1
|
Hayashi S, Suzuki H, Takada S, Takemoto T. Wnt3a is an early regulator of the Wolffian duct directionality via the regulation of apicobasal cell polarity. Dev Biol 2025; 522:136-142. [PMID: 40154784 DOI: 10.1016/j.ydbio.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The Wolffian duct is a pair of epithelial ductal structures along the body axis that induces nephron development by interaction with the metanephric mesenchyme. The interaction between the mesenchyme and the ureteric bud derived from the Wolffian duct is mediated by Wnt ligands, the loss of which results in kidney agenesis. Nonetheless, the early contribution of Wnt signaling to Wolffian duct formation remains unclear. We therefore examined these dynamics in knockout and transgenic mouse embryos. The Wnt signal reporter was active in the extending Wolffian duct, and Wnt3a-knockout embryos exhibited a fragmented and misdirectional Wolffian duct. Apicobasal polarity was disrupted under Wnt3a-deficiency. These findings suggest that Wnt3a plays an important role in Wolffian duct development by regulating apicobasal polarity.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan; Faculty of Medicine, Department of Anatomy, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Hitomi Suzuki
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Shinji Takada
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Tatsuya Takemoto
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
2
|
Yu C, Zheng B, Zhang L, Zhang A, Jia Z, Ding G. Wnt/β-Catenin Signaling and Congenital Abnormalities of Kidney and Urinary Tract. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:588-599. [PMID: 39664338 PMCID: PMC11631108 DOI: 10.1159/000541684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Background Precise regulation of cell-cell communication is vital for cell survival and normal function during embryogenesis. The Wnt protein family, a highly conserved and extensively studied group, plays a crucial role in key cell-cell signaling events essential for development and regeneration. Congenital anomalies of the kidney and urinary tract (CAKUT) represent a leading cause of chronic kidney disease in children and young adults, and include a variety of birth abnormalities resulting from disrupted genitourinary tract development during embryonic development. The incidence and progression of CAKUT may be related to the Wnt signal transduction mechanism. Summary This review provides a comprehensive overview of the classical Wnt signaling pathway's role in CAKUT, explores related molecular mechanisms and provides new targets and intervention methods for the future treatment of the disease. Key Messages The Wnt signal is intricately engaged in a variety of differentiation processes throughout kidney development.
Collapse
Affiliation(s)
- Cuicui Yu
- Beijing Jishuitan Hospital, Captial Medical University, Beijing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Luyan Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Habib R, Farhat R, Wahid M, Ainuddin J. Enhanced reno-protective effects of CHIR99021 modified mesenchymal stem cells against rat acute kidney injury model. BIOIMPACTS : BI 2024; 15:30600. [PMID: 40256225 PMCID: PMC12008493 DOI: 10.34172/bi.30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 04/22/2025]
Abstract
Introduction Mesenchymal stem cells of human umbilical cord origin (hucMSCs) appear to be an attractive candidate for cell-based therapies. However, their efficacy requires improvement as poor survival and specific homing to the site of injury are the major barriers to their effective implementation in cell therapy. As Wnt signaling pathway is involved in the development and repair of organs, we adopted a preconditioning strategy of stem cells by using CHIR99021 compound (a Wnt pathway agonist) to potentiate hucMSCs beneficial effects and circumvent their therapeutic limitations. Methods We treated hucMSCs with 5 µM of CHIR99021 and evaluated the expression levels of genes involved in different biological processes through qRT-PCR. Subsequently, we examined the effectiveness of preconditioned cells (CHIR99021-hucMSCs) in a cisplatin-induced rat acute kidney injury model. Amelioration in tissue injury was evaluated by histopathology, immunohistochemistry and renal functional assessment. Results In treated groups, we observed preserved renal tissue architecture in terms of lesser epithelial cells necrosis (P ≤ 0.001) and cast formation ( ≤ 0.05). Accelerated proliferation of injured tubular cells (P ≤ 0.001) and low serum creatinine values (P ≤ 0.01) were observed in preconditioned hucMSCs group compared to untreated AKI rats. In addition, administration of preconditioned hucMSCs in kidney injury model offered better restoration of tubular cell membrane β-catenin molecules. Our findings showed that CHIR99021-modified hucMSCs may exhibit better capacity for cell migration and proliferation. Conclusion The results showed that preconditioning of stem cells with Wnt pathway activators could provide advanced benefits for organ repair, which may contribute to design a more effective therapeutic approach for renal regeneration.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha Campus), Karachi, Pakistan
| | - Rabia Farhat
- School of Postgraduate Studies, Dow University of Health Sciences (Ojha Campus), Karachi, Pakistan
| | - Mohsin Wahid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences (Ojha Campus), Karachi, Pakistan
| | - Jahanara Ainuddin
- Department of Gynecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| |
Collapse
|
4
|
Yano-Sakamoto K, Kitai Y, Toriu N, Yamamoto S, Mizuta K, Saitou M, Tsukiyama T, Taniuchi I, Osato M, Yanagita M. Expression pattern of Runt-related transcription factor (RUNX) family members and the role of RUNX1 during kidney development. Biochem Biophys Res Commun 2024; 722:150155. [PMID: 38795454 DOI: 10.1016/j.bbrc.2024.150155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.
Collapse
Affiliation(s)
- Keiko Yano-Sakamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Yuichiro Kitai
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
| | - Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8397, Japan.
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan.
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| | - Motomi Osato
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Valentina Villani
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
| | - Paola Aguiari
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- David Geffen School of Medicine at UCLA – VA Healthcare SystemLos AngelesCA90095USA
| | - Matthew E. Thornton
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Yizhou Wang
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Alex Rajewski
- Genomics CoreDepartment of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory MedicineChildren's Hospital Los AngelesLos AngelesCA90027USA
| | - Paolo Cravedi
- Department of MedicineDivision of Nephrology and Translational Transplant Research CenterRecanati Miller Transplant InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Brendan H. Grubbs
- Department of Obstetrics and GynecologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Roger E. De Filippo
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Sargis Sedrakyan
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Kevin V. Lemley
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Children's Hospital Los AngelesDivision of NephrologyDepartment of PediatricsUniversity of Southern CaliforniaLos AngelesCA90027USA
| | - Marie Csete
- Department of AnesthesiologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stefano Da Sacco
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Laura Perin
- GOFARR LaboratoryChildren's Hospital Los AngelesDivision of UrologySaban Research InstituteLos AngelesCA90027USA
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| |
Collapse
|
6
|
Jiang B, Ou W, Shamul JG, Chen H, Van Belleghem S, Stewart S, Liu Z, Fisher JP, He X. Rock inhibitor may compromise human induced pluripotent stem cells for cardiac differentiation in 3D. Bioact Mater 2022; 9:508-522. [PMID: 34786523 PMCID: PMC8581226 DOI: 10.1016/j.bioactmat.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) are valuable for the understanding/treatment of the deadly heart diseases and their drug screening. However, the very much needed homogeneous 3D cardiac differentiation of human iPSCs is still challenging. Here, it is discovered surprisingly that Rock inhibitor (RI), used ubiquitously to improve the survival/yield of human iPSCs, induces early gastrulation-like change to human iPSCs in 3D culture and may cause their heterogeneous differentiation into all the three germ layers (i.e., ectoderm, mesoderm, and endoderm) at the commonly used concentration (10 μM). This greatly compromises the capacity of human iPSCs for homogeneous 3D cardiac differentiation. By reducing the RI to 1 μM for 3D culture, the human iPSCs retain high pluripotency/quality in inner cell mass-like solid 3D spheroids. Consequently, the beating efficiency of 3D cardiac differentiation can be improved to more than 95 % in ~7 days (compared to less than ~50 % in 14 days for the 10 μM RI condition). Furthermore, the outset beating time (OBT) of all resultant cardiac spheroids (CSs) is synchronized within only 1 day and they form a synchronously beating 3D construct after 5-day culture in gelatin methacrylol (GelMA) hydrogel, showing high homogeneity (in terms of the OBT) in functional maturity of the CSs. Moreover, the resultant cardiomyocytes are of high quality with key functional ultrastructures and highly responsive to cardiac drugs. These discoveries may greatly facilitate the utilization of human iPSCs for understanding and treating heart diseases.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Hao Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Sarah Van Belleghem
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, 65212, United States
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, United States
| |
Collapse
|
7
|
Chen C, Shi Y, Ma J, Chen Z, Zhang M, Zhao Y. Trigonelline reverses high glucose-induced proliferation, fibrosis of mesangial cells via modulation of Wnt signaling pathway. Diabetol Metab Syndr 2022; 14:28. [PMID: 35139912 PMCID: PMC8827266 DOI: 10.1186/s13098-022-00798-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of the end-stage renal disease (ESRD). The proliferation and apoptosis of mesangial cells induced by the activated Wnt/β-catenin pathway is crucial in DN. Trigonelline (TRL) is an alkaloid that has been shown to decrease proteinuria and protect the renal function in DN. However, the effect of TRL on the Wnt/β-catenin pathway of mesangial cells is unclear. METHODS As a cellular DN model, human mesangial cells (HMCs) were treated with high-glucose (HG). β-Catenin plasmid and control knockdown plasmids were transfected into HG-treated HMCs as β-catenin pcDNA and β-catenin siRNA groups, respectively. Cell viability was measured by MTT assay. Flow cytometry was used to detect the cell cycle. Cell apoptosis was evaluated by flow cytometry and terminal dUTP transferase nick end labeling (TUNEL) assay. mRNA expression of Wnt1, Wnt3a, Wnt4, Wnt5a, β-catenin, TCF4, Cyclin D1, and CDK4 were detected by qRT-PCR. Protein expression of Wnt4, Wnt5a, nucleus-β-catenin, TCF4, Cyclin D1, and CDK4 were detected by western blotting. RESULTS TRL significantly inhibited HG-induced HMCs viability over three-time points measured (24, 48, and 72 h). In addition, TRL suppressed the levels of fibronectin (FN) and collagen IV (Col IV) in HG-stimulated HMCs. Furthermore, TRL efficiently inhibited the activation of the Wnt/β-catenin signaling pathway in HG-stimulated HMCs. Taken together, these data indicated that TRL inhibited HG-induced HMCs proliferation and ECM expression via the modulation of the Wnt signaling pathway. CONCLUSIONS TRL reduces HG-induced cell injury by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Shi
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Jiulong Ma
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Zhen Chen
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Ming Zhang
- College of Pharmacy, Jilin University, Xinmin Street No. 1163, Changchun, People's Republic of China
| | - Yan Zhao
- Physical Examination Center, Jilin University Second Hospital, Street No. 218, Changchun, Ziqiang, People's Republic of China.
