1
|
Zhu H, Li B, Huang T, Wang B, Li S, Yu K, Cai L, Ye Y, Chen S, Zhu H, Xu J, Lu Q, Ji L. Update in the molecular mechanism and biomarkers of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167758. [PMID: 40048937 DOI: 10.1016/j.bbadis.2025.167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes caused by long-term hyperglycemia that leads to microvascular and neuronal damage in the retina. The molecular mechanisms of DR involve oxidative stress, inflammatory responses, neurodegenerative changes, and vascular dysfunction triggered by hyperglycemia. Oxidative stress activates multiple metabolic pathways, such as the polyol, hexosamine, and protein kinase C (PKC) pathways, resulting in the production of, which in turn promote the formation of advanced glycation end products (AGEs). These pathways exacerbate vascular endothelial damage and the release of inflammatory factors, activating inflammatory signaling pathways such as the NF-κB pathway, leading to retinal cell damage and apoptosis. Additionally, DR involves neurodegenerative changes, including the activation of glial cells, neuronal dysfunction, and cell death. Research on the multiomics molecular markers of DR has revealed complex mechanisms at the genetic, epigenetic, and transcriptional levels. Genome-wide association studies (GWASs) have identified multiple genetic loci associated with DR that are involved in metabolic and inflammatory pathways. Noncoding RNAs, such as miRNAs, circRNAs, and lncRNAs, participate in the development of DR by regulating gene expression. Proteomic, metabolomic and lipidomic analyses have revealed specific proteins, metabolites and lipid changes associated with DR, providing potential biomarkers for the early diagnosis and treatment of this disease. This review provides a comprehensive perspective for understanding the molecular network of DR and facilitates the exploration of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Bingqi Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Huang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Wang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuoyu Li
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kuai Yu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liwei Cai
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuxin Ye
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Siyuan Chen
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haotian Zhu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qinkang Lu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Breeyear JH, Hellwege JN, Schroeder PH, House JS, Poisner HM, Mitchell SL, Charest B, Khakharia A, Basnet TB, Halladay CW, Reaven PD, Meigs JB, Rhee MK, Sun Y, Lynch MG, Bick AG, Wilson OD, Hung AM, Nealon CL, Iyengar SK, Rotroff DM, Buse JB, Leong A, Mercader JM, Sobrin L, Brantley MA, Peachey NS, Motsinger-Reif AA, Wilson PW, Sun YV, Giri A, Phillips LS, Edwards TL. Adaptive selection at G6PD and disparities in diabetes complications. Nat Med 2024; 30:2480-2488. [PMID: 38918629 PMCID: PMC11555759 DOI: 10.1038/s41591-024-03089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828 -T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828 -T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828 -T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.
Collapse
Affiliation(s)
- Joseph H Breeyear
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
| | - Jacklyn N Hellwege
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Philip H Schroeder
- Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Hannah M Poisner
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Sabrina L Mitchell
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian Charest
- Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
| | - Anjali Khakharia
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Medicine and Geriatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Til B Basnet
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mary K Rhee
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, California, USA
| | | | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Otis D Wilson
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
| | - Adriana M Hung
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - John B Buse
- Division of Endocrinology & Metabolism, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aaron Leong
- Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Josep M Mercader
- Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lucia Sobrin
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Milam A Brantley
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Peter W Wilson
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yan V Sun
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayush Giri
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA.
| |
Collapse
|
3
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Yu J, Brelen ME, Chan CKM, Chen ZJ, Mohamed S, Yam JC, Lam DSC, Pang CP, Tham CC, Chen LJ. Genetic association of TIE2 with diabetic retinopathy and diabetic macular edema. Asia Pac J Ophthalmol (Phila) 2024; 13:100068. [PMID: 38750959 DOI: 10.1016/j.apjo.2024.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 09/18/2024] Open
Abstract
PURPOSE To evaluate the associations of the TIE2 gene with diabetic retinopathy (DR) and diabetic macular edema (DME). METHODS This study included a Chinese cohort of 285 non-proliferative DR patients and 433 healthy controls. The DR patients were classified further into those with or without DME. Thirty haplotype-tagging single-nucleotide polymorphisms (SNPs) in TIE2 were genotyped using TaqMan technology. Associations of DR and subtypes were analyzed by logistic regression adjusted for age and sex. Stratification association analysis by sex was performed. RESULTS TIE2 rs625767 showed a nominal but consistent association with DR [odds ratio (OR) = 0.71, P = 0.005] and subtypes (DR without DME: OR = 0.69, P = 0.016; DME: OR = 0.73, P = 0.045). SNP rs652010 was consistently associated with overall DR (OR = 0.74, P = 0.011) and DR without DME (OR = 0.70, P = 0.016), but not with DME. Moreover, SNPs rs669441, rs10967760, rs549099 and rs639225 showed associations with overall DR, whilst rs17761403, rs664461 and rs1413825 with DR without DME. In stratification analysis, three SNPs, rs625767 (OR = 0.62, P = 0.005), rs669441 (OR = 0.63, P = 0.006) and rs652010 (OR = 0.64, P = 0.007), were associated with DR in females, but not in males. Moreover, one haplotype T-T defined by rs625767 and rs669441 was significantly associated with DR in females only. CONCLUSIONS This study revealed TIE2 as a susceptibility gene for DR and DME in Chinese, with a sex-specific association in females. Further validation should be warranted.
Collapse
Affiliation(s)
- Jun Yu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Marten E Brelen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong
| | - Carmen K M Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong
| | - Zhen Ji Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Shaheeda Mohamed
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong
| | - Dennis S C Lam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; C-MER Dennis Lam & Partners Eye Center, C-MER International Eye Care Group, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong.
| |
Collapse
|
5
|
Zenteno JC, Chacón-Camacho OF, Ordoñez-Labastida V, Miranda-Duarte A, Del Castillo C, Nava J, Mendoza F, Montes-Almanza L, Mora-Roldán G, Gazarian K. Identification of Genetic Variants for Diabetic Retinopathy Risk Applying Exome Sequencing in Extreme Phenotypes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2052766. [PMID: 38249632 PMCID: PMC10799704 DOI: 10.1155/2024/2052766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Background Diabetic retinopathy (DR) risk has been shown to vary depending on ethnic backgrounds, and thus, it is worthy that underrepresented populations are analyzed for the potential identification of DR-associated genetic variants. We conducted a case-control study for the identification of DR-risk variants in Mexican population. Methods We ascertained 60 type 2 diabetes mellitus (T2DM) patients. Cases (n = 30) were patients with advanced proliferative DR (PDR) with less than 15 years after a T2DM diagnosis while controls (n = 30) were patients with no DR 15 years after the diagnosis of T2DM. Exome sequencing was performed in all patients, and the frequency of rare variants was compared. In addition, the frequency of variants occurring in a set of 169 DR-associated genes were compared. Results Statistically significant differences were identified for rare missense and splice variants and for rare splice variants occurring more than once in either group. A strong statistical difference was observed when the number of rare missense variants with an aggregated prediction of pathogenicity and occurring more than once in either group was compared (p = 0.0035). Moreover, 8 variants identified more than once in either group, occurring in previously identified DR-associated genes were recognized. The p.Pro234Ser KIR2DS4 variant showed a strong protective effect (OR = 0.04 [0.001-0.36]; p = 0.04). Conclusions Our study showed an enrichment of rare splice acceptor/donor variants in patients with PDR and identified a potential protective variant in KIR2DS4. Although statistical significance was not reached, our results support the replication of 8 previously identified DR-associated genes.
