1
|
Egea LG, Jiménez-Ramos R. Selective herbivory on necrotic tissue can promote tolerance to abiotic disturbances in the seagrass Cymodocea nodosa. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107064. [PMID: 40064066 DOI: 10.1016/j.marenvres.2025.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Herbivores play an important role in shaping seagrass community structure, but local stressors can change the ecological significance of herbivory by altering seagrass physiology in ways that affect herbivore preferences. However, few studies have assessed the cumulative influence of diverse local stressors on seagrass ecosystem function in relation to herbivory pressure. Here, we performed a four-month in situ experiment and laboratory feeding trials to examine the effects of two abiotic stressors (light reduction and nutrient enrichment) and simulated herbivory on the physiology of Cymodocea nodosa meadows and associated plant-mesograzer interactions, with the goal of understanding seagrass resilience to multiple disturbances. We found that light reduction primarily affected leaf morphology, resulting in lower shoot surface area, plant biomass and leaf growth rate. Simulated herbivory stimulated the production of phenolic compounds with a potential antimicrobial effect. Nutrient enrichment significantly reduced the C:N ratio and increased seagrass necrosis tissues and growth of opportunistic algae. Further, while higher macroalgal biomass was negatively correlated with C. nodosa performance, epiphyte biomass was positively correlated. Furthermore, our findings evidenced that C. nodosa leaves not only had high nutritional quality under nutrient enrichment, but also the presence of necrotic areas could be a significant driver modulating isopod consumption. We discuss the potential ecological impact of the natural mesograzer preference for necrotic tissue, which may promote the recovery of seagrass communities under local stressors.
Collapse
Affiliation(s)
- Luis G Egea
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| | - Rocío Jiménez-Ramos
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| |
Collapse
|
2
|
Pansini A, Stipcich P, Frasca S, Migliore L, Ceccherelli G. Different thermal regimes and susceptibility to herbivory do not constrain seagrass seedling restoration. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106918. [PMID: 39733557 DOI: 10.1016/j.marenvres.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Recovering seagrass ecosystems through restoration has become impellent to re-establish their functionality and services. Although the use of seedlings may represent an appropriate solution, little information is provided on the seedling-based restoration effectiveness with influence of biotic and abiotic interactions. Survival, morphological development and leaf total phenol content of transplanted Posidonia oceanica seedlings were evaluated under different origin, thermal regimes and herbivore pressure through a five-months field experiment in two MPAs, located on the west (cold) and east (warm) Sardinia coast to explore the effectiveness of seedling-based restoration. Seedlings originated from the two coasts responded differently to thermal regime site and herbivory pressure, as the warm-adapted ones survived less but developed more (and vice-versa) and resisted to the herbivory pressure increasing their phenol content, thus showing compensating responses. This study provided information on the P. oceanica seedling-based restoration by investigating abiotic and biotic interactions with the transplanted plants. It promotes the collection of beach-cast fruits from different coasts and their transplantation, regardless their origin, with no need of protecting seedlings from predators.
Collapse
Affiliation(s)
- Arianna Pansini
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy.
| | - Patrizia Stipcich
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; University of Naples Federico II, Department of Biology, Naples, Italy; National Biodiversity Future Centre, Palermo, Italy
| | | | | | - Giulia Ceccherelli
- University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy
| |
Collapse
|
3
|
Garthwin RG, Poore AGB, Ferretto G, Wright JT, Vergés A. Seagrass Tolerance to Simulated Herbivory Along a Latitudinal Gradient: Predicting the Potential Effects of Tropicalisation. Ecol Evol 2024; 14:e70561. [PMID: 39559467 PMCID: PMC11570194 DOI: 10.1002/ece3.70561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
The polewards range expansion of tropical herbivorous fish into temperate latitudes is leading to overgrazing of marine habitats and community phase shifts in some regions. Here, we test the potential effects of increased herbivory on the temperate habitat-forming seagrass Posidonia australis. We used a series of simulated herbivory experiments to predict the potential impacts of climate-mediated increases in seagrass consumption along P. australis entire latitudinal range (~9° latitude) in eastern Australia (1700 km of coastline). We subjected treatment plots to two levels of simulated herbivory (10% or 80% of leaves clipped) and compared them to unclipped controls. We measured seagrass leaf growth rates and tissue chemical traits: carbohydrates in rhizomes, leaf phenolics, and nutrients (carbon, nitrogen, and C:N ratio) in leaves and rhizomes. At the warmest range-edge population, we also tested how responses to increased herbivory may vary between summer and winter, or with repeated clipping events. Clipped shoots maintained growth rates similar to unclipped controls despite losing up to 80% of leaf biomass. This was consistent along the full latitudinal range and after repeated simulated herbivory at the northernmost location. One-off clipping events impacted plant architecture, increasing the number of subdividing shoots. At the species range edge, leaves grew more in winter than in summer, and clipping tended to lower seagrass growth only in winter; however, higher levels of shoot subdivision were produced over summer than in winter. Plant chemical traits could not explain consistently the growth patterns observed despite some traits varying with latitude (e.g., leaf nitrogen content decreased with latitude and C:N ratio increased) and/or simulated herbivory. Synthesis: P. australis growth is not affected by increases in simulated herbivory and may be relatively resilient to future increases in seagrass consumption, suggesting that this species could be a relative 'winner' under future climate change conditions that lead to enhanced herbivory.
Collapse
Affiliation(s)
- Ruby G. Garthwin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Alistair G. B. Poore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Giulia Ferretto
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- School of Biological Sciences & Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jeffrey T. Wright
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Adriana Vergés
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceMosmanNew South WalesAustralia
| |
Collapse
|
4
|
Jiménez-Ramos R, Brun FG, Vergara JJ, Hernández I, Pérez-Lloréns JL, Egea LG. Nutrient enrichment and herbivory alter carbon balance in temperate seagrass communities. MARINE POLLUTION BULLETIN 2024; 206:116784. [PMID: 39083908 DOI: 10.1016/j.marpolbul.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Large nutrient levels and herbivory stress, particularly when acting together, drive a variety of responses in seagrass communities that ultimately may weaken their carbon balance. An in situ three-months experiment was carried out in two contrasting seasons to address the effects of two levels of nutrient load and three levels of artificial clipping on Cymodocea nodosa plants. Nutrient enrichment shifted the community from autotrophic to heterotrophic and reduced DOC fluxes in winter, whereas enhanced community carbon metabolism and DOC fluxes in summer. Herbivory stress decreased the net primary production in both seasons, whereas net DOC release increased in winter but decreased in summer. A reduction of seagrass food-web structure was observed under both disturbances evidencing impacts on the seagrass ecosystems services by altering the carbon transfer process and the loss of superficial OC, which may finally weaken the blue carbon storage capacity of these communities.
Collapse
Affiliation(s)
- Rocío Jiménez-Ramos
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real, Puerto Real, Cádiz, Spain.
| | - Fernando G Brun
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real, Puerto Real, Cádiz, Spain
| | - Juan J Vergara
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real, Puerto Real, Cádiz, Spain
| | - Ignacio Hernández
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real, Puerto Real, Cádiz, Spain
| | - J Lucas Pérez-Lloréns
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real, Puerto Real, Cádiz, Spain
| | - Luis G Egea
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real, Puerto Real, Cádiz, Spain
| |
Collapse
|
5
|
Jiménez-Ramos R, Egea LG, Pérez-Estrada CJ, Balart EF, Vergara JJ, Brun FG. Patch age alters seagrass response mechanisms to herbivory damage. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106443. [PMID: 38507985 DOI: 10.1016/j.marenvres.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Natural disturbances can produce a mosaic of seagrass patches of different ages, which may affect the response to herbivory. These pressures can have consequences for plant performance. To assess how seagrass patch age affects the response to herbivory, we simulated the effect of herbivory by clipping leaves of Halodule wrightii in patches of 2, 4 and 6 years. All clipped plants showed ability to compensate herbivory by increasing leaf growth rate (on average 4.5-fold). The oldest patches showed resistance response by increasing phenolic compounds (1.2-fold). Contrastingly, the concentration of phenolics decreased in the youngest patches (0.26-fold), although they had a similar leaf carbon content to controls. These results suggest that younger plants facing herbivory pressure reallocate their phenolic compounds towards primary metabolism. Results confirm the H. wrightii tolerance to herbivory damage and provides evidence of age-dependent compensatory responses, which may have consequences for seagrass colonization and growth in perturbed habitats.