| |
Collapse
|
8
|
Ni L, Yuan C, Wu X. The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med 2021; 19:441. [PMID: 34674704 PMCID: PMC8529729 DOI: 10.1186/s12967-021-03101-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023] Open
Abstract
Podocytes are differentiated postmitotic cells which cannot be replaced after podocyte injury. The mechanism of podocyte repopulation after injury has aroused wide concern. Parietal epithelial cells (PECs) are heterogeneous and only a specific subpopulation of PECs has the capacity to replace podocytes. Major progress has been achieved in recent years regarding the role and function of a subset of PECs which could transdifferentiate toward podocytes. Additionally, several factors, such as Notch, Wnt/ß-catenin, Wilms’ tumor-1, miR-193a and growth arrest-specific protein 1, have been shown to be involved in these processes. Finally, PECs serve as a potential therapeutic target in the conditions of podocyte loss. In this review, we discuss the latest observations and concepts about the recruitment of podocytes from PECs in glomerular diseases as well as newly identified mechanisms and the most recent treatments for this process.
Collapse
Affiliation(s)
- Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
9
|
Huffstater T, Merryman WD, Gewin LS. Wnt/β-Catenin in Acute Kidney Injury and Progression to Chronic Kidney Disease. Semin Nephrol 2021; 40:126-137. [PMID: 32303276 DOI: 10.1016/j.semnephrol.2020.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) portends a poor clinical prognosis and increases the risk for the development of chronic kidney disease (CKD). Currently, there are no therapies to treat AKI or prevent its progression to CKD. Wnt/β-catenin is a critical regulator of kidney development that is up-regulated after injury. Most of the literature support a beneficial role for Wnt/β-catenin in AKI, but suggest that this pathway promotes the progression of tubulointerstitial fibrosis, the hallmark of CKD progression. We review the role of Wnt/β-catenin in renal injury with a focus on its potential as a therapeutic target in AKI and in AKI to CKD transition.
Collapse
Affiliation(s)
- Tessa Huffstater
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Leslie S Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.
| |
Collapse
|
10
|
Meng P, Zhu M, Ling X, Zhou L. Wnt signaling in kidney: the initiator or terminator? J Mol Med (Berl) 2020; 98:1511-1523. [PMID: 32939578 PMCID: PMC7591426 DOI: 10.1007/s00109-020-01978-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The kidney is a key organ in the human body that excretes toxins and sustains the water-electrolyte balance. During embryonic development and disease progression, the kidney undergoes enormous changes in macrostructure, accompanied by a variety of microstructural histological changes, such as glomerular formation and sclerosis, tubule elongation and atrophy, interstitial establishment, and fibrosis progression. All of these rely on the frequent occurrence of cell death and growth. Notably, to overcome disease, some cells regenerate through self-repair or progenitor cell differentiation. However, the signaling mechanisms underlying kidney development and regeneration have not been elucidated. Recently, Wnt signaling has been noted to play an important role. Although it is a well-known developmental signal, the role of Wnt signaling in kidney development and regeneration is not well recognized. In this review, we review the role of Wnt signaling in kidney embryonic development, tissue repair, cell division, and progenitor cell differentiation after injury. Moreover, we briefly highlight advances in our understanding of the pathogenic mechanisms of Wnt signaling in mediating cellular senescence in kidney parenchymal and stem cells, an irreversible arrest of cell proliferation blocking tissue repair and regeneration. We also highlight the therapeutic targets of Wnt signaling in kidney diseases and provide important clues for clinical strategies.
Collapse
Affiliation(s)
- Ping Meng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- Department of Nephrology, The People's Hospital of Gaozhou, Maoming, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
11
|
Intraflagellar transport 20: New target for the treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118641. [PMID: 31893523 DOI: 10.1016/j.bbamcr.2019.118641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
Cilia are ubiquitous in mammalian cells. The formation and assembly of cilia depend on the normal functioning of the ciliary transport system. In recent years, various proteins involved in the intracellular transport of the cilium have attracted attention, as many diseases are caused by disorders in cilia formation. Intraflagellar transport 20 (IFT20) is a subunit of IFT complex B, which contains approximately 20 protein particles. Studies have shown that defects in IFT20 are associated with numerous system -related diseases, such as those of the urinary system, cardiovascular system, skeletal system, nervous system, immune system, reproductive system, and respiratory system. This review summarizes current research on IFT20.We describe studies related to the role of IFT20 in cilia formation and discuss new targets for treating diseases associated with ciliary dysplasia.
Collapse
|
12
|
Pazour GJ, Quarmby L, Smith AO, Desai PB, Schmidts M. Cilia in cystic kidney and other diseases. Cell Signal 2019; 69:109519. [PMID: 31881326 DOI: 10.1016/j.cellsig.2019.109519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Epithelial cells lining the ducts and tubules of the kidney nephron and collecting duct have a single non-motile cilium projecting from their surface into the lumen of the tubule. These organelles were long considered vestigial remnants left as a result of evolution from a ciliated ancestor, but we now recognize them as critical sensory antennae. In the kidney, the polycystins and fibrocystin, products of the major human polycystic kidney disease genes, localize to this organelle. The polycystins and fibrocystin, through an unknown mechanism, monitor the diameter of the kidney tubules and regulate the proliferation and differentiation of the cells lining the tubule. When the polycystins, fibrocystin or cilia themselves are defective, the cell perceives this as a pro-proliferative signal, which leads to tubule dilation and cystic disease. In addition to critical roles in preventing cyst formation in the kidney, cilia are also important in cystic and fibrotic diseases of the liver and pancreas, and ciliary defects lead to a variety of developmental abnormalities that cause structural birth defects in most organs.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America.
| | - Lynne Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Abigail O Smith
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany.
| |
Collapse
|
13
|
Crane AT, Aravalli RN, Asakura A, Grande AW, Krishna VD, Carlson DF, Cheeran MCJ, Danczyk G, Dutton JR, Hackett PB, Hu WS, Li L, Lu WC, Miller ZD, O'Brien TD, Panoskaltsis-Mortari A, Parr AM, Pearce C, Ruiz-Estevez M, Shiao M, Sipe CJ, Toman NG, Voth J, Xie H, Steer CJ, Low WC. Interspecies Organogenesis for Human Transplantation. Cell Transplant 2019; 28:1091-1105. [PMID: 31426664 PMCID: PMC6767879 DOI: 10.1177/0963689719845351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Blastocyst complementation combined with gene editing is an emerging approach in the
field of regenerative medicine that could potentially solve the worldwide problem of organ
shortages for transplantation. In theory, blastocyst complementation can generate fully
functional human organs or tissues, grown within genetically engineered livestock animals.
Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ
development can open a niche for human stem cells to occupy, thus generating human
tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung,
and skeletal muscle, as well as cells of the immune and nervous systems. Within each of
these organ systems, we identify and discuss (i) the common causes of organ failure; (ii)
the current state of regenerative therapies; and (iii) the candidate genes to knockout and
enable specific exogenous organ development via the use of blastocyst complementation. We
also highlight some of the current barriers limiting the success of blastocyst
complementation.
Collapse
Affiliation(s)
- Andrew T Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | | | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | - Georgette Danczyk
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Perry B Hackett
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, USA
| | - Wei-Cheng Lu
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Zachary D Miller
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | | | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - Clairice Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Maple Shiao
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Nikolas G Toman
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Joseph Voth
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Hui Xie
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Clifford J Steer
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA.,Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
14
|
Beaven R, Denholm B. Release and spread of Wingless is required to pattern the proximo-distal axis of Drosophila renal tubules. eLife 2018; 7:e35373. [PMID: 30095068 PMCID: PMC6086663 DOI: 10.7554/elife.35373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
Wingless/Wnts are signalling molecules, traditionally considered to pattern tissues as long-range morphogens. However, more recently the spread of Wingless was shown to be dispensable in diverse developmental contexts in Drosophila and vertebrates. Here we demonstrate that release and spread of Wingless is required to pattern the proximo-distal (P-D) axis of Drosophila Malpighian tubules. Wingless signalling, emanating from the midgut, directly activates odd skipped expression several cells distant in the proximal tubule. Replacing Wingless with a membrane-tethered version that is unable to diffuse from the Wingless producing cells results in aberrant patterning of the Malpighian tubule P-D axis and development of short, deformed ureters. This work directly demonstrates a patterning role for a released Wingless signal. As well as extending our understanding about the functional modes by which Wnts shape animal development, we anticipate this mechanism to be relevant to patterning epithelial tubes in other organs, such as the vertebrate kidney.
Collapse
Affiliation(s)
- Robin Beaven
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Barry Denholm
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
15
|
Desai PB, San Agustin JT, Stuck MW, Jonassen JA, Bates CM, Pazour GJ. Ift25 is not a cystic kidney disease gene but is required for early steps of kidney development. Mech Dev 2018; 151:10-17. [PMID: 29626631 DOI: 10.1016/j.mod.2018.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
Abstract
Eukaryotic cilia are assembled by intraflagellar transport (IFT) where large protein complexes called IFT particles move ciliary components from the cell body to the cilium. Defects in most IFT particle proteins disrupt ciliary assembly and cause mid gestational lethality in the mouse. IFT25 and IFT27 are unusual components of IFT-B in that they are not required for ciliary assembly and mutant mice survive to term. The mutants die shortly after birth with numerous organ defects including duplex kidneys. Completely duplex kidneys result from defects in ureteric bud formation at the earliest steps of metanephric kidney development. Ureteric bud initiation is a highly regulated process involving reciprocal signaling between the ureteric epithelium and the overlying metanephric mesenchyme with regulation by the peri-Wolffian duct stroma. The finding of duplex kidney in Ift25 and Ift27 mutants suggests functions for these genes in regulation of ureteric bud initiation. Typically the deletion of IFT genes in the kidney causes rapid cyst growth in the early postnatal period. In contrast, the loss of Ift25 results in smaller kidneys, which show only mild tubule dilations that become apparent in adulthood. The smaller kidneys appear to result from reduced branching in the developing metanephric kidney. This work indicates that IFT25 and IFT27 are important players in the early development of the kidney and suggest that duplex kidney is part of the ciliopathy spectrum.
Collapse
Affiliation(s)
- Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States
| | - Jovenal T San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States
| | - Julie A Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
| | - Carlton M Bates
- Department of Pediatrics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, 5130 Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States.
| |
Collapse
|
16
|
Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:181-207. [PMID: 29389516 PMCID: PMC6008255 DOI: 10.1016/bs.pmbts.2017.11.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients.
Collapse
Affiliation(s)
- Yongping Wang
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chengji J Zhou
- University of California Davis, Sacramento, CA, United States
| | - Youhua Liu
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
17
|
Nagy II, Xu Q, Naillat F, Ali N, Miinalainen I, Samoylenko A, Vainio SJ. Impairment of Wnt11 function leads to kidney tubular abnormalities and secondary glomerular cystogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:30. [PMID: 27582005 PMCID: PMC5007805 DOI: 10.1186/s12861-016-0131-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/22/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wnt11 is a member of the Wnt family of secreted signals controlling the early steps in ureteric bud (UB) branching. Due to the reported lethality of Wnt11 knockout embryos in utero, its role in later mammalian kidney organogenesis remains open. The presence of Wnt11 in the emerging tubular system suggests that it may have certain roles later in the development of the epithelial ductal system. RESULTS The Wnt11 knockout allele was backcrossed with the C57Bl6 strain for several generations to address possible differences in penetrance of the kidney phenotypes. Strikingly, around one third of the null mice with this inbred background survived to the postnatal stages. Many of them also reached adulthood, but urine and plasma analyses pointed out to compromised kidney function. Consistent with these data the tubules of the C57Bl6 Wnt11 (-/-) mice appeared to be enlarged, and the optical projection tomography indicated changes in tubular convolution. Moreover, the C57Bl6 Wnt11 (-/-) mice developed secondary glomerular cysts not observed in the controls. The failure of Wnt11 signaling reduced the expression of several genes implicated in kidney development, such as Wnt9b, Six2, Foxd1 and Hox10. Also Dvl2, an important PCP pathway component, was downregulated by more than 90 % due to Wnt11 deficiency in both the E16.5 and NB kidneys. Since all these genes take part in the control of UB, nephron and stromal progenitor cell differentiation, their disrupted expression may contribute to the observed anomalies in the kidney tubular system caused by Wnt11 deficiency. CONCLUSIONS The Wnt11 signal has roles at the later stages of kidney development, namely in coordinating the development of the tubular system. The C57Bl6 Wnt11 (-/-) mouse generated here provides a model for studying the mechanisms behind tubular anomalies and glomerular cyst formation.
Collapse
Affiliation(s)
- Irina I Nagy
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland.,NordLab Oulu, Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| | - Qi Xu
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Florence Naillat
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Nsrein Ali
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Ilkka Miinalainen
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Anatoly Samoylenko
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland. .,InfoTech Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
18
|
Shi H, Zhang A, He Y, Yang M, Gan W. Effects of p53 on aldosterone-induced mesangial cell apoptosis in vivo and in vitro. Mol Med Rep 2016; 13:5102-8. [PMID: 27109859 PMCID: PMC4878551 DOI: 10.3892/mmr.2016.5156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 03/29/2016] [Indexed: 12/26/2022] Open
Abstract
Aldosterone (ALD) is a well‑known hormone, which may initiate renal injury by inducing mesangial cell (MC) injury in chronic kidney disease (CKD); however, the molecular mechanism remains unknown. The aim of the present study was to investigate the effects of p53 on ALD‑induced MC apoptosis and elucidate the underlying molecular mechanism. For the in vivo studies, rats were randomly assigned to receive normal saline or ALD for 4 weeks. The ratio of MC apoptosis was analysed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. In addition, the expression level and localisation of p53, a well-known cell apoptosis-associated key protein, were detected by immunofluorescence. For the in vitro studies, rat MCs were incubated in medium containing either buffer (control) or ALD (10‑6 M) for 24 h. The cell apoptosis ratio was assessed by flow cytometry, and the expression level of p53 was assessed by reverse transcription quantitative polymerase chain reaction and western blotting. In order to confirm the role of p53 in ALD‑regulated cell apoptosis, a rescue experiment was performed using targeted small interfering (si)RNA to downregulate the expression of p53. The ALD‑treated rats exhibited greater numbers of TUNEL‑positive MCs and higher expression levels of p53 when compared with the control group. Furthermore, the ratio of MC apoptosis and the p53 expression level were significantly increased following ALD exposure, compared with the control group. Additionally, in the rescue experiment, the effects of ALD on MC were blocked by downregulating the expression level of p53 in MCs. The present study hypothesized that ALD may directly contribute to the occurrence of MC apoptosis via p53, which may participate in ALD-induced renal injury.
Collapse
Affiliation(s)
- Huimin Shi
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Yanfang He
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 200040, P.R. China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
19
|
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27:1380-91. [PMID: 25843779 PMCID: PMC4437805 DOI: 10.1016/j.cellsig.2015.03.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3'untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics.
Collapse
Affiliation(s)
- Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Priya Nigam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Senel S Tektas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erica Selva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
20
|
New insights into glomerular parietal epithelial cell activation and its signaling pathways in glomerular diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:318935. [PMID: 25866774 PMCID: PMC4383425 DOI: 10.1155/2015/318935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 12/26/2022]
Abstract
The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.