Collapse
Affiliation(s)
- Juan C. Zenteno
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Rare Disease Diagnostic Unit, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Oscar F. Chacón-Camacho
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Vianey Ordoñez-Labastida
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Rare Disease Diagnostic Unit, Faculty of Medicine, UNAM, Mexico City, Mexico
- Faculty of Medicine, Autonomous University of the State of Morelos (UAEM), Morelos, Mexico
| | - Antonio Miranda-Duarte
- Department of Genomic Medicine, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Camila Del Castillo
- Retina Department, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - Jessica Nava
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - Fatima Mendoza
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - Luis Montes-Almanza
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - Germán Mora-Roldán
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - Karlen Gazarian
- Biomedical Research Institute, Department of Genomic Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
6
|
Sikka R, Raina P, Soni R, Gupta H, Bhanwer AJS. Genomic profile of diabetic retinopathy in a north indian cohort. Mol Biol Rep 2023; 50:9769-9778. [PMID: 37700140 DOI: 10.1007/s11033-023-08772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Diabetic Retinopathy (DR) is one of the major microvascular complications of diabetes. Being a complex disease, it is important to delineate the genetic and environmental factors that influence the susceptibility to DR in a population. Therefore, the present study was designed to investigate the role of genetic and lifestyle risk factors associated with DR susceptibility in a North-Indian population. METHODS A total of 848 subjects were enrolled, comprising of DR cases (n = 414) and healthy controls (n = 434). The Sequenom MassARRAY technology was used to perform target genome analysis of 111 SNPs across 57 candidate genes and 14 intergenic region SNPs that are involved in the metabolic pathways associated with type 2 diabetes (T2D) and DR. Allele, genotype and haplotype frequencies were determined and compared among cases and controls. Logistic regression models were used to determine genotype-phenotype and phenotype-phenotype correlations. RESULTS The strongest association was observed with TCF7L2 rs12255372 T allele [p < 0.0001; odds ratio (OR) = 1.81 (1.44-2.27)] and rs11196205 C allele [p < 0.0008; OR = 1.62 (1.32-1.99)]. Genotype-phenotype and phenotype-phenotype correlations were found in the present study. CONCLUSION Our study provides strong evidence of association between the TCF7L2 variants and DR susceptibility.
Collapse
Affiliation(s)
- Ruhi Sikka
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India.
| | - Priyanka Raina
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
- Mosaic Therapeutics, Wellcome Genome Campus, Cambridge, UK
| | | | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
- Department of Genetics, Guru Ram Das University of Health Sciences, Amritsar, Punjab, India
| |
Collapse
|
7
|
Lyssenko V, Vaag A. Genetics of diabetes-associated microvascular complications. Diabetologia 2023; 66:1601-1613. [PMID: 37452207 PMCID: PMC10390394 DOI: 10.1007/s00125-023-05964-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023]
Abstract
Diabetes is associated with excess morbidity and mortality due to both micro- and macrovascular complications, as well as a range of non-classical comorbidities. Diabetes-associated microvascular complications are those considered most closely related to hyperglycaemia in a causal manner. However, some individuals with hyperglycaemia (even those with severe hyperglycaemia) do not develop microvascular diseases, which, together with evidence of co-occurrence of microvascular diseases in families, suggests a role for genetics. While genome-wide association studies (GWASs) produced firm evidence of multiple genetic variants underlying differential susceptibility to type 1 and type 2 diabetes, genetic determinants of microvascular complications are mostly suggestive. Identified susceptibility variants of diabetic kidney disease (DKD) in type 2 diabetes mirror variants underlying chronic kidney disease (CKD) in individuals without diabetes. As for retinopathy and neuropathy, reported risk variants currently lack large-scale replication. The reported associations between type 2 diabetes risk variants and microvascular complications may be explained by hyperglycaemia. More extensive phenotyping, along with adjustments for unmeasured confounding, including both early (fetal) and late-life (hyperglycaemia, hypertension, etc.) environmental factors, are urgently needed to understand the genetics of microvascular complications. Finally, genetic variants associated with reduced glycolysis, mitochondrial dysfunction and DNA damage and sustained cell regeneration may protect against microvascular complications, illustrating the utility of studies in individuals who have escaped these complications.
Collapse
Affiliation(s)
- Valeriya Lyssenko
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway.
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Lund, Sweden.
| | - Allan Vaag
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Lund, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
8
|
Yu X, Rong S. Genome-Wide Associations and Confirmatory Meta-Analyses in Diabetic Retinopathy. Genes (Basel) 2023; 14:653. [PMID: 36980925 PMCID: PMC10048213 DOI: 10.3390/genes14030653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The present study aimed to summarize and validate the genomic association signals for diabetic retinopathy (DR), proliferative DR, and diabetic macular edema/diabetic maculopathy. A systematic search of the genome-wide association study (GWAS) catalog and PubMed/MELINE databases was conducted to curate a comprehensive list of significant GWAS discoveries. The top signals were then subjected to meta-analysis using established protocols. The results indicate the need for improved consensus among DR GWASs, highlighting the importance of validation efforts. A subsequent meta-analysis confirmed the association of two SNPs, rs4462262 (ZWINT-MRPS35P3) (odds ratio = 1.38, p = 0.001) and rs7903146 (TCF7L2) (odd ratio = 1.30, p < 0.001), with DR in independent populations, strengthening the evidence of their true association. We also compiled a list of candidate SNPs for further validation. This study highlights the importance of consistent validation and replication efforts in the field of DR genetics. The two identified gene loci warrant further functional investigation to understand their role in DR pathogenesis.
Collapse
Affiliation(s)
- Xinting Yu
- Department of Medicine, Brigham and Women’s Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02445, USA
| | - Shisong Rong
- Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02445, USA
| |
Collapse
|
9
|
Gurung RL, Burdon KP, McComish BJ. A Guide to Genome-Wide Association Study Design for Diabetic Retinopathy. Methods Mol Biol 2023; 2678:49-89. [PMID: 37326705 DOI: 10.1007/978-1-0716-3255-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication related to diabetes. There is evidence that genetics play an important role in DR pathogenesis, but the complexity of the disease makes genetic studies a challenge. This chapter is a practical overview of the basic steps for genome-wide association studies with respect to DR and its associated traits. Also described are approaches that can be adopted in future DR studies. This is intended to serve as a guide for beginners and to provide a framework for further in-depth analysis.
Collapse
Affiliation(s)
- Rajya L Gurung
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Bennet J McComish
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Yang S, Guo X, Cheng W, Seth I, Bulloch G, Chen Y, Shang X, Zhu Z, Huang W, Wang W. Genome-wide DNA methylation analysis of extreme phenotypes in the identification of novel epigenetic modifications in diabetic retinopathy. Clin Epigenetics 2022; 14:137. [PMID: 36316758 PMCID: PMC9623976 DOI: 10.1186/s13148-022-01354-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Aberrant epigenetic modifications such as DNA methylation may contribute to the pathogenesis of DR. We aimed at elucidating the role of novel DNA methylation modifications in diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM) using an extreme phenotypic design. Methods/results Two consecutive studies were conducted. A cross-sectional study using an extreme phenotypic design was conducted to identify rare methylation modifications that might contribute to DR pathogenesis. A 2-year longitudinal nested case–control study was conducted to validate the results and assess whether these novel methylation modifications could be used as biomarkers for predicting DR onset. A large number of differentially methylated CpG sites were identified in the cross-sectional study, and two (cg12869254 and cg04026387) corresponding to known genes were replicated in the longitudinal study. Higher methylation of cg12869254 significantly correlated with macular RNFL thinning in the superior and nasal subregions, and that of cg04026387 correlated with reduced deep capillary plexus VD in the superior and inferior subregions after adjusting for covariates. Conclusions Cg12869254 and cg04026387 hypermethylation may complement the known risk factors that contribute to the pathogenesis of DR and as novel biomarkers for disease prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01354-z.
