, Terrassa, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Gina Peloso
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Institut de Biomedicina de València-CSIC CIBERNED, València, Spain
- Unitat Mixta de de Neurología y Genética, Institut d'Investigació Sanitària La Fe, València, Spain
| | - Pierre Pericard
- US 41-UMS 2014-PLBS, bilille, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Polak
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Julius Popp
- CHUV, Old Age Psychiatry, Department of Psychiatry, Lausanne, Switzerland
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, the Netherlands
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité, Charitéplatz 1, Berlin, Germany
| | - Raquel Puerta
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Alberto Rábano
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Innocenzo Rainero
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Farid Rajabli
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Inez Ramakers
- Department of Psychiatry & Neuropsychologie, Maastricht University, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
- Depatamento de Especialidades Quirúrgicas Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Christiane Reitz
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
- Taub Institute, Columbia University, New York, NY, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Columbia University, New York, NY, USA
- Taub Institute, Columbia University, New York, NY, USA
| | - Perry Ridge
- Bioinformatics, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Wuerzburg, Germany
| | - Natalia Roberto
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Arvid Rongve
- Department of Research and Innovation, Helse Fonna, Haugesund Hospital, Haugesund, Norway
- Institute of Clinical Medicine (K1), The University of Bergen, Bergen, Norway
| | - Irene Rosas Allende
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Maitée Rosende-Roca
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Jose Luis Royo
- Departamento de Especialidades Quirúrgicas, Bioquímicas e Inmunología, School of Medicine, University of Málaga, Málaga, Spain
| | - Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Athens, Greece
| | - Ingvild Saltvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Geriatrics, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ángela Sanabria
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - María Bernal Sánchez-Arjona
- Unidad de Demencias, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Florentino Sanchez-Garcia
- Department of Immunology, Hospital Universitario Doctor Negrín, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Raquel Sánchez-Valle
- Neurology Department-Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Sigrid B Sando
- Experimental Neuro-psychobiology Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Chloé Sarnowski
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudia L Satizabal
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Michela Scamosci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nikolaos Scarmeas
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- First Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Elio Scarpini
- Fondazione IRCCS Ca'Granda, Ospedale Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Geir Selbæk
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Davide Seripa
- Laboratory for Advanced Hematological Diagnostics, Department of Hematology and Stem Cell Transplant, Vito Fazzi Hospital, Lecce, Italy
| | - Manuel Serrano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospital Clínico San Carlos, Madrid, Spain
| | - Jin Sha
- Department of Biostatistics, Epidemiology, and Informatics, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Olivia Skrobot
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan Slifer
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gijsje J L Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
| | | | - Alina Solomon
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Yeunjoo Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Juan Pablo Tartan
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Niccolo Tesí
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Tegos Thomas
- First Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Alzheimer Hellas, Thessaloniki, Greece
| | - Giuseppe Tosto
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Latchezar Traykov
- Clinic of Neurology, UH 'Alexandrovska', Medical University - Sofia, Sofia, Bulgaria
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| | - Anne Tybjærg-Hansen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Andre Uitterlinden
- Department of Internal Medicine and Biostatistics, Erasmus MC, Rotterdam, the Netherlands
| | - Abbe Ullgren
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Ingun Ulstein
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Sergi Valero
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christine Van Broeckhoven
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Jeffery Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Badri N Vardarajan
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | | | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeroen van Rooij
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurology, ErasmusMC, Rotterdam, the Netherlands
| | | | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Frans Verhey
