1
|
Kim HS, Sanchez ML, Silva J, Schubert HL, Dennis R, Hill CP, Christian JL. Mutations that prevent phosphorylation of the BMP4 prodomain impair proteolytic maturation of homodimers leading to lethality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617306. [PMID: 39416136 PMCID: PMC11482978 DOI: 10.1101/2024.10.08.617306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bone morphogenetic protein4 (BMP4) plays numerous roles during embryogenesis and can signal either alone as a homodimer, or together with BMP7 as a more active heterodimer. BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments. In humans, heterozygous mutations within the prodomain of BMP4 are associated with birth defects. We studied the effect of two of these mutations (p.S91C and p.E93G), which disrupt a conserved FAM20C phosphorylation motif, on ligand activity. We compared the activity of ligands generated from BMP4, BMP4S91C or BMP4E93G in Xenopus embryos and found that these mutations reduce the activity of BMP4 homodimers but not BMP4/7 heterodimers. We generated Bmp4 S91C and Bmp4 E93G knock-in mice and found that Bmp4 S91C/S91C mice die by E11.5 and display reduced BMP activity in multiple tissues including the heart. Most Bmp4 E93G/E93G mice die before weaning and Bmp4 -/E93G mutants die prenatally with reduced or absent eyes, heart and ventral body wall closure defects. Mouse embryonic fibroblasts (MEFs) isolated from Bmp4 S91C and Bmp4 E93G embryos show accumulation of BMP4 precursor protein, reduced levels of cleaved BMP ligand and reduced BMP activity relative to MEFs from wild type littermates. Because Bmp7 is not expressed in MEFs, the accumulation of unprocessed BMP4 precursor protein in mice carrying these mutations most likely reflects an inability to cleave BMP4 homodimers, leading to reduced levels of ligand and BMP activity in vivo. Our results suggest that phosphorylation of the BMP4 prodomain is required for proteolytic activation of BMP4 homodimers, but not heterodimers.
Collapse
Affiliation(s)
- Hyung-seok Kim
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Mary L. Sanchez
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Joshua Silva
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Rebecca Dennis
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Jan L. Christian
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
- Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| |
Collapse
|
2
|
Shen Z, Wei J, Zhang J, Zhang Y, Yao J. The prevalence of dental agenesis, supernumerary teeth and odontoma in a Chinese paediatric population: an epidemiological study. BMC Oral Health 2025; 25:458. [PMID: 40158139 PMCID: PMC11955147 DOI: 10.1186/s12903-025-05819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Dental agenesis, supernumerary teeth and odontoma collectively exert a significant impact on the aesthetics and function of patients. Studies have shown that early detection and intervention may alleviate complications. METHODS Panoramic radiographs and medical records of 5,015 patients aged 5.5-13.9 years who underwent paediatric dentistry at the Affiliated Stomatological Hospital of Fujian Medical University between 2013 and 2022 were retrospectively reviewed for dental agenesis, supernumerary teeth and odontoma. All data were analysed using SPSS 26.0. RESULTS The total prevalence of dental agenesis, supernumerary teeth and odontoma was 11.31%. The most common congenitally missing teeth were mandibular lateral incisors. The absence of one to five teeth was observed in 341 cases (6.80%). The congenitally missing teeth identified in this study were more commonly observed in the mandible, and in the anterior teeth. The prevalence of supernumerary teeth was 4.03%, and they were most frequently observed in the maxilla. The prevalence of odontoma was 0.26%, and it was more frequently observed in the maxilla than in the mandible. CONCLUSION Paediatric cases in China have a relatively high prevalence of dental agenesis, supernumerary teeth and odontoma, which entails a detailed examination and a further significance in the development of a sound treatment plan for children at an early age.
Collapse
Affiliation(s)
- Zhaoxia Shen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jinyu Wei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiali Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yanjun Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Yao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Centre of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Institute of Stomatology & Paediatric Dentistry Department, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Tedja MS, Swierkowska-Janc J, Enthoven CA, Meester-Smoor MA, Hysi PG, Felix JF, Cowan CS, Cherry TJ, van der Spek PJ, Ghanbari M, Erkeland SJ, Barakat TS, Klaver CCW, Verhoeven VJM. A genome-wide scan of non-coding RNAs and enhancers for refractive error and myopia. Hum Genet 2025; 144:67-91. [PMID: 39774722 PMCID: PMC11754329 DOI: 10.1007/s00439-024-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches. We performed a genetic association study between variants in non-coding RNAs and enhancers, and RE and myopia. We obtained single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes, miRNA-binding sites, long non-coding RNAs genes (lncRNAs) and enhancers from publicly available databases: miRNASNPv2, PolymiRTS, VISTA Enhancer Browser, FANTOM5 and lncRNASNP2. We investigated whether SNPs overlapping these elements were associated with RE and myopia leveraged from a large GWAS meta-analysis (N = 160,420). With genetic risk scores (GRSs) per element, we investigated the joint effect of associated variants on RE, axial length (AL)/corneal radius (CR), and AL progression in an independent child cohort, the Generation R Study (N = 3638 children). We constructed a score for biological plausibility per SNP in highly confident miRNA-binding sites and enhancers in chromatin accessible regions. We found that SNPs in two miRNA genes, 14 enhancers and 81 lncRNA genes in chromatin accessible regions and 54 highly confident miRNA-binding sites, were in RE and myopia-associated loci. GRSs from SNPs in enhancers were significantly associated with RE, AL/CR and AL progression. GRSs from lncRNAs were significantly associated with all AL/CR and AL progression. GRSs from miRNAs were not associated with any ocular biometric measurement. GRSs from miRNA-binding sites showed suggestive but inconsistent significance. We prioritized candidate miRNA binding sites and candidate enhancers for future functional validation. Pathways of target and host genes of highly ranked variants included eye development (BMP4, MPPED2), neurogenesis (DDIT4, NTM), extracellular matrix (ANTXR2, BMP3), photoreceptor metabolism (DNAJB12), photoreceptor morphogenesis (CHDR1), neural signaling (VIPR2) and TGF-beta signaling (ANAPC16). This is the first large-scale study of non-coding RNAs and enhancers for RE and myopia. Enhancers and lncRNAs could be of large importance as they are associated with childhood myopia. We provide a confident blueprint for future functional validation by prioritizing candidate miRNA binding sites and candidate enhancers.
Collapse
Affiliation(s)
- Milly S Tedja
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joanna Swierkowska-Janc
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Clair A Enthoven
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
| | - Janine F Felix
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, USA
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Li B, Pu Z, Liao K, Du Y, Tan G, Nawy S, Gao S, Shen Y. Overexpression of Bmp4 induces microphthalmia by disrupting embryonic neural retina. Neurobiol Dis 2024; 201:106654. [PMID: 39216769 DOI: 10.1016/j.nbd.2024.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Microphthalmia, mostly an autosomal dominant disorder, is a worldwide severe congenital ocular malformation that causes visual impairment. Our investigation unveiled a total of 30 genes associated with microphthalmia. Employing the CytoHubba and PPI network, we identified Bmp4 as the most pivotal hub gene. Subsequently, the conditional overexpression of Bmp4 in the retina caused highly distinctive microphthalmia, manifested by retinal disorganization with ganglion cell misalignment. Significant reduction in the number and abnormal distribution location of retinal cells in microphthalmia model mice. Elevated Bmp4 was associated with an increase in retinal apoptosis and a decrease in proliferating cells, which exacerbates the development of microphthalmia. Here we identify Bmp4 as an extremely important gene responsible for microphthalmia and the involved mechanisms. Overexpression of Bmp4 induces retinal cell ectopic expression and developmental defects, highlighting the importance of a well-balanced Bmp4 level in shaping the embryonic retina during early development.
Collapse
Affiliation(s)
- Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Keren Liao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuxin Du
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Liu D, Pu Z, Li B, Tan G, Xie T, Shen Y. Chrdl1-mediated BMP4 inhibition disrupts the balance between retinal neurons and Müller Glia. Cell Death Discov 2024; 10:367. [PMID: 39152126 PMCID: PMC11329631 DOI: 10.1038/s41420-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Chordin-like 1 (CHRDL1) is a secreted protein that serves as an endogenous antagonist of bone morphogenetic proteins (BMPs). In the developing retina, Bmp4 has been demonstrated to be essential for sustaining the proliferation of progenitor cells and facilitating the differentiation of glial cells. Despite these efforts, the precise effects of Bmp4 inhibition on the developing retina are yet to be fully understood. We sought to address this question by overexpressing Chrdl1 in the developing retina. In this study, we explored the impact of Bmp4 inhibition on the developing mouse retina by conditionally overexpressing the Bmp4 inhibitor Chrdl1. Initially, we characterized the expression patterns of Bmp4 and Chrdl1 in the developing mouse retina from E10.5 to P12.5. Additionally, we utilized various molecular markers to demonstrate that Bmp4 inhibition disrupts both neuronal and Müller glial differentiation in the developing mouse retina. Moreover, through the application of RNA-seq analysis, distinctively expressed retinal genes under the modulation of Bmp4 signaling were discerned, encompassing the upregulation of Id1/2/3/4 and Hes1/5, as well as the downregulation of Neurod1/2/4 and Bhlhe22/23. Lastly, electroretinogram (ERG) and optomotor response (OMR) assays were conducted to illustrate that Bmp4 inhibition impairs the functional connectivity of various cells in the retina and consequently affects visual function. Collectively, this study demonstrates that inhibiting Bmp4 promotes the differentiation of retinal neurons over Müller glia by activating the expression of genes associated with neuron specification. These findings offer molecular insights into the role of Bmp4 signaling in mammalian retinal development.
