1
|
Fathi Shaheen MN, Ahmed NI, Elmahdy EM. Epidemiological surveillance of astrovirus, norovirus, rotavirus, and enterovirus in sewage (2022-2023) in Giza, Egypt. JOURNAL OF WATER AND HEALTH 2025; 23:587-601. [PMID: 40448462 DOI: 10.2166/wh.2025.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/07/2025] [Indexed: 06/02/2025]
Abstract
The majority of people with enterically transmitted viruses excrete significant amounts of the virus in their feces for several days or weeks. Therefore, viruses causing diarrhea could be detected in the feces of infected persons and wastewater. In this study, the presence of human astrovirus (AstV), norovirus (NoV), rotavirus (RV), and enterovirus (EntV) was analyzed by real-time RT-PCR in raw sewage (n = 96), treated sewage (n = 96) and diarrheal stool samples (n = 200). Overall, 92.7% (89/96) of raw sewage samples and 48% (46/96) of treated sewage tested positive for at least one virus. The highest detection rates of the four viruses in raw sewage were observed in the winter season. Overall, the mean concentration of the four viruses was 7.3 log10 in raw and 4.8 log10 in treated wastewater, for a total removal of 34% of viral loads. In clinical samples, the most commonly detected virus was EntV followed by RV, NoV, and AstV. The mean concentrations of the four viruses in clinical samples ranged between 2.5 × 101 and 9.86 × 107 GC/g. The results presented here demonstrated that the environmental surveillance of entric viruses in sewage is a useful tool for the study of their transmission dynamics in humans and their molecular epidemiology.
Collapse
Affiliation(s)
- Mohamed Nasr Fathi Shaheen
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Centre, 12622 Dokki, Cairo, Egypt E-mail:
| | - Nehal Ismail Ahmed
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Elmahdy Mohamed Elmahdy
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Centre, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
2
|
Esseili MA, Narwankar R, Hooda R, Costantini V, Estes MK, Vinjé J, Kassem II. Human intestinal enteroids for evaluating the persistence of infectious human norovirus in raw surface freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178707. [PMID: 39914318 DOI: 10.1016/j.scitotenv.2025.178707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Globally, human norovirus (HuNoV) is the leading cause of foodborne illnesses. Norovirus transmission to fresh produce can occur via several sources, including contaminated irrigation water. HuNoV RNA has been detected in freshwater resources, but knowledge about virus infectivity is limited due to a historical lack of a HuNoV cell culture. Recently, HuNoV was shown to replicate in human intestinal enteroids (HIE). The objective of this study was to use HIE to evaluate the persistence of infectious HuNoV in raw (i.e. biologically active) surface freshwater. The virus was spiked into freshwater microcosms sampled from three freshwater ponds and then incubated inside an environmental chamber at 20-15 °C and 50-80 % relative humidity (day-night) and 12 h photoperiod. The water was tested for infectious HuNoV, intact HuNoV capsids, indigenous bacteria, and other water quality parameters over a period of 2 weeks. The persistence of infectious HuNoV in the three freshwater microcosms ranged from ≤1 day to ≥7 days. Decay rates for RNA from intact HuNoV capsids ranged from 0.04 to 0.54/day, predicting a 4.2 to 57.5 days, respectively for 1 log reduction. The intact virus showed a significant negative and positive linear relationship with indigenous bacteria and dissolved oxygen, respectively. Using multiple logistic regression, HuNoV RNA >4.4 log genomic equivalent/ml (Cycle threshold values <32) predicted higher probability of detecting infectious HuNoV in contaminated raw freshwater using HIE. Overall, our results provide valuable insights for enhancing quantitative microbial risk assessment models for pre-harvest agricultural water to understand the public health risks associated with the detection of HuNoV RNA in freshwater.