Collapse
Affiliation(s)
- Shaopeng Yang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiao Guo
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Weijing Cheng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ishith Seth
- grid.1008.90000 0001 2179 088XCentre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Level 7, 32 Gisborne Street, East Melbourne, VIC 3002 Australia
| | - Gabriella Bulloch
- grid.1008.90000 0001 2179 088XCentre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Level 7, 32 Gisborne Street, East Melbourne, VIC 3002 Australia
| | - Yifan Chen
- grid.410556.30000 0001 0440 1440John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xianwen Shang
- grid.1008.90000 0001 2179 088XCentre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Level 7, 32 Gisborne Street, East Melbourne, VIC 3002 Australia
| | - Zhuoting Zhu
- grid.1008.90000 0001 2179 088XCentre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Level 7, 32 Gisborne Street, East Melbourne, VIC 3002 Australia
| | - Wenyong Huang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wei Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
11
|
Song Q, Zhang Y, Zhang M, Ma X, Zhang Q, Zhao C, Zhang Z, Zhao H, Hu W, Zhang X, Ren X, An M, Yang J, Liu Y. Identifying gene variants underlying the pathogenesis of diabetic retinopathy based on integrated genomic and transcriptomic analysis of clinical extreme phenotypes. Front Genet 2022; 13:929049. [PMID: 36035153 PMCID: PMC9399422 DOI: 10.3389/fgene.2022.929049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication and the leading cause of blindness in patients with type 2 diabetes. DR has been shown to be closely correlated with blood glucose levels and the duration of diabetes. However, the onset and progression of DR also display clinical heterogeneity. We applied whole-exome sequencing and RNA-seq approaches to study the gene mutation and transcription profiles in three groups of diabetic patients with extreme clinical phenotypes in DR onset, timing, and disease progression, aiming to identify genetic variants that may play roles in the pathogenesis of DR. We identified 23 putatively pathogenic genes, and ingenuity pathway analysis of these mutated genes reveals their functional association with glucose metabolism, diabetic complications, neural system activity, and dysregulated immune responses. In addition, ten potentially protective genes were also proposed. These findings shed light on the mechanisms underlying the pathogenesis of DR and may provide potential targets for developing new strategies to combat DR.
Collapse
Affiliation(s)
- Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuchao Zhang
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Minghui Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoli Ma
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Qianyue Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huichen Zhao
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Wenchao Hu
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xinxin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiwen Ren
- Department of Emergency, Linyi People’s Hospital, Linyi, China
| | - Ming An
- Department of Ophthalmology, Qingdao Municipal Hospital, Qingdao, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuantao Liu
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Clarelli F, Barizzone N, Mangano E, Zuccalà M, Basagni C, Anand S, Sorosina M, Mascia E, Santoro S, Guerini FR, Virgilio E, Gallo A, Pizzino A, Comi C, Martinelli V, Comi G, De Bellis G, Leone M, Filippi M, Esposito F, Bordoni R, Martinelli Boneschi F, D'Alfonso S. Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population. Front Genet 2022; 12:800262. [PMID: 35047017 PMCID: PMC8762330 DOI: 10.3389/fgene.2021.800262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies identified over 200 risk loci for multiple sclerosis (MS) focusing on common variants, which account for about 50% of disease heritability. The goal of this study was to investigate whether low-frequency and rare functional variants, located in MS-established associated loci, may contribute to disease risk in a relatively homogeneous population, testing their cumulative effect (burden) with gene-wise tests. We sequenced 98 genes in 588 Italian patients with MS and 408 matched healthy controls (HCs). Variants were selected using different filtering criteria based on allelic frequency and in silico functional impacts. Genes showing a significant burden (n = 17) were sequenced in an independent cohort of 504 MS and 504 HC. The highest signal in both cohorts was observed for the disruptive variants (stop-gain, stop-loss, or splicing variants) located in EFCAB13, a gene coding for a protein of an unknown function (p < 10-4). Among these variants, the minor allele of a stop-gain variant showed a significantly higher frequency in MS versus HC in both sequenced cohorts (p = 0.0093 and p = 0.025), confirmed by a meta-analysis on a third independent cohort of 1298 MS and 1430 HC (p = 0.001) assayed with an SNP array. Real-time PCR on 14 heterozygous individuals for this variant did not evidence the presence of the stop-gain allele, suggesting a transcript degradation by non-sense mediated decay, supported by the evidence that the carriers of the stop-gain variant had a lower expression of this gene (p = 0.0184). In conclusion, we identified a novel low-frequency functional variant associated with MS susceptibility, suggesting the possible role of rare/low-frequency variants in MS as reported for other complex diseases.
Collapse
Affiliation(s)
- Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Barizzone
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Miriam Zuccalà
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Chiara Basagni
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Santosh Anand
- Department of Informatics, Systems and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Eleonora Virgilio
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Antonio Gallo
- MS Center, I Division of Neurology, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pizzino
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Vittorio Martinelli
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Filippi
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Filippo Martinelli Boneschi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, MS Centre, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| |
Collapse
|
13
|
Sobrin L, Susarla G, Stanwyck L, Rouhana JM, Li A, Pollack S, Igo RP, Jensen RA, Li X, Ng MCY, Smith AV, Kuo JZ, Taylor KD, Freedman BI, Bowden DW, Penman A, Chen CJ, Craig JE, Adler SG, Chew EY, Cotch MF, Yaspan B, Mitchell P, Wang JJ, Klein BEK, Wong TY, Rotter JI, Burdon KP, Iyengar SK, Segrè AV. Gene Set Enrichment Analsyes Identify Pathways Involved in Genetic Risk for Diabetic Retinopathy. Am J Ophthalmol 2022; 233:111-123. [PMID: 34166655 PMCID: PMC8678352 DOI: 10.1016/j.ajo.2021.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/19/2021] [Accepted: 06/12/2021] [Indexed: 01/03/2023]
Abstract
To identify functionally related genes associated with diabetic retinopathy (DR) risk using gene set enrichment analyses applied to genome-wide association study meta-analyses. METHODS We analyzed DR GWAS meta-analyses performed on 3246 Europeans and 2611 African Americans with type 2 diabetes. Gene sets relevant to 5 key DR pathophysiology processes were investigated: tissue injury, vascular events, metabolic events and glial dysregulation, neuronal dysfunction, and inflammation. Keywords relevant to these processes were queried in 4 pathway and ontology databases. Two GSEA methods, Meta-Analysis Gene set Enrichment of variaNT Associations (MAGENTA) and Multi-marker Analysis of GenoMic Annotation (MAGMA), were used. Gene sets were defined to be enriched for gene associations with DR if the P value corrected for multiple testing (Pcorr) was <.05. RESULTS Five gene sets were significantly enriched for numerous modest genetic associations with DR in one method (MAGENTA or MAGMA) and also at least nominally significant (uncorrected P < .05) in the other method. These pathways were regulation of the lipid catabolic process (2-fold enrichment, Pcorr = .014); nitric oxide biosynthesis (1.92-fold enrichment, Pcorr = .022); lipid digestion, mobilization, and transport (1.6-fold enrichment, P = .032); apoptosis (1.53-fold enrichment, P = .041); and retinal ganglion cell degeneration (2-fold enrichment, Pcorr = .049). The interferon gamma (IFNG) gene, previously implicated in DR by protein-protein interactions in our GWAS, was among the top ranked genes in the nitric oxide pathway (best variant P = .0001). CONCLUSIONS These GSEA indicate that variants in genes involved in oxidative stress, lipid transport and catabolism, and cell degeneration are enriched for genes associated with DR risk. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Lucia Sobrin
- From the Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary.