- Department of Psychiatry & Neuropsychologie, Maastricht University, Alzheimer Center Limburg, Maastricht, the Netherlands
| | | | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Praha, Czechia
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - David Wallon
- Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ruiqi Wang
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Leonie Weinhold
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Medical Science Department, iBiMED, Aveiro, Portugal
| | - Gill Windle
- School of Health Sciences, Bangor University, Bangor, UK
| | - Bob Woods
- School of Health Sciences, Bangor University, Bangor, UK
| | - Mary Yannakoulia
- Department of Nutrition and Diatetics, Harokopio University, Athens, Greece
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Yi Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Miren Zulaica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Lindsay A Farrer
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Medicine Biomedical Genetics Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bruce M Psaty
- Framingham Heart Study, Framingham, MA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Health Service, University of Washington, Seattle, WA, USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Towfique Raj
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Karen Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Frank Jessen
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jakub Hort
- Intramural Research Program/National Institute on Aging/National Institutes of Health, Bethesda, MD, USA
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Praha, Czechia
| | - Magda Tsolaki
- First Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Alzheimer Hellas, Thessaloniki, Greece
| | | | - Philippe Amouyel
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Julie Williams
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jordi Clarimon
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Giacomina Rossi
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sudha Seshadri
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | | | - Martin Ingelsson
- Department of Public Health and Carins Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Mikko Hiltunen
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Rebecca Sims
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Agustín Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Charles Lambert
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| |
Collapse
|
39
|
Xu G, Ulm BS, Howard J, Fromholt SE, Lu Q, Lee BB, Walker A, Borchelt DR, Lewis J. TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathol Appl Neurobiol 2022; 48:e12791. [PMID: 35067965 DOI: 10.1111/nan.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
AIMS Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS We crossed an inducible tauopathy model with two β-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aβ and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS These data suggest that tau misfolding is exacerbated by both newly forming Aβ deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Brittany S Ulm
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Susan E Fromholt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Qing Lu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Brian Benedict Lee
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- SantaFe HealthCare Alzheimer's Disease Research Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 2022; 12:3045-3056. [PMID: 35547759 PMCID: PMC9065204 DOI: 10.7150/thno.72126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.
Collapse
Affiliation(s)
- Gabriela Kocurova
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Saak V. Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
41
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
42
|
Dugan AJ, Nelson PT, Katsumata Y, Shade LMP, Teylan MA, Boehme KL, Mukherjee S, Kauwe JSK, Hohman TJ, Schneider JA, Fardo DW. Association between WWOX/MAF variants and dementia-related neuropathologic endophenotypes. Neurobiol Aging 2022; 111:95-106. [PMID: 34852950 PMCID: PMC8761217 DOI: 10.1016/j.neurobiolaging.2021.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
The genetic locus containing the WWOX and MAF genes was implicated as a clinical Alzheimer's disease (AD) risk locus in two recent large meta-analytic genome wide association studies (GWAS). In a prior GWAS, we identified a variant in WWOX as a suggestive risk allele for hippocampal sclerosis. We hypothesized that the WWOX/MAF locus may be preferentially associated with non-plaque- and non-tau-related neuropathological changes (NC). Data from research participants with GWAS and autopsy measures from the National Alzheimer's Coordinating Center and the Religious Orders Study and the Rush Memory and Aging Project were meta-analyzed. Notably, no variants in the locus were significantly associated with ADNC. However, several WWOX/MAF variants had significant adjusted associations with limbic-predominant age-related TDP-43 encephalopathy NC (LATE-NC), HS, and brain arteriolosclerosis. These associations remained largely unchanged after adjustment for ADNC (operationalized with standard semiquantitative staging), suggesting that these associations are independent of ADNC. Thus, WWOX genetic variants were associated pathologically with LATE-NC, not ADNC.