Collapse
Affiliation(s)
- Malak A Esseili
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA.
| | - Revati Narwankar
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA
| | - Riya Hooda
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Issmat I Kassem
- Center for Food Safety, University of Georgia, Griffin, GA 30223, USA
| |
Collapse
|
3
|
Race AS, Spoelstra J, Parker BL. Wastewater contaminants in a fractured bedrock aquifer and their potential use as enteric virus indicators. Appl Environ Microbiol 2024; 90:e0121323. [PMID: 38231263 PMCID: PMC10880619 DOI: 10.1128/aem.01213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024] Open
Abstract
Domestic wastewater is a source of persistent organic pollutants and pathogens to the aquatic environment, including groundwater aquifers. Wastewater contaminants include a variety of personal care products, pharmaceuticals, endocrine disrupters, bacteria, and viruses. Groundwater from 22 wells completed in a semi-confined to confined, fractured Silurian dolostone aquifer in southern Wellington County, Ontario, Canada, was analyzed for 14 organic wastewater contaminants (4 artificial sweeteners, 10 pharmaceuticals) as well as E. coli, total coliforms, and 6 human enteric viruses. Enteric viruses were detected in 8.6% of 116 samples, and at least one organic wastewater contaminant was detected in 82% of the wells (in order of decreasing detection frequency: acesulfame, ibuprofen, sulfamethoxazole, triclosan, carbamazepine, and saccharin). Virus indicator metrics [positive and negative predictive values (PPV, NPV), sensitivity, specificity] were calculated at the sample and well level for the organic wastewater compounds, E. coli, and total coliforms. Fecal bacteria were not good predictors of virus presence (PPV = 0%-8%). Of the potential chemical indicators, triclosan performed the best at the sample level (PPV = 50%, NPV = 100%), and ibuprofen performed the best at the well level (PPV = 60%, NPV = 67%); however, no samples had triclosan or ibuprofen concentrations above their practical quantification limits. Therefore, none of the compounds performed sufficiently well to be considered reliable for assessing the potential threat of enteric viruses in wastewater-impacted groundwater in this bedrock aquifer. Future studies need to evaluate the indicator potential of persistent organic wastewater contaminants in different types of aquifers, especially in fractured rock where heterogeneity is strong.IMPORTANCEAssessing the potential risk that human enteric viruses pose in groundwater aquifers used for potable water supply is complicated by several factors, including: (i) labor-intensive methods for the isolation and quantification of viruses in groundwater, (ii) the temporal variability of these viruses in domestic wastewater, and (iii) their potentially rapid transport in the subsurface, especially in fractured rock aquifers. Therefore, aquifer risk assessment would benefit from the identification of suitable proxy indicators of enteric viruses that are easier to analyze and less variable in wastewater sources. Traditional fecal indicators (e.g., E. coli and coliforms) are generally poor indicators of enteric viruses in groundwater. While many studies have examined the use of pharmaceutical and personal care products as tracers of domestic wastewater and fecal pollution in the environment, there is a paucity of data on the potential use of these chemical tracers as enteric virus indicators, especially in groundwater.
Collapse
Affiliation(s)
- Amy S. Race
- Morwick G360 Groundwater Research Institute, University of Guelph, Guelph, Ontario, Canada
- Now with: Tesla, Spring Creek, Nevada, USA
| | - John Spoelstra
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Beth L. Parker
- Morwick G360 Groundwater Research Institute, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Andani A, Bunge E, Kassianos G, Eeuwijk J, Mellou K, Van Damme P, Mukherjee P, Steffen R. Hepatitis A occurrence and outbreaks in Europe over the past two decades: A systematic review. J Viral Hepat 2023; 30:497-511. [PMID: 36825922 DOI: 10.1111/jvh.13821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Hepatitis A (HA) is a vaccine-preventable liver disease with >170 million new cases occurring yearly. In recent outbreaks in the USA, hospitalization and case-fatality ratios were >60% and ~1%, respectively. In Europe, endemicity persists and outbreaks continue to occur. We performed a systematic literature review to understand the changes in HA occurrence in Europe over the past two decades. PubMed and Embase were systematically searched for peer-reviewed articles published between 1 January 2001 and 14 April 2021 using terms covering HA, 11 selected European countries, outbreaks, outcomes and HA virus circulation. Here, we focus on HA occurrence and outbreaks in the five countries with the largest population and the most comprehensive vaccination recommendations: France, Germany, Italy, Spain and the UK; 118 reports included data for these five European countries. Notification rates (≤9.7/100,000 population) and percentages of men among cases (≤83.0%) peaked in 2017. The number of person-to-person-transmitted cases and outbreaks decreased in children but increased in other risk groups, such as men who have sex with men (MSM). Sexually transmitted outbreaks in MSM clustered around 2017. Travel-related outbreaks were few; the proportion of travel-related cases decreased during the past two decades, while the number of domestic cases increased. Despite the existing risk-based vaccination recommendations, HA transmission shifted in proportions from travelers and children to other risk groups, such as MSM and older age groups. Because a substantial proportion of the European population is susceptible to HA, adherence to existing recommendations should be monitored more closely, and enhanced vaccination strategies should be considered.
