1
|
Ren C, Li Y, Li M, Wang Y. Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). Int J Oncol 2025; 66:40. [PMID: 40314093 PMCID: PMC12068847 DOI: 10.3892/ijo.2025.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 05/03/2025] Open
Abstract
Lymphoma is a malignancy of the immune system, which originates from lymphatic tissues and lymph nodes. Diffuse large B‑cell lymphoma (DLBCL) is a common type of non‑Hodgkin lymphoma, occurring in 30‑40% of all cases, which has persistent clinical challenges. The treatment of DLBCL is challenging due to its diverse genetic and biological characteristics and complex clinical physiology. Despite advancements in overall prognosis, 20‑25% of patients continue to experience relapse and 10‑15% of patients experience refractory disease. Vitamin C is a water‑soluble vitamin with antioxidant properties and notable pharmacological activity, with potential applications in cancer therapy. Pharmacological doses of vitamin C (1‑4 g/kg) can induce apoptosis in malignant cells by inhibiting and/or reversing gene mutations that are associated with hematological malignancies. For example, 10‑25% of patients with myeloid malignancies have tet methylcytosine dioxygenase 2 (TET2) gene mutations and vitamin C can regulate blood stem cell frequency and leukemia production by enhancing TET2 function. Consequently, pharmacological doses of vitamin C can inhibit the development and progression of hematological malignancies. Therefore, the present review aimed to investigate the role of vitamin C in the pathophysiology and treatment of DLBCL, whilst highlighting the potential challenges and future perspectives.
Collapse
Affiliation(s)
- Chunxiao Ren
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yaqiong Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Mingrui Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
2
|
Mokhtar A, Mohamed T, Eigza AO, El-Khouly ME. Combining Water-Soluble Porphyrin and Phthalocyanine Photosensitizers With Doxorubicin Improves the Efficacy of Chemo-Photodynamic Therapy Against DMBA-Induced Breast Carcinoma. Chem Biodivers 2025; 22:e202402782. [PMID: 39714972 DOI: 10.1002/cbdv.202402782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Breast cancer ranks as the second most widespread form of cancer globally. Currently, combination therapy is being actively employed in clinical practice to augment the efficiency of anticancer treatment. Hence, the objective of this study was to assess the therapeutic efficacy of a combination of femtosecond laser-based photodynamic therapy (PDT) utilizing two distinct photosensitizers (PSs), zinc phthalocyanine tetrasulfonate (ZnPcS4) and α,β,χ,δ porphyrin-Tetrakis (1-methylpyridinium-4-yl) p-Toluenesulfonate porphyrin (TMPyP) in conjunction with doxorubicin chemotherapeutic agent, on mammary carcinomas experimentally induced in female mice using 7,12-dimethylbenz[a] anthracene (DMBA). Our results showed the efficiency of the combined therapy for promoting tissue apoptosis and necrosis as evidenced by histopathological observations and the noticeable reduction of Bcl-2 and Ki-67 expression. Moreover, there was a reduction in serum levels of the carcinoma antigen CA15-3 and transforming growth factor beta (TGF-β). Co-treatment of doxorubicin with ZnPcS4-PDT or TMPyP-PDT or a combination of both resulted in a decrease in the expression of epidermal growth factor receptor (EGFR) and its downstream oncogenes NRAS, NF-κB, mTERT, and c-Myc, and an increase in the expression of the caspase-3 apoptotic gene. These results validate the therapeutic potential of combining doxorubicin with PDT, highlighting the potential of this co-treatment strategy as a promising alternative for enhancing existing anticancer approaches.
Collapse
Affiliation(s)
- Aya Mokhtar
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications (LIRA), Beni-Suef University, Beni Suef, Egypt
| | - Ahmed O Eigza
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, Egypt
| |
Collapse
|
3
|
Ilyas S, Lee D. Exploring the Role of BCL2 Interactome in Cancer: A Protein/Residue Interaction Network Analysis. BIOLOGY 2025; 14:261. [PMID: 40136517 PMCID: PMC11940271 DOI: 10.3390/biology14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
BCL2 is a critical regulator of intrinsic and extrinsic pathways of apoptosis that have been implicated in cancer progression and therapeutic resistance. In this study, the protein-protein interactions (PPIs) of BCL2 with potential binding partners and their role in cancer was investigated. A comprehensive PPI network for BCL2 has been generated by using the Protein Interactions Network Analysis (PINA) platform to identify key interactors. To further investigate the network, Molecular Operating Environment (MOE), Search Tool for the Retrieval of Interacting Genes (STRING), Residue Interaction Network Generation (RING), and the gProfiler server were used. Docking and Molecular Dynamics (MD) simulations were performed by using HDOCK and Gromacs to analyze the binding dynamics and stability of protein complexes. The BCL2 interactome revealed that three key interactors (p53, RAF1, and MAPK1) are involved in cancer-related processes. Docking studies highlighted BCL2 residues such as ASP111, ASP140, ARG107, and ARG146 that were predominantly involved in multiple hydrogen bonds, ionic interactions, and van der Waals contacts, highlighting conserved binding sites that play critical roles in the stability and specificity of protein-protein interactions. MD simulations (200 ns) of the BCL2-p53 complex showed that the RMSD was increased, suggesting the suppression of BCL2's anti-apoptotic activity by p53. The RMSD for BCL2-RAF1 was also increased, showing protein domain structural rearrangements that enhance BCL2 anti-apoptotic activity. The BCL2-MAPK1 complex revealed structural, distinct flexibility patterns and dynamic hydrogen bonding interactions. These findings provide valuable insights into the molecular dynamics by which BCL2 modulates apoptosis and its potential as a promising therapeutic in cancer and apoptosis-related diseases.
Collapse
Affiliation(s)
- Sidra Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
4
|
Tu M, Cai G, Ma L, Yan L, Wang T, Shi Z, Wang C, Chen Z. Effects of Different Levels of Lycium barbarum Flavonoids on Growth Performance, Immunity, Intestinal Barrier and Antioxidant Capacity of Meat Ducks. Antioxidants (Basel) 2025; 14:67. [PMID: 39857401 PMCID: PMC11761579 DOI: 10.3390/antiox14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: In vitro findings on the biological functions of Lycium barbarum flavonoids (LBFs) as feed additives are limited. This study aimed to explore the effects of different concentrations of LBFs on the growth performance, immune function, intestinal barrier, and antioxidant capacity of meat ducks. A total of 240 one-day-old male meat ducks were randomly allocated to four groups, each receiving a basal diet supplemented with 0 (control), 250, 500, or 1000 mg/kg of LBFs for 42 d. Results: The results showed that dietary supplementation with 500 mg/kg of LBFs resulted in a significant increase in average daily feed intake, body weight, average daily gain, and feed conversion ratio. Dietary supplementation with 500 or 1000 mg/kg of LBFs resulted in significant decreases in serum levels of D-lactic acid and lipopolysaccharide. Dietary supplementation with 500 mg/kg LBFs significantly decreased diamine oxidase activity and enhanced the activities of catalase, total antioxidant capacity, and glutathione peroxidase in the jejunal mucosa, as well as the activity of total superoxide dismutase and the content of glutathione in the ileal mucosa, while significantly lowering the content of malondialdehyde in the ileal mucosa. Dietary supplementation with 500 mg/kg LBFs significantly up-regulated the mRNA expression of genes associated with intestinal barrier function and antioxidant capacity in the jejunal and ileal mucosa, as well as the protein expression of these antioxidant genes, and led to a significant reduction in the mRNA expression of pro-apoptotic and inflammatory-related genes. Conclusions: The addition of LBFs to the diet improved the growth performance, intestinal barrier function, immune response, and antioxidant capacity of the ducks, which may be closely associated with the activation of the Nrf2 signaling pathway and the inhibition of the NF-κB signaling pathway. The optimal dietary inclusion level of LBFs in ducks was 500 mg/kg.
Collapse
Affiliation(s)
- Minhang Tu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Gentan Cai
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Longfei Ma
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Leyan Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Chao Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhe Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
5
|
Yan Y, Guo Y, Wang Z, He W, Zhu Y, Zhao X, Sun L, Wang Y. Clinical Pharmacology and Side Effects of Venetoclax in Hematologic Malignancies. Curr Drug Metab 2025; 25:564-575. [PMID: 39620327 DOI: 10.2174/0113892002338926241114080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 02/18/2025]
Abstract
Venetoclax is a first-in-class B-cell lymphoma/lymphoma-2 (BCL-2) inhibitor that induces apoptosis in malignant cells through the inhibition of BCL-2. The clinical response to venetoclax exhibits heterogeneity, and its sensitivity and resistance may be intricately linked to genetic expression. Pharmacokinetic studies following doses of venetoclax (ranging from 100 to 1200mg) revealed a time to maximum observed plasma concentration of 5-8 hours, with a maximum blood concentration of 1.58-3.89 μg/mL, and a 24-hour area under the concentration-time curve of 12.7-62.8 μg·h/mL. Population-based pharmacokinetic investigations highlighted that factors such as low-fat diet, race, and severe hepatic impairment play pivotal roles in influencing venetoclax dose selection. Being a substrate for CYP3A4, P-glycoprotein, and breast cancer resistance protein, venetoclax undergoes primary metabolism and clearance in the liver, displaying low accumulation in the body.The significance of dose modifications (a 50% decrease with moderate and a 75% reduction with strong CYP3A inhibitors) and a cautious two-hour interval when co-administered with P-glycoprotein inhibitors are highlighted by insights from clinical medication interaction studies. Moreover, an exposure-response relationship analysis indicates that venetoclax exposure significantly correlates not only with overall survival and total response rate but also with the occurrence of ≥ 3-grade neutropenia. In real-world studies, common or severe side effects of venetoclax include tumor lysis syndrome, myelosuppression, nausea, diarrhea, constipation, infection, autoimmune hemolytic anemia, and cardiac toxicity, among others. In this review, we summarize the current clinical pharmacology studies and side effects of venetoclax, which showed that the approved dosage of venetoclax is relatively wide, and the dosage for different hematologic populations can be streamlined in the future.