Collapse
Affiliation(s)
- Dongmei Liu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, P. R. China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Ting Xie
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, 430060, P. R. China.
| |
Collapse
|
6
|
Kim A, Zhang Z, Legros C, Lu Z, de Smith A, Moore JE, Mancuso N, Gazal S. Inferring causal cell types of human diseases and risk variants from candidate regulatory elements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307556. [PMID: 38798383 PMCID: PMC11118635 DOI: 10.1101/2024.05.17.24307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The heritability of human diseases is extremely enriched in candidate regulatory elements (cRE) from disease-relevant cell types. Critical next steps are to infer which and how many cell types are truly causal for a disease (after accounting for co-regulation across cell types), and to understand how individual variants impact disease risk through single or multiple causal cell types. Here, we propose CT-FM and CT-FM-SNP, two methods that leverage cell-type-specific cREs to fine-map causal cell types for a trait and for its candidate causal variants, respectively. We applied CT-FM to 63 GWAS summary statistics (average N = 417K) using nearly one thousand cRE annotations, primarily coming from ENCODE4. CT-FM inferred 81 causal cell types with corresponding SNP-annotations explaining a high fraction of trait SNP-heritability (~2/3 of the SNP-heritability explained by existing cREs), identified 16 traits with multiple causal cell types, highlighted cell-disease relationships consistent with known biology, and uncovered previously unexplored cellular mechanisms in psychiatric and immune-related diseases. Finally, we applied CT-FM-SNP to 39 UK Biobank traits and predicted high confidence causal cell types for 2,798 candidate causal non-coding SNPs. Our results suggest that most SNPs impact a phenotype through a single cell type, and that pleiotropic SNPs target different cell types depending on the phenotype context. Altogether, CT-FM and CT-FM-SNP shed light on how genetic variants act collectively and individually at the cellular level to impact disease risk.
Collapse
Affiliation(s)
- Artem Kim
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zixuan Zhang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Come Legros
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zeyun Lu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam de Smith
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill E Moore
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Loo Y, Chan ASY, Khor CC, Aung T, Wang Z. Rodent genetically modified models of glaucoma. Mol Aspects Med 2024; 95:101229. [PMID: 38039744 DOI: 10.1016/j.mam.2023.101229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Glaucoma, one of the leading causes of irreversible blindness worldwide, is a complex and heterogenous disease. While environmental factors are important, it is well-recognized that the disease has a strong heritable component. With the advent of large-cohort genome wide association studies, a myriad of genetic risk loci has been linked to different forms of glaucoma. Animal models have been an indispensable tool in characterizing these loci, especially if they lie within coding regions in the genome. Not only do these models connect genotype to phenotype, advancing our understanding of glaucoma pathogenesis in the process, they also have valuable utility as a platform for the pre-clinical testing of potential therapies. In this review, we will outline genetic models used for studying the major forms of glaucoma, including primary open angle glaucoma, normal tension glaucoma, primary angle closure glaucoma, pigmentary glaucoma, pseudoexfoliation glaucoma, and early onset glaucoma, including congenital and developmental glaucoma, and how studying these models have helped shed light on human glaucoma.
Collapse
Affiliation(s)
- Yunhua Loo
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anita Sook Yee Chan
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| |
Collapse
|
8
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Muzyka L, Winterhalter E, LoPresti MA, Scoville J, Bohnsack BL, Lam SK. Axenfeld-Rieger syndrome: A systematic review examining genetic, neurological, and neurovascular associations to inform screening. Heliyon 2023; 9:e18225. [PMID: 37539177 PMCID: PMC10395477 DOI: 10.1016/j.heliyon.2023.e18225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Axenfeld-Rieger Syndrome (ARS) is comprised of a group of autosomal dominant disorders that are each characterized by anterior segment abnormalities of the eye. Mutations in the transcription factors FOXC1 or PITX2 are the most well-studied genetic manifestations of this syndrome. Due to the rarity this syndrome, ARS-associated neurological manifestations have not been well characterized. The purpose of this systematic review is to characterize and describe ARS neurologic manifestations that affect the cerebral vasculature and their early and late sequelae. PRISMA guidelines were followed; studies meeting inclusion criteria were analyzed for study design, evidence level, number of patients, patient age, whether the patients were related, genotype, ocular findings, and nervous system findings, specifically neurostructural and neurovascular manifestations. 63 studies met inclusion criteria, 60 (95%) were case studies or case series. The FOXC1 gene was most commonly found, followed by COL4A1, then PITX2. The most commonly described structural neurological findings were white matter abnormalities in 26 (41.3%) of studies, followed by Dandy-Walker Complex 12 (19%), and agenesis of the corpus callosum 11 (17%). Neurovascular findings were examined in 6 (9%) of studies, identifying stroke, cerebral small vessel disease (CSVD), tortuosity/dolichoectasia of arteries, among others, with no mention of moyamoya. This is the first systematic review investigating the genetic, neurological, and neurovascular associations with ARS. Structural neurological manifestations were common, yet often benign, perhaps limiting the utility of MRI screening. Neurovascular abnormalities, specifically stroke and CSVD, were identified in this population. Stroke risk was present in the presence and absence of cardiac comorbidities. These findings suggest a relationship between ARS and neurovascular findings; however, larger scale studies are necessary inform therapeutic decisions.
Collapse
Affiliation(s)
- Logan Muzyka
- Dell Medical School at the University of Texas at Austin, Department of Neurosurgery, Austin, TX, United States
| | - Emily Winterhalter
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
| | - Melissa A. LoPresti
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| | - Jonathan Scoville
- University of Utah School of Medicine, Department of Neurosurgery, Salt Lake City, UT, United States
| | - Brenda L. Bohnsack
- Northwestern University Feinberg School of Medicine, Department of Ophthalmology, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Ophthalmology, Chicago, IL, United States
- University of Rochester School of Medicine and Dentistry, Department of Neurosurgery, Rochester, NY, United States
| | - Sandi K. Lam
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| |
Collapse
|
11
|
Puigdevall P, Jerber J, Danecek P, Castellano S, Kilpinen H. Somatic mutations alter the differentiation outcomes of iPSC-derived neurons. CELL GENOMICS 2023; 3:100280. [PMID: 37082143 PMCID: PMC10112289 DOI: 10.1016/j.xgen.2023.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 04/22/2023]
Abstract
The use of induced pluripotent stem cells (iPSC) as models for development and human disease has enabled the study of otherwise inaccessible tissues. A remaining challenge in developing reliable models is our limited understanding of the factors driving irregular differentiation of iPSCs, particularly the impact of acquired somatic mutations. We leveraged data from a pooled dopaminergic neuron differentiation experiment of 238 iPSC lines profiled with single-cell RNA and whole-exome sequencing to study how somatic mutations affect differentiation outcomes. We found that deleterious somatic mutations in key developmental genes, notably the BCOR gene, are strongly associated with failure in dopaminergic neuron differentiation and a larger proliferation rate in culture. We further identified broad differences in cell type composition between incorrectly and successfully differentiating lines, as well as significant changes in gene expression contributing to the inhibition of neurogenesis. Our work calls for caution in interpreting differentiation-related phenotypes in disease-modeling experiments.
Collapse
Affiliation(s)
- Pau Puigdevall
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Haartmaninkatu 8, PO Box 63, Helsinki 00014, Finland
| | - Julie Jerber
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sergi Castellano
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Helena Kilpinen
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Haartmaninkatu 8, PO Box 63, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
12
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Xu W, Liu X, Han W, Zhao L. Editorial: Genetic features contributing to eye development and disease. Front Cell Dev Biol 2022; 10:1008907. [PMID: 36158209 PMCID: PMC9501871 DOI: 10.3389/fcell.2022.1008907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjuan Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
14
|
Molecular Mechanisms Contributing to the Etiology of Congenital Diaphragmatic Hernia: A Review and Novel Cases. J Pediatr 2022; 246:251-265.e2. [PMID: 35314152 DOI: 10.1016/j.jpeds.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
|
15
|
Sertedaki A, Tatsi EB, Vasilakis IA, Fylaktou I, Nikaina E, Iacovidou N, Siahanidou T, Kanaka-Gantenbein C. Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency. Cells 2022; 11:cells11132088. [PMID: 35805171 PMCID: PMC9265573 DOI: 10.3390/cells11132088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Combined pituitary hormone deficiency (CPHD) is characterized by deficiency of growth hormone and at least one other pituitary hormone. Pathogenic variants in more than 30 genes expressed during the development of the head, hypothalamus, and/or pituitary have been identified so far to cause genetic forms of CPHD. However, the etiology of around 85% of the cases remains unknown. The aim of this study was to unveil the genetic etiology of CPHD due to congenital hypopituitarism employing whole exome sequencing (WES) in two newborn patients, initially tested and found to be negative for PROP1, LHX3, LHX4 and HESX1 pathogenic variants by Sanger sequencing and for copy number variations by MLPA. In this study, the application of WES in these CPHD newborns revealed the presence of three different heterozygous gene variants in each patient. Specifically in patient 1, the variants BMP4; p.Ala42Pro, GNRH1; p.Arg73Ter and SRA1; p.Gln32Glu, and in patient 2, the SOX9; p.Val95Ile, HS6ST1; p.Arg306Gln, and IL17RD; p.Pro566Ser were identified as candidate gene variants. These findings further support the hypothesis that CPHD constitutes an oligogenic rather than a monogenic disease and that there is a genetic overlap between CPHD and congenital hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
- Correspondence:
| | - Elizabeth Barbara Tatsi
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| | - Ioannis Anargyros Vasilakis
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| | - Irene Fylaktou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| | - Eirini Nikaina
- Neonatology Unit, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.N.); (T.S.)