Collapse
Affiliation(s)
- Rocío Jiménez-Ramos
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain.
| | - Luis G Egea
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain
| | - Claudia J Pérez-Estrada
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain; Centro de Investigaciones Biológicas Del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Eduardo F Balart
- Centro de Investigaciones Biológicas Del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Juan J Vergara
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain
| | - Fernando G Brun
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
6
|
Campbell JE, Kennedy Rhoades O, Munson CJ, Altieri AH, Douglass JG, Heck KL, Paul VJ, Armitage AR, Barry SC, Bethel E, Christ L, Christianen MJA, Dodillet G, Dutton K, Fourqurean JW, Frazer TK, Gaffey BM, Glazner R, Goeke JA, Grana-Valdes R, Jenkins VJ, Kramer OAA, Linhardt ST, Martin CW, Martinez Lopez IG, McDonald AM, Main VA, Manuel SA, Marco-Méndez C, O'Brien DA, O'Shea OR, Patrick CJ, Peabody C, Reynolds LK, Rodriguez A, Rodriguez Bravo LM, Sang A, Sawall Y, Smith K, Smulders FOH, Sun U, Thompson JE, van Tussenbroek B, Wied WL. Herbivore effects increase with latitude across the extent of a foundational seagrass. Nat Ecol Evol 2024; 8:663-675. [PMID: 38366132 DOI: 10.1038/s41559-024-02336-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/15/2024] [Indexed: 02/18/2024]
Abstract
Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process ('tropicalization') has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse.
Collapse
Affiliation(s)
- Justin E Campbell
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA.
- Smithsonian Marine Station, Fort Pierce, FL, USA.
| | - O Kennedy Rhoades
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin J Munson
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - James G Douglass
- The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Kenneth L Heck
- Dauphin Island Sea Lab and University of South Alabama, Dauphin Island, AL, USA
| | | | - Anna R Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Savanna C Barry
- UF|IFAS Nature Coast Biological Station, University of Florida, Cedar Key, FL, USA
| | - Enrique Bethel
- Smithsonian Marine Station, Fort Pierce, FL, USA
- The Centre for Ocean Research and Education (CORE), Gregory Town, Bahamas
| | - Lindsey Christ
- International Field Studies, Inc., Forfar Field Station, Blanket Sound, Bahamas
| | - Marjolijn J A Christianen
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Grace Dodillet
- Smithsonian Marine Station, Fort Pierce, FL, USA
- CSA Ocean Sciences Inc., Stuart, FL, USA
| | | | - James W Fourqurean
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Thomas K Frazer
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Bethany M Gaffey
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Florida Cooperative Fish and Wildlife Research Unit, School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - Rachael Glazner
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Janelle A Goeke
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Rancel Grana-Valdes
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Victoria J Jenkins
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | | | - Samantha T Linhardt
- Dauphin Island Sea Lab and University of South Alabama, Dauphin Island, AL, USA
| | - Charles W Martin
- Dauphin Island Sea Lab and University of South Alabama, Dauphin Island, AL, USA
| | - Isis G Martinez Lopez
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Ashley M McDonald
- UF|IFAS Nature Coast Biological Station, University of Florida, Cedar Key, FL, USA
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | - Vivienne A Main
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Sarah A Manuel
- Department of Environment and Natural Resources, Government of Bermuda, 'Shorelands', Hamilton Parish, Bermuda
| | - Candela Marco-Méndez
- Dauphin Island Sea Lab and University of South Alabama, Dauphin Island, AL, USA
- CEAB (CSIC), Girona, Spain
| | - Duncan A O'Brien
- Smithsonian Marine Station, Fort Pierce, FL, USA
- The Centre for Ocean Research and Education (CORE), Gregory Town, Bahamas
| | - Owen R O'Shea
- The Centre for Ocean Research and Education (CORE), Gregory Town, Bahamas
| | - Christopher J Patrick
- Coastal and Ocean Processes Section, Virginia Institute of Marine Sciences, William & Mary, Gloucester Point, VA, USA
| | - Clare Peabody
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Laura K Reynolds
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | - Alex Rodriguez
- Dauphin Island Sea Lab and University of South Alabama, Dauphin Island, AL, USA
| | | | - Amanda Sang
- Smithsonian Marine Station, Fort Pierce, FL, USA
- The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Khalil Smith
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Department of Environment and Natural Resources, Government of Bermuda, 'Shorelands', Hamilton Parish, Bermuda
| | - Fee O H Smulders
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Uriah Sun
- Smithsonian Marine Station, Fort Pierce, FL, USA
| | - Jamie E Thompson
- Smithsonian Marine Station, Fort Pierce, FL, USA
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Brigitta van Tussenbroek
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - William L Wied
- Institute of Environment, Coastlines and Oceans Division, and Department of Biological Sciences, Florida International University, Miami, FL, USA
- Smithsonian Marine Station, Fort Pierce, FL, USA
| |
Collapse
|
7
|
Ravaglioli C, De Marchi L, Anselmi S, Dattolo E, Fontanini D, Pretti C, Procaccini G, Rilov G, Renzi M, Silverman J, Bulleri F. Ocean acidification impairs seagrass performance under thermal stress in shallow and deep water. ENVIRONMENTAL RESEARCH 2024; 241:117629. [PMID: 37967703 DOI: 10.1016/j.envres.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.
Collapse
Affiliation(s)
- Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Lucia De Marchi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy.
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Debora Fontanini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128, Livorno, Italy.
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Monia Renzi
- Dipartimento di Scienze Della Vita, Università di Trieste, Via Giorgieri, 10, 34127, Trieste, Italy.
| | - Jacob Silverman
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy.
| |
Collapse
|
8
|
Jiang Z, He J, Fang Y, Lin J, Liu S, Wu Y, Huang X. Effects of herbivore on seagrass, epiphyte and sediment carbon sequestration in tropical seagrass bed. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106122. [PMID: 37549560 DOI: 10.1016/j.marenvres.2023.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Herbivores strongly affect the ecological structure and functioning in seagrass bed ecosystems, but may exhibit density-dependent effects on primary producers and carbon sequestration. This study examined the effects of herbivorous snail (Cerithidea rhizophorarum) density on snail intraspecific competition and diet, dominant seagrass (Thalassia hemprichii) and epiphyte growth metrics, and sediment organic carbon (SOC). The growth rates of the herbivorous snail under low density (421 ind m-2) and mid density (842 ind m-2) were almost two times of those at extremely high density (1684 ind m-2), indicating strong intraspecific competition at high density. Herbivorous snails markedly reduced the epiphyte biomass on seagrass leaves. Additionally, the seagrass contribution to herbivorous snail as food source under high density was about 1.5 times of that under low density, while the epiphyte contribution under low density was 3 times of that under high density. A moderate density of herbivorous snails enhanced leaf length, carbon, nitrogen, total phenol and flavonoid contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. However, high density of herbivorous snails decreased leaf glucose, fructose, detritus carbon, and total phenols contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. Therefore, the effects of herbivorous snail on seagrass, epiphyte and SOC were density-dependent, and moderate density of herbivorous snail could be beneficial for seagrasses to increase productivity. This provided theoretical guidance for enhancing carbon sink in seagrass bed and its better conservation.