| | - Gayatri Susarla
- From the Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary
| | - Lynn Stanwyck
- From the Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary
| | - John M Rouhana
- From the Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary
| | - Ashley Li
- From the Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary
| | - Samuela Pollack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western University, Cleveland, Ohio
| | - Richard A Jensen
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, Washington
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Vanderbilt Genetics Institute and Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Albert V Smith
- Department of Medicine, University of Iceland, Reykjavík, Iceland
| | - Jane Z Kuo
- Medical Affairs, Ophthalmology, Sun Pharmaceutical Industries, Inc, Princeton, New Jersey
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Barry I Freedman
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine; Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alan Penman
- Department of Preventive Medicine, John D. Bower School of Population Health (A.P.), Department of Ophthalmology
| | - Ching J Chen
- Department of Preventive Medicine, John D. Bower School of Population Health (A.P.), Department of Ophthalmology
| | - Jamie E Craig
- University of Mississippi Medical Center, Jackson, Mississippi, USA, FHMRI Eye & Vision, Flinders University, Bedford Park, SA, Australia
| | - Sharon G Adler
- Department of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-University of California, Torrance, California
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Brian Yaspan
- Genentech Inc, South San Francisco, California, USA
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Jie Jin Wang
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; Center of Clinician-Scientist Development, Duke-NUS Medical School, Singapore
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tien Y Wong
- Center of Clinician-Scientist Development, Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Kathyrn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Sudha K Iyengar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Population and Quantitative Health Sciences, Case Western University, Cleveland, Ohio
| | - Ayellet V Segrè
- From the Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary; Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
14
|
Jiang Z, Fa B, Zhang X, Wang J, Feng Y, Shi H, Zhang Y, Sun D, Wang H, Yin S. Identifying genetic risk variants associated with noise-induced hearing loss based on a novel strategy for evaluating individual susceptibility. Hear Res 2021; 407:108281. [PMID: 34157653 DOI: 10.1016/j.heares.2021.108281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The overall genetic profile for noise-induced hearing loss (NIHL) remains elusive. Herein we proposed a novel machine learning (ML) based strategy to evaluate individual susceptibility to NIHL and identify the underlying genetic risk variants based on a subsample of participants with extreme phenotypes. METHODS Five features (age, sex, cumulative noise exposure [CNE], smoking, and alcohol drinking status) of 5,539 shipbuilding workers from large cross-sectional surveys were included in four ML classification models to predict their hearing levels. The area under the curve (AUC) and prediction accuracy were exploited to evaluate the performance of the models. Based on the prediction error of the ML models, the NIHL-susceptible group (n=150) and NIHL-resistant group (n=150) with a paradoxical relationship between hearing levels and features were separately screened, to identify the underlying variants associated with NIHL risk using whole-exome sequencing (WES). Subsequently, candidate risk variants were validated in an additional replication cohort (n=2108), followed by a meta-analysis. RESULTS With 10-fold cross-validation, the performances of the four ML models were robust and similar, with average AUCs and accuracies ranging from 0.783 to 0.798 and 73.7% to 73.8%, respectively. The phenotypes of the NIHL-susceptible and NIHL-resistant groups were significantly different (all p<0.001). After WES analysis and filtering, 12 risk variants contributing to NIHL susceptibility were identified and replicated. The meta-analyses showed that the A allele of CDH23 rs41281334 (odds ratio [OR]=1.506, 95% confidence interval [CI]=1.106-2.051) and the C allele of WHRN rs12339210 (OR=3.06, 95% CI=1.398-6.700) were significantly associated with increased risk of NIHL after adjustment for confounding factors. CONCLUSIONS This study revealed two genetic variants in CDH23 rs41281334 and WHRN rs12339210 that associated with NIHL risk, based on a promising approach for evaluating individual susceptibility using ML models.
Collapse
Affiliation(s)
- Zhuang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Botao Fa
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunmiao Zhang
- Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiping Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Haibo Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Daoyuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
15
|
Lalrohlui F, Zohmingthanga J, Hruaii V, Vanlallawma A, Senthil Kumar N. Whole exome sequencing identifies the novel putative gene variants related with type 2 diabetes in Mizo population, northeast India. Gene 2020; 769:145229. [PMID: 33059026 DOI: 10.1016/j.gene.2020.145229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
The contribution of genes towards T2D development varies among different population groups across the world. It has been reported that a number of loci involved in T2D susceptibility are common across certain population groups, but ethnicity specific variants are also observed. The population of Mizoram has an independent ethnic identity and there are no scientific records about the history of the Mizo people; which makes this ethnic group unique and interesting to study. The aim of the study focuses on the identification of the gene variants which may contribute to T2D susceptibility in Mizo-Mongloid ethnic tribe of North east India through whole exome sequencing. The variants like 328G > C (KRT18), 997G > T (CYP4A11), 2368 T > C (SLC4A3), 508G > A (SLC26A5), 1659C > T (KCNS1), 650C > A (ABCD1) 821A > T (YTHDC2), 931G > T (PINX1), 3280C > A (TNRC6A), 48C > A(TACO1), 6035A > T(LAMA1), 805C > A(ACP7) and 806A > G(ACP7) variants were not reported for any disease in the database and were found to be pathogenic in different insilico analysis softwares. The changes in protein stability upon mutation has been predicted where 35.71% increases the stability of the protein, while 64.28% of the variants decrease the stability of the protein. These findings present the population specific variants which might involve in the susceptibility to T2D in Mizo population. Further, in this study some gene variants have contribution as a possible diagnostic or prognostic marker for other diseases as well, which suggests the need for performing association analysis for different disease manifestations in Mizo population in the near future.
Collapse
Affiliation(s)
- Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vanlal Hruaii
- Department of Medicine, Zoram Medical College, Aizawl 796005, Mizoram, India
| | - Andrew Vanlallawma
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| | | |
Collapse
|
16
|
Amanat S, Requena T, Lopez-Escamez JA. A Systematic Review of Extreme Phenotype Strategies to Search for Rare Variants in Genetic Studies of Complex Disorders. Genes (Basel) 2020; 11:genes11090987. [PMID: 32854191 PMCID: PMC7564972 DOI: 10.3390/genes11090987] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Exome sequencing has been commonly used to characterize rare diseases by selecting multiplex families or singletons with an extreme phenotype (EP) and searching for rare variants in coding regions. The EP strategy covers both extreme ends of a disease spectrum and it has been also used to investigate the contribution of rare variants to the heritability of complex clinical traits. We conducted a systematic review to find evidence supporting the use of EP strategies in the search for rare variants in genetic studies of complex diseases and highlight the contribution of rare variations to the genetic structure of polygenic conditions. After assessing the quality of the retrieved records, we selected 19 genetic studies considering EPs to demonstrate genetic association. All studies successfully identified several rare or de novo variants, and many novel candidate genes were also identified by selecting an EP. There is enough evidence to support that the EP approach for patients with an early onset of a disease can contribute to the identification of rare variants in candidate genes or pathways involved in complex diseases. EP patients may contribute to a better understanding of the underlying genetic architecture of common heterogeneous disorders such as tinnitus or age-related hearing loss.
Collapse
Affiliation(s)
- Sana Amanat
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO—Centre for Genomics and Oncological Research—Pfizer/University of Granada/Junta de Andalucía, PTS, 18016 Granada, Spain;
| | - Teresa Requena
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK;
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO—Centre for Genomics and Oncological Research—Pfizer/University of Granada/Junta de Andalucía, PTS, 18016 Granada, Spain;
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18016 Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-715-500-160
| |
Collapse
|
17
|
Prud'hon S, Bekadar S, Rastetter A, Guégan J, Cormier-Dequaire F, Lacomblez L, Mangone G, You H, Daniau M, Marie Y, Bertrand H, Lesage S, Tezenas Du Montcel S, Anheim M, Brice A, Danjou F, Corvol JC. Exome Sequencing Reveals Signal Transduction Genes Involved in Impulse Control Disorders in Parkinson's Disease. Front Neurol 2020; 11:641. [PMID: 32793093 PMCID: PMC7385236 DOI: 10.3389/fneur.2020.00641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction: Impulse control disorders (ICDs) frequently complicate dopamine agonist (DA) therapy in Parkinson's disease (PD). There is growing evidence of a high heritability for ICDs in the general population and in PD. Variants on genes belonging to the reward pathway have been shown to account for part of this heritability. We aimed to identify new pathways associated with ICDs in PD. Methods: Thirty-six Parkinsonian patients on DA therapy with (n = 18) and without ICDs (n = 18) matched on age at PD's onset, and gender was selected to represent the most extreme phenotypes of their category. Exome sequencing was performed, and variants with a strong functional impact in brain-expressed genes were selected. Allele frequencies and their distribution in genes and pathways were analyzed with single variant and SKAT-O tests. The 10 most associated variants, genes, and pathways were retained for replication in the Parkinson's progression markers initiative (PPMI) cohort. Results: None of markers tested passed the significance threshold adjusted for multiple comparisons. However, the “Adenylate cyclase activating” pathway, one of the top associated pathways in the discovery data set (p = 1.6 × 10−3) was replicated in the PPMI cohort and was significantly associated with ICDs in a post hoc pooled analysis (combined p-value 3.3 × 10−5). Two of the 10 most associated variants belonged to genes implicated in cAMP and ERK signaling (rs34193571 in RasGRF2, p = 5 × 10−4; rs1877652 in PDE2A, p = 8 × 10−4) although non-significant after Bonferroni correction. Conclusion: Our results suggest that genes implicated in the signaling pathways linked to G protein-coupled receptors participate to genetic susceptibility to ICDs in PD.