| | - Nicoletta Iacovidou
- Department of Neonatology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Tania Siahanidou
- Neonatology Unit, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.N.); (T.S.)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| |
Collapse
|
16
|
Soh Z, Richards AJ, McNinch A, Alexander P, Martin H, Snead MP. Dominant Stickler Syndrome. Genes (Basel) 2022; 13:1089. [PMID: 35741851 PMCID: PMC9222743 DOI: 10.3390/genes13061089] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The Stickler syndromes are a group of genetic connective tissue disorders associated with an increased risk of rhegmatogenous retinal detachment, deafness, cleft palate, and premature arthritis. This review article focuses on the molecular genetics of the autosomal dominant forms of the disease. Pathogenic variants in COL2A1 causing Stickler syndrome usually result in haploinsufficiency of the protein, whereas pathogenic variants of type XI collagen more usually exert dominant negative effects. The severity of the disease phenotype is thus dependent on the location and nature of the mutation, as well as the normal developmental role of the respective protein.
Collapse
Affiliation(s)
- Zack Soh
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
| | - Allan J. Richards
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Annie McNinch
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Philip Alexander
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Howard Martin
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Martin P. Snead
- John van Geest Centre for Brain Repair, Vitreoretinal Research Group, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; (Z.S.); (A.J.R.); (A.M.); (H.M.)
- NHS England Highly Specialised Stickler Syndrome Diagnostic Service, Cambridge University, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| |
Collapse
|
17
|
Mao M, Labelle-Dumais C, Tufa SF, Keene DR, Gould DB. Elevated TGFβ signaling contributes to ocular anterior segment dysgenesis in Col4a1 mutant mice. Matrix Biol 2022; 110:151-173. [PMID: 35525525 PMCID: PMC10410753 DOI: 10.1016/j.matbio.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Ocular anterior segment dysgenesis (ASD) refers to a collection of developmental disorders affecting the anterior structures of the eye. Although a number of genes have been implicated in the etiology of ASD, the underlying pathogenetic mechanisms remain unclear. Mutations in genes encoding collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome, a multi-system disorder that often includes ocular manifestations such as ASD and glaucoma. COL4A1 and COL4A2 are abundant basement membrane proteins that provide structural support to tissues and modulate signaling through interactions with other extracellular matrix proteins, growth factors, and cell surface receptors. In this study, we used a combination of histological, molecular, genetic and pharmacological approaches to demonstrate that altered TGFβ signaling contributes to ASD in mouse models of Gould syndrome. We show that TGFβ signaling was elevated in anterior segments from Col4a1 mutant mice and that genetically reducing TGFβ signaling partially prevented ASD. Notably, we identified distinct roles for TGFβ1 and TGFβ2 in ocular defects observed in Col4a1 mutant mice. Importantly, we show that pharmacologically promoting type IV collagen secretion or reducing TGFβ signaling ameliorated ocular pathology in Col4a1 mutant mice. Overall, our findings demonstrate that altered TGFβ signaling contributes to COL4A1-related ocular dysgenesis and implicate this pathway as a potential therapeutic target for the treatment of Gould syndrome.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Sara F Tufa
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas R Keene
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, United States; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
18
|
Miao X, Wu J, Chen H, Lu G. Comprehensive Analysis of the Structure and Function of Peptide:N-Glycanase 1 and Relationship with Congenital Disorder of Deglycosylation. Nutrients 2022; 14:nu14091690. [PMID: 35565658 PMCID: PMC9102325 DOI: 10.3390/nu14091690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The cytosolic PNGase (peptide:N-glycanase), also known as peptide-N4-(N-acetyl-β-glucosaminyl)-asparagine amidase, is a well-conserved deglycosylation enzyme (EC 3.5.1.52) which catalyzes the non-lysosomal hydrolysis of an N(4)-(acetyl-β-d-glucosaminyl) asparagine residue (Asn, N) into a N-acetyl-β-d-glucosaminyl-amine and a peptide containing an aspartate residue (Asp, D). This enzyme (NGLY1) plays an essential role in the clearance of misfolded or unassembled glycoproteins through a process named ER-associated degradation (ERAD). Accumulating evidence also points out that NGLY1 deficiency can cause an autosomal recessive (AR) human genetic disorder associated with abnormal development and congenital disorder of deglycosylation. In addition, the loss of NGLY1 can affect multiple cellular pathways, including but not limited to NFE2L1 pathway, Creb1/Atf1-AQP pathway, BMP pathway, AMPK pathway, and SLC12A2 ion transporter, which might be the underlying reasons for a constellation of clinical phenotypes of NGLY1 deficiency. The current comprehensive review uncovers the NGLY1’ssdetailed structure and its important roles for participation in ERAD, involvement in CDDG and potential treatment for NGLY1 deficiency.
Collapse
Affiliation(s)
- Xiangguang Miao
- Queen Mary School, Nanchang University, No. 1299 Xuefu Avenue, Honggutan New District, Nanchang 330036, China;
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| |
Collapse
|
19
|
Fox SC, Widen SA, Asai-Coakwell M, Havrylov S, Benson M, Prichard LB, Baddam P, Graf D, Lehmann OJ, Waskiewicz AJ. BMP3 is a novel locus involved in the causality of ocular coloboma. Hum Genet 2022; 141:1385-1407. [PMID: 35089417 DOI: 10.1007/s00439-022-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, these data suggest that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.
Collapse
Affiliation(s)
- Sabrina C Fox
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Vienna BioCenter, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mika Asai-Coakwell
- Department of Animal and Poultry and Animal Science, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Matthew Benson
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Lisa B Prichard
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada. .,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Jiang Y, Ouyang J, Li X, Wang Y, Zhou L, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Novel BMP4 Truncations Resulted in Opposite Ocular Anomalies: Pathologic Myopia Rather Than Microphthalmia. Front Cell Dev Biol 2021; 9:769636. [PMID: 34926457 PMCID: PMC8672680 DOI: 10.3389/fcell.2021.769636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
BMP4 variants have been reported to be associated with syndromic microphthalmia (MCOPS6, OMIM 607932). This study aims to describe BMP4 truncation mutations contributing to a novel phenotype in eight patients from four Chinese families. In this study, BMP4 variants were collected from a large dataset from in-house exome sequencing. Candidate variants were filtered by multiple in silico tools as well as comparison with data from multiple databases. Potential pathogenic variants were further confirmed by Sanger sequencing and cosegregation analysis. Four novel truncation variants in BMP4 were detected in four out of 7,314 unrelated probands with different eye conditions. These four mutations in the four families solely cosegregated in all eight patients with a specific form of pathologic myopia, characterized by significantly extended axial length, posterior staphyloma, macula patchy, chorioretinal atrophy, myopic optic neuropathy or glaucoma, vitreous opacity, and unique peripheral snow-grain retinopathy. The extreme rarity of the truncations in BMP4 (classified as intolerant in the gnomAD database, pLI = 0.96), the exclusive presence of these variants in the four families with pathologic myopia, variants fully co-segregated with the same specific phenotypes in eight patients from the four families, and the association of the pathogenicity of truncations with syndromic microphthalmia in previous studies, all support a novel association of BMP4 truncations with a specific form of pathologic myopia. The data presented in this study demonstrated that heterozygous BMP4 truncations contributed to a novel phenotype: pathologic myopia rather than microphthalmia. Mutations in the same gene resulting in both high myopia and microphthalmia have been observed for a few other genes like FZD5 and PAX6, suggesting bidirectional roles of these genes in early ocular development. Further studies are expected to elucidate the molecular mechanism of the bidirectional regulation.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Arce-Gonzalez R, Chacon-Camacho OF, Navas-Perez A, Gonzalez-Gonzalez MC, Martinez-Aguilar A, Zenteno JC. Novel CHRDL1 mutation causing X-linked megalocornea in a family with mild anterior segment manifestations in carrier females. Ophthalmic Genet 2021; 43:224-229. [PMID: 34844512 DOI: 10.1080/13816810.2021.2002917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE X-linked megalocornea (XMC) is a rare anterior segment malformation characterized by a nonprogressive enlargement of the cornea to 13 mm or greater in the setting of normal intraocular pressure. XMC is caused by mutations in the CHRDL1 gene and it is inherited as an X-linked recessive trait affecting only males. Here, we describe the results of phenotypic and genetic assessment in a novel XMC pedigree. METHODS Three subjects (a father and his two daughters) underwent a complete clinical and imaging ocular examination including biomicroscopy, fundoscopy, tonometry, visual acuity, Pentacam Scheimpflug imaging, anterior segment Swept Source OCT, and ultrabiomicroscopy. Genetic analysis was performed through whole exome sequencing in 3 family members. Candidate variants were validated by sanger sequencing. RESULTS The affected father exhibited megalocornea, very deep anterior chambers, retrocorneal pigmentation, iris atrophy, queer iris configuration, extremely open iridocorneal angles, and cataracts. Notably, both daughters showed queer iris configuration and abnormally widely open iridocorneal angles in both eyes. Genetic analysis identified a novel hemizygous c.207+1G>A splicing variant in CHRDL1 in the affected father. Both mildly affected daughters were heterozygous for the pathogenic variant. CONCLUSIONS Here, we report an additional XMC family due to a novel mutation in the CHRDL1 gene. Mild anterior segment anomalies were observed in two heterozygous carriers demonstrating for the first time a CHRDL1-linked phenotype in females. A detailed comparison of the clinical and genetic features of this pedigree with those observed in previously published XMC cases is also presented.