Collapse
Affiliation(s)
- Adam J Dugan
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA; Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Lincoln M P Shade
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Merilee A Teylan
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kevin L Boehme
- Department of Biology, Brigham Young University, Provo, UT, USA
| | | | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
43
|
Strafella C, Caputo V, Termine A, Fabrizio C, Calvino G, Megalizzi D, Ruffo P, Toppi E, Banaj N, Bassi A, Bossù P, Caltagirone C, Spalletta G, Giardina E, Cascella R. Identification of Genetic Networks Reveals Complex Associations and Risk Trajectory Linking Mild Cognitive Impairment to Alzheimer’s Disease. Front Aging Neurosci 2022; 14:821789. [PMID: 35250545 PMCID: PMC8892382 DOI: 10.3389/fnagi.2022.821789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) and sporadic Alzheimer’s disease (AD) are multifactorial conditions resulting from a complex crosstalk among multiple molecular and biological processes. The present study investigates the association of variants localized in genes and miRNAs with aMCI and AD, which may represent susceptibility, prognostic biomarkers or multi-target treatment options for such conditions. We included 371 patients (217 aMCI and 154 AD) and 503 healthy controls, which were genotyped for a panel of 120 single nucleotide polymorphisms (SNPs) and, subsequently, analyzed by statistical, bioinformatics and machine-learning approaches. As a result, 21 SNPs were associated with aMCI and 13 SNPs with sporadic AD. Interestingly, a set of variants shared between aMCI and AD displayed slightly higher Odd Ratios in AD with respect to aMCI, highlighting a specific risk trajectory linking aMCI to AD. Some of the associated genes and miRNAs were shown to interact within the signaling pathways of APP (Amyloid Precursor Protein), ACE2 (Angiotensin Converting Enzyme 2), miR-155 and PPARG (Peroxisome Proliferator Activated Receptor Gamma), which are known to contribute to neuroinflammation and neurodegeneration. Overall, results of this study increase insights concerning the genetic factors contributing to the neuroinflammatory and neurodegenerative mechanisms underlying aMCI and sporadic AD. They have to be exploited to develop personalized approaches based on the individual genetic make-up and multi-target treatments.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- *Correspondence: Claudia Strafella,
| | - Valerio Caputo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Paola Ruffo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elisa Toppi
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Bassi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Emiliano Giardina,
| | - Raffaella Cascella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
44
|
Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:417-438. [PMID: 35034752 DOI: 10.1016/b978-0-12-819410-2.00022-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synapse is the locus of plasticity where short-term alterations in synaptic strength are converted to long-lasting memories. In addition to the presynaptic terminal and the postsynaptic compartment, a more holistic view of the synapse includes the astrocytes and the extracellular matrix to form a tetrapartite synapse. All these four elements contribute to synapse health and are crucial for synaptic plasticity events and, thereby, for learning and memory processes. Synaptic dysfunction is a common pathogenic trait of several brain disorders. In Alzheimer's Disease, the degeneration of synapses can be detected at the early stages of pathology progression before neuronal degeneration, supporting the hypothesis that synaptic failure is a major determinant of the disease. The synapse is the place where amyloid-β peptides are generated and is the target of the toxic amyloid-β oligomers. All the elements constituting the tetrapartite synapse are altered in Alzheimer's Disease and can synergistically contribute to synaptic dysfunction. Moreover, the two main hallmarks of Alzheimer's Disease, i.e., amyloid-β and tau, act in concert to cause synaptic deficits. Deciphering the mechanisms underlying synaptic dysfunction is relevant for the development of the next-generation therapeutic strategies aimed at modifying the disease progression.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
45
|
Lambert E, Saha O, Soares Landeira B, Melo de Farias AR, Hermant X, Carrier A, Pelletier A, Gadaut J, Davoine L, Dupont C, Amouyel P, Bonnefond A, Lafont F, Abdelfettah F, Verstreken P, Chapuis J, Barois N, Delahaye F, Dermaut B, Lambert JC, Costa MR, Dourlen P. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10:4. [PMID: 34998435 PMCID: PMC8742943 DOI: 10.1186/s40478-021-01285-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
Collapse
|
46
|
Kotredes KP, Oblak A, Pandey RS, Lin PBC, Garceau D, Williams H, Uyar A, O’Rourke R, O’Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope Z, Foley KE, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Sasner M, Lamb BT, Howell GR. Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H. Front Aging Neurosci 2021; 13:735524. [PMID: 34707490 PMCID: PMC8544520 DOI: 10.3389/fnagi.2021.735524] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Late-onset Alzheimer's disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host.