Collapse
Affiliation(s)
| | - Eveline Bunge
- Pallas Health Research and Consultancy, Rotterdam, the Netherlands
| | | | - Jennifer Eeuwijk
- Pallas Health Research and Consultancy, Rotterdam, the Netherlands
| | | | | | | | - Robert Steffen
- Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Centre for Travellers' Health, University of Zurich, Zurich, Switzerland.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas, Houston, Texas, USA
| |
Collapse
|
5
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ndzie Ondigui JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko’o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Orlandi L, Del Giudice C, Suffredini E, La Rosa G. Occurrence of Hepatitis A Virus in Water Matrices: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1054. [PMID: 36673812 PMCID: PMC9859052 DOI: 10.3390/ijerph20021054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hepatitis A is a common form of viral hepatitis. It is usually transmitted through the ingestion of contaminated food and water. This systematic review was carried out to summarise the overall prevalence of Hepatitis A virus (HAV) in different water matrices: untreated and treated wastewater, surface water, groundwater, drinking water, and others (e.g., irrigation water and floodwater). The literature search was performed in four databases: PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameters. A total of 200 prevalence data from 144 articles were included in this meta-analysis. The overall prevalence of HAV in water matrices was 16.7% (95% CI: 13.4−20.3). The prevalence for individual matrix was as follows: 31.4% (95% CI: 23.0−40.4) untreated wastewater, 18.0% (95% CI: 9.5−28.2) treated wastewater, 15.0% (95% CI: 10.1−20.5) surface water, 2.3% (95% CI: 0.1−6.0) in groundwater, 0.3% (95% CI: 0.0−1.7) in drinking water, and 8.5% (95% CI: 3.1−15.6) in other matrices. The prevalence was higher in low-income economies (29.0%). Africa and Eastern Mediterranean were the regions with higher HAV prevalence values. This study showed a high heterogeneity (I2 > 75%) with a significant publication bias (p value Egger test < 0.001). The results of this review suggest that water matrices could be an important route of HAV transmission even in industrialized countries, despite the lower prevalence compared to less industrialized countries, and the availability of advanced water management systems. More effective water/wastewater treatment strategies are needed in developing countries to limit the environmental circulation of HAV.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | | | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lidia Orlandi
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia Del Giudice
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
6
|
Graham KE, Anderson CE, Boehm AB. Viral pathogens in urban stormwater runoff: Occurrence and removal via vegetated biochar-amended biofilters. WATER RESEARCH 2021; 207:117829. [PMID: 34763278 DOI: 10.1016/j.watres.2021.117829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Urban runoff is one of the greatest sources of microbial pollution to surface waters. Biofilters can limit the impact of stormwater runoff on surface water quality by diverting runoff from receiving waters. However, our understanding of how biofilter design choices, including the addition of vegetation and geomedia, may impact the removal of pathogens is lacking. In this study, we characterized viruses (adenovirus, enterovirus, norovirus GII, crAssphage) in San Francisco Bay area urban runoff and assessed the removal of lab-cultured viruses (MS2, adenovirus 2, coxsackievirus B5) from biochar-amended biofilter mesocosms during challenge testing. We quantified viruses using (RT-)qPCR and F+ coliphage plaque assays. We found that