Collapse
Affiliation(s)
- Rocio Arce-Gonzalez
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Oscar F Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Carrera de Médico Cirujano, Facultad De Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Alejandro Navas-Perez
- Cornea Department, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Alan Martinez-Aguilar
- Retinal Dystrophies Clinic, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
22
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
23
|
Bendixen C, Reutter H. The Role of De Novo Variants in Patients with Congenital Diaphragmatic Hernia. Genes (Basel) 2021; 12:genes12091405. [PMID: 34573387 PMCID: PMC8466043 DOI: 10.3390/genes12091405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
The genetic etiology of congenital diaphragmatic hernia (CDH), a common and severe birth defect, is still incompletely understood. Chromosomal aneuploidies, copy number variations (CNVs), and variants in a large panel of CDH-associated genes, both de novo and inherited, have been described. Due to impaired reproductive fitness, especially of syndromic CDH patients, and still significant mortality rates, the contribution of de novo variants to the genetic background of CDH is assumed to be high. This assumption is supported by the relatively low recurrence rate among siblings. Advantages in high-throughput genome-wide genotyping and sequencing methods have recently facilitated the detection of de novo variants in CDH. This review gives an overview of the known de novo disease-causing variants in CDH patients.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Unit of Paediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence:
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany;
- Division of Neonatology and Paediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
24
|
Savige J, Harraka P. Pathogenic Variants in the Genes Affected in Alport Syndrome (COL4A3-COL4A5) and Their Association With Other Kidney Conditions: A Review. Am J Kidney Dis 2021; 78:857-864. [PMID: 34245817 DOI: 10.1053/j.ajkd.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 01/15/2023]
Abstract
Massively Parallel Sequencing identifies pathogenic variants in the genes affected in Alport syndrome (COL4A3 - COL4A5) in up to 30 % of individuals with focal and segmental glomerulosclerosis (FSGS), 10 % of those with kidney failure of unknown cause and 20 % with familial IgA glomerulonephritis. FSGS associated with COL4A3 - COL4A5 variants is usually present by kidney failure onset and may develop because the abnormal glomerular membranes result in podocyte loss and secondary hyperfiltration. The association of COL4A3 - COL4A5 variants with kidney failure or IgA glomerulonephritis may be coincidental and not pathogenic. However, since some of these variants occur more often than they should by chance, some may be pathogenic. COL4A3 - COL4A5 variants are sometimes also found in cystic kidney diseases after autosomal dominant polycystic kidney disease (ADPKD) has been excluded. COL4A3 - COL4A5 variants should be suspected in individuals with FSGS, kidney failure of unknown cause, or familial IgA glomerulonephritis, especially where there is persistent haematuria, and a family history of haematuria or kidney failure.
Collapse
Affiliation(s)
- Judy Savige
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville VIC 3050 AUSTRALIA.
| | - Philip Harraka
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville VIC 3050 AUSTRALIA
| |
Collapse
|
25
|
Mubeen S, Gibson C, Mubeen R, Mansour S, Evans RD. SHORT Syndrome: Systematic Appraisal of the Medical and Dental Phenotype. Cleft Palate Craniofac J 2021; 59:873-881. [PMID: 34212753 DOI: 10.1177/10556656211026859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION SHORT syndrome is a rare autosomal dominant condition described by its acronym of short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger abnormality, and teething delay. Individuals have a distinct progeroid craniofacial appearance with a triangular face, frontal bossing, hypoplastic or thin alae nasi, large low-set ears, and mandibular retrognathia. OBJECTIVES To systematically appraise the literature and update the clinical phenotype with emphasis on the dental condition. DESIGN A systematic literature search was carried out to update the clinical phenotype, identifying reports of individuals with SHORT syndrome published after August 2015. The same search strategy but not limited to publication date was carried out to identify reports of the dental phenotype. Two independent reviewers screened 1937 articles with 55 articles identified for full-text review. RESULTS Nineteen individuals from 11 families were identified. Facial dysmorphism including ocular depression, triangular shaped face, frontal bossing, large low-set ears, and micrognathia were the most consistent features followed by lipodystrophy, insulin resistance, and intrauterine growth restriction. Teething delay, microdontia, hypodontia, and enamel hypoplasia have all been reported. CONCLUSION Features that comprise the SHORT acronym do not accurately or completely describe the clinical phenotype. The craniofacial appearance is one of the most consistent features. Lipodystrophy and insulin resistance may also be considered cardinal features. After teething delay, enamel hypoplasia and microdontia are the most common dental manifestations. We present recommendations for the dental and orthodontic/orthognathic management of individuals with SHORT syndrome.
Collapse
Affiliation(s)
- Suhaym Mubeen
- Great Ormond Street Hospital, London, United Kingdom
| | - Clara Gibson
- Great Ormond Street Hospital, London, United Kingdom
| | - Raiyan Mubeen
- Benfleet Dental Studio, Benfleet, Essex, United Kingdom
| | - Sahar Mansour
- SW Thames Regional Genetics Service, St George's, University of London, United Kingdom
| | | |
Collapse
|
26
|
Ong APC, Zhang J, Vincent AL, McGhee CNJ. Megalocornea, anterior megalophthalmos, keratoglobus and associated anterior segment disorders: A review. Clin Exp Ophthalmol 2021; 49:477-497. [PMID: 34114333 DOI: 10.1111/ceo.13958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/21/2023]
Abstract
Megalocornea and anterior megalophthalmos (megalocornea spectrum) disorders are typically defined by corneal diameter > 12.5 mm in the absence of elevated intraocular pressure. Clinical features overlap with keratoglobus but are distinct from buphthalmos and severe (globus) keratoconus. Megalocornea spectrum disorders and keratoglobus are primarily congenital disorders, often with syndromic associations; both can present with large and thin corneas, creating difficulty in diagnosis, however, only keratoglobus is typically progressive. Molecular genetics provide significant insight into underlying aetiologies. Nonetheless, careful clinical assessment remains intrinsic to diagnosis. Surgical management can be challenging due to the enlarged ciliary ring and weakened zonules in megalocornea spectrum disorders and the extreme corneal thinning of keratoglobus. In this review, the established literature on measurement of corneal diameter, diagnosis of megalocornea, anterior megalophthalmos and keratoglobus, differentiation from severe keratoconus, recent molecular genetics research and key surgical modalities in the management of these rare disorders are outlined and discussed.
Collapse
Affiliation(s)
- Aaron P C Ong
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Southern District Health Board, Dunedin, New Zealand
| | - Jie Zhang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea L Vincent
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Tenenbaum-Rakover Y, Admoni O, Elias-Assad G, London S, Noufi-Barhoum M, Ludar H, Almagor T, Zehavi Y, Sultan C, Bertalan R, Bashamboo A, McElreavey K. The evolving role of whole-exome sequencing in the management of disorders of sex development. Endocr Connect 2021; 10:620-629. [PMID: 34009138 PMCID: PMC8240709 DOI: 10.1530/ec-21-0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Disorders of sex development (DSD) are defined as congenital conditions in which the development of chromosomal, gonadal and anatomical sex is atypical. Despite wide laboratory and imaging investigations, the etiology of DSD is unknown in over 50% of patients. METHODS We evaluated the etiology of DSD by whole-exome sequencing (WES) at a mean age of 10 years in nine patients for whom extensive evaluation, including hormonal, imaging and candidate gene approaches, had not identified an etiology. RESULTS The eight 46,XY patients presented with micropenis, cryptorchidism and hypospadias at birth and the 46,XX patient presented with labia majora fusion. In seven patients (78%), pathogenic variants were identified for RXFP2, HSD17B3, WT1, BMP4, POR, CHD7 and SIN3A. In two atients, no causative variants were found. Mutations in three genes were reported previously with different phenotypes: an 11-year-old boy with a novel de novo variant in BMP4; such variants are mainly associated with microphthalmia and in few cases with external genitalia anomalies in males, supporting the role of BMP4 in the development of male external genitalia; a 12-year-old boy with a known pathogenic variant in RXFP2, encoding insulin-like 3 hormone receptor, and previously reported in adult men with cryptorchidism; an 8-year-old boy with syndromic DSD had a de novo deletion in SIN3A. CONCLUSIONS Our findings of molecular etiologies for DSD in 78% of our patients indicate a major role for WES in early DSD diagnosis and management - and highlights the importance of rapid molecular diagnosis in early infancy for sex of rearing decisions.