Collapse
Affiliation(s)
- Yuting Yan
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yujiao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Ziyi Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Wei He
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoli Zhao
- Department of Hematology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yongqing Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
6
|
Chen C, Dong Q, Wang H, Dong S, Wang S, Lin W, Jia C, Dong M, Jin Y, Liu D. The association between NADPH oxidase (NOX) polymorphisms with immunohistochemistry and survival in diffuse large B cell lymphoma patients. Ann Hematol 2025; 104:407-420. [PMID: 39774928 DOI: 10.1007/s00277-024-06144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
The purpose of this study was to comprehensively analyze the prediction role of NADPH oxidase (NOX)-related polymorphisms (NCF4: rs1883112, CYBA: rs4673, RAC2: rs13058338) and immunohistochemical indices on survival in diffuse large B-cell lymphoma (DLBCL).The impact of NOX polymorphisms were evaluated in 335 DLBCL patients treated with R (rituximab)-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) from Harbin Medical University Cancer Hospital. We also collected information on their immunohistochemical expression and clinical outcomes.Among the patients treated with R-CHOP therapy, the patients with CyclinD1 (+) had significantly shorter progression-free survival (PFS) (p = 0.001) and event-free survival (EFS) (p < 0.001) than CyclinD1 (-) patients. Among patients received CHOP therapy, PFS was significantly longer in CD20 (+) patients (p = 0.011) than in CD20(-) patients. Among the patients treated with R-CHOP therapy, the PFS (p = 0.020) and EFS (p < 0.001) of patients with NCF4 rs1883112 AA/AG genotype were significantly longer than the patients with GG genotype. Patients treated with R-CHOP therapy and with RAC2 rs13058338 AA/AT genotype were more likely to have grade III or higher myelosuppression compared to patients with TT genotype (p = 0.027). Patients treated with CHOP therapy and with RAC2 rs13058338 AA/AT genotype were more likely to have grade III or higher systemic adverse events (p = 0.029). Cox regression analysis showed that NCF4 rs1883112 GG genotype and CyclinD1 (+) were the factors contributing to the poor outcomes in DLBCL patients treated with R-CHOP therapy.In conclusion, the results suggested that the NCF4 rs1883112 G allele may be a poor prognostic biomarker, especially for the DLBCL patients with CD3(-), CD5 (-), CD10 (-), Bcl-2 (+), Bcl-6 (+) or Ki-67(%) < 80%.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Female
- Middle Aged
- Cyclophosphamide/administration & dosage
- Cyclophosphamide/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Prednisone/administration & dosage
- Prednisone/therapeutic use
- Doxorubicin/administration & dosage
- Doxorubicin/therapeutic use
- Vincristine/administration & dosage
- Vincristine/therapeutic use
- Adult
- Aged
- Rituximab/administration & dosage
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Polymorphism, Single Nucleotide
- Immunohistochemistry
- Aged, 80 and over
- Young Adult
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Adolescent
- RAC2 GTP-Binding Protein
- Survival Rate
Collapse
Affiliation(s)
- Chao Chen
- Department of laboratory, Harbin Medical University Cancer Hospital, 150086, Harbin, China
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Quan Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Huiqi Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Shiqi Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Shufan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Wenxin Lin
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China.
| | - Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China.
| |
Collapse
|
7
|
Pradhan G, Juvale K. Structure activity relationship for anticancer activities of spirooxindole derivatives: A comprehensive review. Bioorg Chem 2025; 154:107975. [PMID: 39591685 DOI: 10.1016/j.bioorg.2024.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Cancer remains one of the leading causes of mortality worldwide, necessitating the continuous search for novel therapeutic agents. Spirooxindole derivatives have recently emerged as a class of compounds with significant potential for cancer treatment owing to their diverse pharmacological activities and unique structural features. The structural diversity of spirooxindole derivatives enables a wide range of modifications, facilitating optimization of their pharmacokinetic and pharmacodynamic properties. Moreover, their ability to interact with multiple molecular targets involved in cancer progression, including kinases, receptors, and enzymes, makes them attractive candidates for multi-targeted therapy. In preclinical studies, numerous spirooxindole derivatives have demonstrated promising antiproliferative activity against various cancer cell lines, including breast, lung, colon, and prostate cancers. Mechanistic investigations have revealed their ability to induce cell cycle arrest and apoptosis and inhibit angiogenesis and metastasis, underscoring their potential as effective anticancer agents. However, challenges such as off-target effects, drug resistance, and limited bioavailability need to be addressed to maximize the therapeutic potential of these compounds. Continued research efforts to elucidate their molecular mechanisms, optimize their pharmacological properties, and conduct rigorous clinical evaluations are warranted to harness their full therapeutic benefits for cancer treatment. This review provides a comprehensive overview of recent advancements in developing spirooxindole derivatives as anticancer agents with structure-activity relationships.
Collapse
Affiliation(s)
- Gandhar Pradhan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
8
|
Liu J, Li L, He S, Zheng X, Zhu D, Kong G, Li P. EXPLORING THE PROGNOSTIC NECROPTOSIS-RELATED GENES AND UNDERLYING MECHANISM IN SEPSIS USING BIOINFORMATICS. Shock 2024; 62:363-374. [PMID: 38920136 PMCID: PMC11460741 DOI: 10.1097/shk.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Sepsis is a life-threatening disease due to a dysregulated host response to infection, with an unknown regulatory mechanism for prognostic necroptosis-related genes (NRGs). Using GEO datasets GSE65682 and GSE134347, we identified six NRG biomarkers ( ATRX , TSC1 , CD40 , BACH2 , BCL2 , and LEF1 ) with survival and diagnostic significance through Kaplan-Meier (KM) and receiver operating characteristic (ROC) analyses. Afterward, the ingenuity pathway analysis (IPA) highlighted enrichment in hepatic fibrosis pathways and BEX2 protein. Moreover, we examined their regulatory targets and functional links with necroptotic signaling molecules via miRDB, TargetScan, Network analyst, and GeneMANIA. The molecular regulatory network displayed that hsa-miR-5195-3p and hsa-miR-145-5p regulated ATRX, BACH2, and CD40, while YY1 showed strong connectivity, concurrently controlling LEF1, ATRX, BCL2, BACH2, and CD40. CD40 exhibited similar expression patterns to RIPK3 and MLKL, and LEF1 was functionally associated with MLKL. Additionally, DrugBank analysis identified paclitaxel, docetaxel, and rasagiline as potential BCL2-targeting sepsis treatments. Finally, real-time quantitative PCR confirmed ATRX, TSC1, and LEF1 downregulation in sepsis samples, contrasting CD40's increased expression in CTL samples. In conclusion, ATRX , TSC1 , CD40 , BACH2 , BCL2 , and LEF1 may be critical regulatory targets of necroptosis in sepsis, providing a basis for further necroptosis-related studies in sepsis.
Collapse
Affiliation(s)
- Jie Liu
- General Practice, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuyang He
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China
| | - Xin Zheng
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dan Zhu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyao Kong
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ping Li
- General Practice, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
10
|
Aung TM, Ngamjarus C, Proungvitaya T, Saengboonmee C, Proungvitaya S. Biomarkers for prognosis of meningioma patients: A systematic review and meta-analysis. PLoS One 2024; 19:e0303337. [PMID: 38758750 PMCID: PMC11101050 DOI: 10.1371/journal.pone.0303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Meningioma is the most common primary brain tumor and many studies have evaluated numerous biomarkers for their prognostic value, often with inconsistent results. Currently, no reliable biomarkers are available to predict the survival, recurrence, and progression of meningioma patients in clinical practice. This study aims to evaluate the prognostic value of immunohistochemistry-based (IHC) biomarkers of meningioma patients. A systematic literature search was conducted up to November 2023 on PubMed, CENTRAL, CINAHL Plus, and Scopus databases. Two authors independently reviewed the identified relevant studies, extracted data, and assessed the risk of bias of the studies included. Meta-analyses were performed with the hazard ratio (HR) and 95% confidence interval (CI) of overall survival (OS), recurrence-free survival (RFS), and progression-free survival (PFS). The risk of bias in the included studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool. A total of 100 studies with 16,745 patients were included in this review. As the promising markers to predict OS of meningioma patients, Ki-67/MIB-1 (HR = 1.03, 95%CI 1.02 to 1.05) was identified to associate with poor prognosis of the patients. Overexpression of cyclin A (HR = 4.91, 95%CI 1.38 to 17.44), topoisomerase II α (TOP2A) (HR = 4.90, 95%CI 2.96 to 8.12), p53 (HR = 2.40, 95%CI 1.73 to 3.34), vascular endothelial growth factor (VEGF) (HR = 1.61, 95%CI 1.36 to 1.90), and Ki-67 (HR = 1.33, 95%CI 1.21 to 1.46), were identified also as unfavorable prognostic biomarkers for poor RFS of meningioma patients. Conversely, positive progesterone receptor (PR) and p21 staining were associated with longer RFS and are considered biomarkers of favorable prognosis of meningioma patients (HR = 0.60, 95% CI 0.41 to 0.88 and HR = 1.89, 95%CI 1.11 to 3.20). Additionally, high expression of Ki-67 was identified as a prognosis biomarker for poor PFS of meningioma patients (HR = 1.02, 95%CI 1.00 to 1.04). Although only in single studies, KPNA2, CDK6, Cox-2, MCM7 and PCNA are proposed as additional markers with high expression that are related with poor prognosis of meningioma patients. In conclusion, the results of the meta-analysis demonstrated that PR, cyclin A, TOP2A, p21, p53, VEGF and Ki-67 are either positively or negatively associated with survival of meningioma patients and might be useful biomarkers to assess the prognosis.