Collapse
Affiliation(s)
- Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Jialu He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Guangdong Center for Marine Development Research, Guangzhou, 510220, China
| | - Yang Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jizhen Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China.
| |
Collapse
|
9
|
Buñuel X, Alcoverro T, Boada J, Zinkunegi L, Smith TM, Barrera A, Casas M, Farina S, Pérez M, Romero J, Arthur R, Pagès JF. Indirect grazing‐induced mechanisms contribute to the resilience of Mediterranean seagrass meadows to sea urchin herbivory. OIKOS 2023. [DOI: 10.1111/oik.09520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Xavier Buñuel
- Dept de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Univ. de Barcelona Barcelona Spain
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
| | - Teresa Alcoverro
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
| | - Jordi Boada
- Dept de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Univ. de Barcelona Barcelona Spain
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
| | - Leire Zinkunegi
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
| | - Timothy M. Smith
- Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER), James Cook Univ. Cairns QLD Australia
| | - Anaïs Barrera
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
| | - Marc Casas
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
| | - Simone Farina
- Dept of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn–National Inst. of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre Genoa Italy
- IAS‐CNR, Inst. for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research Council Torre Grande OR Italy
| | - Marta Pérez
- Dept de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Univ. de Barcelona Barcelona Spain
| | - Javier Romero
- Dept de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Univ. de Barcelona Barcelona Spain
| | - Rohan Arthur
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
- Nature Conservation Foundation Mysore India
| | - Jordi F. Pagès
- Dept de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Univ. de Barcelona Barcelona Spain
- Centre for Advanced Studies of Blanes (CEAB‐CSIC), Blanes Girona Spain
| |
Collapse
|
10
|
Santana-Garcon J, Bennett S, Marbà N, Vergés A, Arthur R, Alcoverro T. Tropicalization shifts herbivore pressure from seagrass to rocky reef communities. Proc Biol Sci 2023; 290:20221744. [PMID: 36629100 PMCID: PMC9832549 DOI: 10.1098/rspb.2022.1744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Climate-driven species redistributions are reshuffling the composition of marine ecosystems. How these changes alter ecosystem functions, however, remains poorly understood. Here we examine how impacts of herbivory change across a gradient of tropicalization in the Mediterranean Sea, which includes a steep climatic gradient and marked changes in plant nutritional quality and fish herbivore composition. We quantified individual feeding rates and behaviour of 755 fishes of the native Sarpa salpa, and non-native Siganus rivulatus and Siganus luridus. We measured herbivore and benthic assemblage composition across 20 sites along the gradient, spanning 30° of longitude and 8° of latitude. We coupled patterns in behaviour and composition with temperature measurements and nutrient concentrations to assess changes in herbivory under tropicalization. We found a transition in ecological impacts by fish herbivory across the Mediterranean from a predominance of seagrass herbivory in the west to a dominance of macroalgal herbivory in the east. Underlying this shift were changes in both individual feeding behaviour (i.e. food choice) and fish assemblage composition. The shift in feeding selectivity was consistent among temperate and warm-affiliated herbivores. Our findings suggest herbivory can contribute to the increased vulnerability of seaweed communities and reduced vulnerability of seagrass meadows in tropicalized ecosystems.
Collapse
Affiliation(s)
- Julia Santana-Garcon
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA), CSIC-UIB, Esporles, Spain,Flourishing Oceans Initiative, The Minderoo Foundation, Perth, WA, Australia
| | - Scott Bennett
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA), CSIC-UIB, Esporles, Spain,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Núria Marbà
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (IMEDEA), CSIC-UIB, Esporles, Spain
| | - Adriana Vergés
- Evolution & Ecology Research Centre, Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rohan Arthur
- Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, Karnataka 570 002, India,Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
| | - Teresa Alcoverro
- Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, Karnataka 570 002, India,Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
| |
Collapse
|
11
|
Shaughnessy FJ, Ferson SL, Frimodig AJ, Barton DC, Hurst M, Black JM. Growth and flowering responses of eelgrass to simulated grazing and fecal addition by Brant Geese. Ecosphere 2021. [DOI: 10.1002/ecs2.3690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Frank J. Shaughnessy
- Department of Biological Sciences Humboldt State University Arcata California 95521 USA
| | - Susannah L. Ferson
- Department of Wildlife Humboldt State University Arcata California 95521 USA
| | - Adam J. Frimodig
- Department of Biological Sciences Humboldt State University Arcata California 95521 USA
| | - Daniel C. Barton
- Department of Wildlife Humboldt State University Arcata California 95521 USA
| | - Mathew Hurst
- Department of Chemistry Humboldt State University Arcata California 95521 USA
| | - Jeffrey M. Black
- Department of Wildlife Humboldt State University Arcata California 95521 USA
| |
Collapse
|
12
|
Buñuel X, Alcoverro T, Romero J, Arthur R, Ruiz JM, Pérez M, Ontoria Y, Raventós N, Macpherson E, Torrado H, Pagès JF. Warming intensifies the interaction between the temperate seagrass Posidonia oceanica and its dominant fish herbivore Sarpa salpa. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105237. [PMID: 33476979 DOI: 10.1016/j.marenvres.2020.105237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Apart from directly influencing individual life histories of species, climate change is altering key biotic interactions as well, causing community processes to unravel. With rising temperatures, disruptions to producer-consumer relationships can have major knock-on effects, particularly when the producer is a habitat-forming species. We studied how sea surface temperature (SST) modifies multiple pathways influencing the interaction between the foundational seagrass species, Posidonia oceanica, and its main consumer, the fish Sarpa salpa in the Mediterranean Sea. We used a combination of a field-based temperature gradient approaches and experimental manipulations to assess the effect of temperature on seagrass performance (growth) and fish early life history (larval development) as well as on the interaction itself (seagrass palatability and fish foraging activity). Within the range of temperatures assessed, S. salpa larvae grew slightly faster at warmer conditions but maintained their settlement size, resulting in a relatively small reduction in pelagic larval duration (PLD) and potentially reducing dispersion. Under warmer conditions (>24 °C), P. oceanica reduced its growth rate considerably and seemed to display fewer deterring mechanisms as indicated by a disproportionate consumption in choice experiments. However, our field-based observations along the temperature gradient showed no change in fish foraging time, or in other aspects of feeding behaviour. As oceans warm, our results indicate that, while S. salpa may show little change in early life history, its preference towards P. oceanica might increase, which, together with reduced seagrass growth, could considerably intensify the strength of herbivory. It is unclear if P. oceanica meadows can sustain such an intensification, but it will clearly add to the raft of pressures this threatened ecosystem already faces from global and local environmental change.
Collapse
Affiliation(s)
- Xavier Buñuel
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300, Blanes, Spain.
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300, Blanes, Spain; Nature Conservation Foundation, Amritha 1311, 12th Cross, Vijayanagara 1st Stage, Mysore, 570017, India.
| | - Javier Romero
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300, Blanes, Spain; Nature Conservation Foundation, Amritha 1311, 12th Cross, Vijayanagara 1st Stage, Mysore, 570017, India.
| | - Juan M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/ Varadero, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Marta Pérez
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Yaiza Ontoria
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Núria Raventós
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300, Blanes, Spain.
| | - Enrique Macpherson
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300, Blanes, Spain.
| | - Héctor Torrado
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300, Blanes, Spain; Departament de Genètica, Microbiologia i Estadística and IRBio, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Jordi F Pagès
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc 14, 17300, Blanes, Spain; Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| |
Collapse
|
13
|
Aponte-Díaz LA, Ruiz-Arocho J, Carrera-Martínez R, van Ee BW. Contrasting Effects of the Invasive Hypogeococcus sp. (Hemiptera: Pseudococcidae) Infestation on Seed Germination of Pilosocereus royenii (Cactaceae), a Puerto Rican Native Cactus. CARIBB J SCI 2020. [DOI: 10.18475/cjos.v50i2.a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura A. Aponte-Díaz
- Biology Department, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Jorge Ruiz-Arocho
- Biology Department, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | | | - Benjamin W. van Ee
- Biology Department, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| |
Collapse
|
14
|
Guerrero-Meseguer L, Marín A, Sanz-Lázaro C. Heat wave intensity can vary the cumulative effects of multiple environmental stressors on Posidonia oceanica seedlings. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105001. [PMID: 32662435 DOI: 10.1016/j.marenvres.2020.105001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Climate change is introducing new stressors into already stressed ecosystems. Among these, extreme events such as heat waves play a crucial role in determining the structure of ecosystems. We tested single and combined effects of overgrazing, burial and heat waves on the seedlings of the habitat-forming species Posidonia oceanica. At current heat wave temperatures, overgrazing in isolation had more deleterious effects than seed burial, and effects were synergistic and additive when both factors co-occurred. The combined effect of overgrazing and seed burial with current heat waves could hamper P. oceanica seedling development, with similar or even higher levels than the sole effect of heat waves in the near future (29 °C). The effects of overgrazing and seed burial are expected to be overridden if heat waves temperatures exceed 29 °C. These results suggest that co-occurring environmental stressors, in combination with current heat waves, could compromise the sexual recruitment of this seagrass.