Collapse
|
21
|
CITED1 confers stemness to Wilms tumor and enhances tumorigenic responses when enriched in the nucleus. Oncotarget 2015; 5:386-402. [PMID: 24481423 PMCID: PMC3964215 DOI: 10.18632/oncotarget.1566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Wilms tumor (WT) is the most common childhood kidney cancer and retains gene expression profiles reminiscent of the embryonic kidney. We have shown previously that CITED1, a transcriptional regulator that labels the self-renewing, multipotent nephron progenitor population of the developing kidney, is robustly expressed across all major WT disease and patient characteristics. In this malignant context, CITED1 becomes enriched in the nucleus, which deviates from its cytosolic predominance in embryonic nephron progenitors. We designed the current studies to test the functional and mechanistic effects of differential CITED1 subcellular localization on WT behavior. To mimic its subcellular distribution observed in clinical WT specimens, CITED1 was misexpressed ectopically in the human WT cell line, WiT49, as either a wild-type (predominantly cytosolic) or a mutant, but transcriptionally active, protein (two point mutations in its nuclear export signal, CITED1ΔNES; nuclear-enriched). In vitro analyses showed that CITED1ΔNES enhanced WiT49 proliferation and colony formation in soft agar relative to wild-type CITED1 and empty vector controls. The nuclear-enriched CITED1ΔNES cell line showed the greatest tumor volumes after xenotransplantation into immunodeficient mice (n=15 animals per cell line). To elucidate CITED1 gene targets in this model, microarray profiling showed that wildtype CITED1 foremost upregulated LGR5 (stem cell marker), repressed CDH6 (early marker of epithelial commitment of nephron progenitors), and altered expression of specific WNT pathway participants. In summary, forced nuclear enrichment of CITED1 in a human WT cell line appears to enhance tumorigenicity, whereas ectopic cytosolic expression confers stem-like properties and an embryonic phenotype, analogous to the developmental context.
Collapse
|
22
|
Al-Odat I, Chen H, Chan YL, Amgad S, Wong MG, Gill A, Pollock C, Saad S. The impact of maternal cigarette smoke exposure in a rodent model on renal development in the offspring. PLoS One 2014; 9:e103443. [PMID: 25058584 PMCID: PMC4110029 DOI: 10.1371/journal.pone.0103443] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate whether maternal cigarette smoke exposure can disrupt fetal kidney development by changing the expression of growth and transcription factors essential for renal development, and thereafter predispose the offspring to chronic kidney disease later in life. Female Balb/c mice (6 weeks) were exposed either to cigarette smoke or air under identical conditions, 6 weeks prior to mating, during gestation and during lactation. Male offspring were sacrificed at three time points, postnatal day (P)1, P20 (weaning age), and 13 weeks (mature age). Blood, urine, and kidneys were collected for analysis. At P1, the developmental genes fibroblast growth factor 2, glial cell-line derived neurotrophic factor and paired box 2 were upregulated at mRNA and protein levels; whilst fibroblast growth factor (FGF) 7 and FGF10 were downregulated. At P20, mRNA expression of FGF2, FGF10 and Wingless-type 4 was upregulated by maternal smoke exposure. These changes were normalised in adulthood. Nephron development was delayed, with fewer nephron numbers from P1 persisted to adulthood; while glomerular volume was increased at P20 but reduced in adulthood. Pro-inflammatory marker monocyte chemoatractant protein 1 (MCP1) was increased in the kidney by maternal smoke exposure. These changes were accompanied by an increased albumin/creatinine ratio in adulthood, suggesting reduced renal dysfunction. In conclusion maternal cigarette smoke exposure prior to and during pregnancy, as well as lactation leads to significant renal underdevelopment and functional abnormalities in adulthood. This study confirms the hypothesis that maternal smoking predisposes offspring to chronic kidney disorders.
Collapse
Affiliation(s)
- Ibrahim Al-Odat
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Ultimo, NSW, Australia
- Renal Medicine, Kolling Institute, St Leonards, NSW, Australia
| | - Hui Chen
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Yik Lung Chan
- School of Medical and Molecular Biosciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sawiris Amgad
- Renal Medicine, Kolling Institute, St Leonards, NSW, Australia
| | - Muh Geot Wong
- Renal Medicine, Kolling Institute, St Leonards, NSW, Australia
| | - Anthony Gill
- Anatomical pathology, Northern Clinical School, St Leonards, NSW, Australia
| | - Carol Pollock
- Renal Medicine, Kolling Institute, St Leonards, NSW, Australia
| | - Sonia Saad
- Renal Medicine, Kolling Institute, St Leonards, NSW, Australia
| |
Collapse
|
23
|
Cizelsky W, Tata A, Kühl M, Kühl SJ. The Wnt/JNK signaling target gene alcam is required for embryonic kidney development. Development 2014; 141:2064-74. [PMID: 24764076 DOI: 10.1242/dev.107938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper development of nephrons is essential for kidney function. β-Catenin-independent Wnt signaling through Fzd8, Inversin, Daam1, RhoA and Myosin is required for nephric tubule morphogenesis. Here, we provide a novel mechanism through which non-canonical Wnt signaling contributes to tubular development. Using Xenopus laevis as a model system, we found that the cell-adhesion molecule Alcam is required for proper nephrogenesis and functions downstream of Fzd3 during embryonic kidney development. We found alcam expression to be independent of Fzd8 or Inversin, but to be transcriptionally regulated by the β-Catenin-independent Wnt/JNK pathway involving ATF2 and Pax2 in a direct manner. These novel findings indicate that several branches of Wnt signaling are independently required for proximal tubule development. Moreover, our data indicate that regulation of morphogenesis by non-canonical Wnt ligands also involves direct transcriptional responses in addition to the effects on a post-translational level.
Collapse
Affiliation(s)
- Wiebke Cizelsky
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | | | | | | |
Collapse
|
24
|
Chen D, Mi J, Liu X, Zhang J, Wang W, Gao H. WNT3A gene expression is associated with isolated Hirschsprung disease polymorphism and disease status. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1359-1368. [PMID: 24817932 PMCID: PMC4014216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
WNT3A has been regarded as an activator of the canonical Wnt signaling pathway. It has been found Wnt signaling pathway is closely related with embrionic development and Hirschsprung disease (HSCR). A common haplotype consisting of minor SNPs alleles located in the WNT3A gene has been described as a risk factor for various genetic disorders. However, whether WNT3A contributes to the onset of HSCR has not been identified. The present study aims to detect the interactions of genetic variations in the WNT3A gene and examine the biological expression levels with Hirschsprung disease (HSCR) in the Chinese people. We analyzed WNT3A gene (rs61743220, rs192966556 and rs145882986) variants in the whole blood samples from HSCR patients and normal children (control groups). WNT3A expression was also examined by quantitative real-time PCR (qRT-PCR), western blotting and immunostaining. Consequently, when rs192966556 and rs145882986 alleles of the WNT3A gene lack the SNPs, they are especially associated with a greater risk of HSCR (OR [95% confidence interval]=1.791, p=0.001; OR [95% confidence interval]=1.556, p=0.003, respectively). The mRNA and protein expressions of WNT3A were higher in the aganglionic colon segment tissues than in the normal ganglionic segments tissues. Immunostaining indicates that the staining of WNT3A was much stronger (brown) in the aganglionic colon segment tissues than that in the normal ganglionic colon segment tissues (colorless or light yellow) in the mucous layer and muscular layer. Although preliminary, these results suggest that WNT3A may play an important role in the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pediatric Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Jie Mi
- Department of Pediatric Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Xiaomei Liu
- Key Laboratory of Pediatric Congenital Malformations, Ministry of Public Health, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Juan Zhang
- Jinzhou Women and Children’s HospitalJinzhou, Liaoning, 121000, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Hong Gao
- Key Laboratory of Pediatric Congenital Malformations, Ministry of Public Health, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| |
Collapse
|
25
|
Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:693-713. [PMID: 22942910 DOI: 10.1002/wdev.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian kidney, which at maturity contains thousands of nephrons joined to a highly branched collecting duct (CD) system, is an important model system for studying the development of a complex organ. Furthermore, congenital anomalies of the kidney and urinary tract, often resulting from defects in ureteric bud branching morphogenesis, are relatively common human birth defects. Kidney development is initiated by interactions between the nephric duct and the metanephric mesenchyme, leading to the outgrowth and repeated branching of the ureteric bud epithelium, which gives rise to the entire renal CD system. Meanwhile, signals from the ureteric bud induce the mesenchyme cells to form the nephron epithelia. This review focuses on development of the CD system, with emphasis on the mouse as an experimental system. The major topics covered include the origin and development of the nephric duct, formation of the ureteric bud, branching morphogenesis of the ureteric bud, and elongation of the CDs. The signals, receptors, transcription factors, and other regulatory molecules implicated in these processes are discussed. In addition, our current knowledge of cellular behaviors that are controlled by these genes and underlie development of the collecting system is reviewed.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
26
|
Spironolactone inhibits apoptosis in rat mesangial cells under hyperglycaemic conditions via the Wnt signalling pathway. Mol Cell Biochem 2013; 380:185-93. [DOI: 10.1007/s11010-013-1672-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/18/2013] [Indexed: 11/26/2022]
|
27
|
Bernascone I, Martin-Belmonte F. Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol 2013; 23:380-9. [PMID: 23607968 DOI: 10.1016/j.tcb.2013.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022]
Abstract
Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.