Collapse
Affiliation(s)
- Tin May Aung
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chetta Ngamjarus
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Wang J, Wang H, Ding Y, Jiao X, Zhu J, Zhai Z. NET-related gene signature for predicting AML prognosis. Sci Rep 2024; 14:9115. [PMID: 38643300 PMCID: PMC11032381 DOI: 10.1038/s41598-024-59464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a malignant blood cancer with a high mortality rate. Neutrophil extracellular traps (NETs) influence various tumor outcomes. However, NET-related genes (NRGs) in AML had not yet received much attention. This study focuses on the role of NRGs in AML and their interaction with the immunological microenvironment. The gene expression and clinical data of patients with AML were downloaded from the TCGA-LAML and GEO cohorts. We identified 148 NRGs through the published article. Univariate Cox regression was used to analyze the association of NRGs with overall survival (OS). The least absolute shrinkage and selection operator were utilized to assess the predictive efficacy of NRGs. Kaplan-Meier plots visualized survival estimates. ROC curves assessed the prognostic value of NRG-based features. A nomogram, integrating clinical information and prognostic scores of patients, was constructed using multivariate logistic regression and Cox proportional hazards regression models. Twenty-seven NRGs were found to significantly impact patient OS. Six NRGs-CFTR, ENO1, PARVB, DDIT4, MPO, LDLR-were notable for their strong predictive ability regarding patient survival. The ROC values for 1-, 3-, and 5-year survival rates were 0.794, 0.781, and 0.911, respectively. In the training set (TCGA-LAML), patients in the high NRG risk group showed a poorer prognosis (p < 0.001), which was validated in two external datasets (GSE71014 and GSE106291). The 6-NRG signature and corresponding nomograms exhibit superior predictive accuracy, offering insights for pre-immune response evaluation and guiding future immuno-oncology treatments and drug selection for AML patients.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Hematology, Tongling People's Hospital, Tongling, 244000, Anhui, China
| | - Huiping Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yangyang Ding
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xunyi Jiao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jinli Zhu
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
12
|
Nandi S, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Acharya K, Calina D, Sharifi-Rad J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother Res 2024; 38:592-619. [PMID: 37929761 DOI: 10.1002/ptr.8061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Sterols, including β-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of β-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. β-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of β-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of β-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of β-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of β-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of β-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. β-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of β-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of β-sitosterol-mediated anticancer activities remains limited. β-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, β-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of β-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on β-sitosterol as a potent superfood in combating cancer.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Kolkata, India
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
13
|
Saadh MJ, Castillo-Acobo RY, Baher H, Narayanan J, Palacios Garay JP, Yamaguchi MNV, Arias-Gonzáles JL, Cotrina-Aliaga JC, Akram SV, Lakshmaiya N, Amin AH, Mohany M, Al-Rejaie SS, Ahsan M, Bahrami A, Akhavan-Sigari R. The protective role of sulforaphane and Homer1a in retinal ischemia-reperfusion injury: Unraveling the neuroprotective interplay. Life Sci 2023; 329:121968. [PMID: 37487941 DOI: 10.1016/j.lfs.2023.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
AIMS Retinal ischemia/reperfusion (I/R) injury is a common pathological basis for various ophthalmic diseases. This study aimed to investigate the potential of sulforaphane (SFN) and Homer1a in regulating cell apoptosis induced by retinal I/R injury and to explore the underlying regulatory mechanism between them. MATERIALS AND METHODS In in vivo experiments, C57BL/6J mice and Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice were used to construct retinal I/R injury models. In vitro experiments utilized the oxygen-glucose deprivation-reperfusion (OGD/R) injury model with primary retinal ganglion cells (RGCs). The effects of Homer1a and SFN on cell apoptosis were observed through pathological analyses, flow cytometry, and visual electrophysiological assessments. KEY FINDINGS We discovered that after OGD/R injury, apoptosis of RGCs and intracellular Ca2+ activity significantly increased. However, these changes were reversed upon the addition of SFN, and similar observations were reproduced in in vivo studies. Furthermore, both in vivo and in vitro studies confirmed the upregulation of Homer1a after I/R, which could be further enhanced by the administration of SFN. Moreover, upregulation of Homer1a resulted in a reduction in cell apoptosis and pro-apoptotic proteins, while downregulation of Homer1a had the opposite effect. Flash visual evoked potential, oscillatory potentials, and escape latency measurements in mice supported these findings. Furthermore, the addition of SFN strengthened the neuroprotective effects in the OGD/R + H+ group but weakened them in Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice. SIGNIFICANCE These results indicate that Homer1a plays a significant role in the therapeutic potential of sulforaphane for retinal I/R injury, thereby providing a theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman 11152, Jordan
| | | | - Hala Baher
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, BC, Canada
| | | | - Shaik Vaseem Akram
- Uttaranchal Institute of Technology, Division of research and Innovation, Uttaranchal University, Dehradun, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, 44-100, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| | - Abolfazl Bahrami
- Department of Cell Biology, Tuebingen University, Tuebingen, Germany; Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
14
|
Wang R, Huang N, Ji J, Chen C. An integrated approach for evaluating the interactive effects between azoxystrobin and ochratoxin A: Pathway-based in vivo analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105556. [PMID: 37666592 DOI: 10.1016/j.pestbp.2023.105556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Azoxystrobin (AZO) is a broad-spectrum strobilurin fungicide widely used in agriculture. However, its use increases the possibility of co-occurrence with mycotoxins such as ochratoxin A (OTA), which poses a significant risk to human health. Therefore, it is imperative to prioritize the evaluation of the combined toxicity of these two compounds. To assess the combined effects of AZO and OTA, the response genes and phenotypes for AZO or OTA exposure were obtained by utilizing Comparative Toxicogenomics Database, and Database for Annotation, Visualization and Integrated Discovery was used for GO and KEGG pathway enrichment analysis. In addition, we provided in-vivo evidence that AZO and OTA, in isolation and combination, could disrupt a variety of biological processes, such as oxidative stress, inflammatory response, apoptosis and thyroid hormone regulation under environmentally relevant concentrations. Notably, our findings suggest that the combined exposure group exhibited greater toxicity, as evidenced by the expression of various markers associated with the aforementioned biological processes, compared to the individual exposure group, which presents potential targets for the underlying mechanisms of induced toxicity. This study provides a novel methodological approach for exploring the mechanism of combined toxicity of a fungicide and a mycotoxin, which can shed light for conducting risk assessment of foodborne toxins.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jing Ji
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
15
|
Li Z, Pan G, Zhong M, Zhang L, Yu X, Zha J, Xu B. High-Throughput Drug Screen for Potential Combinations With Venetoclax Guides the Treatment of Transformed Follicular Lymphoma. Int J Toxicol 2023; 42:386-406. [PMID: 37271574 DOI: 10.1177/10915818231178693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transformed follicular lymphoma (t-FL) is an aggressive malignancy that is refractory and rapidly progressing with poor prognosis. There is currently no effective treatment. High-throughput screening (HTS) platforms are used to profile the sensitivity or toxicity of hundreds of drug molecules, and this approach is applied to identify potential effective treatments for t-FL. We randomly selected a compound panel from the School of Pharmaceutical Sciences Xiamen University, tested the effects of the panel on the activity of t-FL cell lines using HTS and the CCK-8 assay, and identified compounds showing synergistic anti-proliferative activity with the Bcl-2 inhibitor venetoclax (ABT-199). Bioinformatics tools were used to analyze the potential synergistic mechanisms. The single-concentration compound library demonstrated varying degrees of activity across the t-FL cell lines evaluated, of which the Karpas422 cells were the most sensitive, but it was the cell line with the least synergy with ABT-199. We computationally identified 30 drugs with synergistic effects in all cell lines. Molecularly, we found that the targets of these 30 drugs didn't directly regulate Bcl-2 and identified 13 medications with high evidence value above .9 of coordination with ABT-199, further confirming TP53 may play the largest role in the synergistic effect. Collectively, these findings identified the combined regimens of ABT-199 and further suggested that the mechanism is far from directly targeting Bcl-2, but rather through the regulation and synergistic action of p53 and Bcl-2. This study intended to reveal the best synergistic scheme of ABT-199 through HTS to more quickly inform the treatment of t-FL.
Collapse
Affiliation(s)
- Zhifeng Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Guangchao Pan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Li Zhang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Xingxing Yu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Bing Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| |
Collapse
|
16
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
17
|
Wang Y, Huang D, Song T, Qi X, Li M, Zhang H, Liu Y, Yang M. Andrographolide elevates tumor necrosis factor-related apoptosis-inducing ligand lethality through reactive oxygen species accumulation and gasdermin E cleavage in breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:11. [PMID: 36352155 DOI: 10.1007/s12032-022-01878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is selectively lethal to cancer cells and harmless to normal cells, making it a potential agent for cancer therapy. However, some breast cancer cells are resistant to TRAIL. This study revealed that andrographolide (Andro), an extract from Andrographis paniculate, a natural compound, sensitized breast cancer cells to TRAIL-induced tumor suppression; it identified apoptosis-associated protein regulation, reactive oxygen species accumulation, mitochondria membrane potential disruption, caspase cascade activation, and gasdermin-E cleavage to be involved in the tumor lethality mediated by Andro combined with TRAIL treatment. The flow cytometry results showed the combination of Andro and TRAIL repressed breast cancer cells by cell death induction, and the assessment of combined index indicated that the combined treatment with Andro and TRAIL repressed breast cancer cells synergistically. Blotting results displayed Andro and TRAIL combination elevated TRAIL-associated receptors, death receptors 4 and 5, at protein levels. These results provided critical insight into breast cancer patients' therapy and exploration direction for TRAIL clinical application.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Dan Huang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tingting Song
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyan Qi
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Hui Zhang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yang Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
18
|
Guo Y, Zhang L, Zhang N, Chen L, Luo Q, Liu M, Yang D, Chen J. Bcl-2 and Noxa are potential prognostic indicators for patients with gastroenteropancreatic neuroendocrine neoplasms. Endocrine 2022; 78:159-168. [PMID: 35895181 DOI: 10.1007/s12020-022-03114-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Bcl-2 family proteins are of great significance in the pathogenesis and development of tumors. In this study, the correlations between the expression of Bcl-2 family proteins and clinicopathological features and prognosis of neuroendocrine neoplasms (NENs) were further investigated. METHODS 105 Patients diagnosed with gastroenteropancreatic NENs (GEP-NENs) with the paraffin specimen of the tumor available were retrospectively included. Immunohistochemistry (IHC) was performed to detect the expression of Bcl-2 family proteins in paraffin-embedded samples. Student's t-test and Chi-square test were applied to compare the difference of quantitative and categorical variables, respectively. Survival analysis was conducted according to Kaplan-Meier method. Univariate and multivariate cox regression analysis were used to identify the independent prognostic factors. RESULTS The IHC score of Bcl-2 was significantly higher in neuroendocrine carcinoma (NEC) patients (65.6%), while a higher IHC score of Noxa was more common in neuroendocrine tumor (NET) patients (49.3%). Survival analysis indicated that patients with higher Bcl-2 expression and lower Noxa expression had worse 5-year survival (39.3% vs. 75.6%, p < 0.001; 40.6% vs. 84.9%, p < 0.001). Multivariate cox analysis indicated that high Bcl-2 expression was an independent factor associated with inferior DFS (hazard ratio [HR]: 2.092; 95% confidence interval [CI]: 1.106-3.955; p = 0.023) and OS (HR: 2.784; 95% CI: 1.326-5.846; p = 0.007), while higher Noxa expression was associated with superior DFS (HR:0.398; 95% CI: 0.175-0.907; p = 0.028) and OS (HR: 0.274; 95% CI: 0.110-0.686; p = 0.006). CONCLUSIONS Higher expression of Bcl-2 and lower expression of Noxa were associated with unfavorable prognosis of GEP-NENs patients.