all the pathogenic viruses targeted were found at low concentrations (adenovirus: all positive samples were <limit of quantification, enterovirus: <limit of quantification-1.9 × 102 gc/L, norovirus GII: <limit of quantification-1.2 × 102 gc/L) in San Francisco Bay area urban runoff and the presence of norovirus GII in runoff was associated with developed land use and decreased precipitation. Biofilters had variable success in removing adenovirus, enterovirus, and MS2 from runoff in laboratory-scale column experiments. In addition, there was no significant difference in the removal of each virus in vegetated versus non-vegetated biofilters, with the exception of MS2 which had slightly higher removal in vegetated biofilters (0.40 log10 units, Welch's t-test, p = 0.004). When comparing removal of human viruses and viral indicators, adenovirus and enterovirus were removed more efficiently (log10-removal adenovirus = 3.2; log10-removal enterovirus = 1.1) than indicator virus MS2 (log10-removal by RT-qPCR = 0.36, log10-removal by plaque assay = 0.36). These results provide evidence that MS2 may be a conservative indicator for human virus removal in biofiltration systems, but more work is needed to examine this relationship. Results from this study can help inform design choices regarding biofilters intended to improve water quality and our understanding of virus attenuation in biofiltration systems.
Collapse
Affiliation(s)
- Katherine E Graham
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Claire E Anderson
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
7
|
NGS Techniques Reveal a High Diversity of RNA Viral Pathogens and Papillomaviruses in Fresh Produce and Irrigation Water. Foods 2021; 10:foods10081820. [PMID: 34441597 PMCID: PMC8394881 DOI: 10.3390/foods10081820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples.
Collapse
|
8
|
Masachessi G, Prez VE, Michelena JF, Lizasoain A, Ferreyra LJ, Martínez LC, Giordano MO, Barril PA, Paván JV, Pisano MB, Farías AA, Isa MB, Ré VE, Colina R, Nates SV. Proposal of a pathway for enteric virus groups detection as indicators of faecal contamination to enhance the evaluation of microbiological quality in freshwater in Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143400. [PMID: 33199001 DOI: 10.1016/j.scitotenv.2020.143400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
An environmental survey was conducted in order to assess the frequency of detection of picobirnavirus (PBV), human adenovirus (HAdV) and infective enterovirus (iEV) as indicators of faecal contamination in freshwater, and to determine their potential as reporters of the presence of other enteric viruses, such as group A rotavirus (RVA). The study was carried out over a three-year period (2013-2015) in the San Roque Dam, Córdoba, Argentina. The overall frequency detection was 62.9% for PBV, 64.2% for HAdV and 70.4% for iEV. No significant differences were observed in the rates of detection for any of these viruses through the years studied, and a seasonal pattern was not present. Whenever there was RVA detection in the samples analyzed, there was also detection of iEV and/or HAdV and/or PBV. At least one of the viral groups analyzed was demonstrated in the 100% of the samples with faecal coliforms values within the guideline limits. In this setting, especially in those samples which reveal faecal indicator bacteria within the guideline limit, we propose to carry out a pathway, involving PBV, HAdV and iEV detection in order to enhance the evaluation of microbiological quality in freshwater in Argentina. The proposed methodological strategy could report faecal contamination in water, mainly of human origin, and the condition of the matrix to maintain viral viability. In addition, the viral groups selected could report the presence of RV.