Collapse
Affiliation(s)
- Ilenia Bernascone
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Madrid 28049, Spain
| | | |
Collapse
|
28
|
Viñas JL, Ventayol M, Brüne B, Jung M, Sola A, Pi F, Mastora C, Hotter G. miRNA let-7e modulates the Wnt pathway and early nephrogenic markers in mouse embryonic stem cell differentiation. PLoS One 2013; 8:e60937. [PMID: 23593353 PMCID: PMC3622609 DOI: 10.1371/journal.pone.0060937] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/05/2013] [Indexed: 11/23/2022] Open
Abstract
This study indicates that embryonic stem cells [ESCs] cultured with retinoic acid and activin A significantly upregulate the miRNA let-7e. This specific miRNA modulates the Wnt pathway and the expression of early nephrogenic markers under these differentiation conditions. The differentiation markers WT1, Pax2 and Wnt4 were downregulated when miRNA let-7e was silenced, thus indicating the role of miRNA let-7e in the differentiation process. PKCβ, GSK3β phosphorylation (GSK3βP) and β-catenin expression was reduced in differentiated cells and reversed by miRNA let-7e silencing. Addition of a PKCβ inhibitor to the miRNA let-7e silenced cells abolished let-7e-derived effects in differentiation markers, and reversed the increase in GSK3βP and β-catenin, thus indicating that miRNA let-7e is involved in differentiation via the modulation of GSK3β phosphorylation and β-catenin production.
Collapse
Affiliation(s)
- Jose Luis Viñas
- Departament of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC, IDIBAPS), Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Martin A, Maher S, Summerhurst K, Davidson D, Murphy P. Differential deployment of paralogous Wnt genes in the mouse and chick embryo during development. Evol Dev 2013; 14:178-95. [PMID: 23017026 PMCID: PMC3498729 DOI: 10.1111/j.1525-142x.2012.00534.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genes encoding Wnt ligands are crucial in body patterning and are highly conserved among metazoans. Given their conservation at the protein-coding level, it is likely that changes in where and when these genes are active are important in generating evolutionary variations. However, we lack detailed knowledge about how their deployment has diverged. Here, we focus on four Wnt subfamilies (Wnt2, Wnt5, Wnt7, and Wnt8) in mammalian and avian species, consisting of a paralogous gene pair in each, believed to have duplicated in the last common ancestor of vertebrates. We use three-dimensional imaging to capture expression patterns in detail and carry out systematic comparisons. We find evidence of greater divergence between these subgroup paralogues than the respective orthologues, consistent with some level of subfunctionalization/neofunctionalization in the common vertebrate ancestor that has been conserved. However, there were exceptions; in the case of chick Wnt2b, individual sites were shared with both mouse Wnt2 and Wnt2b. We also find greater divergence, between paralogues and orthologues, in some subfamilies (Wnt2 and Wnt8) compared to others (Wnt5 and Wnt7) with the more highly similar expression patterns showing more extensive expression in more structures in the embryo. Wnt8 genes were most restricted and most divergent. Major sites of expression for all subfamilies include CNS, limbs, and facial region, and in general there were more similarities in gene deployment in these territories with divergent patterns featuring more in organs such as heart and gut. A detailed comparison of gene expression patterns in the limb showed similarities in overall combined domains across species with notable differences that may relate to lineage-specific morphogenesis.
Collapse
Affiliation(s)
- Audrey Martin
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
30
|
Pulkkinen K, Murugan S, Vainio S. Wnt signaling in kidney development and disease. Organogenesis 2012; 4:55-9. [PMID: 19279716 DOI: 10.4161/org.4.2.5849] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/09/2023] Open
Abstract
The Wnt gene family, which encodes secreted growth and differentiation factors, has been implicated in kidney organogenesis. The Wnts control both ureteric bud development and signaling, but they also serve as inductive factors to regulate nephrogenesis in the mesenchcymal cells. Several of the Wnt genes are expressed in the developing kidney, and gene knock-out studies have revealed specific developmental functions for these. Consistent with this, changes in Wnt ligands and pathway components are associated with many kidney diseases, including kidney cancers, renal fibrosis, cystic kidney diseases, acute renal failure, diabetic nephropathy and ischaemic injury. It is these associations of the Wnt signaling system with kidney development and kidney diseases that form to topic of this review.
Collapse
Affiliation(s)
- Kaisa Pulkkinen
- Department of Medical Biochemistry and Molecular Biology and Biocenter Oulu; Laboratory of Developmental Biology; University of Oulu; Oulu, Finland
| | | | | |
Collapse
|
31
|
Knepper MA. Systems biology in physiology: the vasopressin signaling network in kidney. Am J Physiol Cell Physiol 2012; 303:C1115-24. [PMID: 22932685 DOI: 10.1152/ajpcell.00270.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past 80 years, physiological research has moved progressively in a reductionist direction, providing mechanistic information on a smaller and smaller scale. This trend has culminated in the present focus on "molecular physiology," which deals with the function of single molecules responsible for cellular function. There is a need to assemble the information from the molecular level into models that explain physiological function at cellular, tissue, organ, and whole organism levels. Such integration is the major focus of an approach called "systems biology." The genome sequencing projects provide a basis for a new kind of systems biology called "data-rich" systems biology that is based on large-scale data acquisition methods including protein mass spectrometry, DNA microarrays, and deep sequencing of nucleic acids. These techniques allow investigators to measure thousands of variables simultaneously in response to an external stimulus. My laboratory is applying such an approach to the question: "How does the peptide hormone vasopressin regulate water permeability in the renal collecting duct?" We are using protein mass spectrometry to identify and quantify the phosphoproteome of collecting duct cells. The response to vasopressin, presented in the form of a network model, includes a general downregulation of proline-directed kinases (MAP kinases and cyclin-dependent kinases) and upregulation of basophilic kinases (ACG kinases and calmodulin-dependent kinases). Further progress depends on characterization and localization of candidate protein kinases in these families. The ultimate goal is to use multivariate statistical techniques and differential equations to obtain predictive models describing vasopressin signaling in the renal collecting duct.
Collapse
Affiliation(s)
- Mark A Knepper
- National Institutes of Health, 10 Center Dr., Bldg. 10, Rm. 6N260, Bethesda, MD 20892-1603,USA.
| |
Collapse
|
32
|
Dodge ME, Moon J, Tuladhar R, Lu J, Jacob LS, Zhang LS, Shi H, Wang X, Moro E, Mongera A, Argenton F, Karner CM, Carroll TJ, Chen C, Amatruda JF, Lum L. Diverse chemical scaffolds support direct inhibition of the membrane-bound O-acyltransferase porcupine. J Biol Chem 2012; 287:23246-54. [PMID: 22593577 DOI: 10.1074/jbc.m112.372029] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Secreted Wnt proteins constitute one of the largest families of intercellular signaling molecules in vertebrates with essential roles in embryonic development and adult tissue homeostasis. The functional redundancy of Wnt genes and the many forms of cellular responses they elicit, including some utilizing the transcriptional co-activator β-catenin, has limited the ability of classical genetic strategies to uncover their roles in vivo. We had previously identified a chemical compound class termed Inhibitor of Wnt Production (or IWP) that targets Porcupine (Porcn), an acyltransferase catalyzing the addition of fatty acid adducts onto Wnt proteins. Here we demonstrate that diverse chemical structures are able to inhibit Porcn by targeting its putative active site. When deployed in concert with small molecules that modulate the activity of Tankyrase enzymes and glycogen synthase kinase 3 β (GSK3β), additional transducers of Wnt/β-catenin signaling, the IWP compounds reveal an essential role for Wnt protein fatty acylation in eliciting β-catenin-dependent and -independent forms of Wnt signaling during zebrafish development. This collection of small molecules facilitates rapid dissection of Wnt gene function in vivo by limiting the influence of redundant Wnt gene functions on phenotypic outcomes and enables temporal manipulation of Wnt-mediated signaling in vertebrates.
Collapse
Affiliation(s)
- Michael E Dodge
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Swetha G, Chandra V, Phadnis S, Bhonde R. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J Cell Mol Med 2012; 15:396-413. [PMID: 19840197 PMCID: PMC3822804 DOI: 10.1111/j.1582-4934.2009.00937.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration.