Collapse
Affiliation(s)
- Yu Guo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lin Zhang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Luohai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiuyun Luo
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dajun Yang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Head & Neck tumors and Neuroendocrine Tumors, Fudan University Shanghai Cancer Center Shanghai, Shanghai, 200032, China.
| |
Collapse
|
19
|
PENG H, WANG J, LI S. MiR-15a-5p accelerated vascular smooth muscle cells viabilities and migratory abilities via targeting Bcl-2. Physiol Res 2022; 71:667-675. [PMID: 36047726 PMCID: PMC9841801 DOI: 10.33549/physiolres.934914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aortic dissection (AD) caused by the tear in the aortic wall threatens aorta, causing severe chest pain, syncope and even death. Fortunately, development of genetic technology provides promising approaches for AD treatment. To analyze impacts of miR-15a-5p on modulating cell viability and migratory ability of vascular smooth muscle cells (VSMCs). Ang II (0, 0.05 and 0.1 microM) treatment were applied for inducing inflammatory reactions of VSMCs. RNA expressions of miR-15a-5p with Bcl-2 was examined using RT-qPCR. CCK-8 and transwell evaluated cell viability and migratory ability, respectively. The binding about miR-15a-5p with Bcl-2 were detected by luciferase reporter assay. Western blot detected protein expressions of Bcl-2, MCP-1 and MMP-9. Ang II treatment not only accelerated VSMCs viability and migratory abilities, but also upregulated MCP-1 and MMP-9 protein expressions. MiR-15a-5p was detected to be promoted by Ang II. However, miR-15a-5p inhibitor decreased VSMC cell viability and migratory ability and suppressed protein expressions of MCP-1 and MMP-9. Bcl-2 was targeted and downregulated by miR-15a-5p. Nevertheless, high VSMC cell viability and migration caused by miR-15a-5p overexpression were hindered with overexpressed Bcl-2. MiR-15a-5p mimics also elevated MCP-1 and MMP-9 protein expressions, which were inhibited by Bcl-2 upregulation.
Collapse
Affiliation(s)
- Hui PENG
- Department of Cardiac Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Jianhua WANG
- Department of Cardiac Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Shaohui LI
- Department of Cardiac Surgery, Xingtai People’s Hospital, Xingtai, China
| |
Collapse
|
20
|
Bao X, Zhang Y, Zhang H, Xia L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front Oncol 2022; 12:926975. [PMID: 35756648 PMCID: PMC9213880 DOI: 10.3389/fonc.2022.926975] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
β-Sitosterol (SIT), a white powdery organic substance with a molecular formula of C29H50O, is one of the most abundant naturally occurring phytosterols in plants. With a chemical composition similar to that of cholesterol, SIT is applied in various fields such as medicine, agriculture, and chemical industries, owing to its unique biological and physicochemical properties. Modern pharmacological studies have elucidated good anti-tumor therapeutic effect activity of SIT, which mainly manifests as pro-apoptotic, anti-proliferative, anti-metastatic, anti-invasive, and chemosensitizing on tumor cells. In addition, SIT exerts an anti-tumor effect on multiple malignant tumors such as breast, gastric, lung, kidney, pancreatic, prostate, and other cancers. Further, SIT derivatives with structural modifications are promising anti-tumor drugs with significant anti-tumor effects. This review article focuses on recent studies relevant to the anti-tumor effects of SIT and summarizes its anti-tumor mechanism to provide a reference for the clinical treatment of malignant tumors and the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:903278. [PMID: 35652090 PMCID: PMC9150698 DOI: 10.3389/fcell.2022.903278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily available and frequently used for bone regeneration in clinics. Osteogenic differentiation of BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and inhibitory effects on osteogenic differentiation of BMSCs. During the physiological condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are downregulated. The opposite effects might occur during bone degenerative disease conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via exosomes participate in the regulatory process of osteogenic differentiation of BMSCs. In this review, we summarize the recent advances in the regulatory role of ncRNAs on osteogenic differentiation of BMSCs during physiological and pathological conditions. We also discuss the prospects of the application of modulation of ncRNAs function in BMSCs to promote bone tissue regeneration in clinics.
Collapse
Affiliation(s)
- Xiaoying Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ming Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhan Shi
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Effects of Involuntary and Voluntary Exercise in Combination with Acousto-Optic Stimulation on Adult Neurogenesis in an Alzheimer's Mouse Model. Mol Neurobiol 2022; 59:3254-3279. [PMID: 35297012 DOI: 10.1007/s12035-022-02784-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
Single-factor intervention, such as physical exercise and auditory and visual stimulation, plays a positive role on the prevention and treatment of Alzheimer's disease (AD); however, the therapeutic effects of single-factor intervention are limited. The beneficial effects of these multifactor combinations on AD and its molecular mechanism have yet to be elucidated. Here, we investigated the effect of multifactor intervention, voluntary wheel exercise, and involuntary treadmill running in combination with acousto-optic stimulation, on adult neurogenesis and behavioral phenotypes in a mouse model of AD. We found that 4 weeks of multifactor intervention can significantly increase the production of newborn cells (BrdU+ cells) and immature neurons (DCX+ cells) in the hippocampus and lateral ventricle of Aβ oligomer-induced mice. Importantly, the multifactor intervention could promote BrdU+ cells to differentiate into neurons (BrdU+ DCX+ cells or BrdU+ NeuN+ cells) and astrocytes (BrdU+GFAP+ cells) in the hippocampus and ameliorate Aβ oligomer-induced cognitive impairment and anxiety- and depression-like behaviors in mice evaluated by novel object recognition, Morris water maze tests, elevated zero maze, forced swimming test, and tail suspension test, respectively. Moreover, multifactor intervention could lead to an increase in the protein levels of PSD-95, SYP, DCX, NeuN, GFAP, Bcl-2, BDNF, TrkB, and pSer473-Akt and a decrease in the protein levels of BAX and caspase-9 in the hippocampal lysates of Aβ oligomer-induced mice. Furthermore, sequencing analysis of serum metabolites revealed that aberrantly expressed metabolites modulated by multifactor intervention were highly enriched in the biological process associated with keeping neurons functioning and neurobehavioral function. Additionally, the intervention-mediated serum metabolites mainly participated in glutamate metabolism, glucose metabolism, and the tricarboxylic acid cycle in mice. Our findings suggest the potential of multifactor intervention as a non-invasive therapeutic strategy for AD to anti-Aβ oligomer neurotoxicity.
Collapse
|
23
|
Liu ZT, Ma YT, Pan ST, Xie K, Shen W, Lin SY, Gao JY, Li WY, Li GY, Wang QW, Li LP. Effects of involuntary treadmill running in combination with swimming on adult neurogenesis in an Alzheimer's mouse model. Neurochem Int 2022; 155:105309. [PMID: 35276288 DOI: 10.1016/j.neuint.2022.105309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Physical exercise plays a role on the prevention and treatment of Alzheimer's disease (AD), but the exercise mode and the mechanism for these positive effects is still ambiguous. Here, we investigated the effect of an aerobic interval exercise, running in combination with swimming, on behavioral dysfunction and associated adult neurogenesis in a mouse model of AD. We demonstrate that 4 weeks of the exercise could ameliorate Aβ42 oligomer-induced cognitive impairment in mice utilizing Morris water maze tests. Additionally, the exercised Aβ42 oligomer-induced mice exhibited a significant reduction of anxiety- and depression-like behaviors compared to the sedentary Aβ42 oligomer-induced mice utilizing an Elevated zero maze and a Tail suspension test. Moreover, by utilizing 5'-bromodeoxyuridine (BrdU) as an exogenous cell tracer, we found that the exercised Aβ42 oligomer-induced mice displayed a significant increase in newborn cells (BrdU+ cells), which differentiated into a majority of neurons (BrdU+ DCX+ cells or BrdU+NeuN+ cells) and a few of astrocytes (BrdU+GFAP+ cells). Likewise, the exercised Aβ42 oligomer-induced mice also displayed the higher levels of NeuN, PSD95, synaptophysin, Bcl-2 and lower level of GFAP protein. Furthermore, alteration of serum metabolites in transgenic AD mice between the exercised and sedentary group were significantly associated with lipid metabolism, amino acid metabolism, and neurotransmitters. These findings suggest that combined aerobic interval exercise-mediated metabolites and proteins contributed to improving adult neurogenesis and behavioral performance after AD pathology, which might provide a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhi-Tao Liu
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Yu-Tao Ma
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Shao-Tao Pan
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Kai Xie
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Wei Shen
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Su-Yang Lin
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Jun-Yan Gao
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Wan-Yi Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Guang-Yu Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Qin-Wen Wang
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China.
| | - Li-Ping Li
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, 315010, PR China.
| |
Collapse
|
24
|
Zehnle PMA, Wu Y, Pommerening H, Erlacher M. Stayin‘ alive: BCL-2 proteins in the hematopoietic system. Exp Hematol 2022; 110:1-12. [PMID: 35315320 DOI: 10.1016/j.exphem.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
|
25
|
Li Z, Zhang J, Zhou M, Li JL, Qiu QC, Fu JH, Xue SL, Qiu HY. Epigenetic therapy with chidamide alone or combined with 5‑azacitidine exerts antitumour effects on acute myeloid leukaemia cells in vitro. Oncol Rep 2022; 47:66. [PMID: 35103292 PMCID: PMC8848469 DOI: 10.3892/or.2022.8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
Chidamide, a selective histone deacetylase inhibitor, has antitumour effects. 5‑azacitidine (5‑AZA), a hypomethylating agent, is effective in treating acute myeloid leukaemia (AML) and myelodysplastic syndrome. However, to the best of our knowledge, the effect of chidamide and 5‑AZA on AML cell lines has not been fully investigated. In the present study, the antileukaemia activity of chidamide, alone and in combination with 5‑AZA, was assessed on different subtypes of AML cell lines (M1‑M5) and primary samples from several patients with AML in vitro. The results indicated that the proliferation of leukaemia cells was significantly and dose‑dependently inhibited by chidamide and 5‑AZA alone or in combination. The combination also had marked synergistic effects to induce apoptosis of AML cells. The apoptosis of leukaemia cells was induced via downregulation of BCL‑2 and myeloid‑cell leukemia 1 (MCL‑1) levels. Of note, chidamide also degraded the MCL‑1 protein in venetoclax‑resistant U937 cells, in which the MCL‑1 protein is upregulated. In addition, chidamide was able to induce myeloid differentiation (with CD11b upregulation) of AML cell lines or monocytic/dendritic differentiation (with CD86 upregulation) of primary cultured cells from several patients with AML. Chidamide was also able to promote the differentiation of the venetoclax‑resistant U937 cell line by upregulating CD11b expression. In conclusion, chidamide alone or combined with 5‑AZA may be an effective therapy for AML.