Collapse
Affiliation(s)
- Yardena Tenenbaum-Rakover
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Osnat Admoni
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Ghadir Elias-Assad
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
- The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shira London
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Marie Noufi-Barhoum
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan, Safed, Israel
| | - Hanna Ludar
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Tal Almagor
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | - Yoav Zehavi
- Pediatric Department, B, Ha'Emek Medical Center, Afula, Israel
| | - Charles Sultan
- Pediatric Endocrinology and Gynecology Unit, CHU de Montpellier, Hôpital Arnaud de Villeneuve et Université Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
28
|
Roelandt MA, Devriendt K, de Llano-Pérula MC, Raes M, Willems G, Verdonck A. Dental and Craniofacial Characteristics in Patients With 14Q22.1-Q22.2 Deletion: A Case Series. Cleft Palate Craniofac J 2020; 58:505-513. [PMID: 33063524 DOI: 10.1177/1055665620954090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This case series is a follow-up report focusing on dental and facial characteristics in patients with a rare microdeletion in chromosome 14q22.1-q22.2. Usually, these patients have severe ocular, brain, and digital abnormalities. However, this case series shows that clinical presentation can be mild. Four relatives spanning 3 generations were diagnosed with a familial autosomal dominant 2.79 Mb microdeletion in chromosome 14q22.1-q22.2. Genetic screening was done by the Bacterial Artificial Chromosome array-comparative genome hybridization and was confirmed by the fluorescence in situ hybridization technique. Dental and craniofacial data were collected from medical files, clinical examinations, clinical photos, panoramic and cephalometric radiographs, and dental casts. Written informed consent for scientific use was obtained for all family members. No larger syndrome could be identified. All cases had similar facial red flag characteristics, consisting of a long face with retrognathia and open mouth relation, associated oral clefts in varying degrees, depressed nasal bridge, delayed tooth development, hypertelorism, and low-set angular ears. The dental casts showed a distal molar occlusion and a lack of space in the dental arches. Developmental delay was noted together with limb defects such as poly- and syndactyly. Microphthalmia and hearing loss were present in the most severe cases. This rare congenital disorder, associated with facial dysmorphia, oral clefts, and tooth agenesis, can remain undiagnosed until adulthood. A family history of short stature, developmental delay, poly- or syndactyly, and micropthalmia are suggestive features. Similar reports help to raise awareness among dental practitioners, leading to an early genetic diagnosis.
Collapse
Affiliation(s)
- Marie Anne Roelandt
- Department of Oral Health Sciences-Orthodontics, 60182KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | | | - Maria Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, 60182KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Margot Raes
- Department of Oral Health Sciences-Orthodontics, 60182KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Guy Willems
- Department of Oral Health Sciences-Orthodontics, 60182KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Anna Verdonck
- Department of Oral Health Sciences-Orthodontics, 60182KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium.,Multidisciplinary Cleft Lip and Palate Team, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Yan X, Atorf J, Ramos D, Thiele F, Weber S, Dalke C, Sun M, Puk O, Michel D, Fuchs H, Klaften M, Przemeck GKH, Sabrautzki S, Favor J, Ruberte J, Kremers J, de Angelis MH, Graw J. Mutation in Bmpr1b Leads to Optic Disc Coloboma and Ventral Retinal Gliosis in Mice. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32106289 PMCID: PMC7329948 DOI: 10.1167/iovs.61.2.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/10/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose The clinical phenotype of retinal gliosis occurs in different forms; here, we characterize one novel genetic feature, (i.e., signaling via BMP-receptor 1b). Methods Mouse mutants were generated within a recessive ENU mutagenesis screen; the underlying mutation was identified by linkage analysis and Sanger sequencing. The eye phenotype was characterized by fundoscopy, optical coherence tomography, optokinetic drum, electroretinography, and visual evoked potentials, by histology, immunohistology, and electron-microscopy. Results The mutation affects intron 10 of the Bmpr1b gene, which is causative for skipping of exon 10. The expression levels of pSMAD1/5/8 were reduced in the mutant retina. The loss of BMPR1B-mediated signaling leads to optic nerve coloboma, gliosis in the optic nerve head and ventral retina, defective optic nerve axons, and irregular retinal vessels. The ventral retinal gliosis is proliferative and hypertrophic, which is concomitant with neuronal delamination and the reduction of retinal ganglion cells (RGCs); it is dominated by activated astrocytes overexpressing PAX2 and SOX2 but not PAX6, indicating that they may retain properties of gliogenic precursor cells. The expression pattern of PAX2 in the optic nerve head and ventral retina is altered during embryonic development. These events finally result in reduced electrical transmission of the retina and optic nerve and significantly reduced visual acuity. Conclusions Our study demonstrates that BMPR1B is necessary for the development of the optic nerve and ventral retina. This study could also indicate a new mechanism in the formation of retinal gliosis; it opens new routes for its treatment eventually preventing scar formation in the retina.
Collapse
Affiliation(s)
- Xiaohe Yan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
- School of Optometry, Shenzhen University, Shenzhen, China
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - David Ramos
- Department of Animal Health and Anatomy, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Frank Thiele
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanne Weber
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Minxuan Sun
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Puk
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dian Michel
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Klaften
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Sibylle Sabrautzki
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jack Favor
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jesús Ruberte
- Department of Animal Health and Anatomy, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, Faculty of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
30
|
George A, Cogliati T, Brooks BP. Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes. Exp Eye Res 2020; 193:107940. [PMID: 32032630 DOI: 10.1016/j.exer.2020.107940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Optic fissure closure defects result in uveal coloboma, a potentially blinding condition affecting between 0.5 and 2.6 per 10,000 births that may cause up to 10% of childhood blindness. Uveal coloboma is on a phenotypic continuum with microphthalmia (small eye) and anophthalmia (primordial/no ocular tissue), the so-called MAC spectrum. This review gives a brief overview of the developmental biology behind coloboma and its clinical presentation/spectrum. Special attention will be given to two prominent, syndromic forms of coloboma, namely, CHARGE (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies/deafness) and COACH (Cerebellar vermis hypoplasia, Oligophrenia, Ataxia, Coloboma, and Hepatic fibrosis) syndromes. Approaches employed to identify genes involved in optic fissure closure in animal models and recent advances in live imaging of zebrafish eye development are also discussed.
Collapse
Affiliation(s)
- Aman George
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Tiziana Cogliati
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA.
| |
Collapse
|
31
|
Kim HS, Neugebauer J, McKnite A, Tilak A, Christian JL. BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. eLife 2019; 8:48872. [PMID: 31566563 PMCID: PMC6785266 DOI: 10.7554/elife.48872] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022] Open
Abstract
BMP7/BMP2 or BMP7/BMP4 heterodimers are more active than homodimers in vitro, but it is not known whether these heterodimers signal in vivo. To test this, we generated knock in mice carrying a mutation (Bmp7R-GFlag) that prevents proteolytic activation of the dimerized BMP7 precursor protein. This mutation eliminates the function of BMP7 homodimers and all other BMPs that normally heterodimerize with BMP7. While Bmp7 null homozygotes are live born, Bmp7R-GFlag homozygotes are embryonic lethal and have broadly reduced BMP activity. Furthermore, compound heterozygotes carrying the Bmp7R-G allele together with a null allele of Bmp2 or Bmp4 die during embryogenesis with defects in ventral body wall closure and/or the heart. Co-immunoprecipitation assays confirm that endogenous BMP4/7 heterodimers exist. Thus, BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian development, which may explain why mutations in either Bmp4 or Bmp7 lead to a similar spectrum of congenital defects in humans.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Judith Neugebauer
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Autumn McKnite
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Anup Tilak
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health and Sciences University, Portland, United States
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| |
Collapse
|
32
|
Han X, Qassim A, An J, Marshall H, Zhou T, Ong JS, Hassall MM, Hysi PG, Foster PJ, Khaw PT, Mackey DA, Gharahkhani P, Khawaja AP, Hewitt AW, Craig JE, MacGregor S. Genome-wide association analysis of 95 549 individuals identifies novel loci and genes influencing optic disc morphology. Hum Mol Genet 2019; 28:3680-3690. [DOI: 10.1093/hmg/ddz193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Optic nerve head morphology is affected by several retinal diseases. We measured the vertical optic disc diameter (DD) of the UK Biobank (UKBB) cohort (N = 67 040) and performed the largest genome-wide association study (GWAS) of DD to date. We identified 81 loci (66 novel) for vertical DD. We then replicated the novel loci in International Glaucoma Genetic Consortium (IGGC, N = 22 504) and European Prospective Investigation into Cancer–Norfolk (N = 6005); in general the concordance in effect sizes was very high (correlation in effect size estimates 0.90): 44 of the 66 novel loci were significant at P < 0.05, with 19 remaining significant after Bonferroni correction. We identified another 26 novel loci in the meta-analysis of UKBB and IGGC data. Gene-based analyses identified an additional 57 genes. Human ocular tissue gene expression analysis showed that most of the identified genes are enriched in optic nerve head tissue. Some of the identified loci exhibited pleiotropic effects with vertical cup-to-disc ratio, intraocular pressure, glaucoma and myopia. These results can enhance our understanding of the genetics of optic disc morphology and shed light on the genetic findings for other ophthalmic disorders such as glaucoma and other optic nerve diseases.