Collapse
Affiliation(s)
- G Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina.
| | - V E Prez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - J F Michelena
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - A Lizasoain
- Laboratorio de Virología Molecular-Departamento de Ciencias Biológicas, Centro Universitario Regional del Litoral Norte-Universidad de la República, Salto, Uruguay
| | - L J Ferreyra
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - L C Martínez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M O Giordano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - P A Barril
- Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina; Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.), Expedicionarios del Desierto 1310, CP 8309 Centenario, Neuquén, Argentina
| | - J V Paván
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M B Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - A A Farías
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M B Isa
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - V E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - R Colina
- Laboratorio de Virología Molecular-Departamento de Ciencias Biológicas, Centro Universitario Regional del Litoral Norte-Universidad de la República, Salto, Uruguay
| | - S V Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
9
|
Brumfield KD, Cotruvo JA, Shanks OC, Sivaganesan M, Hey J, Hasan NA, Huq A, Colwell RR, Leddy MB. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. FRONTIERS IN WATER 2021; 3:626849. [PMID: 34263162 PMCID: PMC8274573 DOI: 10.3389/frwa.2021.626849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | | | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Jessica Hey
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
- CosmosID Inc., Rockville, MD, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| |
Collapse
|
10
|
Ishaq S, Sadiq R, Farooq S, Chhipi-Shrestha G, Hewage K. Investigating the public health risks of low impact developments at residential, neighbourhood, and municipal levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140778. [PMID: 32717466 PMCID: PMC7336927 DOI: 10.1016/j.scitotenv.2020.140778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/04/2023]
Abstract
Low Impact Developments (LIDs) employ a series of vegetative techniques to retain rainfall close to the site of origin. Although LIDs offer sustainable runoff management, these infrastructures can be considered a risk to public health due to the presence of pathogens in the runoff and human exposure to contaminated water held in and transported by LIDs. The objective of this study is to examine the disease burden of Gastrointestinal illness (GI) from exposure to LIDs at the residential, neighbourhood, and municipal levels. The authors conducted a meta-analysis of literature on three water features: (1) harvested rainwater obtained from LIDs, (2) surface water, and (3) floodwater. A set of 32 studies were systematically selected to collect values of risks of infection and expressed as the disease burden, i.e. disability adjusted life years (DALYs). The results showed that the percentage of GI illness exceeding the health guidelines were high for harvested rainwater, i.e. 22% of annual disease burden exceeded the WHO guidelines (0.001 DALYs/1000 persons), and 2% exceeded the US EPA guidelines (5.75 DALYs/1000 bathers). Among the six exposures for harvested rainwater, exposure to spray irrigation, exceeded US EPA guidelines whereas; five exposures, i.e. flushing, hosing, daily shower, spray irrigation, and children playing, surpassed the WHO guidelines. Considering LID treatment, the values of annual disease burden from all the selected barriers were below US EPA guidelines however, these values exceeded the WHO guidelines for three barriers i.e. water plaza, grass swale, and open storage ponds. These findings provide a broader perspective of the disease burden associated with LIDs and emphasise to consider the type of exposures and required treatment barriers for developing LID infrastructures in urban areas.