Collapse
Affiliation(s)
- Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Zhou
- Department of Hematology, Changshu Affiliated Hospital of Soochow University, The First People's Hospital of Changshu, Changshu, Jiangsu 215500, P.R. China
| | - Jin-Li Li
- State Key Laboratory of Radiation Medicine and Protection, Oncology Radiotherapy Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qiao-Cheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian-Hong Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hui-Ying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
26
|
Zhao W, Zhang Y, Zhang M, Zhi Y, Li X, Liu X. Effects of total glucosides of paeony on acute renal injury following ischemia-reperfusion via the lncRNA HCG18/miR-16-5p/Bcl-2 axis. Immunobiology 2022; 227:152179. [DOI: 10.1016/j.imbio.2022.152179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022]
|
27
|
Liu B, Gan W, Jin Z, Wang M, Cui G, Zhang H, Wang H. The Role of miR-34c-5p in Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Int J Stem Cells 2021; 14:286-297. [PMID: 33906980 PMCID: PMC8429940 DOI: 10.15283/ijsc20188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a critical role in the success of lumbar spinal fusion with autogenous bone graft. This study aims to explore the role and specific mechanism of miR-34c-5p in osteogenic differentiation of BMSCs. Methods and Results Rabbit model of lumbar fusion was established by surgery. The osteogenic differentiation dataset of mesenchymal stem cells was obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed miRNAs were analyzed using R language (limma package). The expressions of miR-34c-5p, miR-199a-5p, miR-324-5p, miR-361-5p, RUNX2, OCN and Bcl-2 were determined by qRT-PCR and Western blot. ELISA, Alizarin red staining and CCK-8 were used to detect the ALP content, calcium deposition and proliferation of BMSCs. The targeted binding sites between miR-34c-5p and Bcl-2 were predicted by the Target database and verified using dual-luciferase reporter assay. MiR-34c-5p expression was higher in rabbit lumbar fusion model and differentiated BMSCs than normal rabbit or BMSCs. The content of ALP and the deposition of calcium increased with the osteogenic differentiation of BMSCs. Upregulation of miR-34c-5p reduced cell proliferation and promoted ALP content, calcium deposition, RUNX2 and OCN expression compared with the control group. The effects of miR-34c-5p inhibitor were the opposite. In addition, miR-34c-5p negatively correlated with Bcl-2. Upregulation of Bcl-2 reversed the effects of miR-34c-5p on ALP content, calcium deposition, and the expressions of RUNX2 and OCN. Conclusions miR-34c-5p could promote osteogenic differentiation and suppress proliferation of BMSCs by inhibiting Bcl-2.
Collapse
Affiliation(s)
- Bin Liu
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Wei Gan
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Zhang Jin
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Meng Wang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Guopeng Cui
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Hongyu Zhang
- Pharmacy College, Wenzhou Medical University, Wenzhou, China
| | - Huafu Wang
- Department of Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| |
Collapse
|
28
|
Leão TK, Ribeiro DL, Machado ART, Costa TR, Sampaio SV, Antunes LMG. Synephrine and caffeine combination promotes cytotoxicity, DNA damage and transcriptional modulation of apoptosis-related genes in human HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503375. [PMID: 34454690 DOI: 10.1016/j.mrgentox.2021.503375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The abusive consumption of thermogenic supplements occurs worldwide and deserves special attention due to their use to stimulate weight loss and prevent obesity. Thermogenic formulations usually contain Synephrine (SN) and Caffeine (CAF), stimulating compounds extracted from natural sources, but no genetic toxicology studies have predicted this hazardous combination potential. This study examined the toxicogenomic responses induced by SN and CAF, either alone or in combination, in the human hepatic cell line HepG2 in vitro. SN (0.03-30 μM) and CAF (0.6-600 μM) alone did neither decrease cell viability nor induce DNA damage, as assessed using the MTT and comet assays, respectively. SN (3 μM) and CAF (30-600 μM) were combined at concentrations similar to those found in commercial dietary supplements. SN/CAF at 3:90 and 3:600 μM ratios significantly decreased cell viability and increased DNA damage levels in HepG2 cells. CAF (600 μM) and the SN/CAF association at 3:60, 3:90, and 3:600 μM ratios promoted cell death by apoptosis, as demonstrated by flow cytometry. Similar results were observed in gene expression (RT-qPCR): SN/CAF up-regulated the expression of apoptosis- (BCL-2 and CASP9) and DNA repair-related (XPC) genes. SN/CAF at 3:90 μM also downregulated the expression of cell cycle control (CDKN1A) genes. In conclusion, the SN/CAF combination reduces cell viability by inducing apoptosis, damages DNA, and modulates the transcriptional expression of apoptosis-, cell cycle-, and DNA repair-related genes in human hepatic (HepG2) cells in vitro. These effects can be worrisome to consumers of thermogenic supplements.
Collapse
Affiliation(s)
- Tainá Keiller Leão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Diego Luís Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, CEP: 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Tássia Rafaela Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
29
|
Hu A, Hong F, Li D, Jin Y, Kon L, Xu Z, He H, Xie Q. Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression. J Transl Med 2021; 19:95. [PMID: 33653378 PMCID: PMC7927245 DOI: 10.1186/s12967-020-02682-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023] Open
Abstract
Background As a significant cause of cancer deaths worldwide, breast cancer continues to be a troublesome malignancy. Long non-coding RNAs (lncRNAs) have been implicated in the development of breast cancer. Abnormal methylation has been associated with unfavorable breast cancer prognosis. Herein, the current study aimed to elucidate the role of lncRNA ROR in breast cancer. Methods RT-qPCR was performed to determine whether lncRNA ROR was highly expressed in breast cancer tissues, while lncRNA ROR expression was detected in both the nuclear and cytoplasm of breast cancer cells. MCF-7 cells were subsequently introduced with oe-lncRNA ROR, sh-lncRNA ROR to explore the effects of lncRNA ROR on cell proliferation, invasion and apoptosis. Results RIP, RNA pull-down and ChIP assays provided evidence suggesting that lncRNA ROR recruited transmethylase MLL1 to promote H3K4 trimethylation that enhanced TIMP3 transcription. The rescue experiments demonstrated that lncRNA ROR knockdown could inhibit the progression of breast cancer via the downregulation of TIMP3. Finally, the in vivo experiment findings consistently highlighted the suppressive effects of lncRNA ROR silencing on tumor growth. Conclusion Taken together, our study demonstrates that silencing of lncRNA ROR inhibits breast cancer progression via repression of transmethylase MLL1 and TIMP3, emphasizing the potential of lncRNA ROR as a novel target against breast cancer.
Collapse
Affiliation(s)
- Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China. .,Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China.
| | - Fan Hong
- Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Daohong Li
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yuwei Jin
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lingfei Kon
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China.,Henan University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Ziguang Xu
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hui He
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Qi Xie
- Department of Pathology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
30
|
Wu M, Li X, Huang W, Chen Y, Wang B, Liu X. Ubiquitin-conjugating enzyme E2T(UBE2T) promotes colorectal cancer progression by facilitating ubiquitination and degradation of p53. Clin Res Hepatol Gastroenterol 2021; 45:101493. [PMID: 32736946 DOI: 10.1016/j.clinre.2020.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The expression level of Ubiquitin-conjugating enzyme E2T (UBE2T) is upregulated in various types of human tumors. We explored the correlation and regulatory mechanism of UBE2T in the development of colorectal cancer (CRC). METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to examine the expression of UBE2T in the CRC tissues and cell lines. Immunohistochemical staining, spearman correlation analysis, and Kaplan Meier-survival analysis were used to demonstrate the correlation between UBE2T high expression level and the clinical characteristics of malignant patients and the overall survival. The proliferation, apoptosis, migration and invasion of CRC cells were analyzed by cell transfection, MTT, colony formation, scratch assay, transwell, and flow cytometry. Furthermore, the expression of cell proliferation and apoptosis related proteins and ubiquitination of p53 were detected by western blot. RESULTS UBE2T was up-regulated in CRC tissues and cell lines, and high expression level of UBE2T was correlated with the clinical characteristics of malignant of CRC patients (P<0.05), and patients with high expression level of UBE2T had lower overall survival (P=0.0455). In addition, UBE2T could promote the growth, proliferation, invasion and metastasis of CRC cells and inhibit the apoptosis. At the same time, knockdown of UBE2T inhibited the growth of transplanted tumor in mice of subcutaneous CRC model. Moreover, our experimental results proved that UBE2T regulated the expression of downstream related proteins through ubiquitination of p53 protein to promote the occurrence and development of CRC. CONCLUSION Our study elucidated that high expression of UBE2T would enhance the development of CRC, and then further explored its molecular mechanism both in vitro and in vivo. The results indicated that UBE2T facilitated ubiquitination and degradation of p53, which predicts the possibility of UBE2T as one of molecular diagnosis markers, prognostic indicators and therapeutic drug targets of CRC patients.