Collapse
Affiliation(s)
- Laura Guerrero-Meseguer
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia. Campus de Espinardo, 30100, Murcia, Spain; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Department of Biology, Faculty of Sciences, University of Porto, Campo Alegre s/n, 4150-181, Porto, Portugal.
| | - Arnaldo Marín
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia. Campus de Espinardo, 30100, Murcia, Spain
| | - Carlos Sanz-Lázaro
- Departamento de Ecología, Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain; Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain.
| |
Collapse
|
15
|
Croy JR, Meyerson LA, Allen WJ, Bhattarai GP, Cronin JT. Lineage and latitudinal variation inPhragmites australistolerance to herbivory: implications for invasion success. OIKOS 2020. [DOI: 10.1111/oik.07260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jordan R. Croy
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA 92697 USA
| | - Laura A. Meyerson
- Dept of Natural Resource Sciences, Univ. of Rhode Island Kingston RI USA
| | - Warwick J. Allen
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- The Bio‐Protection Research Centre, School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Ganesh P. Bhattarai
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Entomology, Kansas State Univ. Manhattan KS USA
| | - James T. Cronin
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
| |
Collapse
|
16
|
Hernán G, Castejón I, Terrados J, Tomas F. Herbivory and resource availability shift plant defense and herbivore feeding choice in a seagrass system. Oecologia 2019; 189:719-732. [PMID: 30806786 DOI: 10.1007/s00442-019-04364-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022]
Abstract
Numerous hypotheses have been posited to explain the observed variation in plant defense strategies against herbivory. Under resource-rich environments, plants are predicted to increase their tolerance (limiting resource model; LRM) and, while the resource availability hypothesis (RAH) predicts a decrease in constitutive resistance in plant species growing in resource-rich environments, at the intraspecific level, plants are predicted to follow an opposite pattern (intraspecific RAH). Furthermore, the effect of multiple factors in modulating plant defense strategies has been scarcely explored and is more difficult to predict. Our aim was to understand how plant defense traits respond to herbivory, resource availability and their interactions, and to assess the effects on plant palatability. To this end, we performed an in situ factorial experiment at two sites simulating three herbivory levels and two nutrient availability conditions with the seagrass Posidonia oceanica. Additionally, we performed a series of feeding experiments with its two main herbivores. While plants decreased their constitutive resistance under nutrient fertilization (contrary to intraspecific RAH but in accordance to the RAH), and did not increase allocation to tolerance (likely due to resource limitation, LRM), simulated herbivory induced resistance traits. However, we found no interactive effects of nutrient fertilization and herbivory simulation on plant defense. Both herbivores responded similarly to changes in plant palatability, strongly preferring nutrient-enriched plants and non-clipped plants. This work highlights the need to better understand the drivers of plant defense intraspecific variability in response to resources, particularly in habitat-forming species where changes in plant traits and abundance will cascade onto associated species.
Collapse
Affiliation(s)
- Gema Hernán
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain.
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Inés Castejón
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
| | - Jorge Terrados
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
| | - Fiona Tomas
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
17
|
Pagès JF, Smith TM, Tomas F, Sanmartí N, Boada J, De Bari H, Pérez M, Romero J, Arthur R, Alcoverro T. Contrasting effects of ocean warming on different components of plant-herbivore interactions. MARINE POLLUTION BULLETIN 2018; 134:55-65. [PMID: 29074253 DOI: 10.1016/j.marpolbul.2017.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/29/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
There is increasing uncertainty of how marine ecosystems will respond to rising temperatures. While studies have focused on the impacts of warming on individual species, knowledge of how species interactions are likely to respond is scant. The strength of even simple two-species interactions is influenced by several interacting mechanisms, each potentially changing with temperature. We used controlled experiments to assess how plant-herbivore interactions respond to temperature for three structural dominant macrophytes in the Mediterranean and their principal sea urchin herbivore. Increasing temperature differentially influenced plant-specific growth, sea urchin growth and metabolism, consumption rates and herbivore preferences, but not movement behaviour. Evaluating these empirical observations against conceptual models of plant-herbivore performance, it appears likely that while the strength of herbivory may increase for the tested macroalga, for the two dominant seagrasses, the interaction strength may remain relatively unchanged or even weaken as temperatures rise. These results show a clear set of winners and losers in the warming Mediterranean as the complex factors driving species interactions change.
Collapse
Affiliation(s)
- Jordi F Pagès
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom.
| | - Timothy M Smith
- Deakin University, Centre of Integrative Ecology, School of Life and Environmental Sciences, Geelong, Australia; Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain
| | - Fiona Tomas
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Miquel Marquès 21, Esporles, Illes Balears, Spain; Department of Fisheries and Wildlife, Oregon State University, OR, United States
| | - Neus Sanmartí
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, Barcelona, Catalonia, Spain
| | - Jordi Boada
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain
| | - Harriet De Bari
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain
| | - Marta Pérez
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, Barcelona, Catalonia, Spain
| | - Javier Romero
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, Barcelona, Catalonia, Spain
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain; Oceans and Coasts Program, Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, Blanes, Catalunya, Spain; Oceans and Coasts Program, Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| |
Collapse
|
18
|
Molecular level responses to chronic versus pulse nutrient loading in the seagrass Posidonia oceanica undergoing herbivore pressure. Oecologia 2018; 188:23-39. [PMID: 29845353 DOI: 10.1007/s00442-018-4172-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Seagrasses are key marine foundation species, currently declining due to the compounded action of global and regional anthropogenic stressors. Eutrophication has been associated with seagrass decline, while grazing has been traditionally considered to be a natural disturbance with a relatively low impact on seagrasses. In the recent years, this assumption has been revisited. Here, by means of a 16-month field-experiment, we investigated the molecular mechanisms driving the long-term response of Posidonia oceanica to the combination of nutrient enrichment, either as a chronic (press) or pulse disturbance, and herbivory. Changes in expression levels of 19 target genes involved in key steps of photosynthesis, nutrient assimilation, chlorophyll metabolism, oxidative-stress response and plant defense were evaluated through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). High herbivore pressure affected the molecular response of P. oceanica more dramatically than did enhanced nutrient levels, altering the expression of genes involved in plant tolerance and resistance traits, such as photosynthesis and defense mechanisms. Genes involved in carbon fixation and N assimilation modulated the response of plants to high nutrient levels. Availability of resources seems to modify P. oceanica response to herbivory, where the upregulation of a nitrate transporter gene was accompanied by the decline in the expression of nitrate reductase in the leaves, suggesting a change in plant-nutrient allocation strategy. Finally, press and pulse fertilizations altered nitrate uptake and reduction-related genes in opposite ways, suggesting that taking into account the temporal regime of nutrient loading is important to assess the physiological response of seagrasses to eutrophication.