Collapse
Affiliation(s)
- Sadia Ishaq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Shaukat Farooq
- King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Gyan Chhipi-Shrestha
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
11
|
Kumar M, Thakur AK, Mazumder P, Kuroda K, Mohapatra S, Rinklebe J, Ramanathan A, Cetecioglu Z, Jain S, Tyagi VK, Gikas P, Chakraborty S, Tahmidul Islam M, Ahmad A, Shah AV, Patel AK, Watanabe T, Vithanage M, Bibby K, Kitajima M, Bhattacharya P. Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2020; 1:100001. [PMID: 34977840 PMCID: PMC7456799 DOI: 10.1016/j.hazl.2020.100001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 05/16/2023]
Abstract
Increased concern has recently emerged pertaining to the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aquatic environment during the current coronavirus disease 2019 (COVID-19) pandemic. While infectious SARS-CoV-2 has yet to be identified in the aquatic environment, the virus potentially enters the wastewater stream from patient excretions and a precautionary approach dictates evaluating transmission pathways to ensure public health and safety. Although enveloped viruses have presumed low persistence in water and are generally susceptible to inactivation by environmental stressors, previously identified enveloped viruses persist in the aqueous environment from days to several weeks. Our analysis suggests that not only the surface water, but also groundwater, represent SARS-CoV-2 control points through possible leaching and infiltrations of effluents from health care facilities, sewage, and drainage water. Most fecally transmitted viruses are highly persistent in the aquatic environment, and therefore, the persistence of SARS-CoV-2 in water is essential to inform its fate in water, wastewater and groundwater and subsequent human exposure.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Alok Kumar Thakur
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 9390398, Japan
| | - Sanjeeb Mohapatra
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, University of Wuppertal, Wuppertal 42285, Germany
- Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, Republic of Korea
| | - Al Ramanathan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE100 44 Stockholm, Sweden
| | - Sharad Jain
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Petros Gikas
- School of Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Sudip Chakraborty
- Department of IngegneriaModellisticaElettronica&Sistemistica,University of Calabria, Via P. Bucci, Cubo 42/a, 87036 Rende (CS), Italy
| | - M Tahmidul Islam
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
- Department of Environmental Technology, Wageningen University and Research (WUR), The Netherlands
| | - Anil V Shah
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India
| | - Arbind Kumar Patel
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| |
Collapse
|
12
|
Janahi EM, Mustafa S, Parkar SFD, Naser HA, Eisa ZM. Detection of Enteric Viruses and Bacterial Indicators in a Sewage Treatment Center and Shallow Water Bay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186483. [PMID: 32899918 PMCID: PMC7559856 DOI: 10.3390/ijerph17186483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
Abstract
The incidence of enteric viruses in treated wastewater and their potential release into the environment or use for agriculture are very critical matters in public health. In our study, PCR (polymerase chain reaction) analysis of enteric viruses was performed on 59 samples of influents and effluents collected from Tubli wastewater treatment plant (Water Pollution Control Center (WPCC)) and Tubli Bay, where the effluents were discharged, in Kingdom of Bahrain during two sampling periods. Four clinically essential waterborne enteric viruses were examined: enterovirus (EV), hepatitis A virus (HAV), astroviruses (AV), and rotaviruses (RV) and compared to standard bacterial and bacteriophages indicators of fecal pollution. Detection rates of EV, AV, HAV, and RV in the influent samples were 100%, 75%, 12.5%, and 12.5%, respectively, while 50% of the effluent samples from Tubli WPCC contained only EV RNA. None of the tested enteric viruses could be detected in any of the samples collected directly from Tubli Bay. Effluent samples from Tubli plant did not show significant seasonal differences. Since detection of enteric viruses genome does not necessarily indicate infectivity, the infectivity of these viruses was evaluated through isolation and growth of indictor bacteria and bacteriophages. High concentration of fecal bacteriological indicators was detected in all effluents samples (100%): 3.20 × 103 cfu/mL for E. coli, 1.32 × 103 cfu/mL for Salmonella spp., and 1.92 × 103 cfu/mL for Shigella spp. E. coli and Salmonella specific bacteriophages were also detected in the effluent samples in high titers. The combined results of PCR and bacterial enumeration point to a probable public health risk via the use of these wastewaters in agriculture or their discharge into the sea. Continuous surveillance of viral and bacterial prevalence and their resistance to sewage disinfection procedures could contribute to a better control of risks associated with the recycling of effluent wastewater and its release into the environment.
Collapse
Affiliation(s)
- Essam M. Janahi
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain; (S.M.); (S.F.D.P.); (H.A.N.)