Collapse
Affiliation(s)
- Mengqiong Wu
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Xianglu Li
- Department of Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Weiwei Huang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Yiming Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China.
| |
Collapse
|
31
|
Nayak P, Hussain N, Negi S, Agrawal S, Bagde N, Mitra S, Singh V. The immunohistochemical biomarker B-cell lymphoma-2 expression in malignant and premalignant lesions of the uterine cervix and its association with human papillomavirus infection. J Cancer Res Ther 2021; 18:1485-1489. [DOI: 10.4103/jcrt.jcrt_388_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Endoplasmic reticulum stress-related neuroinflammation and neural stem cells decrease in mice exposure to paraquat. Sci Rep 2020; 10:17757. [PMID: 33082501 PMCID: PMC7576831 DOI: 10.1038/s41598-020-74916-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022] Open
Abstract
Paraquat (PQ), a widely used herbicide, could cause neurodegenerative diseases, yet the mechanism remains incompletely understood. This study aimed to investigate the direct effect of PQ on NSC in vivo and its possible mechanism. Adult C57BL/6 mice were subcutaneously injected with 2 mg/kg PQ, 20 mg/kg PQ or vehicle control once a week for 2 weeks, and sacrificed 1 week after the last PQ injection. Furthermore, extra experiments with Tauroursodeoxycholic Acid (TUDCA) intervention were performed to observe the relationship between ER stress, neuroinflammation and the neural stem cell (NSC) impairment. The results showed that 20 mg/kg PQ caused the NSC number decrease in both subgranular zones (SGZ) and subventricular zone (SVZ). Further analysis indicated that the 20 mg/kg PQ suppressed the proliferation of NSC, without affecting the apoptosis. Moreover, 20 mg/kg PQ also induced ER stress in microglia and caused neuroinflammation in SGZ and SVZ. Interestingly, the ER stress inhibitor could simultaneously ameliorate the neuroinflammation and NSC reduction. These data suggested that increased ER stress in microglia might be a possible pathway for PQ-induced neuroinflammation and NSC impairment. That is a previously unknown mechanism for PQ neurotoxicity.
Collapse
|
33
|
Tang X, Tao F, Xiang W, Zhao Y, Jin L, Tao H. Anticancer effects and the mechanism underlying 2-methoxyestradiol in human osteosarcoma in vitro and in vivo. Oncol Lett 2020; 20:64. [PMID: 32863897 PMCID: PMC7436181 DOI: 10.3892/ol.2020.11925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/22/2020] [Indexed: 12/05/2022] Open
Abstract
Osteosarcoma (OS) occurs in both children and adolescents and leads to a poor prognosis. 2-methoxyestradiol (2-ME) has a strong antitumor effect and is effective against numerous types of tumor. However, 2-ME has a low level of antitumor effects in OS. The present study investigated the effects of 2-ME on the proliferation and apoptosis of human MG63 OS cells. The potential biological mechanisms by which 2-ME exerts its biological effects were also investigated in the present study. The results of the present study demonstrated that 2-ME inhibited the proliferation of OS cells in a time- and dose-dependent manner, induced G2/M phase cell cycle arrest and early apoptosis. The expression levels of vascular endothelial growth factor (VEGF), Bcl-2 and caspase-3 were measured via western blotting and reverse transcription-quantitative PCR. As the concentration of 2-ME increased, the RNA and protein expression levels of VEGF and Bcl-2 decreased gradually, whereas the expression of caspase-3 increased gradually. In addition, tumor growth in nude mice was suppressed by 2-ME with no toxic side effects observed in the liver or kidney. Immunohistochemistry demonstrated that the expression levels of Bcl-2 and VEGF were significantly lower, and those of caspase-3 were significantly higher in test mice compared with the control group. TUNEL staining of xenograft tumors revealed that with increased 2-ME concentration, the number of apoptotic cells also gradually increased. Thus, 2-ME effectively inhibited the proliferation and induced apoptosis of MG63 OS cells in vitro and in vivo with no obvious side effects. The mechanism of the anticancer effect of 2-ME may be associated with the actions of Bcl-2, VEGF and caspase-3.
Collapse
Affiliation(s)
- Xiaoyan Tang
- General Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
34
|
Ngoi NYL, Choong C, Lee J, Bellot G, Wong ALA, Goh BC, Pervaiz S. Targeting Mitochondrial Apoptosis to Overcome Treatment Resistance in Cancer. Cancers (Basel) 2020; 12:E574. [PMID: 32131385 PMCID: PMC7139457 DOI: 10.3390/cancers12030574] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
Deregulated cellular apoptosis is a hallmark of cancer and chemotherapy resistance. The B-cell lymphoma 2 (BCL-2) protein family members are sentinel molecules that regulate the mitochondrial apoptosis machinery and arbitrate cell fate through a delicate balance between pro- and anti-apoptotic factors. The recognition of the anti-apoptotic BCL2 gene as an oncogenic driver in hematological malignancies has directed attention toward unraveling the biological significance of each of the BCL-2 superfamily members in cancer progression and garnered interest in the targeting of apoptosis in cancer therapy. Accordingly, the approval of venetoclax (ABT-199), a small molecule BCL-2 inhibitor, in patients with chronic lymphocytic leukemia and acute myeloid leukemia has become the proverbial torchbearer for novel candidate drug approaches selectively targeting the BCL-2 superfamily. Despite the inspiring advances in this field, much remains to be learned regarding the optimal therapeutic context for BCL-2 targeting. Functional assays, such as through BH3 profiling, may facilitate prediction of treatment response, development of drug resistance and shed light on rational combinations of BCL-2 inhibitors with other branches of cancer therapy. This review summarizes the pathological roles of the BCL-2 family members in cancer, discusses the current landscape of their targeting in clinical practice, and highlights the potential for future therapeutic inroads in this important area.
Collapse
Affiliation(s)
- Natalie Yan Li Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Clarice Choong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Gregory Bellot
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore 119228, Singapore;
| | - Andrea LA Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- National University Cancer Institute, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
35
|
Xu F, Wang D, Cui J, Li J, Jiang H. Demethylation of the Cosmc Promoter Alleviates the Progression of Breast Cancer Through Downregulation of the Tn and Sialyl-Tn Antigens. Cancer Manag Res 2020; 12:1017-1027. [PMID: 32104083 PMCID: PMC7023867 DOI: 10.2147/cmar.s214553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/24/2019] [Indexed: 01/28/2023] Open
Abstract
Background Aberrant gene methylation in breast cancer is associated with an unfavorable prognosis. Besides, abnormal Cosmc can induce the expression of Tn and STn antigens. The present study aimed to investigate the roles of Cosmc promoter methylation in breast cancer through the regulation of Tn and STn antigens. Methods The expression patterns of Cosmc and the Tn and STn antigens in breast cancer cell lines were determined. Cosmc was overexpressed to explore the effects of Cosmc on cell behavior, including the growth, migration, invasion, and apoptosis of breast cancer cells and tumor growth with in vitro and in vivo experiments. Afterwards, a methyltransferase and a methyltransferase inhibitor were used to alter the methylation status of Cosmc to explore the mechanisms related to Cosmc promoter methylation. Results Cosmc was poorly expressed in breast cancer cells. Cosmc overexpression inhibited cell growth, migration, and invasion while promoting apoptosis in breast cancer cells in vitro and restraining tumor growth in vivo. Cosmc promoter methylation was found to decrease the levels of Cosmc and increased the expression of the Tn and STn antigens in breast cancer. Conclusion In conclusion, the demethylation of Cosmc mitigates breast cancer progression through the repression of the Tn and STn antigens, which provides evidence for therapeutic considerations for a novel target against breast cancer.
Collapse
Affiliation(s)
- Feng Xu
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Dong Wang
- Department of Oncology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, People's Republic of China
| | - JianXiu Cui
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Jie Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Hongchuan Jiang
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| |
Collapse
|
36
|
Luo H, Yi P, Wang W, Li K, Meng L, Li J, Zeng W, Tang M. Clinicopathological Features, Treatment, and Prognosis in Primary Diffuse Large B Cell Lymphoma of the Breast: A Retrospective Study of 46 Patients. Med Sci Monit 2019; 25:8671-8682. [PMID: 31734687 PMCID: PMC6876064 DOI: 10.12659/msm.917550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Primary lymphoma of the breast is rare, and primary diffuse large B cell lymphoma (DLBCL) of the breast is very rare. This study aimed to identify the clinicopathological characteristics and treatment associated with prognosis in patients with primary DLBCL of the breast. MATERIAL AND METHODS A retrospective study included the clinical and treatment data from 46 women with a histological diagnosis of primary DLBCL. Patients were staged using Ann Arbor staging criteria, overall survival (OS), progression-free survival (PFS), and the international prognostic index (IPI) scores were obtained. Laboratory finding included serum lactate dehydrogenase (LDH), and the immunohistochemistry findings were recorded. RESULTS Patients (n=46), included stage I (n=18), stage II (n=18), stage III (n=3), and stage IV DLBCL (n=9). Treatment included chemotherapy with rituximab (n=16), and radiotherapy (n=12). The median follow-up time was 40.5 months, the 5-year OS rate was 36.2%, and the 5-year PFS rate was 29.1%. Univariate analysis showed that clinical stage, serum LDH, the IPI score, chemotherapy cycles >3, and Bcl-2 and Bcl-6 expression were correlated with the 5-year OS and PFS. Multivariate risk regression analysis showed that the number of chemotherapy cycles (>3) and Bcl-6 expression were independent prognostic factors in primary DLBCL of the breast (P<0.05). CONCLUSIONS A retrospective study of 46 patients with primary DLBCL of the breast showed that >3 cycles of chemotherapy and expression of Bcl-6 resulted in improved OS and PFS. Radiotherapy controlled local tumor recurrence but did not improve the OS and PFS. Rituximab did not improve patient survival.