Collapse
|
19
|
Scott AL, York PH, Duncan C, Macreadie PI, Connolly RM, Ellis MT, Jarvis JC, Jinks KI, Marsh H, Rasheed MA. The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery. FRONTIERS IN PLANT SCIENCE 2018; 9:127. [PMID: 29487606 PMCID: PMC5816579 DOI: 10.3389/fpls.2018.00127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/23/2018] [Indexed: 05/29/2023]
Abstract
Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services - including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top-down and bottom-up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services.
Collapse
Affiliation(s)
- Abigail L. Scott
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Paul H. York
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD, Australia
| | - Clare Duncan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Peter I. Macreadie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Rod M. Connolly
- Australian Rivers Institute-Coast and Estuaries, School of Environment, Griffith University, Nathan, QLD, Australia
| | | | - Jessie C. Jarvis
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Kristin I. Jinks
- Australian Rivers Institute-Coast and Estuaries, School of Environment, Griffith University, Nathan, QLD, Australia
| | - Helene Marsh
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Michael A. Rasheed
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
20
|
Dong BC, Fu T, Luo FL, Yu FH. Herbivory-induced maternal effects on growth and defense traits in the clonal species Alternanthera philoxeroides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:114-123. [PMID: 28662425 DOI: 10.1016/j.scitotenv.2017.06.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 05/12/2023]
Abstract
Plants have evolved a variety of defense traits against foliar herbivory, including the production of primary and secondary metabolites, the allocation of chemical compounds, and morphological plasticity. Using two vegetative generations of the invasive clonal species Alternanthera philoxeroides, we investigated the effects of maternal and offspring herbivory by Planococcus minor on the integrative defense strategy of plants. Herbivory severely inhibited leaf, stolon and root growth, as well as the production of primary metabolites (soluble sugars, starch, and total non-structural carbohydrates in stolons), and decreased average leaf area and specific leaf area of the second-generation A. philoxeroides. The changes in growth measures of the first-generation A. philoxeroides with herbivory were consistent with that of the second generation. By contrast, herbivory basically did not affect the concentration of non-structural carbohydrate compounds in the roots, and even increased the concentrations of N and total phenols in taproots. Furthermore, herbivory-induced maternal effects also reduced the growth of the second-generation plants. The results suggest that A. philoxeroides is capable of adapting to herbivory by P. minor, mainly via the allocation of available resources in belowground organs, and that the herbivory effect can persist across vegetative generations. These features may potentially improve the regeneration and tolerance of A. philoxeroides after a short-term herbivory.
Collapse
Affiliation(s)
- Bi-Cheng Dong
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ting Fu
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Fang-Li Luo
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Fei-Hai Yu
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
21
|
Global and local disturbances interact to modify seagrass palatability. PLoS One 2017; 12:e0183256. [PMID: 28813506 PMCID: PMC5558941 DOI: 10.1371/journal.pone.0183256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 11/19/2022] Open
Abstract
Global change, such as warming and ocean acidification, and local anthropogenic disturbances, such as eutrophication, can have profound impacts on marine organisms. However, we are far from being able to predict the outcome of multiple interacting disturbances on seagrass communities. Herbivores are key in determining plant community structure and the transfer of energy up the food web. Global and local disturbances may alter the ecological role of herbivory by modifying leaf palatability (i.e. leaf traits) and consequently, the feeding patterns of herbivores. This study evaluates the main and interactive effects of factors related to global change (i.e. elevated temperature, lower pH levels and associated ocean acidification) and local disturbance (i.e. eutrophication through ammonium enrichment) on a broad spectrum of leaf traits using the temperate seagrass Cymodocea nodosa, including structural, nutritional, biomechanical and chemical traits. The effect of these traits on the consumption rates of the generalist herbivore Paracentrotus lividus (purple sea urchin) is evaluated. The three disturbances of warming, low pH level and eutrophication, alone and in combination, increased the consumption rate of seagrass by modifying all leaf traits. Leaf nutritional quality, measured as nitrogen content, was positively correlated to consumption rate. In contrast, a negative correlation was found between feeding decisions by sea urchins and structural, biomechanical and chemical leaf traits. In addition, a notable accomplishment of this work is the identification of phenolic compounds not previously reported for C. nodosa. Our results suggest that global and local disturbances may trigger a major shift in the herbivory of seagrass communities, with important implications for the resilience of seagrass ecosystems.
Collapse
|
22
|
Deyanova D, Gullström M, Lyimo LD, Dahl M, Hamisi MI, Mtolera MSP, Björk M. Contribution of seagrass plants to CO2 capture in a tropical seagrass meadow under experimental disturbance. PLoS One 2017; 12:e0181386. [PMID: 28704565 PMCID: PMC5509355 DOI: 10.1371/journal.pone.0181386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
Coastal vegetative habitats are known to be highly productive environments with a high ability to capture and store carbon. During disturbance this important function could be compromised as plant photosynthetic capacity, biomass, and/or growth are reduced. To evaluate effects of disturbance on CO2 capture in plants we performed a five-month manipulative experiment in a tropical seagrass (Thalassia hemprichii) meadow exposed to two intensity levels of shading and simulated grazing. We assessed CO2 capture potential (as net CO2 fixation) using areal productivity calculated from continuous measurements of diel photosynthetic rates, and estimates of plant morphology, biomass and productivity/respiration (P/R) ratios (from the literature). To better understand the plant capacity to coping with level of disturbance we also measured plant growth and resource allocation. We observed substantial reductions in seagrass areal productivity, biomass, and leaf area that together resulted in a negative daily carbon balance in the two shading treatments as well as in the high-intensity simulated grazing treatment. Additionally, based on the concentrations of soluble carbohydrates and starch in the rhizomes, we found that the main reserve sources for plant growth were reduced in all treatments except for the low-intensity simulated grazing treatment. If permanent, these combined adverse effects will reduce the plants' resilience and capacity to recover after disturbance. This might in turn have long-lasting and devastating effects on important ecosystem functions, including the carbon sequestration capacity of the seagrass system.
Collapse
Affiliation(s)
- Diana Deyanova
- Seagrass Ecology & Physiology Research Group, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Martin Gullström
- Seagrass Ecology & Physiology Research Group, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Martin Dahl
- Seagrass Ecology & Physiology Research Group, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Mariam I. Hamisi
- College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| | | | - Mats Björk
- Seagrass Ecology & Physiology Research Group, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Trevathan-Tackett SM, Macreadie PI, Sanderman J, Baldock J, Howes JM, Ralph PJ. A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration. FRONTIERS IN PLANT SCIENCE 2017; 8:925. [PMID: 28659936 PMCID: PMC5468386 DOI: 10.3389/fpls.2017.00925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/17/2017] [Indexed: 05/24/2023]
Abstract
Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA) and solid state 13C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16% of total organic matter compared to 8-10% in other tissues); however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues' contributions to long-term carbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies.