Collapse
Affiliation(s)
| | - Adrian Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | - Dylan Garceau
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Rita O’Rourke
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Cynthia Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | | | - Zackary Cope
- Department of Medicine—Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kate E. Foley
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | - Stacey J. Sukoff Rizzo
- Department of Medicine—Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | | | - Bruce T. Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | |
Collapse
|
47
|
Eysert F, Coulon A, Boscher E, Vreulx AC, Flaig A, Mendes T, Hughes S, Grenier-Boley B, Hanoulle X, Demiautte F, Bauer C, Marttinen M, Takalo M, Amouyel P, Desai S, Pike I, Hiltunen M, Chécler F, Farinelli M, Delay C, Malmanche N, Hébert SS, Dumont J, Kilinc D, Lambert JC, Chapuis J. Alzheimer's genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol Psychiatry 2021; 26:5592-5607. [PMID: 33144711 PMCID: PMC8758496 DOI: 10.1038/s41380-020-00926-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.
Collapse
Affiliation(s)
- Fanny Eysert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Audrey Coulon
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Emmanuelle Boscher
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Québec City, QC, Canada
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Université Laval, Québec City, QC, Canada
| | - Anaїs-Camille Vreulx
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Amandine Flaig
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Tiago Mendes
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Sandrine Hughes
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, Biot, 06410, France
| | - Benjamin Grenier-Boley
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Xavier Hanoulle
- Université de Lille, CNRS, UMR8576-Labex DISTALZ, Villeneuve d'Ascq, 59655, France
| | - Florie Demiautte
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Charlotte Bauer
- Université Côte d'Azur, Inserm, CNRS, IPMC, DistAlz Laboratory of Excellence, Valbonne, France
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Shruti Desai
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, London, WC1H 9BB, UK
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Frédéric Chécler
- Université Côte d'Azur, Inserm, CNRS, IPMC, DistAlz Laboratory of Excellence, Valbonne, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, Biot, 06410, France
| | - Charlotte Delay
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Nicolas Malmanche
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Sébastien S Hébert
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Québec City, QC, Canada
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Université Laval, Québec City, QC, Canada
| | - Julie Dumont
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Devrim Kilinc
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Julien Chapuis
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France.
| |
Collapse
|
48
|
Kuo CC, Chiang AWT, Baghdassarian HM, Lewis NE. Dysregulation of the secretory pathway connects Alzheimer's disease genetics to aggregate formation. Cell Syst 2021; 12:873-884.e4. [PMID: 34171228 PMCID: PMC8505362 DOI: 10.1016/j.cels.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Amyloid disorders such as Alzheimer's disease (AD) involve the aggregation of secreted proteins. However, it is largely unclear how secretory-pathway proteins contribute to amyloid formation. We developed a systems biology framework integrating expression data with protein-protein interaction networks to estimate a tissue's fitness for producing specific secreted proteins and analyzed the fitness of the secretory pathway of various brain regions and cell types for synthesizing the AD-associated amyloid precursor protein (APP). While key amyloidogenic pathway components were not differentially expressed in AD brains, we found Aβ deposition correlates with systemic down- and upregulation of the secretory-pathway components proximal to APP and amyloidogenic secretases, respectively, in AD. Our analyses suggest that perturbations from three AD risk loci cascade through the APP secretory-support network and into the endocytosis pathway, connecting amyloidogenesis to dysregulation of secretory-pathway components supporting APP and suggesting novel therapeutic targets for AD. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA
| | - Austin W T Chiang
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Hratch M Baghdassarian
- Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Miranda A, Montiel E, Ulrich H, Paz C. Selective Secretase Targeting for Alzheimer's Disease Therapy. J Alzheimers Dis 2021; 81:1-17. [PMID: 33749645 DOI: 10.3233/jad-201027] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979 Verubecestat, LY2886721, Lanabecestat, LY2811376 and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse disease progress. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase activity enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.
Collapse
Affiliation(s)
- Alvaro Miranda
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Enrique Montiel
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
50
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|