Collapse
Affiliation(s)
- Xikun Han
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Ayub Qassim
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Jiyuan An
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Henry Marshall
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mark M Hassall
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Pirro G Hysi
- Department of Ophthalmology, King’s College London, St. Thomas’ Hospital, London, UK
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Peng T Khaw
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
33
|
Blackburn PR, Zepeda-Mendoza CJ, Kruisselbrink TM, Schimmenti LA, García-Miñaur S, Palomares M, Nevado J, Mori MA, Le Meur G, Klee EW, Le Caignec C, Lapunzina P, Isidor B, Babovic-Vuksanovic D. Variable expressivity of syndromic BMP4-related eye, brain, and digital anomalies: A review of the literature and description of three new cases. Eur J Hum Genet 2019; 27:1379-1388. [PMID: 31053785 PMCID: PMC6777538 DOI: 10.1038/s41431-019-0423-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/29/2019] [Accepted: 04/06/2019] [Indexed: 01/08/2023] Open
Abstract
Microphthalmia with brain and digital anomalies (MCOPS6, MIM# 607932) is an autosomal dominant disorder caused by loss-of-function variants or large deletions involving BMP4, which encodes bone morphogenetic protein 4, a member of the TGF-β protein superfamily. BMP4 has a number of roles in embryonic development including neurogenesis, lens induction, development of cartilage and bone, urogenital development, limb and digit patterning, hair follicle regeneration, as well as tooth formation. In addition to syndromic microphthalmia, BMP4 variants have been implicated in non-syndromic cleft lip with or without cleft palate and congenital healed cleft lip indicating different allelic presentations. MCOPS6 subjects may also lack some of the major phenotypic hallmarks of the disorder, including microphthalmia, indicating variable expressivity. As only a handful of individuals with MCOPS6 have been described, we review the clinical findings in previously reported cases with either deletions or loss-of-function variants in BMP4. We describe three new cases, including two subjects with novel deletions and one subject with a likely pathogenic de novo nonsense variant [c.1052C>G, p.(S351*)] in BMP4. One of the subjects had dual molecular diagnoses including a co-occurring microdeletion at 17q21.31 associated with Koolen de Vries syndrome, which has a partially overlapping disease phenotype. None of these individuals had clinically apparent microphthalmia or anopthalmia, which have been reported in a majority of previously described cases. One subject had exophthalmia and strabismus, while another had bilateral Peters anomaly and sclerocornea, thus expanding the phenotype associated with BMP4 loss-of-function variants.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Teresa M Kruisselbrink
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Lisa A Schimmenti
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sixto García-Miñaur
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPaz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - María Palomares
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPaz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPaz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - María A Mori
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPaz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPaz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
35
|
COL4A1 mutations as a potential novel cause of autosomal dominant CAKUT in humans. Hum Genet 2019; 138:1105-1115. [PMID: 31230195 DOI: 10.1007/s00439-019-02042-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease (~ 45%) that manifests before 30 years of age. The genetic locus containing COL4A1 (13q33-34) has been implicated in vesicoureteral reflux (VUR), but mutations in COL4A1 have not been reported in CAKUT. We hypothesized that COL4A1 mutations cause CAKUT in humans. We performed whole exome sequencing (WES) in 550 families with CAKUT. As negative control cohorts we used WES sequencing data from patients with nephronophthisis (NPHP) with no genetic cause identified (n = 257) and with nephrotic syndrome (NS) due to monogenic causes (n = 100). We identified a not previously reported heterozygous missense variant in COL4A1 in three siblings with isolated VUR. When examining 549 families with CAKUT, we identified nine additional different heterozygous missense mutations in COL4A1 in 11 individuals from 11 unrelated families with CAKUT, while no COL4A1 mutations were identified in a control cohort with NPHP and only one in the cohort with NS. Most individuals (12/14) had isolated CAKUT with no extrarenal features. The predominant phenotype was VUR (9/14). There were no clinical features of the COL4A1-related disorders (e.g., HANAC syndrome, porencephaly, tortuosity of retinal arteries). Whereas COL4A1-related disorders are typically caused by glycine substitutions in the collagenous domain (84.4% of variants), only one variant in our cohort is a glycine substitution within the collagenous domain (1/10). We identified heterozygous COL4A1 mutations as a potential novel autosomal dominant cause of CAKUT that is allelic to the established COL4A1-related disorders and predominantly caused by non-glycine substitutions.
Collapse
|
36
|
Rodríguez-Contreras FJ, Marbán-Calzón M, Vallespín E, Del Pozo Á, Solís-López M, Lobato-Vidal N, Fernández-Elvira M, Del Valle Rex-Romero M, Heath KE, González-Casado I, Campos-Barros Á. Loss of function BMP4 mutation supports the implication of the BMP/TGF-β pathway in the etiology of combined pituitary hormone deficiency. Am J Med Genet A 2019; 179:1591-1597. [PMID: 31120642 DOI: 10.1002/ajmg.a.61201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/19/2022]
Abstract
Despite BMP4 signaling being critical to Rathke's pouch induction and maintenance during early stages of pituitary development, its implication in the etiology of combined pituitary hormone deficiency (CPHD) and other clinical presentations of congenital hypopituitarism has not yet been definitely demonstrated. We report here the first CPHD patient with a de novo pathogenic loss-of-function variant in BMP4. A 6-year-old boy, with macrocephaly, myopia/astigmatism, mild psychomotor retardation, anterior pituitary hypoplasia and ectopic posterior pituitary, clinically diagnosed with growth hormone deficiency, and central hypothyroidism, was referred for genetic analysis of CPHD. Targeted NGS analysis with a custom panel (n = 310 genes) identified a novel heterozygous de novo nonsense variant, NM_001202.5:c.794G > A, p.(Trp265*) in BMP4, which introduces a premature stop codon in the BMP4 pro-domain, impairing the transcription of the TGF-β mature peptide domain. Additional relevant variants in other genes implicated in pituitary development signaling pathways such as SMAD4 and E2F4 (BMP/TGF-pathway), ALMS1 (NOTCH-pathway), and TSHZ1 (Prokineticin-pathway), were also identified. Our results support the implication of the BMP/TGF-β signaling pathway in the etiology of CPHD and suggest that oligogenic contribution of additional inherited variants may modify the phenotypic expressivity of BMP4 pathogenic variants.
Collapse
Affiliation(s)
- Francisco J Rodríguez-Contreras
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain.,Department of Pediatrics, Centro de Salud Galapagar, Madrid, Spain
| | | | - Elena Vallespín
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; U753), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángela Del Pozo
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; U753), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Solís-López
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain
| | - Nerea Lobato-Vidal
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain
| | - María Fernández-Elvira
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain
| | - María Del Valle Rex-Romero
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; U753), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ángel Campos-Barros
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autonóma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; U753), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Krall M, Htun S, Slavotinek A. Use of PTC124 for nonsense suppression therapy targeting BMP4 nonsense variants in vitro and the bmp4st72 allele in zebrafish. PLoS One 2019; 14:e0212121. [PMID: 31017898 PMCID: PMC6481805 DOI: 10.1371/journal.pone.0212121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/07/2019] [Indexed: 12/04/2022] Open
Abstract
Nonsense suppression therapy (NST) utilizes compounds such as PTC124 (Ataluren) to induce translational read-through of stop variants by promoting the insertion of near cognate, aminoacyl tRNAs that yield functional proteins. We used NST with PTC124 to determine if we could successfully rescue nonsense variants in human Bone Morphogenetic Protein 4 (BMP4) in vitro and in a zebrafish bmp4 allele with a stop variant in vivo. We transfected 293T/17 cells with wildtype or mutant human BMP4 cDNA containing p.Arg198* and p.Glu213* and exposed cells to 0–20 μM PTC124. Treatment with 20 μM PTC124 produced a small, non-significant increase in BMP4 when targeting the p.Arg198* allele, but not the p.Glu213* allele, as measured with an In-cell ELISA assay. We then examined the ability of PTC124 to rescue the ventral tail fin defects associated with homozygosity for the p.Glu209* allele of bmp4 (bmp4st72/st72) in Danio rerio. We in-crossed bmp4st72/+ heterozygous fish and found a statistically significant increase in homozygous larvae without tail fin and ventroposterior defects, consistent with phenotypic rescue, after treatment of dechorionated larvae with 0.5 μM PTC124. We conclude that treatment with PTC124 can rescue bmp4 nonsense variants, but that the degree of rescue may depend on sequence specific factors and the amount of RNA transcript available for rescue. Our work also confirms that zebrafish show promise as a useful animal model for assessing the efficacy of PTC124 treatment on nonsense variants.