Collapse
Affiliation(s)
| | - Peter I. Macreadie
- Climate Change Cluster, University of Technology SydneyUltimo, NSW, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Jonathan Sanderman
- Commonwealth Scientific and Industrial Research Organisation Agriculture FlagshipGlen Osmond, SA, Australia
- Woods Hole Research CenterFalmouth, MA, United States
| | - Jeff Baldock
- Commonwealth Scientific and Industrial Research Organisation Agriculture FlagshipGlen Osmond, SA, Australia
| | - Johanna M. Howes
- Climate Change Cluster, University of Technology SydneyUltimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology SydneyUltimo, NSW, Australia
| |
Collapse
|
24
|
Bakker ES, Wood KA, Pagès JF, Veen G(C, Christianen MJ, Santamaría L, Nolet BA, Hilt S. Herbivory on freshwater and marine macrophytes: A review and perspective. AQUATIC BOTANY 2016. [PMID: 0 DOI: 10.1016/j.aquabot.2016.04.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
25
|
Ainley LB, Vergés A, Bishop MJ. Congruence of intraspecific variability in leaf traits for two co-occurring estuarine angiosperms. Oecologia 2016; 181:1041-53. [PMID: 27098661 DOI: 10.1007/s00442-016-3634-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
Abstract
Studies seeking to identify sources of variability and trade-offs in leaf traits have done so by assembling large databases of traits, across species and time points. It is unclear to what extent interspecific patterns derived in such a manner apply to intraspecific variation, particularly at regional scales, and the extent to which interspecific patterns vary temporally. We tested the hypothesis that the leaf traits of two foundation species, the mangrove Avicennia marina and the eelgrass Zostera muelleri, would display similar patterns of intraspecific variability across gradients of latitude and estuarine condition, that match previously reported interspecific patterns, and that persist through time. We found intraspecific patterns of decreasing carbon to nitrogen ratio and mechanical elasticity, and increasing nitrogen content with latitude that were consistent between the two plant species, and with previously reported interspecific patterns for other groups of species. Specific leaf area, leaf toughness and total phenolics, by contrast, displayed species-specific patterns that varied markedly through time. Relationships between estuarine condition and leaf traits were highly variable temporally, and also displayed markedly different patterns of intraspecific variability between the two species. Our study highlights the considerable within-species variation in leaf traits that should be accounted for in regional to biome scale analyses. Although some intraspecific patterns mirrored those found across species, at global scales, the considerable variability in other leaf traits between species and through time highlights the need to better understand the drivers and constraints of this intraspecific variation.
Collapse
Affiliation(s)
- Lara B Ainley
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Adriana Vergés
- Department of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Melanie J Bishop
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
26
|
Zidorn C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. PHYTOCHEMISTRY 2016; 124:5-28. [PMID: 26880288 DOI: 10.1016/j.phytochem.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/30/2015] [Accepted: 02/07/2016] [Indexed: 05/06/2023]
Abstract
Seagrasses are the only higher plants living in fully marine environments; they play a significant role in coastal ecosystems. Seagrasses inhabit the coastal shelves of all continents except Antarctica and can grow in depths of up to 90 m. Because of their eminent ecological importance, innumerous studies have been dedicated to seagrasses and their ecology. However, the phytochemistry has not been equally well investigated yet and many of the existing studies in chemical ecology are only investigating the chemistry at the level of compound classes, e.g. phenolics, and not at the level of chemically defined metabolites. In the present review, the existing literature on secondary metabolites of seagrasses, their known source seagrasses, their bioactivity, and ecological function are compiled and critically assessed. Moreover, research gaps are highlighted and avenues for future research are discussed. Currently, a total of 154 chemically defined natural products have been reported from the about 70 seagrass species known worldwide. Compounds reported include simple phenols derivatives (four compounds), phenylmethane derivatives (14 compounds), phenylethane derivatives (four compounds), phenylpropane derivatives including their esters and dimers (20 compounds), chalkones (four compounds), flavonoids including catechins (57 compounds), phenylheptanoids (four compounds), one monoterpene derivative, one sesquiterpene, diterpenoids (13 compounds), steroids (31 compounds), and one alkaloid. Most of the existing bioactivity studies of seagrass metabolites and extracts have been directed to potential cytotoxic, antimicrobial, or antimacrofouling activity. Antimicrobial studies have been performed towards panels of both human pathogens and ecologically relevant pathogens. In the antimacrofouling studies, investigations of the potential of zosteric acid from the genus Zostera are the most numerous and have yielded so far the most interesting results. Studies on the chemical ecology of seagrasses often have been focused on variation in phenolic compounds and include but are not limited to studies on variation due to abiotic factors, seasonal variation, variation in response to grazing by fish or sea urchins, or following microbial attack.
Collapse
Affiliation(s)
- Christian Zidorn
- Institute of Pharmacy, Department of Pharmacognosy, University of Innsbruck, CCB, Innrain 80-82, Innsbruck, Austria.
| |
Collapse
|
27
|
Tomas F, Martínez-Crego B, Hernán G, Santos R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. GLOBAL CHANGE BIOLOGY 2015; 21:4021-4030. [PMID: 26152761 DOI: 10.1111/gcb.13024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Coastal communities are under threat from many and often co-occurring local (e.g., pollution, eutrophication) and global stressors (e.g., climate change), yet understanding the interactive and cumulative impacts of multiple stressors in ecosystem function is far from being accomplished. Ecological redundancy may be key for ecosystem resilience, but there are still many gaps in our understanding of interspecific differences within a functional group, particularly regarding response diversity, that is, whether members of a functional group respond equally or differently to anthropogenic stressors. Herbivores are critical in determining plant community structure and the transfer of energy up the food web. Human disturbances may alter the ecological role of herbivory by modifying the defense strategies of plants and thus the feeding patterns and performance of herbivores. We conducted a suite of experiments to examine the independent and interactive effects of anthropogenic (nutrient and CO2 additions) and natural (simulated herbivory) disturbances on a seagrass and its interaction with two common generalist consumers to understand how multiple disturbances can impact both a foundation species and a key ecological function (herbivory) and to assess the potential existence of response diversity to anthropogenic and natural changes in these systems. While all three disturbances modified seagrass defense traits, there were contrasting responses of herbivores to such plant changes. Both CO2 and nutrient additions influenced herbivore feeding behavior, yet while sea urchins preferred nutrient-enriched seagrass tissue (regardless of other experimental treatments), isopods were deterred by these same plant tissues. In contrast, carbon enrichment deterred sea urchins and attracted isopods, while simulated herbivory only influenced isopod feeding choice. These contrasting responses of herbivores to disturbance-induced changes in seagrass help to better understand the ecological functioning of seagrass ecosystems in the face of human disturbances and may have important implications regarding the resilience and conservation of these threatened ecosystems.
Collapse
Affiliation(s)
- Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), C/ Miquel Marquès, 21 07190, Esporles Illes Balears, Spain
- Centre d'Estudis Avançats de Blanes Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Girona, Spain
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, 2820 SW Campus Way, Corvallis, OR, 97331, USA
| | - Begoña Martínez-Crego
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| | - Gema Hernán
- Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), C/ Miquel Marquès, 21 07190, Esporles Illes Balears, Spain
- Centre d'Estudis Avançats de Blanes Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Girona, Spain
| | - Rui Santos
- Centre of Marine Sciences (CCMAR), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
28
|
Martínez-Crego B, Arteaga P, Ueber A, Engelen AH, Santos R, Molis M. Specificity in Mesograzer-Induced Defences in Seagrasses. PLoS One 2015; 10:e0141219. [PMID: 26506103 PMCID: PMC4624237 DOI: 10.1371/journal.pone.0141219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022] Open
Abstract
Grazing-induced plant defences that reduce palatability to herbivores are widespread in terrestrial plants and seaweeds, but they have not yet been reported in seagrasses. We investigated the ability of two seagrass species to induce defences in response to direct grazing by three associated mesograzers. Specifically, we conducted feeding-assayed induction experiments to examine how mesograzer-specific grazing impact affects seagrass induction of defences within the context of the optimal defence theory. We found that the amphipod Gammarus insensibilis and the isopod Idotea chelipes exerted a low-intensity grazing on older blades of the seagrass Cymodocea nodosa, which reflects a weak grazing impact that may explain the lack of inducible defences. The isopod Synischia hectica exerted the strongest grazing impact on C. nodosa via high-intensity feeding on young blades with a higher fitness value. This isopod grazing induced defences in C. nodosa as indicated by a consistently lower consumption of blades previously grazed for 5, 12 and 16 days. The lower consumption was maintained when offered tissues with no plant structure (agar-reconstituted food), but showing a reduced size of the previous grazing effect. This indicates that structural traits act in combination with chemical traits to reduce seagrass palatability to the isopod. Increase in total phenolics but not in C:N ratio and total nitrogen of grazed C. nodosa suggests chemical defences rather than a modified nutritional quality as primarily induced chemical traits. We detected no induction of defences in Zostera noltei, which showed the ability to replace moderate losses of young biomass to mesograzers via compensatory growth. Our study provides the first experimental evidence of induction of defences against meso-herbivory that reduce further consumption in seagrasses. It also emphasizes the relevance of grazer identity in determining the level of grazing impact triggering resistance and compensatory responses of different seagrass species.