Collapse
Affiliation(s)
- Sabine Prud'hon
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique neurosciences, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Samir Bekadar
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique neurosciences, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Agnès Rastetter
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France
| | - Justine Guégan
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France
| | - Florence Cormier-Dequaire
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique neurosciences, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lucette Lacomblez
- Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique neurosciences, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Pharmacology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Graziella Mangone
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique neurosciences, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hana You
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique neurosciences, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mailys Daniau
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France
| | - Yannick Marie
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France
| | - Hélène Bertrand
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France
| | - Suzanne Lesage
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France
| | - Sophie Tezenas Du Montcel
- Assistance Publique Hôpitaux de Paris, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mathieu Anheim
- Hôpitaux Universitaires de Strasbourg, Department of Neurology, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS/Unistra, Inserm U1258, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexis Brice
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Genetics, Hôpital Pitié-Salpêtrière, Paris, France
| | - Fabrice Danjou
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, INSERM UMRS 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle, ICM, Paris, France.,Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique neurosciences, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Abstract
Diabetes is one of the fastest growing diseases worldwide, projected to affect 693 million adults by 2045. Devastating macrovascular complications (cardiovascular disease) and microvascular complications (such as diabetic kidney disease, diabetic retinopathy and neuropathy) lead to increased mortality, blindness, kidney failure and an overall decreased quality of life in individuals with diabetes. Clinical risk factors and glycaemic control alone cannot predict the development of vascular complications; numerous genetic studies have demonstrated a clear genetic component to both diabetes and its complications. Early research aimed at identifying genetic determinants of diabetes complications relied on familial linkage analysis suited to strong-effect loci, candidate gene studies prone to false positives, and underpowered genome-wide association studies limited by sample size. The explosion of new genomic datasets, both in terms of biobanks and aggregation of worldwide cohorts, has more than doubled the number of genetic discoveries for both diabetes and diabetes complications. We focus herein on genetic discoveries for diabetes and diabetes complications, empowered primarily through genome-wide association studies, and emphasize the gaps in research for taking genomic discovery to the next level.
Collapse
Affiliation(s)
- Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Cabrera AP, Monickaraj F, Rangasamy S, Hobbs S, McGuire P, Das A. Do Genomic Factors Play a Role in Diabetic Retinopathy? J Clin Med 2020; 9:E216. [PMID: 31947513 PMCID: PMC7019561 DOI: 10.3390/jcm9010216] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Although there is strong clinical evidence that the control of blood glucose, blood pressure, and lipid level can prevent and slow down the progression of diabetic retinopathy (DR) as shown by landmark clinical trials, it has been shown that these factors only account for 10% of the risk for developing this disease. This suggests that other factors, such as genetics, may play a role in the development and progression of DR. Clinical evidence shows that some diabetics, despite the long duration of their diabetes (25 years or more) do not show any sign of DR or show minimal non-proliferative diabetic retinopathy (NPDR). Similarly, not all diabetics develop proliferative diabetic retinopathy (PDR). So far, linkage analysis, candidate gene studies, and genome-wide association studies (GWAS) have not produced any statistically significant results. We recently initiated a genomics study, the Diabetic Retinopathy Genetics (DRGen) Study, to examine the contribution of rare and common variants in the development of different phenotypes of DR, as well as their responsiveness to anti-VEGF treatment in diabetic macular edema (DME). Our preliminary findings reveal a novel set of genetic variants involved in the angiogenesis and inflammatory pathways that contribute to DR progression or protection. Further investigation of variants can help to develop novel biomarkers and lead to new therapeutic targets in DR.
Collapse
Affiliation(s)
- Andrea P. Cabrera
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Finny Monickaraj
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
| | | | - Sam Hobbs
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Paul McGuire
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
| | - Arup Das
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
| |
Collapse
|
20
|
Liu C, Chen G, Bentley AR, Doumatey A, Zhou J, Adeyemo A, Yang J, Rotimi C. Genome-wide association study for proliferative diabetic retinopathy in Africans. NPJ Genom Med 2019; 4:20. [PMID: 31482010 PMCID: PMC6715701 DOI: 10.1038/s41525-019-0094-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
Abstract
Proliferative diabetic retinopathy (PDR) is a sight-threatening complication of diabetes that is associated with longer duration of diabetes and poor glycemic control under a genetic susceptibility background. Although GWAS of PDR have been conducted in Europeans and Asians, none has been done in continental Africans, a population at increased risk for PDR. Here, we report a GWAS of PDR among Africans. PDR cases (n = 64) were T2D patients with neovascularization in the retina and/or retinal detachment. Controls (n = 227) were T2D patients without listed eye complications despite high risk (T2D duration ≥10 years and fasting blood glucose >169 mg/dl). Replication was assessed in African Americans enrolled in the ARIC study. We identified 4 significant loci: WDR72, HLA-B, GAP43/RP11-326J18.1, and AL713866.1. At WDR72 the most strongly associated SNPs were rs12906891 (MAF = 0.071; p = 9.68 × 10-10; OR = 1.46, 95% CI [1.30,1.64]) and rs11070992 (MAF = 0.14; p = 4.23 × 10-8; OR = 1.28, 95%CI [1.17-1.40]). rs11070992 replicated in African Americans (p = 0.04). Variants in this gene have been associated with diabetic retinopathy, glycemic control, revascularization, and kidney disease.
Collapse
Affiliation(s)
- Chang Liu
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 10730 China
- Beijing Diabetes institute, Beijing, 100730 China
| | - Guanjie Chen
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Amy R. Bentley
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Ayo Doumatey
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Jie Zhou
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Adebowale Adeyemo
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Jinkui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 10730 China
- Beijing Diabetes institute, Beijing, 100730 China
| | - Charles Rotimi
- The Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to review the latest findings in understanding the genetics of diabetic retinopathy. We highlight recent literature using a variety of molecular genetic techniques to identify variants which contribute to genetic susceptibility for diabetic retinopathy. RECENT FINDINGS New genome-wide association study (GWAS) and whole-exome sequencing approaches have been utilized to identify both common and rare variants associated with diabetic retinopathy. While variants have been identified in isolated studies, no variants have been replicated across multiple studies. The identification of genetic factors associated with diabetic retinopathy remains elusive. This is due to the multifactorial nature of the disease, small sample sizes for GWAS, and difficulty in controlling covariates of the disease. Larger populations as well as utilization of new sequencing and data analysis techniques may lead to new insights into genetic factors associated with diabetic retinopathy in the future.
Collapse
Affiliation(s)
- Jonathan Han
- School of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Leonardo Lando
- Shiley Eye Institute, Andrew Viterbi Department of Ophthalmology, University of California San Diego, 9415 Campus Point Dr, La Jolla, San Diego, CA, 92093, USA
| | - Dorota Skowronska-Krawczyk
- Shiley Eye Institute, Andrew Viterbi Department of Ophthalmology, University of California San Diego, 9415 Campus Point Dr, La Jolla, San Diego, CA, 92093, USA
| | - Daniel L Chao
- Shiley Eye Institute, Andrew Viterbi Department of Ophthalmology, University of California San Diego, 9415 Campus Point Dr, La Jolla, San Diego, CA, 92093, USA.