Collapse
Affiliation(s)
- Hanjia Luo
- Department of Oncology, Cancer Hospital of Hu'nan Province, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Pingyong Yi
- Department of Oncology, Shaoyang Kexin Cancer Hospital, Shaoyang, Hunan, China (mainland)
| | - Wei Wang
- Department of Oncology, Cancer Hospital of Hu'nan Province, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Kunlun Li
- Department of Oncology, Cancer Hospital of Hu'nan Province, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Liu Meng
- Department of Oncology, Cancer Hospital of Hu'nan Province, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Jiwei Li
- Department of Oncology, Cancer Hospital of Hu'nan Province, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Weisi Zeng
- Department of Oncology, Cancer Hospital of Hu'nan Province, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Min Tang
- Department of Oncology, Cancer Hospital of Hu'nan Province, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
37
|
Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the Bcl-2 Family in B Cell Lymphoma. Front Oncol 2019; 8:636. [PMID: 30671383 PMCID: PMC6331425 DOI: 10.3389/fonc.2018.00636] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Although lymphoma is a very heterogeneous group of biologically complex malignancies, tumor cells across all B cell lymphoma subtypes share a set of underlying traits that promote the development and sustain malignant B cells. One of these traits, the ability to evade apoptosis, is essential for lymphoma development. Alterations in the Bcl-2 family of proteins, the key regulators of apoptosis, is a hallmark of B cell lymphoma. Significant efforts have been made over the last 30 years to advance knowledge of the biology, molecular mechanisms, and therapeutic potential of targeting Bcl-2 family members. In this review, we will highlight the complexities of the Bcl-2 family, including our recent discovery of overexpression of the anti-apoptotic Bcl-2 family member Bcl-w in lymphomas, and describe recent advances in the field that include the development of inhibitors of anti-apoptotic Bcl-2 family members for the treatment of B cell lymphomas and their performance in clinical trials.
Collapse
Affiliation(s)
- Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sean Clark-Garvey
- Internal Medicine Residency Program, Department of Internal Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
38
|
Effect of Taraxacum officinale extract on PI3K/Akt pathway in DMBA-induced breast cancer in albino rats. Biosci Rep 2018; 38:BSR20180334. [PMID: 30126855 PMCID: PMC6435453 DOI: 10.1042/bsr20180334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Breast cancer is one of the most prevalent types of cancer and a leading cause of death in women. Materials and methods: An experimental model of breast cancer was induced in female albino rats using single intragastric dose of 7, 12 dimethylbenz (α) anthracene (DMBA) in sesame oil (50 mg/kg b.wt). Four months after DMBA administration, incidence of breast cancer was confirmed by measuring cancer antigen 15-3 (CA15-3) serum levels. Taraxacum officinale ssp. officinale root extract (TOE) was administered in a dose of 500 mg/kg by oral gavage for 4 weeks after breast cancer incidence. Level of CA15-3 as one of the best known breast tumor markers was elevated in all positive breast cancer rats. The genetic effects of TOE on Pdk1–Akt1–Pik3r1–Map3k1–Erbb2–PIk3ca using semi-quantitative RT-PCR analysis were evaluated. In parallel, histopathological changes and immunohistochemical expression of Bcl2 in mammary gland tissues were examined. Results: Level of CA15-3 was normalized in DMBA group administered TOE for 4 weeks. Administration of DMBA increased expression of Pdk1, Akt1, Pik3r1, Map3k1, Erbb2 and PIk3ca. Treatment with TOE normalized the up-regulated mRNA for all examined genes except Pik3ra that was up-regulated. Mammary gland tissues of DMBA group showed excessive proliferation of lining epithelium of acini and ductules with hyperchromatic nuclei with excessive immunostaining of Bcl2 in the proliferated epithelium that was ameliorated by TOE administration. In conclusion, TOE regulated PI3K and Akt pathways involved in suppression of breast cancer growth and proliferation. TOE is effective as anticancer herbal agent.
Collapse
|
39
|
Preti D, Romagnoli R, Rondanin R, Cacciari B, Hamel E, Balzarini J, Liekens S, Schols D, Estévez-Sarmiento F, Quintana J, Estévez F. Design, synthesis, in vitro antiproliferative activity and apoptosis-inducing studies of 1-(3',4',5'-trimethoxyphenyl)-3-(2'-alkoxycarbonylindolyl)-2-propen-1-one derivatives obtained by a molecular hybridisation approach. J Enzyme Inhib Med Chem 2018; 33:1225-1238. [PMID: 30141353 PMCID: PMC6116705 DOI: 10.1080/14756366.2018.1493473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Inhibition of microtubule function using tubulin targeting agents has received growing attention in the last several decades. The indole scaffold has been recognized as an important scaffold in the design of novel compounds acting as antimitotic agents. Indole-based chalcones, in which one of the aryl rings was replaced by an indole, have been explored in the last few years for their anticancer potential in different cancer cell lines. Eighteen novel (3′,4′,5′-trimethoxyphenyl)-indolyl-propenone derivatives with general structure 9 were synthesized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines. The highest IC50 values were obtained against the human promyelocytic leukemia HL-60 cell line. This series of chalcone derivatives was characterized by the presence of a 2-alkoxycarbonyl indole ring as the second aryl system attached at the carbonyl of the 3-position of the 1-(3′,4′,5′-trimethoxyphenyl)-2-propen-1-one framework. The structure–activity relationship (SAR) of the indole-based chalcone derivatives was investigated by varying the position of the methoxy group, by the introduction of different substituents (hydrogen, methyl, ethyl or benzyl) at the N-1 position and by the activity differences between methoxycarbonyl and ethoxycarbonyl moieties at the 2-position of the indole nucleus. The antiproliferative activity data of the novel synthesized compounds revealed that generally N-substituted indole analogues exhibited considerably reduced potency as compared with their parent N-unsubstituted counterparts, demonstrating that the presence of a hydrogen on the indole nitrogen plays a decisive role in increasing antiproliferative activity. The results also revealed that the position of the methoxy group on the indole ring is a critical determinant of biological activity. Among the synthesized derivatives, compound 9e, containing the 2-methoxycarbonyl-6-methoxy-N-1H-indole moiety exhibited the highest antiproliferative activity, with IC50 values of 0.37, 0.16 and 0.17 μM against HeLa, HT29 and MCF-7 cancer cell lines, respectively, and with considerably lower activity against HL-60 cells (IC50: 18 μM). This derivative also displayed cytotoxic properties (IC50 values ∼1 μM) in the human myeloid leukemia U-937 cell line overexpressing human Bcl-2 (U-937/Bcl-2) via cell cycle progression arrest at the G2-M phase and induction of apoptosis. The results obtained also demonstrated that the antiproliferative activity of this molecule is related to inhibition of tubulin polymerisation. The presence of a methoxy group at the C5- or C6-position of the indole nucleus, as well as the absence of substituents at the N-1-indole position, contributed to the optimal activity of the indole-propenone-3′,4′,5′-trimethoxyphenyl scaffold.
Collapse
Affiliation(s)
- Delia Preti
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Romeo Romagnoli
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Riccardo Rondanin
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Barbara Cacciari
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Ernest Hamel
- b Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , MD , USA
| | - Jan Balzarini
- c Rega Institute for Medical Research, KU Leuven , Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Sandra Liekens
- c Rega Institute for Medical Research, KU Leuven , Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Dominique Schols
- c Rega Institute for Medical Research, KU Leuven , Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Francisco Estévez-Sarmiento
- d Department of Biochemistry and Molecular Biology, Research Institute in Biomedical and Health Sciences (IUIBS) , University of Las Palmas de Gran Canaria (ULPGC) , Spain
| | - José Quintana
- d Department of Biochemistry and Molecular Biology, Research Institute in Biomedical and Health Sciences (IUIBS) , University of Las Palmas de Gran Canaria (ULPGC) , Spain
| | - Francisco Estévez
- d Department of Biochemistry and Molecular Biology, Research Institute in Biomedical and Health Sciences (IUIBS) , University of Las Palmas de Gran Canaria (ULPGC) , Spain
| |
Collapse
|
40
|
Ebrahim AS, Kandouz M, Emara N, Sugalski AB, Lipovich L, Al-Katib AM. Unintended target effect of anti-BCL-2 DNAi. Cancer Manag Res 2017; 9:427-432. [PMID: 28989285 PMCID: PMC5624602 DOI: 10.2147/cmar.s139105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Previous research suggested that a novel compound PNT2258 inhibits B-cell lymphoma 2 (BCL-2) transcription by DNA interference (DNAi) and demonstrated its activity in preclinical xenograft models and in a pilot Phase II clinical trial in non-Hodgkin's lymphoma (NHL). While the drug downregulates BCL-2 at the promoter, mRNA, and protein levels, there is a significant homology (13-16 bases) between PNT100 and a number of promoters of genes involved in cell cycle regulation and survival. In this study, we identify cyclin-dependent kinase-4 (CDK4) as an unintended target gene of PNT2258 and examine its relevance to NHL. METHODS We performed a Basic Local Alignment Search Tool (BLAST) homology search using PNT100 DNAi sequences. Also, we conducted CDK4 promoter assay in K562 cells and studied the protein expression of CDK4 in Wayne State University (WSU)-follicular small cleaved cell lymphoma (FSCCL), WSU-diffuse large cell lymphoma, and WSU-Waldenström's macroglobulinemia (WM) lymphoma cells. RESULTS BLAST homology search showed that PNT100 completely binds to BCL-2 gene as expected. However, there was 100% homology in a stretch of 14 bases (8-21) between PNT100 and CDK4. PNT2258 strongly inhibited CDK4 promoter activity in K562 cells. Moreover, CDK4 protein expression was significantly downregulated by PNT2258 in WSU-FSCCL and WSU-WM cell lines. DISCUSSION DNAi may work not only through knocking down the intended gene but also by knocking down other genes. PNT2258 affects CDK4 expression and promoter activity. Results of the present study suggest a broader mechanism of action for DNAi targeting both intended (BCL-2) and unintended (CDK4) genes.
Collapse
Affiliation(s)
| | | | | | - Amara B Sugalski
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
41
|
Parikh A, Gopalakrishnan S, Freise KJ, Verdugo ME, Menon RM, Mensing S, Salem AH. Exposure-response evaluations of venetoclax efficacy and safety in patients with non-Hodgkin lymphoma. Leuk Lymphoma 2017; 59:871-879. [PMID: 28797193 DOI: 10.1080/10428194.2017.1361024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Exposure-response analyses were performed for a venetoclax monotherapy study in 106 patients with varying subtypes of non-Hodgkin lymphoma (NHL) (NCT01328626). Logistic regression, time-to-event, and progression-free survival (PFS) analyses were used to evaluate the relationship between venetoclax exposure, NHL subtype and response, PFS, or occurrence of serious adverse events. Trends for small increases in the probability of response with increasing venetoclax exposures were identified, and became more evident when assessed by NHL subtype. Trends in exposure-PFS were shown for the mantle cell lymphoma (MCL) subtype, but not other subtypes. There was no increase in the probability of experiencing a serious adverse event with increasing exposure. Overall, the results indicate that venetoclax doses of 800-1200 mg as a single agent may be appropriate to maximize efficacy in MCL, follicular lymphoma, and diffuse large B-cell lymphoma subtypes with no expected negative impact on safety.