Collapse
Affiliation(s)
- G Swetha
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Pune, India
| | | | | | | |
Collapse
|
34
|
Jonassen JA, SanAgustin J, Baker SP, Pazour GJ. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol 2012; 23:641-51. [PMID: 22282595 DOI: 10.1681/asn.2011080829] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre-driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression.
Collapse
Affiliation(s)
- Julie A Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
35
|
Ludlow JW, Kelley RW, Bertram TA. The future of regenerative medicine: urinary system. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:218-24. [PMID: 22070608 DOI: 10.1089/ten.teb.2011.0551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regeneration of tissues and organs is now within the technological reach of modern medicine. With such advancements, substantial improvements to existing standards-of-care are very real possibilities. This review will focus on regenerative medicine approaches to treating specific maladies of the bladder and kidney, including the biological basis of regeneration and the history of regenerative medicine in the urinary system. Current clinical management approaches will be presented within the context of future directions including cell-based regenerative therapies.
Collapse
Affiliation(s)
- John W Ludlow
- Tengion, Inc., Winston-Salem, North Carolina 27103, USA.
| | | | | |
Collapse
|
36
|
Chi L, Saarela U, Railo A, Prunskaite-Hyyryläinen R, Skovorodkin I, Anthony S, Katsu K, Liu Y, Shan J, Salgueiro AM, Belo JA, Davies J, Yokouchi Y, Vainio SJ. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development. PLoS One 2011; 6:e27676. [PMID: 22114682 PMCID: PMC3219680 DOI: 10.1371/journal.pone.0027676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/21/2011] [Indexed: 01/02/2023] Open
Abstract
The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.
Collapse
Affiliation(s)
- Lijun Chi
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti Railo
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilya Skovorodkin
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shelagh Anthony
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Liu
- Texas A&M Health Science Center, Center for Development and Diseases, Institute of Biosciences and Technology, Houston, Texas, United States of America
| | - Jingdong Shan
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ana Marisa Salgueiro
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - José António Belo
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuji Yokouchi
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
37
|
|
38
|
Grouls S, Iglesias DM, Wentzensen N, Moeller MJ, Bouchard M, Kemler R, Goodyer P, Niggli F, Gröne HJ, Kriz W, Koesters R. Lineage specification of parietal epithelial cells requires β-catenin/Wnt signaling. J Am Soc Nephrol 2011; 23:63-72. [PMID: 22021707 DOI: 10.1681/asn.2010121257] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
β-Catenin/Wnt signaling is essential during early inductive stages of kidney development, but its role during postinductive stages of nephron development and maturation is not well understood. In this study, we used Pax8Cre mice to target β-catenin deficiency to renal epithelial cells at the late S-shaped body stage and the developing collecting ducts. The conditional β-catenin knockout mice formed abnormal kidneys and had reduced renal function. The kidneys were hypoplastic with a thin cortex; a superficial layer of tubules was missing. A high proportion of glomeruli had small, underdeveloped capillary tufts. In these glomeruli, well differentiated podocytes replaced parietal epithelial cells in Bowman's capsule; capillaries toward the outer aspect of these podocytes mimicked the formation of glomerular capillaries. Tracing nephrogenesis in embryonic conditional β-catenin knockout mice revealed that these "parietal podocytes" derived from precursor cells in the parietal layer of the S-shaped body by direct lineage switch. Taken together, these findings demonstrate that β-catenin/Wnt signaling is important during the late stages of nephrogenesis and for the lineage specification of parietal epithelial cells.
Collapse
Affiliation(s)
- Stephan Grouls
- University of Heidelberg, Department of Nephrology, Im Neuenheimer Feld 162, 69120 Heidelberg, Baden-Württemberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang B, Tran U, Wessely O. Expression of Wnt signaling components during Xenopus pronephros development. PLoS One 2011; 6:e26533. [PMID: 22028899 PMCID: PMC3197532 DOI: 10.1371/journal.pone.0026533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The formation of the vertebrate kidney is tightly regulated and relies on multiple evolutionarily conserved inductive events. These are present in the complex metanephric kidney of higher vertebrates, but also in the more primitive pronephric kidney functional in the larval stages of amphibians and fish. Wnts have long been viewed as central in this process. Canonical β-Catenin-dependent Wnt signaling establishes kidney progenitors and non-canonical β-Catenin-independent Wnt signaling participate in the morphogenetic processes that form the highly sophisticated nephron structure. While some individual Wnt signaling components have been studied extensively in the kidney, the overall pathway has not yet been analyzed in depth. METHODOLOGY/PRINCIPAL FINDINGS Here we report a detailed expression analysis of all Wnt ligands, receptors and several downstream Wnt effectors during pronephros development in Xenopus laevis using in situ hybridization. Out of 19 Wnt ligands, only three, Wnt4, Wnt9a and Wnt11, are specifically expressed in the pronephros. Others such as Wnt8a are present, but in a broader domain comprising adjacent tissues in addition to the kidney. The same paradigm is observed for the Wnt receptors and its downstream signaling components. Fzd1, Fzd4, Fzd6, Fzd7, Fzd8 as well as Celsr1 and Prickle1 show distinct expression domains in the pronephric kidney, whereas the non-traditional Wnt receptors, Ror2 and Ryk, as well as the majority of the effector molecules are rather ubiquitous. In addition to this spatial regulation, the timing of expression is also tightly regulated. In particular, non-canonical Wnt signaling seems to be restricted to later stages of pronephros development. CONCLUSION/SIGNIFICANCE Together these data suggest a complex cross talk between canonical and non-canonical Wnt signaling is required to establish a functional pronephric kidney.
Collapse
Affiliation(s)
- Bo Zhang
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, Cleveland, Ohio, United States of America
- Louisiana State University (LSU) Health Sciences Center, Department of Cell Biology & Anatomy, New Orleans, Louisiana, United States of America
| | - Uyen Tran
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, Cleveland, Ohio, United States of America
| | - Oliver Wessely
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Miller RK, Canny SGDLT, Jang CW, Cho K, Ji H, Wagner DS, Jones EA, Habas R, McCrea PD. Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling. J Am Soc Nephrol 2011; 22:1654-64. [PMID: 21804089 DOI: 10.1681/asn.2010101086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Canonical β-catenin-mediated Wnt signaling is essential for the induction of nephron development. Noncanonical Wnt/planar cell polarity (PCP) pathways contribute to processes such as cell polarization and cytoskeletal modulation in several tissues. Although PCP components likely establish the plane of polarization in kidney tubulogenesis, whether PCP effectors directly modulate the actin cytoskeleton in tubulogenesis is unknown. Here, we investigated the roles of Wnt PCP components in cytoskeletal assembly during kidney tubule morphogenesis in Xenopus laevis and zebrafish. We found that during tubulogenesis, the developing pronephric anlagen expresses Daam1 and its interacting Rho-GEF (WGEF), which compose one PCP/noncanonical Wnt pathway branch. Knockdown of Daam1 resulted in reduced expression of late pronephric epithelial markers with no apparent effect upon early markers of patterning and determination. Inhibiting various points in the Daam1 signaling pathway significantly reduced pronephric tubulogenesis. These data indicate that pronephric tubulogenesis requires the Daam1/WGEF/Rho PCP pathway.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Song R, Yosypiv IV. (Pro)renin Receptor in Kidney Development and Disease. Int J Nephrol 2011; 2011:247048. [PMID: 21755055 PMCID: PMC3132641 DOI: 10.4061/2011/247048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/20/2011] [Accepted: 04/20/2011] [Indexed: 12/24/2022] Open
Abstract
The renin-angiotensin system (RAS), a key regulator of the blood pressure and fluid/electrolyte homeostasis, also plays a critical role in kidney development. All the components of the RAS are expressed in the developing metanephros. Moreover, mutations in the genes encoding components of the RAS in mice or humans are associated with a broad spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). These forms of CAKUT include renal papillary hypoplasia, hydronephrosis, duplicated collecting system, renal tubular dysgenesis, renal vascular abnormalities, and aberrant glomerulogenesis. Emerging evidence indicates that (pro)renin receptor (PRR), a novel component of the RAS, is essential for proper kidney development and that aberrant PRR signaling is causally linked to cardiovascular and renal disease. This paper describes the role of the RAS in kidney development and highlights emerging insights into the cellular and molecular mechanisms by which the PRR may regulate this critical morphogenetic process.