- Shiley Eye Institute; Andrew Viterbi Department of Ophthalmology, University of California San Diego, 9500 Gilman Dr MC 0946, La Jolla, San Diego, CA, 93094, USA.
| |
Collapse
|
22
|
de Carvalho-Siqueira GQ, Ananina G, de Souza BB, Borges MG, Ito MT, da Silva-Costa SM, de Farias Domingos I, Falcão DA, Lopes-Cendes I, Bezerra MAC, da Silva Araújo A, Lucena-Araújo AR, de Souza Gonçalves M, Saad STO, Costa FF, de Melo MB. Whole-exome sequencing indicates FLG2 variant associated with leg ulcers in Brazilian sickle cell anemia patients. Exp Biol Med (Maywood) 2019; 244:932-939. [PMID: 31079484 DOI: 10.1177/1535370219849592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although sickle cell anemia results from homozygosity for a single mutation at position 7 of the β-globin chain, the clinical aspects of this condition are very heterogeneous. Complications include leg ulcers, which have a negative impact on patients’ quality of life and are related to the severity of the disease. Nevertheless, the complex pathogenesis of this complication has yet to be elucidated. To identify novel genes associated with leg ulcers in sickle cell anemia, we performed whole-exome sequencing of extreme phenotypes in a sample of Brazilian sickle cell anemia patients and validated our findings in another sample. Our discovery cohort consisted of 40 unrelated sickle cell anemia patients selected based on extreme phenotypes: 20 patients without leg ulcers, aged from 40 to 61 years, and 20 with chronic leg ulcers. DNA was extracted from peripheral blood leukocytes and used for whole-exome sequencing. After the bioinformatics analysis, eight variants were selected for validation by Sanger sequencing and TaqMan® genotyping in 293 sickle cell anemia patients (153 without leg ulcers) from two different locations in Brazil. After the validation, Fisher’s exact test revealed a statistically significant difference in a stop codon variant (rs12568784 G/T) in the FLG2 gene between the GT and GG genotypes ( P = 0.035). We highlight the importance of rs12568784 in leg ulcer development as this variant of the FLG2 gene results in impairment of the skin barrier, predisposing the individual to inflammation and infection. Additionally, we suggest that the remaining seven variants and the genes in which they occur could be strong candidates for leg ulcers in sickle cell anemia. Impact statement To our knowledge, the present study is the first to use whole-exome sequencing based on extreme phenotypes to identify new candidate genes associated with leg ulcers in sickle cell anemia patients. There are few studies about this complication; the pathogenesis remains complex and has yet to be fully elucidated. We identified interesting associations in genes never related with this complication to our knowledge, especially the variant in the FLG2 gene. The knowledge of variants related with leg ulcer in sickle cell anemia may lead to a better comprehension of the disease’s etiology, allowing prevention and early treatment options in risk genotypes while improving quality of life for these patients.
Collapse
Affiliation(s)
| | - Galina Ananina
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Bruno Batista de Souza
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Murilo Guimarães Borges
- 2 Department of Medical Genetics and Genome Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| | - Mirta Tomie Ito
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Sueli Matilde da Silva-Costa
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| | - Igor de Farias Domingos
- 3 Genetics Postgraduate Program, Federal University of Pernambuco, Recife, PE 50670-901, Brazil
| | - Diego Arruda Falcão
- 3 Genetics Postgraduate Program, Federal University of Pernambuco, Recife, PE 50670-901, Brazil
| | - Iscia Lopes-Cendes
- 2 Department of Medical Genetics and Genome Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-887, Brazil
| | | | | | | | | | | | | | - Mônica Barbosa de Melo
- 1 Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Campinas, SP 13083-875, Brazil
| |
Collapse
|
23
|
Panarella M, Burkett KM. A Cautionary Note on the Effects of Population Stratification Under an Extreme Phenotype Sampling Design. Front Genet 2019; 10:398. [PMID: 31130982 PMCID: PMC6509877 DOI: 10.3389/fgene.2019.00398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Extreme phenotype sampling (EPS) is a popular study design used to reduce genotyping or sequencing costs. Assuming continuous phenotype data are available on a large cohort, EPS involves genotyping or sequencing only those individuals with extreme phenotypic values. Although this design has been shown to have high power to detect genetic effects even at smaller sample sizes, little attention has been paid to the effects of confounding variables, and in particular population stratification. Using extensive simulations, we demonstrate that the false positive rate under the EPS design is greatly inflated relative to a random sample of equal size or a “case-control”-like design where the cases are from one phenotypic extreme and the controls randomly sampled. The inflated false positive rate is observed even with allele frequency and phenotype mean differences taken from European population data. We show that the effects of confounding are not reduced by increasing the sample size. We also show that including the top principal components in a logistic regression model is sufficient for controlling the type 1 error rate using data simulated with a population genetics model and using 1,000 Genomes genotype data. Our results suggest that when an EPS study is conducted, it is crucial to adjust for all confounding variables. For genetic association studies this requires genotyping a sufficient number of markers to allow for ancestry estimation. Unfortunately, this could increase the costs of a study if sequencing or genotyping was only planned for candidate genes or pathways; the available genetic data would not be suitable for ancestry correction as many of the variants could have a true association with the trait.
Collapse
Affiliation(s)
- Michela Panarella
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| | - Kelly M Burkett
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Pollack S, Igo RP, Jensen RA, Christiansen M, Li X, Cheng CY, Ng MCY, Smith AV, Rossin EJ, Segrè AV, Davoudi S, Tan GS, Chen YDI, Kuo JZ, Dimitrov LM, Stanwyck LK, Meng W, Hosseini SM, Imamura M, Nousome D, Kim J, Hai Y, Jia Y, Ahn J, Leong A, Shah K, Park KH, Guo X, Ipp E, Taylor KD, Adler SG, Sedor JR, Freedman BI, Lee IT, Sheu WHH, Kubo M, Takahashi A, Hadjadj S, Marre M, Tregouet DA, Mckean-Cowdin R, Varma R, McCarthy MI, Groop L, Ahlqvist E, Lyssenko V, Agardh E, Morris A, Doney ASF, Colhoun HM, Toppila I, Sandholm N, Groop PH, Maeda S, Hanis CL, Penman A, Chen CJ, Hancock H, Mitchell P, Craig JE, Chew EY, Paterson AD, Grassi MA, Palmer C, Bowden DW, Yaspan BL, Siscovick D, Cotch MF, Wang JJ, Burdon KP, Wong TY, Klein BEK, Klein R, Rotter JI, Iyengar SK, Price AL, Sobrin L. Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes 2019; 68:441-456. [PMID: 30487263 PMCID: PMC6341299 DOI: 10.2337/db18-0567] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022]
Abstract
To identify genetic variants associated with diabetic retinopathy (DR), we performed a large multiethnic genome-wide association study. Discovery included eight European cohorts (n = 3,246) and seven African American cohorts (n = 2,611). We meta-analyzed across cohorts using inverse-variance weighting, with and without liability threshold modeling of glycemic control and duration of diabetes. Variants with a P value <1 × 10-5 were investigated in replication cohorts that included 18,545 European, 16,453 Asian, and 2,710 Hispanic subjects. After correction for multiple testing, the C allele of rs142293996 in an intron of nuclear VCP-like (NVL) was associated with DR in European discovery cohorts (P = 2.1 × 10-9), but did not reach genome-wide significance after meta-analysis with replication cohorts. We applied the Disease Association Protein-Protein Link Evaluator (DAPPLE) to our discovery results to test for evidence of risk being spread across underlying molecular pathways. One protein-protein interaction network built from genes in regions associated with proliferative DR was found to have significant connectivity (P = 0.0009) and corroborated with gene set enrichment analyses. These findings suggest that genetic variation in NVL, as well as variation within a protein-protein interaction network that includes genes implicated in inflammation, may influence risk for DR.