Collapse
Affiliation(s)
| | | | | | | | - Rui Santos
- Centre of Marine Sciences (CCMAR), Faro, Portugal
| | - Markus Molis
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Section Functional Ecology, Bremerhaven, Germany
| |
Collapse
|
29
|
Rothhaupt KO, Fornoff F, Yohannes E. Induced responses to grazing by an insect herbivore (Acentria ephemerella) in an immature macrophyte (Myriophyllum spicatum): an isotopic study. Ecol Evol 2015; 5:3657-65. [PMID: 26380694 PMCID: PMC4567869 DOI: 10.1002/ece3.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/27/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023] Open
Abstract
While the mechanisms by which adult terrestrial plants deploy constitutive and induced responses to grazing pressure are well known, the means by which young aquatic plants defend themselves from herbivory are little studied. This study addresses nitrogen transport in the aquatic angiosperm Myriophyllum spicatum in response to herbivore exposure. Nitrogen tracers were used to monitor nitrogen uptake and reallocation in young plants in response to grazing by the generalist insect herbivore Acentria ephemerella. Total nitrogen content (N%) and patterns of nitrogen uptake and allocation (δ15N) were assessed in various plant tissues after 24 and 48 h. Following 24 h exposure to herbivore damage (Experiment 1), nitrogen content of plant apices was significantly elevated. This rapid early reaction may be an adaptation allowing the grazer to be sated as fast as possible, or indicate the accumulation of nitrogenous defense chemicals. After 48 h (Experiment 2), plants' tips showed depletion in nitrogen levels of ca. 60‰ in stem sections vulnerable to grazing. In addition, nitrogen uptake by grazed and grazing-prone upper plant parts was reduced and nutrient allocation into the relatively secure lower parts increased. The results point to three conclusions: (1) exposure to an insect herbivore induces a similar response in immature M. spicatum as previously observed in mature terrestrial species, namely a rapid (within 48 h) reduction in the nutritional value (N%) of vulnerable tissues, (2) high grazing intensity (100% of growing tips affected) did not limit the ability of young plants to induce resistance; and (3) young plants exposed to herbivory exhibit different patterns of nutrient allocation in vulnerable and secure tissues. These results provide evidence of induced defense and resource reallocation in immature aquatic macrophytes which is in line with the responses shown for mature aquatic macrophytes and terrestrial plants.
Collapse
Affiliation(s)
- Karl-Otto Rothhaupt
- Limnological Institute, University of Konstanz Mainaustrasse 252, D-78464, Konstanz, Germany
| | - Felix Fornoff
- Limnological Institute, University of Konstanz Mainaustrasse 252, D-78464, Konstanz, Germany
| | - Elizabeth Yohannes
- Limnological Institute, University of Konstanz Mainaustrasse 252, D-78464, Konstanz, Germany
| |
Collapse
|
30
|
Bulleri F, Malquori F. High tolerance to simulated herbivory in the clonal seaweed, Caulerpa cylindracea. MARINE ENVIRONMENTAL RESEARCH 2015; 107:61-65. [PMID: 25889899 DOI: 10.1016/j.marenvres.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Tolerance can enable introduced plants to establish in the face of intense consumption by native herbivores. The siphonacous seaweed, Caulerpa cylindracea, despite being heavily grazed by native herbivores, is one of the most successful invaders in the Mediterranean. By means of a field experiment simulating herbivore grazing, we tested whether regeneration from damaged creeping stolons may allow C. cylindracea to compensate or overcompensate for biomass loss. In order to simulate different grazing intensities, the cover of C. cylindracea was either left untouched or clipped to 25%, 50% or 75% of the original value. After 2 months, C. cylindracea cover increased by ∼ 450% in 75% removal plots, ∼ 200% in 50% removals and ∼ 70% in 25% removals, whilst the increment in controls was just ∼ 6%. Such differential growth rates resulted in no difference in the cover of C. cylindracea between clipped (irrespective of clipping intensity) and control plots. Thus, regeneration from remnant clipped stolons could compensate for biomass loss, suggesting that non-native siphonaceous seaweeds can withstand intense mechanical damage and, possibly, grazing by herbivores. This compensatory mechanism may underpin the success of some of the most invasive clonal plants.
Collapse
Affiliation(s)
- Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, Via Derna 1, 56126 Pisa, Italy.
| | - Francesco Malquori
- Dipartimento di Biologia, Università di Pisa, Via Derna 1, 56126 Pisa, Italy
| |
Collapse
|
31
|
Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Biol Sci 2015; 281:20140846. [PMID: 25009065 DOI: 10.1098/rspb.2014.0846] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.
Collapse
Affiliation(s)
- Adriana Vergés
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Peter D Steinberg
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia Advanced Environmental Biotechnology Centre, Nanyang Technical University, Singapore 637551, Republic of Singapore
| | - Mark E Hay
- School of Biology and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alistair G B Poore
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Alexandra H Campbell
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Enric Ballesteros
- Centre d'Estudis Avançats de Blanes-CSIC, Blanes, Girona 17300, Spain
| | - Kenneth L Heck
- Dauphin Island Sea Laboratory and University of South Alabama, Mobile, AL 36688-0002, USA
| | - David J Booth
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of the Environment, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Melinda A Coleman
- Department of Primary Industries, NSW Fisheries, PO Box 4321, Coffs Harbour, New South Wales 2450, Australia
| | - David A Feary
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of the Environment, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Will Figueira
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tim Langlois
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Toni Mizerek
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohei Nakamura
- Graduate School of Kuroshio Science, Kochi University, Kochi 783-8502, Japan
| | - Moninya Roughan
- School of Mathematics, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Erik van Sebille
- Climate Change Research Centre and ARC Centre of Excellence for Climate, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alex Sen Gupta
- Climate Change Research Centre and ARC Centre of Excellence for Climate, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dan A Smale
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Esporles, Illes Balears 07190, Spain Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331-3803, USA
| | - Thomas Wernberg
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Shaun K Wilson
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Department of Parks and Wildlife, Kensington, Western Australia 6151, Australia
| |
Collapse
|
32
|
Grazer Functional Roles, Induced Defenses, and Indirect Interactions: Implications for Eelgrass Restoration in San Francisco Bay. DIVERSITY 2014. [DOI: 10.3390/d6040751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Garthwin RG, Poore AGB, Vergés A. Seagrass tolerance to herbivory under increased ocean temperatures. MARINE POLLUTION BULLETIN 2014; 83:475-482. [PMID: 23993389 DOI: 10.1016/j.marpolbul.2013.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2-3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change.