Collapse
Affiliation(s)
- Renfang Song
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | |
Collapse
|
42
|
Pietilä I, Ellwanger K, Railo A, Jokela T, Barrantes IDB, Shan J, Niehrs C, Vainio SJ. Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling. Dev Biol 2011; 353:50-60. [DOI: 10.1016/j.ydbio.2011.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 12/24/2022]
|
43
|
Sugimura R, Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. ACTA ACUST UNITED AC 2011; 90:243-56. [PMID: 21181886 DOI: 10.1002/bdrc.20195] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wnt signaling regulates many aspects of vertebrate development and adult stem cells. Deregulation of Wnt signaling causes development defect and cancer. The signaling is categorized in two pathways: canonical and noncanonical. Both pathways are initiated by Wnt ligands and Frizzled receptors. Canonical pathway leads to β-catenin:T-cell factor/lymphoid enhancer factor-mediated gene expression, which regulates proliferation and differentiation of cells. Noncanonical Wnt signaling is mediated by intracellular calcium ion and JNK. This signaling leads to NFAT, a key transcriptional factor regulating gene expression. In addition, β-catenin:T-cell factor/lymphoid enhancer factor-mediated gene expression is downregulated by CaMKII-TAK1-NLK. Cellular polarity and motility are the main outcomes of the signaling. During development, noncanonical Wnt signaling is required for tissue formation. Recent studies have shown that atypical cadherin Flamingo contributes to noncanonical Wnt signaling by directing the migration of cells. Also, noncanonical Wnt signaling is required for maintenance of adult stem cells. In the field of cancer research, noncanonical Wnt signaling has been considered a tumor suppressor; however, recent evidence has shown that the signaling also enhances cancer progression in the later stages of disease. In this review, we describe and discuss components of noncanonical Wnt signaling, diseases caused by deregulation of the signaling, regulation of adult stem cells by the signaling, and implications in cancer biology.
Collapse
Affiliation(s)
- Ryohichi Sugimura
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
44
|
Ola R, Jakobson M, Kvist J, Perälä N, Kuure S, Braunewell KH, Bridgewater D, Rosenblum ND, Chilov D, Immonen T, Sainio K, Sariola H. The GDNF target Vsnl1 marks the ureteric tip. J Am Soc Nephrol 2011; 22:274-84. [PMID: 21289216 DOI: 10.1681/asn.2010030316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is indispensable for ureteric budding and branching. If applied exogenously, GDNF promotes ectopic ureteric buds from the Wolffian duct. Although several downstream effectors of GDNF are known, the identification of early response genes is incomplete. Here, microarray screening detected several GDNF-regulated genes in the Wolffian duct, including Visinin like 1 (Vsnl1), which encodes a neuronal calcium-sensor protein. We observed renal Vsnl1 expression exclusively in the ureteric epithelium, but not in Gdnf-null kidneys. In the tissue culture of Gdnf-deficient kidney primordium, exogenous GDNF and alternative bud inducers (FGF7 and follistatin) restored Vsnl1 expression. Hence, Vsnl1 characterizes the tip of the ureteric bud epithelium regardless of the inducer. In the tips, Vsnl1 showed a mosaic expression pattern that was mutually exclusive with β-catenin transcriptional activation. Vsnl1 was downregulated in both β-catenin-stabilized and β-catenin-deficient kidneys. Moreover, in a mouse collecting duct cell line, Vsnl1 compromised β-catenin stability, suggesting a counteracting relationship between Vsnl1 and β-catenin. In summary, Vsnl1 marks ureteric bud tips in embryonic kidneys, and its mosaic pattern demonstrates a heterogeneity of cell types that may be critical for normal ureteric branching.
Collapse
Affiliation(s)
- Roxana Ola
- Biochemistry and Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Burn S, Webb A, Berry R, Davies J, Ferrer-Vaquer A, Hadjantonakis A, Hastie N, Hohenstein P. Calcium/NFAT signalling promotes early nephrogenesis. Dev Biol 2011; 352:288-98. [PMID: 21295565 PMCID: PMC3070816 DOI: 10.1016/j.ydbio.2011.01.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/23/2011] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
A number of Wnt genes are expressed during, and are known to be essential for, early kidney development. It is typically assumed that their products will act through the canonical β-catenin signalling pathway. We have found evidence that suggests canonical Wnt signalling is not active in the early nephrogenic metanephric mesenchyme, but instead provide expressional and functional evidence that implicates the non-canonical Calcium/NFAT Wnt signalling pathway in nephrogenesis. Members of the NFAT (Nuclear Factor Activated in T cells) transcription factor gene family are expressed throughout murine kidney morphogenesis and NFATc3 is localised to the developing nephrons. Treatment of kidney rudiments with Cyclosporin A (CSA), an inhibitor of Calcium/NFAT signalling, decreases nephron formation — a phenotype similar to that in Wnt4−/− embryos. Treatment of Wnt4−/− kidneys with Ionomycin, an activator of the pathway, partially rescues the phenotype. We propose that the non-canonical Calcium/NFAT Wnt signalling pathway plays an important role in early mammalian renal development and is required for complete MET during nephrogenesis, potentially acting downstream of Wnt4.
Collapse
Affiliation(s)
- S.F. Burn
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Correspondence to: S.F. Burn, Current address: Department of Genetics & Development, Columbia University Medical Center, 701 168th Street, New York, NY 10033, USA.
| | - A. Webb
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - R.L. Berry
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - J.A. Davies
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - A. Ferrer-Vaquer
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - A.K. Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - N.D. Hastie
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - P. Hohenstein
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Corresponding author.
| |
Collapse
|
46
|
Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G, Ballabio A. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 2011; 9:e1000582. [PMID: 21267068 PMCID: PMC3022534 DOI: 10.1371/journal.pbio.1000582] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/06/2010] [Indexed: 11/23/2022] Open
Abstract
The manuscript describes the “digital transcriptome atlas” of the developing mouse embryo, a powerful resource to determine co-expression of genes, to identify cell populations and lineages and to identify functional associations between genes relevant to development and disease. Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease. In situ hybridization (ISH) can be used to visualize gene expression in cells and tissues in their native context. High-throughput ISH using nonradioactive RNA probes allowed the Eurexpress consortium to generate a comprehensive, interactive, and freely accessible digital gene expression atlas, the Eurexpress transcriptome atlas (http://www.eurexpress.org), of the E14.5 mouse embryo. Expression data for over 15,000 genes were annotated for hundreds of anatomical structures, thus allowing us to systematically identify tissue-specific and tissue-overlapping gene networks. We illustrate the value of the Eurexpress atlas by finding novel regional subdivisions in the developing brain. We also use the transcriptome atlas to allocate specific components of the complex Wnt signaling pathway to kidney development, and we identify regionally expressed genes in liver that may be markers of hematopoietic stem cell differentiation.
Collapse
Affiliation(s)
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Marc Sultan
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Geffers
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Santosh Anand
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - David Rozado
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alon Magen
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Ivana Peluso
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Nathalie Lin-Marq
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Muriel Koch
- Institut Clinique de la Souris, Illkirch, France
| | - Marchesa Bilio
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | - Roberta Verde
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | | | - Juliette Cicchini
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Elodie Perroud
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Shprese Mehmeti
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emilie Dagand
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Asja Nürnberger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Katja Schmidt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Katja Metz
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Norbert Brieske
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Cindy Springer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ana Martinez Hernandez
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Sarah Herzog
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Frauke Grabbe
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Cornelia Sieverding
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Barbara Fischer
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Kathrin Schrader
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Maren Brockmeyer
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Sarah Dettmer
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Christin Helbig
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | | | | | - Carole Mura
- Institut Clinique de la Souris, Illkirch, France
| | | | - Raquel Garcia-Lopez
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | - Diego Echevarria
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | - Eduardo Puelles
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | - Elena Garcia-Calero
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | | | - Markus Uhr
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Christine Kauck
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Guangjie Feng
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Nestor Milyaev
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Chuang Kee Ong
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Lalit Kumar
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - MeiSze Lam
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Colin A. Semple
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Attila Gyenesei
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Uwe Radelof
- RZPD—Deutsches Ressourcenzentrum für Genomforschung, Berlin, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Duncan R. Davidson
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U 964, CNRS UMR 7104, Faculté de Médecine, Université de Strasbourg; Illkirch, France
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- University Hospitals of Geneva, Geneva, Switzerland
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Salvador Martinez
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Richard A. Baldock
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| |
Collapse
|
47
|
Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A, Bottinger E, Cohen CD, Schlondorff D. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS One 2010; 5:e12995. [PMID: 20886049 PMCID: PMC2945319 DOI: 10.1371/journal.pone.0012995] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/31/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND BAMBI (BMP and Activin Membrane Bound Inhibitor) is considered to influence TGFβ and Wnt signaling, and thereby fibrosis. Surprisingly data on cell type-specific expression of BAMBI are not available. We therefore examined the localization, gene regulation, and protein turnover of BAMBI in kidneys. METHODOLOGY/PRINCIPAL FINDINGS By immunofluorescence microscopy and by mRNA expression, BAMBI is restricted to endothelial cells of the glomerular and some peritubular capillaries and of arteries and veins in both murine and human kidneys. TGFβ upregulated mRNA of BAMBI in murine glomerular endothelial cells (mGEC). LPS did not downregulate mRNA for BAMBI in mGEC or in HUVECs. BAMBI mRNA had a half-life of only 60 minutes and was stabilized by cycloheximide, indicating post-transcriptional regulation due to AU-rich elements, which we identified in the 3' untranslated sequence of both the human and murine BAMBI gene. BAMBI protein turnover was studied in HUVECs with BAMBI overexpression using a lentiviral system. Serum starvation as an inducer of autophagy caused marked BAMBI degradation, which could be totally prevented by inhibition of lysosomal and autolysosomal degradation with bafilomycin, and partially by inhibition of autophagy with 3-methyladenine, but not by proteasomal inhibitors. Rapamycin activates autophagy by inhibiting TOR, and resulted in BAMBI protein degradation. Both serum starvation and rapamycin increased the conversion of the autophagy marker LC3 from LC3-I to LC3-II and also enhanced co-staining for BAMBI and LC3 in autolysosomal vesicles. CONCLUSIONS/SIGNIFICANCE 1. BAMBI localizes to endothelial cells in the kidney and to HUVECs. 2. BAMBI mRNA is regulated by post-transcriptional mechanisms. 3. BAMBI protein is regulated by lysosomal and autolysosomal degradation. The endothelial localization and the quick turnover of BAMBI may indicate novel, yet to be defined functions of this modulator for TGFβ and Wnt protein actions in the renal vascular endothelium in health and disease.