Collapse
Affiliation(s)
- Samuela Pollack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western University, Cleveland, OH
| | - Richard A Jensen
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA
| | - Mark Christiansen
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Ching-Yu Cheng
- Duke-NUS Medical School, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - Albert V Smith
- Department of Medicine, University of Iceland, Reykjavík, Iceland
| | - Elizabeth J Rossin
- Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Ayellet V Segrè
- Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Samaneh Davoudi
- Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Gavin S Tan
- Duke-NUS Medical School, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Jane Z Kuo
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
- Medical Affairs, Ophthalmology, Sun Pharmaceutical Industries, Inc., Princeton, NJ
| | - Latchezar M Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lynn K Stanwyck
- Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Weihua Meng
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee School of Medicine, Scotland, U.K
| | - S Mohsen Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Minako Imamura
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
| | - Darryl Nousome
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jihye Kim
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Yang Hai
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Jeeyun Ahn
- Department of Ophthalmology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Aaron Leong
- Endocrine Unit and Diabetes Unit, Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Kaanan Shah
- Section of Genetic Medicine, University of Chicago, Chicago, IL
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Eli Ipp
- Section of Diabetes and Metabolism, Harbor-UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Sharon G Adler
- Department of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-University of California, Torrance, CA
| | - John R Sedor
- Department of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH
- Division of Nephrology, MetroHealth System, Cleveland, OH
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Samy Hadjadj
- CHU de Poitiers, Centre d'Investigation Clinique, Poitiers, France
- Université de Poitiers, UFR Médecine Pharmacie, Centre d'Investigation Clinique 1402, Poitiers, France
- INSERM, Centre d'Investigation Clinique 1402, Poitiers, France
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Michel Marre
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Paris, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - David-Alexandre Tregouet
- Team Genomics & Pathophysiology of Cardiovascular Diseases, UPMC, Sorbonne Universités, INSERM, UMR_S 1166, Paris, France
- Institute of Cardiometabolism and Nutrition, Paris, France
| | - Roberta Mckean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Rohit Varma
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Leif Groop
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Elisabet Agardh
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Andrew Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Alex S F Doney
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, U.K
| | - Iiro Toppila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Alan Penman
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS
| | - Ching J Chen
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS
| | - Heather Hancock
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS
| | - Paul Mitchell
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Andrew D Paterson
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics & Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael A Grassi
- Grassi Retina, Naperville, IL
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | - Colin Palmer
- Pat MacPherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - David Siscovick
- Institute for Urban Health, New York Academy of Medicine, New York, NY
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Jie Jin Wang
- Duke-NUS Medical School, Singapore
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tien Y Wong
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LA BioMed and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Sudha K Iyengar
- Department of Population and Quantitative Health Sciences, Case Western University, Cleveland, OH
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lucia Sobrin
- Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. THE PHARMACOGENOMICS JOURNAL 2018; 19:375-389. [PMID: 30442921 PMCID: PMC6522337 DOI: 10.1038/s41397-018-0063-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
An extreme phenotype sampling (EPS) model with targeted next-generation sequencing (NGS) identified genetic variants associated with tacrolimus (Tac) metabolism in subjects from the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort which included 1,442 European Americans (EA) and 345 African Americans (AA). This study included 48 subjects separated into 4 groups of 12 (AA high, AA low, EA high, EA low). Groups were selected by the extreme phenotype of dose-normalized Tac trough concentrations after adjusting for common genetic variants and clinical factors. NGS spanned >3 Mb of 28 genes and identified 18,661 genetic variants (3,961 previously unknown). A group of 125 deleterious variants, by SIFT analysis, were associated with Tac troughs in EAs (burden test, p=0.008), CYB5R2 was associated with Tac troughs in AAs (SKAT, p=0.00079). In CYB5R2, rs61733057 (increased allele frequency in AAs) was predicted to disrupt protein function by SIFT and PolyPhen2 analysis. The variants merit further validation.
Collapse
|
26
|
Hamvas A, Feng R, Bi Y, Wang F, Bhattacharya S, Mereness J, Kaushal M, Cotten CM, Ballard PL, Mariani TJ. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet 2018; 19:94. [PMID: 30342483 PMCID: PMC6195962 DOI: 10.1186/s12863-018-0679-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/01/2018] [Indexed: 12/28/2022] Open
Abstract
Background Previous studies have identified genetic variants associated with bronchopulmonary dysplasia (BPD) in extremely preterm infants. However, findings with genome-wide significance have been rare, and not replicated. We hypothesized that whole exome sequencing (WES) of premature subjects with extremely divergent phenotypic outcomes could facilitate the identification of genetic variants or gene networks contributing disease risk. Results The Prematurity and Respiratory Outcomes Program (PROP) recruited a cohort of > 765 extremely preterm infants for the identification of markers of respiratory morbidity. We completed WES on 146 PROP subjects (85 affected, 61 unaffected) representing extreme phenotypes of early respiratory morbidity. We tested for association between disease status and individual common variants, screened for rare variants exclusive to either affected or unaffected subjects, and tested the combined association of variants across gene loci. Pathway analysis was performed and disease-related expression patterns were assessed. Marginal association with BPD was observed for numerous common and rare variants. We identified 345 genes with variants unique to BPD-affected preterm subjects, and 292 genes with variants unique to our unaffected preterm subjects. Of these unique variants, 28 (19 in the affected cohort and 9 in unaffected cohort) replicate a prior WES study of BPD-associated variants. Pathway analysis of sets of variants, informed by disease-related gene expression, implicated protein kinase A, MAPK and Neuregulin/epidermal growth factor receptor signaling. Conclusions We identified novel genes and associated pathways that may play an important role in susceptibility/resilience for the development of lung disease in preterm infants. Electronic supplementary material The online version of this article (10.1186/s12863-018-0679-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Hamvas
- Department of Pediatrics, Northwestern University, Chicago, IL, USA. .,Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern University, Chicago, IL, USA.
| | - Rui Feng
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingtao Bi
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Fan Wang
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jared Mereness
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Madhurima Kaushal
- Center for Biomedical Informatics, Washington University, St. Louis, MO, USA
| | | | - Philip L Ballard
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester, Rochester, NY, USA. .,Division of Neonatology and Pediatric Molecular and Personalized Medicine Program University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY, 14642, USA.
| | | |
Collapse
|
27
|
Zhang W, Song J, Zhang Y, Ma Y, Yang J, He G, Chen S. Intermittent high glucose-induced oxidative stress modulates retinal pigmented epithelial cell autophagy and promotes cell survival via increased HMGB1. BMC Ophthalmol 2018; 18:192. [PMID: 30081847 PMCID: PMC6091182 DOI: 10.1186/s12886-018-0864-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background In this study, we evaluated the effects of intermittent high glucose on oxidative stress production in retinal pigmented epithelial (RPE) cells and explored whether the mechanisms of autophagy and apoptosis in oxidative stress are associated with high-mobility group box 1 (HMGB1) protein. Methods Cultured human RPE cell line ARPE-19 cells were exposed to intermittent high glucose-induced oxidative stress. Reactive oxygen species (ROS) was determined by 2′, 7′-dichlorofluorescin diacetate (DCFH-DA); and malonyldialdehyde (MDA), superoxide dismutase (SOD) by commercial kits. Transmission electron microscopy was used to observe the generation of autophagosome. And MTT assay was used to examine the effect of autophagy on cell viability. For the inhibition experiments, cells were pre-incubated with lysosomal inhibitors NH4Cl or N-acetyl cysteine (NAC).Western blot was used to measure the expression patterns of autophagic markers, including LC3 and p62. The expression of HMGB1 was detected by immunohistochemistry.Cells were pre-incubated with HMGB1 inhibitor ethyl pyruvate (EP) ,then detected the expression pattern of autophagic markers and level of cellular ROS. Results We found that intermittent high glucose significantly increased oxidative stress levels (as indicated by ROS, MDA, SOD), increased in the generation of autophagosome, decreased the level of p62, induced conversion of LC3 I to LC3 II. We further demonstrated that the NH4Cl/NAC inhibited intermittent high glucose-induced autophage by altered level of LC3 and p62. Intermittent high glucose-induced autophagy is independent of HMGB1 signaling, inhibition of HMGB1 release by EP decreased expression pattern of autophagic markers and level of cellular viability. Conclusions Under intermittent high glucose condition, autophagy may be required for preventing oxidative stress-induced injury in RPE. HMGB1 plays important roles in signaling for both autophagy and oxidative stress.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Jian Song
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Yue Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Yingxue Ma
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Jing Yang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Guanghui He
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Song Chen
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China.