Collapse
Affiliation(s)
- Max Krall
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Stephanie Htun
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
39
|
Zhang L, Wang YC, Okada Y, Zhang S, Anderson M, Liu CY, Zhang Y. Aberrant expression of a stabilized β-catenin mutant in keratocytes inhibits mouse corneal epithelial stratification. Sci Rep 2019; 9:1919. [PMID: 30760729 PMCID: PMC6374483 DOI: 10.1038/s41598-018-36392-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
We previously reported that genetic deletion of β-catenin in mouse corneal keratocytes resulted in precocious corneal epithelial stratification. In this study, to strengthen the notion that corneal keratocyte-derived Wnt/β-catenin signaling regulates corneal epithelial stratification during mouse development, we examined the consequence of conditional overexpression of a stabilized β-catenin mutant (Ctnnb1ΔE3) in corneal keratocytes via a doxycycline (Dox)-inducible compound transgenic mouse strain. Histological analysis showed that conditional overexpression of Ctnnb1ΔE3 in keratocytes inhibited corneal epithelial stratification during postnatal development. Unlike the corneal epithelium of the littermate controls, which consisted of 5-6 cell layers at postnatal day 21 (P21), the mutant corneal epithelium contained 1-2 or 2-3 cell layers after Dox induction from embryonic day 0 (E0) to P21 and from E9 to P21, respectively. X-gal staining revealed that Wnt/β-catenin signaling activity was significantly elevated in the corneal keratocytes of the Dox-induced mutant mice, compared to the littermate controls. Furthermore, RT-qPCR and immunostaining data indicated that the expression of Bmp4 and ΔNp63 was downregulated in the mutant corneas, which was associated with reduced corneal epithelial proliferation in mutant epithelium, as revealed by immunofluorescent staining. However, the expression of Krt12, Krt14 and Pax6 in the mutant corneas was not altered after overexpression of Ctnnb1ΔE3 mutant protein in corneal keratocytes. Overall, mutant β-catenin accumulation in the corneal keratocytes inhibited corneal epithelial stratification probably through downregulation of Bmp4 and ΔNp63 in the corneal epithelium.
Collapse
Affiliation(s)
- Lingling Zhang
- School of Optometry, Indiana University, Bloomington, IN, 47405, USA
| | - Yen-Chiao Wang
- School of Optometry, Indiana University, Bloomington, IN, 47405, USA
| | - Yuka Okada
- School of Optometry, Indiana University, Bloomington, IN, 47405, USA
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Suohui Zhang
- Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, School of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew Anderson
- School of Optometry, Indiana University, Bloomington, IN, 47405, USA
| | - Chia-Yang Liu
- School of Optometry, Indiana University, Bloomington, IN, 47405, USA.
| | - Yujin Zhang
- School of Optometry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
40
|
Bone morphogenetic protein 4 (BMP4) loss-of-function variant associated with autosomal dominant Stickler syndrome and renal dysplasia. Eur J Hum Genet 2018; 27:369-377. [PMID: 30568244 PMCID: PMC6460578 DOI: 10.1038/s41431-018-0316-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
Stickler syndrome is a genetic disorder that can lead to joint problems, hearing difficulties and retinal detachment. Genes encoding collagen types II, IX and XI are usually responsible, but some families have no causal variant identified. We investigate a variant in the gene encoding growth factor BMP4 in a family with Stickler syndrome with associated renal dysplasia. Next generation sequencing of the coding region of COL2A1, COL11A1 and a panel of genes associated with congenital anomalies of the kidney and urinary tract (CAKUT) was performed. A novel heterozygous BMP4 variant causing a premature stop codon, c. 130G>T, p.(Gly44Ter), which segregated with clinical features of Stickler syndrome in multiple family members, was identified. No variant affecting gene function was detected in COL2A1 or COL11A1. Skin fibroblasts were cultured with and without emetine, and the mRNA extracted and analysed by Sanger sequencing to assess whether the change was causing nonsense-mediated decay. Nonsense-mediated decay was not observed from the extracted BMP4 mRNA. BMP4 is a growth factor known to contribute to eye development in animals, and gene variants in humans have been linked to microphthalmia/anophthalmia as well as CAKUT. The variant identified here further demonstrates the importance of BMP4 in eye development. This is the first report of a BMP4 DNA variant causing Stickler syndrome, and we suggest BMP4 be added to standard diagnostic gene panels for this condition.
Collapse
|
41
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|
42
|
Kammoun M, Souche E, Brady P, Ding J, Cosemans N, Gratacos E, Devriendt K, Eixarch E, Deprest J, Vermeesch JR. Genetic profile of isolated congenital diaphragmatic hernia revealed by targeted next-generation sequencing. Prenat Diagn 2018; 38:654-663. [PMID: 29966037 DOI: 10.1002/pd.5327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is characterized by a defective closure of the diaphragm occurring as an isolated defect in 60% of cases. Lung size, liver herniation, and pulmonary circulation are major prognostic indices. Isolated CDH genetics is heterogeneous and poorly understood. Whether genetic lesions are also outcome determinants has never been explored. OBJECTIVES To identify isolated CDH genetic causes, to fine map the mutational burden, and to search for a correlation between the genotype and the disease severity and outcome. METHODS Targeted massively parallel sequencing of 143 human and mouse CDH causative and candidate genes in a cohort of 120 fetuses with isolated CDH and detailed outcome measures. RESULTS Pathogenic and likely pathogenic variants were identified in 10% of the cohort. These variants affect both known CDH causative genes, namely, ZFPM2, GATA4, and NR2F2, and new genes, namely, TBX1, TBX5, GATA5, and PBX1. In addition, mutation burden analysis identified LBR, CTBP2, NSD1, MMP14, MYOD1, and EYA1 as candidate genes with enrichment in rare but predicted deleterious variants. No obvious correlation between the genotype and the phenotype or short-term outcome has been found. CONCLUSION Targeted resequencing identifies a genetic cause in 10% of isolated CDH and identifies new candidate genes.
Collapse
Affiliation(s)
- Molka Kammoun
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Erika Souche
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul Brady
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jia Ding
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nele Cosemans
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eduard Gratacos
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Koen Devriendt
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Jan Deprest
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
43
|
Vidya NG, Vasavada AR, Rajkumar S. Evaluating the association of bone morphogenetic protein 4-V152A and SIX homeobox 6-H141N polymorphisms with congenital cataract and microphthalmia in Western Indian population. J Postgrad Med 2018; 64:86-91. [PMID: 29692399 PMCID: PMC5954819 DOI: 10.4103/jpgm.jpgm_219_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Congenital cataract and microphthalmia are highly heterogeneous congenital eye disorders that affect normal vision. Although mutation in several genes has been shown to cause congenital cataract and microphthalmia, genetic studies associating single-nucleotide polymorphisms with these conditions is scarce. Hence, the present study aims to investigate the association of bone morphogenetic protein 4 (BMP4)-V152A (rs17563), and SIX homeobox 6 (SIX6)-H141N (rs33912345) polymorphisms with congenital cataract and microphthalmia in Western Indian cohorts. Materials and Methods: BMP4-V152A and SIX6-H141N were genotyped in 561 participants comprising of 242 congenital cataracts, 52 microphthalmia, and 267 controls using polymerase chain reaction (PCR) and allele specific oligonucleotide (ASO)-PCR method, respectively. Results: The frequency of BMP4- 152A was found to be significantly different between the cases and controls (Odds ratio (OR) 95% confidence interval [CI] = 1.4 [1.03–1.76], P = 0.0275). The frequency of BMP4- 152AA genotype was found to be significantly higher in congenital cataract cases as compared to controls (OR [95% CI] = 2.1 [1.14–3.67], P = 0.0154. The V-N haplotype of BMP4-V152A and SIX6-H141N was found to have a protective effect toward congenital cataract (OR [95% CI] = 0.72 [0.56–0.94], P = 0.0163) and microphthalmia (OR [95% CI] = 0.63 [0.40–1.01, P = 0.0541). Conclusions: The BMP4- 152AA genotype might play role in the causation of congenital cataract, whereas BMP4-SIX6 V-N haplotype might play a protective role toward the development of congenital cataract and microphthalmia.
Collapse
Affiliation(s)
- N G Vidya
- Department of Molecular Genetics and Biochemistry, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat; Ph.D Scholar, Manipal University, Manipal, Karnataka, India
| | - A R Vasavada
- Department of Cataract and Refractive Surgery, Raghudeep Eye Hospital, Ahmedabad, Gujarat, India
| | - S Rajkumar
- Department of Molecular Genetics and Biochemistry, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| |
Collapse
|
44
|
Kammoun M, Brady P, De Catte L, Deprest J, Devriendt K, Vermeesch JR. Congenital diaphragmatic hernia as a part of Nance-Horan syndrome? Eur J Hum Genet 2018; 26:359-366. [PMID: 29358614 DOI: 10.1038/s41431-017-0032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Nance-Horan syndrome is a rare X-linked developmental disorder characterized by bilateral congenital cataract, dental anomalies, facial dysmorphism, and intellectual disability. Here, we identify a patient with Nance-Horan syndrome caused by a new nonsense NHS variant. In addition, the patient presented congenital diaphragmatic hernia. NHS gene expression in murine fetal diaphragm was demonstrated, suggesting a possible involvement of NHS in diaphragm development. Congenital diaphragmatic hernia could result from NHS loss of function in pleuroperitoneal fold or in somites-derived muscle progenitor cells leading to an impairment of their cells migration.