Collapse
Affiliation(s)
- Sandhya Xavier
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Victoria Gilbert
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Maria Pia Rastaldi
- Renal Immunopathology Laboratory, Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Stefanie Krick
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dmitrij Kollins
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Anand Reddy
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Erwin Bottinger
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Clemens D. Cohen
- Division of Nephrology and Institute of Physiology with Center of Integrative Human Physiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Detlef Schlondorff
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Karner CM, Merkel CE, Dodge M, Ma Z, Lu J, Chen C, Lum L, Carroll TJ. Tankyrase is necessary for canonical Wnt signaling during kidney development. Dev Dyn 2010; 239:2014-23. [PMID: 20549720 DOI: 10.1002/dvdy.22340] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent studies using small molecule antagonists have revealed that the poly(ADP-ribose) polymerases (PARPs) Tankyrase 1 and 2 are critical regulators of canonical Wnt signaling in some cellular contexts. However, the absence of any activity during zebrafish embryogenesis suggested that the tankyrases may not be general/core components of the Wnt pathway. Here, we show that Tnks1 and 2 are broadly expressed during mouse development and are essential during kidney and lung development. In the kidney, blockage of tankyrase activity phenocopies the effect of blocking production of all Wnt ligands. Tankyrase inhibition can be rescued by activation of beta-catenin demonstrating its specificity for the Wnt pathway. In addition, treatment with tankyrase inhibitors appears to be completely reversible in some cell types. These studies suggest that the tankyrases are core components of the canonical Wnt pathway and their inhibitors should enjoy broad usage as antagonists of Wnt signaling.
Collapse
Affiliation(s)
- Courtney M Karner
- Department of Internal Medicine (Nephrology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pode-Shakked N, Metsuyanim S, Rom-Gross E, Mor Y, Fridman E, Goldstein I, Amariglio N, Rechavi G, Keshet G, Dekel B. Developmental tumourigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population. J Cell Mol Med 2010; 13:1792-1808. [PMID: 20187302 DOI: 10.1111/j.1582-4934.2008.00607.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During development, renal stem cells reside in the nephrogenic blastema. Wilms' tumour (WT), a common childhood malignancy, is suggested to arise from the nephrogenic blastema that undergoes partial differentiation and as such is an attractive model to study renal stem cells leading to cancer initiation and maintenance. Previously we have made use of blastema-enriched WT stem-like xenografts propagated in vivo to define a 'WT-stem' signature set, which includes cell surface markers convenient for cell isolation (frizzled homolog 2 [Drosophila] - FZD2, FZD7, G-protein coupled receptor 39, activin receptor type 2B, neural cell adhesion molecule - NCAM). We show by fluorescenceactivated cell sorting analysis of sphere-forming heterogeneous primary WT cultures that most of these markers and other stem cell surface antigens (haematopoietic, CD133, CD34, c-Kit; mesenchymal, CD105, CD90, CD44; cancer, CD133, MDR1; hESC, CD24 and putative renal, cadherin 11), are expressed in WT cell sub-populations in varying levels. Of all markers, NCAM, CD133 and FZD7 were constantly detected in low-to-moderate portions likely to contain the stem cell fraction. Sorting according to FZD7 resulted in extensive cell death, while sorted NCAM and CD133 cell fractions were subjected to clonogenicity assays and quantitative RT-PCR analysis, exclusively demonstrating the NCAM fraction as highly clonogenic, overexpressing the WT 'stemness' genes and topoisomerase2A (TOP2A), a bad prognostic marker for WT. Moreover, treatment of WT cells with the topoisomerase inhibitors, Etoposide and Irinotecan resulted in down-regulation of TOP2A along with NCAM and WT1. Thus, we suggest NCAM as a marker for the WT progenitor cell population. These findings provide novel insights into the cellular hierarchy of WT, having possible implications for future therapeutic options.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Department of Pediatrics and Pediatric Stem Cell Research Institute, Sheba Medical Center, Israel.,Sackler School of Medicine, Tel Aviv University, Israel
| | - Sally Metsuyanim
- Department of Pediatrics and Pediatric Stem Cell Research Institute, Sheba Medical Center, Israel
| | - Eithan Rom-Gross
- Department of Pediatric Surgery, Hadassah Medical Center, Hebrew University, Israel
| | - Yoram Mor
- Department of Urology, Sheba Medical Center, Israel.,Sackler School of Medicine, Tel Aviv University, Israel
| | - Eduard Fridman
- Department of Pathology, Sheba Medical Center, Israel.,Sackler School of Medicine, Tel Aviv University, Israel
| | - Itamar Goldstein
- Department of Pediatric Hemato-Oncology and Sheba Cancer Research Center, Sheba Medical Center, Israel
| | - Ninette Amariglio
- Department of Pediatric Hemato-Oncology and Sheba Cancer Research Center, Sheba Medical Center, Israel.,Sackler School of Medicine, Tel Aviv University, Israel
| | - Gideon Rechavi
- Department of Pediatric Hemato-Oncology and Sheba Cancer Research Center, Sheba Medical Center, Israel.,Sackler School of Medicine, Tel Aviv University, Israel
| | - Gilmor Keshet
- Department of Pediatric Hemato-Oncology and Sheba Cancer Research Center, Sheba Medical Center, Israel
| | - Benjamin Dekel
- Department of Pediatrics and Pediatric Stem Cell Research Institute, Sheba Medical Center, Israel.,Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
50
|
Karner CM, Dietrich MF, Johnson EB, Kappesser N, Tennert C, Percin F, Wollnik B, Carroll TJ, Herz J. Lrp4 regulates initiation of ureteric budding and is crucial for kidney formation--a mouse model for Cenani-Lenz syndrome. PLoS One 2010; 5:e10418. [PMID: 20454682 PMCID: PMC2861670 DOI: 10.1371/journal.pone.0010418] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/09/2010] [Indexed: 12/21/2022] Open
Abstract
Background Development of the kidney is initiated when the ureteric bud (UB) branches from the Wolffian duct and invades the overlying metanephric mesenchyme (MM) triggering the mesenchymal/epithelial interactions that are the basis of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric bud formation. Methods and Principal Findings We have used gene targeting to create an Lrp4 null mouse line. The mutation results in early embryonic lethality with a subpenetrant phenotype of kidney agenesis. Ureteric budding is delayed with a failure to stimulate the metanephric mesenchyme in a timely manner, resulting in failure of cellular differentiation and resulting absence of kidney formation in the mouse as well as comparable malformations in humans with Cenani-Lenz syndrome. Conclusion Lrp4 is a multi-functional receptor implicated in the regulation of several molecular pathways, including Wnt and Bmp signaling. Lrp4−/− mice show a delay in ureteric bud formation that results in unilateral or bilateral kidney agenesis. These data indicate that Lrp4 is a critical regulator of UB branching and lack of Lrp4 results in congenital kidney malformations in humans and mice.
Collapse
Affiliation(s)
- Courtney M. Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Martin F. Dietrich
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Eric B. Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Natalie Kappesser
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christian Tennert
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ferda Percin
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bernd Wollnik
- Center for Molecular Medicine Cologne (CMMC) and Institute of Human Genetics, University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas J. Carroll
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|