| |
Collapse
|
28
|
Whole-exome sequencing in maya indigenous families: variant in PPP1R3A is associated with type 2 diabetes. Mol Genet Genomics 2018; 293:1205-1216. [DOI: 10.1007/s00438-018-1453-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
|
29
|
Sandholm N, Groop PH. Genetic basis of diabetic kidney disease and other diabetic complications. Curr Opin Genet Dev 2018; 50:17-24. [PMID: 29453109 DOI: 10.1016/j.gde.2018.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Diabetic kidney disease and other long-term complications are common in diabetes, and comprise the main cause of co-morbidity and premature mortality in individuals with diabetes. While familial clustering and heritability have been reported for all diabetic complications, the genetic background and the molecular mechanisms remain poorly understood. In recent years, genome-wide association studies have identified a few susceptibility loci for the renal complications as well as for diabetic retinopathy, diabetic cardiovascular disease and mortality. As for many complex diseases, the genetic factors increase the risk of complications in concert with the environment, and certain associations seem specific for particular conditions, for example, SP3-CDCA7 associated with end-stage renal disease only in women, or MGMT and variants on chromosome 5q13 associated with cardiovascular mortality only under tight glycaemic control. The characterization of the phenotypes is one of the main challenges for genetic research on diabetic complications, in addition to an urgent need to increase the number of individuals with diabetes with high quality phenotypic data to be included in future genetic studies.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland.
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Szabo M, Máté B, Csép K, Benedek T. Genetic Approaches to the Study of Gene Variants and Their Impact on the Pathophysiology of Type 2 Diabetes. Biochem Genet 2017; 56:22-55. [DOI: 10.1007/s10528-017-9827-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
|
31
|
Abstract
Purpose of review Identification of genetic variants to aid in individualized treatment of solid organ allograft recipients would improve graft survival. We will review the current state of knowledge for associations of variants with transplant outcomes. Recent findings Many studies have yet to exhibit robust and reproducible results, however, pharmacogenomic studies focusing on cytochrome P450 (CYP) enzymes, transporters and HLA variants have shown strong associations with outcomes and have relevance towards drugs used in transplant. Genome wide association study data for the immunosuppressant tacrolimus have identified multiple variants in the CYP3A5 gene associated with trough concentrations. Additionally, APOL1 variants had been shown to confer risk to the development of end stage renal disease in African Americans. Summary The field is rapidly evolving and new technology such as next generation sequencing, along with larger cohorts, will soon be commonly applied in transplantation to understand genetic association with outcomes and personalized medicine.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Diabetic complications affecting the kidneys, retina, nerves, and the cardiovasculature are the major causes of morbidity and mortality in diabetes. This paper aims to review the current understanding of the genetic basis of these complications, based on recent findings especially from genome-wide association studies. RECENT FINDINGS Variants in or near AFF3, RGMA-MCTP2, SP3-CDCA7, GLRA3, CNKSR3, and UMOD have reached genome-wide significance (p value <5 × 10-8) for association with diabetic kidney disease, and recently, GRB2 was reported to be associated at genome-wide significance with diabetic retinopathy. While some loci affecting cardiovascular disease in the general population have been replicated in diabetes, GLUL affects the risk of cardiovascular disease specifically in diabetic subjects. Genetic findings are emerging for diabetic complications, although the studies remain relatively small compared to those for type 1 and type 2 diabetes. In addition to pinpointing specific loci, the studies also reveal biological information on correlated traits and pathways.
Collapse
Affiliation(s)
- Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
CDKAL1 rs7756992 is associated with diabetic retinopathy in a Chinese population with type 2 diabetes. Sci Rep 2017; 7:8812. [PMID: 28821857 PMCID: PMC5562862 DOI: 10.1038/s41598-017-09010-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is a major microvascular complication of diabetes. Susceptibility genes for type 2 diabetes may also impact the susceptibility of DR. This case-control study investigated the effects of 88 type 2 diabetes susceptibility loci on DR in a Chinese population with type 2 diabetes performed in two stages. In stage 1, 88 SNPs were genotyped in 1,251 patients with type 2 diabetes, and we found that ADAMTS9-AS2 rs4607103, WFS1 rs10010131, CDKAL1 rs7756992, VPS26A rs1802295 and IDE-KIF11-HHEX rs1111875 were significantly associated with DR. The association between CDKAL1 rs7756992 and DR remained significant after Bonferroni correction for multiple comparisons (corrected P = 0.0492). Then, the effect of rs7756992 on DR were analysed in two independent cohorts for replication in stage 2. Cohort (1) consisted of 380 patients with DR and 613 patients with diabetes for ≥5 years but without DR. Cohort (2) consisted of 545 patients with DR and 929 patients with diabetes for ≥5 years but without DR. A meta-analysis combining the results of stage 1 and 2 revealed a significant association between rs7756992 and DR, with the minor allele A conferring a lower risk of DR (OR 0.824, 95% CI 0.743–0.914, P = 2.46 × 10−4).
Collapse
|
34
|
Ung C, Sanchez AV, Shen L, Davoudi S, Ahmadi T, Navarro-Gomez D, Chen CJ, Hancock H, Penman A, Hoadley S, Consugar M, Restrepo C, Shah VA, Arboleda-Velasquez JF, Sobrin L, Gai X, Kim LA. Whole exome sequencing identification of novel candidate genes in patients with proliferative diabetic retinopathy. Vision Res 2017; 139:168-176. [PMID: 28431867 DOI: 10.1016/j.visres.2017.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Rare or novel gene variants in patients with proliferative diabetic retinopathy may contribute to disease development. We performed whole exome sequencing (WES) on patients at the phenotypic extremes of diabetic retinal complications: 57 patients diagnosed with proliferative diabetic retinopathy (PDR) as cases and 13 patients with no diabetic retinopathy despite at least 10years of type 2 diabetes as controls. Thirty-one out of the 57 cases and all 13 controls were from the African American Proliferative Diabetic Retinopathy Study (AA). The rest of the cases were of mixed ethnicities (ME). WES identified 721 candidate genes with rare or novel non-synonymous variants found in at least one case with PDR and not present in any controls. After filtering for genes with null alleles in greater than two cases, 28 candidate genes were identified in our ME cases and 16 genes were identified in our AA cases. Our analysis showed rare and novel variants within these genes that could contribute to the development of PDR, including rare non-synonymous variants in FAM132A, SLC5A9, ZNF600, and TMEM217. We also found previously unidentified variants in VEGFB and APOB. We found that VEGFB, VPS13B, PHF21A, NAT1, ZNF600, PKHD1L1 expression was reduced in human retinal endothelial cells (HRECs) cultured under high glucose conditions. In an exome sequence analysis of patients with PDR, we identified variants in genes that could contribute to pathogenesis. Six of these genes were further validated and found to have reduced expression in HRECs under high glucose conditions, suggestive of an important role in the development of PDR.
Collapse
Affiliation(s)
- Cindy Ung
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Angie V Sanchez
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Samaneh Davoudi
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tina Ahmadi
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Daniel Navarro-Gomez
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ching J Chen
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heather Hancock
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alan Penman
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Suzanne Hoadley
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mark Consugar
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Carlos Restrepo
- Basic Science Group, School of Medicine, CES University, Medellin, Colombia
| | - Vinay A Shah
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma, OK, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Lucia Sobrin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| | - Xiaowu Gai
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Leo A Kim
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nat Rev Genet 2016; 17:615-29. [PMID: 27498692 DOI: 10.1038/nrg.2016.87] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The co-occurrence of diseases can inform the underlying network biology of shared and multifunctional genes and pathways. In addition, comorbidities help to elucidate the effects of external exposures, such as diet, lifestyle and patient care. With worldwide health transaction data now often being collected electronically, disease co-occurrences are starting to be quantitatively characterized. Linking network dynamics to the real-life, non-ideal patient in whom diseases co-occur and interact provides a valuable basis for generating hypotheses on molecular disease mechanisms, and provides knowledge that can facilitate drug repurposing and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jessica Xin Hu
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Cecilia Engel Thomas
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen DK-2200, Denmark.,Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| |
Collapse
|