Collapse
Affiliation(s)
- Apurvasena Parikh
- a Clinical Pharmacology and Pharmacometrics , Abbvie Inc , North Chicago , IL , USA
| | | | - Kevin J Freise
- a Clinical Pharmacology and Pharmacometrics , Abbvie Inc , North Chicago , IL , USA
| | - Maria E Verdugo
- c Oncology Development , Abbvie Inc , North Chicago , IL , USA
| | - Rajeev M Menon
- a Clinical Pharmacology and Pharmacometrics , Abbvie Inc , North Chicago , IL , USA
| | - Sven Mensing
- b Pharmacometrics , AbbVie Deutschland GmbH & Co KG , Ludwigshafen , Germany
| | - Ahmed Hamed Salem
- a Clinical Pharmacology and Pharmacometrics , Abbvie Inc , North Chicago , IL , USA.,d Department of Clinical Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
42
|
Hwang KT, Kim K, Chang JH, Oh S, Kim YA, Lee JY, Jung SH, Choi IS. BCL2 Regulation according to Molecular Subtype of Breast Cancer by Analysis of The Cancer Genome Atlas Database. Cancer Res Treat 2017; 50:658-669. [PMID: 28701032 PMCID: PMC6056973 DOI: 10.4143/crt.2017.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022] Open
Abstract
Purpose We investigated B-cell lymphoma 2 (BCL2) regulation across DNA, RNA, protein, and methylation status according to molecular subtype of breast cancer using The Cancer Genome Atlas (TCGA) database. Materials and Methods We analyzed clinical and biological data on 1,096 breast cancers from the TCGA database. Biological data included reverse phase protein array (RPPA), mRNA sequencing (mRNA-seq), mRNA microarray, methylation, copy number alteration linear, copy number alteration nonlinear, and mutation data. Results The luminal A and luminal B subtypes showed upregulated expression of RPPA and mRNAseq and hypomethylation compared to the human epidermal growth factor receptor 2 (HER2) and triple-negative subtypes (all p < 0.001). No mutations were found in any subjects. High mRNA-seq and high RPPA were strongly associated with positive estrogen receptor, positive progesterone receptor (all p < 0.001), and negative HER2 (p < 0.001 and p=0.002, respectively). Correlation analysis revealed a strong positive correlation between protein and mRNA levels and a strong negative correlation between methylation and protein and mRNA levels (all p < 0.001). The high BCL2 group showed superior overall survival compared to the low BCL2 group (p=0.006). Conclusion The regulation of BCL2 was mainly associated with methylation across the molecular subtypes of breast cancer, and luminal A and luminal B subtypes showed upregulated expression of BCL2 protein, mRNA, and hypomethylation. Although copy number alteration may have played a minor role, mutation status was not related to BCL2 regulation. Upregulation of BCL2 was associated with superior prognosis than downregulation of BCL2.
Collapse
Affiliation(s)
- Ki-Tae Hwang
- Department of Surgery, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Young A Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Jong Yoon Lee
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Se Hee Jung
- Department of Rehabilitation Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - In Sil Choi
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
43
|
Rosania R, Varbanova M, Wex T, Langner C, Bornschein J, Giorgio F, Ierardi E, Malfertheiner P. Regulation of apoptosis is impaired in atrophic gastritis associated with gastric cancer. BMC Gastroenterol 2017; 17:84. [PMID: 28662697 PMCID: PMC5492920 DOI: 10.1186/s12876-017-0640-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gastric premalignant conditions, atrophic gastritis (AG) and intestinal metaplasia (IM) are characterized by an increase of proliferation and a reduction of apoptosis in epithelial cells. The epithelial cell kinetics in AG and IM in gastric mucosa adjacent to gastric cancer is still unclear. The aim of this study was to evaluate the epithelial cell turnover and expression of proliferation and apoptosis-related genes in gastric cancer (GC) and adjacent mucosa with atrophic gastritis or intestinal metaplasia (AG/IM GC+), as well as in atrophic gastritis or intestinal metaplasia mucosa of patients without GC (AG/IM GC-) and in control biopsy samples of non-transformed gastric mucosa (Control). METHODS We selected 58 patients (M: F = 34:24; age range 20-84 years, median 61.06 years) with 4 well defined histological conditions: 20 controls with histological finding of non-transformed gastric mucosa, 20 patients with AG or IM (AG/IM GC-), and 18 patients with intestinal type gastric adenocarcinoma (GC) and AG or IM in the adjacent mucosa (3 cm from the macroscopic tumour margin, AG/IM GC+). We performed an immunohistochemical staining of Ki67 and TUNEL and quantitative RT-PCR to determine the expression of PCNA and Bax/Bcl-2. RESULTS The immunohistochemical expression of Ki67 and TUNEL in AG/IM GC- was significantly increased compared to not transformed gastric mucosa (p < 0.0001) but not compared to AG/IM in gastric mucosa adjacent to GC. Levels of Bcl-2 were reduced in GC and AG/IM GC- compared to controls as well as in AG/IM GC- compared to AG/IM in mucosa adjacent to GC+ (p < 0.05). Proliferation and apoptosis markers did not correlate with H.pylori status in our study population. CONCLUSIONS In AG/IM associated with GC, no significant changes in the epithelial cell turnover were detected. Decreased Bcl-2 gene expression signified atrophic gastritis and IM in presence of cancer, as well as intestinal type gastric adenocarcinoma.
Collapse
Affiliation(s)
- R. Rosania
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - M. Varbanova
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - T. Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - C. Langner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - J. Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - F. Giorgio
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - E. Ierardi
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - P. Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
44
|
Martucci NM, Migliaccio N, Ruggiero I, Albano F, Calì G, Romano S, Terracciano M, Rea I, Arcari P, Lamberti A. Nanoparticle-based strategy for personalized B-cell lymphoma therapy. Int J Nanomedicine 2016; 11:6089-6101. [PMID: 27895482 PMCID: PMC5117954 DOI: 10.2147/ijn.s118661] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
B-cell lymphoma is associated with incomplete response to treatment, and the development of effective strategies targeting this disease remains challenging. A new personalized B-cell lymphoma therapy, based on a site-specific receptor-mediated drug delivery system, was developed in this study. Specifically, natural silica-based nanoparticles (diatomite) were modified to actively target the antiapoptotic factor B-cell lymphoma/leukemia 2 (Bcl2) with small interfering RNA (siRNA). An idiotype-specific peptide (Id-peptide) specifically recognized by the hypervariable region of surface immunoglobulin B-cell receptor was exploited as a homing device to ensure specific targeting of lymphoma cells. Specific nanoparticle uptake, driven by the Id-peptide, was evaluated by flow cytometry and confocal microscopy and was increased by approximately threefold in target cells compared with nonspecific myeloma cells and when a random control peptide was used instead of Id-peptide. The specific internalization efficiency was increased by fourfold when siRNA was also added to the modified nanoparticles. The modified diatomite particles were not cytotoxic and their effectiveness in downregulation of gene expression was explored using siRNA targeting Bcl2 and evaluated by quantitative real-time polymerase chain reaction and Western blot analyses. The resulting gene silencing observed is of significant biological importance and opens new possibilities for the personalized treatment of lymphomas.
Collapse
Affiliation(s)
- Nicola M Martucci
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples
| | - Nunzia Migliaccio
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples
| | - Immacolata Ruggiero
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples
| | - Francesco Albano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro
| | - Gaetano Calì
- Institute of Endocrinology and Molecular Oncology
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples
| | - Monica Terracciano
- Institute for Microelectronics and Microsystems, National Research Council, Naples, Italy
| | - Ilaria Rea
- Institute for Microelectronics and Microsystems, National Research Council, Naples, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples
| |
Collapse
|
45
|
Ebrahim AS, Kandouz M, Liddane A, Sabbagh H, Hou Y, Li C, Al-Katib A. PNT2258, a novel deoxyribonucleic acid inhibitor, induces cell cycle arrest and apoptosis via a distinct mechanism of action: a new class of drug for non-Hodgkin's lymphoma. Oncotarget 2016; 7:42374-42384. [PMID: 27283896 PMCID: PMC5173141 DOI: 10.18632/oncotarget.9872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/11/2016] [Indexed: 11/25/2022] Open
Abstract
Current therapy for BCL-2-associated tumors such as Non-Hodgkin Lymphomas (NHL) is inadequate. The DNAi PNT2258, a 24 base single-stranded phosphodiester DNA oligodeoxynucleotide (PNT100) encapsulated in a protective liposome, was precisely designed to treat cancers that over-express BCL-2. PNT2258 strongly inhibited BCL-2 promoter activity, confirming its predicted mechanism of action. BCL-2 mRNA and protein expression were significantly downregulated in a follicular small cleaved cell lymphoma (WSU-FSCCL) cell line. 2.5μM PNT2258 induced an initial S- phase arrest followed by a gradual increase in the sub-G0 (apoptosis) compartment and a reciprocal progressive decrease of the S phase. Terminal deoxynucleotidyl transferase (TdT)-positive populations and cleaved caspase-3 and PARP were also increased. The data are consistent with the idea that BCL-2 inhibition by PNT2258 activates apoptotic pathways in WSU-FSCCL cells. This is the first report to address the distinct mechanism of action underlying the anti-BCL-2 functions of PNT2258. Growth inhibition in two other cell lines, WSU-DLCL2 and WSU-WM, supports broad applicability of BCL-2 DNAi to treatment of B-cell NHL.
Collapse
Affiliation(s)
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University, Detroit, MI, 48201-USA
| | - Allison Liddane
- Lymphoma Research Lab, Wayne State University, Detroit, MI, 48201-USA
| | - Hussam Sabbagh
- Lymphoma Research Lab, Wayne State University, Detroit, MI, 48201-USA
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI, 48201-USA
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI, 48201-USA
| | - Ayad Al-Katib
- Lymphoma Research Lab, Wayne State University, Detroit, MI, 48201-USA
| |
Collapse
|