Collapse
Affiliation(s)
- Ruby G Garthwin
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alistair G B Poore
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Institute of Marine Sciences, Chowder Bay, NSW 2088, Australia
| | - Adriana Vergés
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Institute of Marine Sciences, Chowder Bay, NSW 2088, Australia.
| |
Collapse
|
34
|
Pagès JF, Gera A, Romero J, Alcoverro T. Matrix composition and patch edges influence plant-herbivore interactions in marine landscapes. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordi F. Pagès
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Accés a la cala Sant Francesc; 14. 17300 Blanes Catalonia Spain
| | - Alessandro Gera
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Accés a la cala Sant Francesc; 14. 17300 Blanes Catalonia Spain
| | - Javier Romero
- Departament d'Ecologia; Facultat de Biologia; Universitat de Barcelona. Av. Diagonal; 643. 08028 Barcelona Catalonia Spain
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Accés a la cala Sant Francesc; 14. 17300 Blanes Catalonia Spain
- Nature Conservation Foundation; 3076/5, 4th Cross, Gokulam Park 570 002 Mysore Karnataka India
| |
Collapse
|
35
|
Poore AGB, Gutow L, Pantoja JF, Tala F, Jofré Madariaga D, Thiel M. Major consequences of minor damage: impacts of small grazers on fast-growing kelps. Oecologia 2014; 174:789-801. [PMID: 24100758 DOI: 10.1007/s00442-013-2795-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022]
Abstract
Damage by small herbivores can have disproportionately large effects on the fitness of individual plants if damage is concentrated on valuable tissues or on select individuals within a population. In marine systems, the impact of tissue loss on the growth rates of habitat-forming algae is poorly understood. We quantified the grazing damage by an isopod Amphoroidea typa on two species of large kelps, Lessonia spicata and Macrocystis pyrifera, in temperate Chile to test whether non-lethal grazing damage could reduce kelp growth rates and photosynthetic efficiency. For L. spicata, grazing damage was widespread in the field, unevenly distributed on several spatial scales (among individuals and among tissue types) and negatively correlated with blade growth rates. In field experiments, feeding by A. typa reduced the concentration of photosynthetic pigments and led to large reductions (~80%) in blade growth rates despite limited loss of kelp biomass (0.5% per day). For M. pyrifera, rates of damage in the field were lower and high densities of grazers were unable to reduce growth rates in field experiments. These results demonstrate that even low per capita grazing rates can result in large reductions in the growth of a kelp, due the spatial clustering of herbivores in the field and the selective removal of photosynthetically active tissues. The impacts of small herbivores on plant performance are thus not easily predicted from consumption rates or abundance in the field, and vary with plant species due to variation in their ability to compensate for damage.
Collapse
Affiliation(s)
- Alistair G B Poore
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, NSW, Australia,
| | | | | | | | | | | |
Collapse
|
36
|
Di Maida G, Tomasello A, Sciandra M, Pirrotta M, Milazzo M, Calvo S. Effect of different substrata on rhizome growth, leaf biometry and shoot density of Posidonia oceanica. MARINE ENVIRONMENTAL RESEARCH 2013; 87-88:96-102. [PMID: 23643476 DOI: 10.1016/j.marenvres.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
The effects of different substratum typologies on Posidonia oceanica growth and morphology were estimated in four Sicilian meadows using Generalized and Linear Mixed Models combined with retrodating and biometric analyses. Substratum exerted a multiple effect, resulting in different biometric features for P. oceanica shoots settled on rock from those growing on sand and matte. On rock, values for growth rate, leaf length and shoot surface were lower than those on other substrata, with 42%, 23% and 32% the highest degree of difference respectively. The present study may have interesting methodological consequences for the comprehensive understanding of the causative variables potentially affecting meadows features and their health status. The importance of substratum in the prediction of likely biometry changes in P. oceanica meadows, means that knowledge of substratum type should receive due attention in the future to derive reliable estimates of meadow status.
Collapse
Affiliation(s)
- G Di Maida
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Chemical Ecology of Marine Angiosperms: Opportunities at the Interface of Marine and Terrestrial Systems. J Chem Ecol 2013; 39:687-711. [DOI: 10.1007/s10886-013-0297-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
38
|
Reudler JH, Honders SC, Turin H, Biere A. Trade-offs between chemical defence and regrowth capacity in Plantago lanceolata. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9609-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Pagès JF, Farina S, Gera A, Arthur R, Romero J, Alcoverro T. Indirect interactions in seagrasses: fish herbivores increase predation risk to sea urchins by modifying plant traits. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02038.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordi F. Pagès
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Accés a la cala Sant Francesc, 14; 17300; Blanes; Catalonia; Spain
| | - Simone Farina
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Accés a la cala Sant Francesc, 14; 17300; Blanes; Catalonia; Spain
| | - Alessandro Gera
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Accés a la cala Sant Francesc, 14; 17300; Blanes; Catalonia; Spain
| | - Rohan Arthur
- Nature Conservation Foundation; 3076/5, 4th Cross, Gokulam Park; 570 002; Mysore; Karnataka; India
| | - Javier Romero
- Departament d'Ecologia; Facultat de Biologia; Universitat de Barcelona; Av. Diagonal, 645; 08028; Barcelona; Catalonia; Spain
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Accés a la cala Sant Francesc, 14; 17300; Blanes; Catalonia; Spain
| |
Collapse
|
40
|
Arnold T, Mealey C, Leahey H, Miller AW, Hall-Spencer JM, Milazzo M, Maers K. Ocean acidification and the loss of phenolic substances in marine plants. PLoS One 2012; 7:e35107. [PMID: 22558120 PMCID: PMC3338829 DOI: 10.1371/journal.pone.0035107] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/13/2012] [Indexed: 11/19/2022] Open
Abstract
Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO(2) vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO(2) concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO(2) vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO(2) world.
Collapse
Affiliation(s)
- Thomas Arnold
- Department of Biological Sciences, Dickinson College, Carlisle, Pennsylvania, United States of America
- Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Christopher Mealey
- Department of Biological Sciences, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Hannah Leahey
- Department of Biological Sciences, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - A. Whitman Miller
- Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Jason M. Hall-Spencer
- School of Marine Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Marco Milazzo
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Kelly Maers
- Department of Biological Sciences, Dickinson College, Carlisle, Pennsylvania, United States of America
| |
Collapse
|
41
|
Drouin A, McKindsey CW, Johnson LE. Detecting the impacts of notorious invaders: experiments versus observations in the invasion of eelgrass meadows by the green seaweed Codium fragile. Oecologia 2011; 168:491-502. [PMID: 21809119 DOI: 10.1007/s00442-011-2086-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 07/12/2011] [Indexed: 11/28/2022]
Abstract
Biological invasions can vary in the extent of their effects on indigenous communities but predicting impacts for particular systems remains difficult. In coastal marine ecosystems, the green seaweed Codium fragile ssp. fragile is a notorious invader with its reputation based on studies conducted largely on rocky shores. The green seaweed has recently invaded soft-bottom eelgrass communities by attaching epiphytically to eelgrass (Zostera marina) rhizomes, thereby creating the potential for disruption of these coastal habitats through competition or disturbance. We investigated the effect of this invader on various aspects of eelgrass performance (shoot density and length, shoot growth, above- and below-ground biomass, carbohydrate storage) using both small-scale manipulative and large-scale observational experiments. Manipulative experiments that varied Codium abundance demonstrated clear negative effects over a 4-month period on shoot density and carbohydrate reserves, but only for high, but realistic, Codium biomass levels. Light levels were much lower under canopies for high and medium density Codium treatments relative to low and control Codium cover treatments, suggesting that shading may influence eelgrass growing under the algal cover. In contrast, these effects were either not detectable or very weak when examined correlatively with field surveys conducted at larger spatial scales, even for sites that had been invaded for over 4 years. It is premature to extend generalizations of Codium's impact derived from studies in other systems to eelgrass communities; further efforts are required to assess the long-term threats that the alga poses to this ecosystem. This study demonstrates the need to investigate impacts of invasions over multiple scales, especially those that incorporate the temporal and spatial heterogeneity of the invader's abundance.
Collapse
Affiliation(s)
- Annick Drouin
- Ocean and Environmental Sciences Division, Maurice-Lamontagne Institute, Fisheries and Oceans Canada, PO Box 1000, Mont Joli, QC, G5H 3Z4, Canada.
| | | | | |
Collapse
|
42
|
Vergés A, Vanderklift MA, Doropoulos C, Hyndes GA. Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. PLoS One 2011; 6:e17115. [PMID: 21347254 PMCID: PMC3037963 DOI: 10.1371/journal.pone.0017115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/20/2011] [Indexed: 11/18/2022] Open
Abstract
Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems.
Collapse
Affiliation(s)
- Adriana Vergés
- Sydney Institute of Marine Science and Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
43
|
Vergés A, Alcoverro T, Romero J. Plant defences and the role of epibiosis in mediating within-plant feeding choices of seagrass consumers. Oecologia 2010; 166:381-90. [DOI: 10.1007/s00442-010-1830-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
|