Collapse
Affiliation(s)
- Molka Kammoun
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Paul Brady
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Luc De Catte
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Jan Deprest
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium.
| |
Collapse
|
45
|
Capkova P, Santava A, Markova I, Stefekova A, Srovnal J, Staffova K, Durdová V. Haploinsufficiency of BMP4 and OTX2 in the Foetus with an abnormal facial profile detected in the first trimester of pregnancy. Mol Cytogenet 2017; 10:47. [PMID: 29299063 PMCID: PMC5745897 DOI: 10.1186/s13039-017-0351-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Interstitial microdeletion 14q22q23 is a rare chromosomal syndrome associated with variable defects: microphthalmia/anophthalmia, pituitary anomalies, polydactyly/syndactyly of hands and feet, micrognathia/retrognathia. The reports of the microdeletion 14q22q23 detected in the prenatal stages are limited and the range of clinical features reveals a quite high variability. CASE PRESENTATION We report a detection of the microdeletion 14q22.1q23.1 spanning 7,7 Mb and involving the genes BMP4 and OTX2 in the foetus by multiplex ligation-dependent probe amplification (MLPA) and verified by microarray subsequently. The pregnancy was referred to the genetic counselling for abnormal facial profile observed in the first trimester ultrasound scan and micrognathia (suspicion of Pierre Robin sequence), hypoplasia nasal bone and polydactyly in the second trimester ultrasound scan. The pregnancy was terminated on request of the parents. CONCLUSION An abnormal facial profile detected on prenatal scan can provide a clue to the presence of rare chromosomal abnormalities in the first trimester of pregnancy despite the normal result of the first trimester screening test. The patients should be provided with genetic counselling. Usage of quick and sensitive methods (MLPA, microarray) is preferable for discovering a causal aberration because some of the CNVs cannot be detected with conventional karyotyping in these cases. To the best of our knowledge, this is the earliest detection of this microdeletion (occurred de novo), the first case detected by MLPA and confirmed by microarray. Literature review of the genotype-phenotype correlation in similar reports leads us to the conclusion that dosage imbalance of the chromosomal segment 14q22q23 (especially haploinsuffiency of the genes BMP4 and OTX2) contributes significantly to orofacial abnormalities. Association of the region with the Pierre Robin sequence appears to be plausible.
Collapse
Affiliation(s)
- Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Alena Santava
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Ivana Markova
- Department of Obstetrics and Gynaecology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Andrea Stefekova
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Veronika Durdová
- Department of Obstetrics and Gynaecology, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
46
|
Alagia M, Cappuccio G, Pinelli M, Torella A, Brunetti-Pierri R, Simonelli F, Limongelli G, Oppido G, Nigro V, Brunetti-Pierri N. A child with Myhre syndrome presenting with corectopia and tetralogy of Fallot. Am J Med Genet A 2017; 176:426-430. [PMID: 29230941 PMCID: PMC5814867 DOI: 10.1002/ajmg.a.38560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
Myhre syndrome is a rare autosomal dominant disorder caused by a narrow spectrum of missense mutations in the SMAD4 gene. Typical features of this disorder are distinctive facial appearance, deafness, intellectual disability, cardiovascular abnormalities, short stature, short hands and feet, compact build, joint stiffness, and skeletal anomalies. The clinical features generally appear during childhood and become more evident in older patients. Therefore, the diagnosis of this syndrome in the first years of life is challenging. We report a 2‐year‐old girl diagnosed with Myhre syndrome by whole exome sequencing (WES) that revealed the recurrent p.Ile500Val mutation in the SMAD4 gene. Our patient presented with growth deficiency, dysmorphic features, tetralogy of Fallot, and corectopia (also known as ectopia pupillae). The girl we described is the youngest patient with Myhre syndrome. Moreover, corectopia and tetralogy of Fallot have not been previously reported in this disorder.
Collapse
Affiliation(s)
- Marianna Alagia
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Michele Pinelli
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giuseppe Limongelli
- Department of Cardiothoracic Science, University of Campania 'Luigi Vanvitelli', Naples, Italy.,Monaldi Hospital, AO Colli, Naples, Italy
| | | | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | |
Collapse
|
47
|
Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10:955-970. [PMID: 28768736 PMCID: PMC5560060 DOI: 10.1242/dmm.028365] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kate G Ackerman
- Departments of Pediatrics (Critical Care) and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J McCulley
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Linshan Shang
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wendy K Chung
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
48
|
Solheim MH, Clermont AC, Winnay JN, Hallstensen E, Molven A, Njølstad PR, Rødahl E, Kahn CR. Iris Malformation and Anterior Segment Dysgenesis in Mice and Humans With a Mutation in PI 3-Kinase. Invest Ophthalmol Vis Sci 2017. [PMID: 28632845 PMCID: PMC5482242 DOI: 10.1167/iovs.16-21347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose To determine the ocular consequences of a dominant-negative mutation in the p85α subunit of phosphatidylinositol 3-kinase (PIK3R1) using a knock-in mouse model of SHORT syndrome, a syndrome associated with short stature, lipodystrophy, diabetes, and Rieger anomaly in humans. Methods We investigated knock-in mice heterozygous for the SHORT syndrome mutation changing arginine 649 to tryptophan in p85α (PIK3R1) using physical examination, optical coherence tomography (OCT), tonometry, and histopathologic sections from paraffin-embedded eyes, and compared the findings to similar investigations in two human subjects with SHORT syndrome heterozygous for the same mutation. Results While overall eye development was normal with clear cornea and lens, normal anterior chamber volume, normal intraocular pressure, and no changes in the retinal structure, OCT images of the knock-in mouse eyes revealed a significant decrease in thickness and width of the iris resulting in increased pupil area and irregularity of shape. Both human subjects had Rieger anomaly with similar defects including thin irides and irregular pupils, as well as a prominent ring of Schwalbe, goniosynechiae, early cataract formation, and glaucoma. Although the two subjects had had diabetes for more than 30 years, there were no signs of diabetic retinopathy. Conclusions A dominant-negative mutation in the p85α regulatory subunit of PI3K affects development of the iris, and contributes to changes consistent with anterior segment dysgenesis in both humans and mice.
Collapse
Affiliation(s)
- Marie H Solheim
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States 2KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Allen C Clermont
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States 3Beetham Eye Institute, Boston, Massachusetts, United States
| | - Jonathon N Winnay
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway 5Department of Clinical Medicine, University of Bergen, Bergen, Norway 6Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway 7Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway 8Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
49
|
Bardakjian T, Krall M, Wu D, Lao R, Tang PLF, Wan E, Kopinsky S, Schneider A, Kwok PY, Slavotinek A. A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 ( GDF3) in a female with unilateral anophthalmia and skeletal anomalies. Am J Ophthalmol Case Rep 2017; 7:102-106. [PMID: 29260090 PMCID: PMC5722175 DOI: 10.1016/j.ajoc.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose The genetic causes of anophthalmia, microphthalmia and coloboma remain poorly understood. Missense mutations in Growth/Differentiation Factor 3 (GDF3) gene have previously been reported in patients with microphthalmia, iridial and retinal colobomas, Klippel-Feil anomaly with vertebral fusion, scoliosis, rudimentary 12th ribs and an anomalous right temporal bone. We used whole exome sequencing with a trio approach to study a female with unilateral anophthalmia, kyphoscoliosis and additional skeletal anomalies. Observations Exome sequencing revealed that the proposita was heterozygous for c.796C > T, predicting p.Arg266Cys, in GDF3. Sanger sequencing confirmed the mutation and showed that the unaffected mother was heterozygous for the same missense substitution. Conclusions and importance Although transfection studies with the p.Arg266Cys mutation have shown that this amino acid substitution is likely to impair function, non-penetrance for the ocular defects was apparent in this family and has been observed in other families with sequence variants in GDF3. We conclude p.Arg266Cys and other GDF3 mutations can be non-penetrant, making pathogenicity more difficult to establish when sequence variants in this gene are present in patients with structural eye defects.
Collapse
Affiliation(s)
- Tanya Bardakjian
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Max Krall
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Di Wu
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Sarina Kopinsky
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Adele Schneider
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Lateral thinking - Interocular symmetry and asymmetry in neurovascular patterning, in health and disease. Prog Retin Eye Res 2017; 59:131-157. [PMID: 28457789 DOI: 10.1016/j.preteyeres.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
No biological system or structure is likely to be perfectly symmetrical, or have identical right and left forms. This review explores the evidence for eye and visual pathway asymmetry, in health and in disease, and attempts to provide guidance for those studying the structure and function of the visual system, where recognition of symmetry or asymmetry may be essential. The principal question with regards to asymmetry is not 'are the eyes the same?', for some degree of asymmetry is pervasive, but 'when are they importantly different?'. Knowing if right and left eyes are 'importantly different' could have significant consequences for deciding whether right or left eyes are included in an analysis or for examining the association between a phenotype and ocular parameter. The presence of significant asymmetry would also have important implications for the design of normative databases of retinal and optic nerve metrics. In this review, we highlight not only the universal presence of asymmetry, but provide evidence that some elements of the visual system are inherently more asymmetric than others, pointing to the need for improved normative data to explain sources of asymmetry and their impact on determining associations with genetic, environmental or health-related factors and ultimately in clinical practice.
Collapse
|