- Correspondence:
| | - Sakina Mustafa
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain; (S.M.); (S.F.D.P.); (H.A.N.)
| | - Saba F. D. Parkar
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain; (S.M.); (S.F.D.P.); (H.A.N.)
| | - Humood A. Naser
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain; (S.M.); (S.F.D.P.); (H.A.N.)
| | - Zaki M. Eisa
- The National Center for Disease Prevention and Control, Jazan 82722-2476, Saudi Arabia;
| |
Collapse
|
13
|
Environmental and Adaptive Changes Necessitate a Paradigm Shift for Indicators of Fecal Contamination. Microbiol Spectr 2020. [DOI: 10.1128/microbiolspec.erv-0001-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
Changes in the occurrence, distribution, and seasonal variation of waterborne pathogens due to global climate change may increase the risk of human exposure to these microorganisms, thus heightening the need for more reliable surveillance systems. Routine monitoring of drinking water supplies and recreational waters is performed using fecal indicator microorganisms, such as
Escherichia coli
,
Enterococcus
spp., and coliphages. However, the presence and numbers of these indicators, especially
E. coli
and
Enterococcus
spp., do not correlate well with those of other pathogens, especially enteric viruses, which are a major cause of waterborne outbreaks associated with contaminated water and food, and recreational use of lakes, ponds, rivers, and estuarine waters. For that reason, there is a growing need for a surveillance system that can detect and quantify viral pathogens directly in water sources to reduce transmission of pathogens associated with fecal transmission. In this review, we present an updated overview of relevant waterborne enteric viruses that we believe should be more commonly screened to better evaluate water quality and to determine the safety of water use and reuse and of epidemiological data on viral outbreaks. We also discuss current methodologies that are available to detect and quantify these viruses in water resources. Finally, we highlight challenges associated with virus monitoring. The information presented in this review is intended to aid in the assessment of human health risks due to contact with water sources, especially since current environmental and adaptive changes may be creating the need for a paradigm shift for indicators of fecal contamination.
Collapse
|
14
|
Bozkurt H, Phan-Thien KY, van Ogtrop F, Bell T, McConchie R. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Crit Rev Food Sci Nutr 2020; 61:116-138. [PMID: 32008374 DOI: 10.1080/10408398.2020.1719383] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Foodborne enteric viruses, in particular HuNoV and HAV, are the most common cause of the berry-linked viral diseases, and outbreaks around the world, and have become an important concern for health authorities. Despite the increased importance of berry fruits as a vehicle for foodborne viruses, there is limited information concerning the fate of foodborne viruses in the berry supply chain from farm to consumer. A comprehensive understanding of berry-associated viral outbreaks - with a focus on contamination sources, persistence, survival, and the effects of current postharvest and processing interventions and practices - is essential for the development of effective preventative strategies to reduce risk of illness. The purpose of this paper is twofold; (i) to critically review the published literature on the current state of knowledge regarding berry-associated foodborne viral outbreaks and the efficiency of berry processing practices and (ii) to identify and prioritize research gaps regarding practical and effective mechanism to reduce viral contamination of berries. The review found that fecally infected food handlers were the predominant source of preharvest and postharvest pathogenic viral contamination. Current industrial practices applied to fresh and frozen berries demonstrated limited efficacy for reducing the viral load. While maintaining best practice personal and environmental hygiene is a key intervention, the optimization of processing parameters (i.e., freezing, frozen storage, and washing) and/or development of alternative processing technologies to induce sufficient viral inactivation in berries along with retaining sensory and nutritional quality, is also an important direction for further research.
Collapse
Affiliation(s)
- Hayriye Bozkurt
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Kim-Yen Phan-Thien
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Floris van Ogtrop
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Tina Bell
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Robyn McConchie
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Suffredini E, Le Q, Di Pasquale S, Pham T, Vicenza T, Losardo M, To K, De Medici D. Occurrence and molecular characterization of enteric viruses in bivalve shellfish marketed in Vietnam. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Deng S, Yan X, Zhu Q, Liao C. The utilization of reclaimed water: Possible risks arising from waterborne contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113020. [PMID: 31421574 DOI: 10.1016/j.envpol.2019.113020] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 05/04/2023]
Abstract
Increasing interest of seeking substitutable water resources accrues from shortage of freshwater. One of the options considered is reclaimed water (also designated as recycled water) that has been widely used in daily life. Although reclaimed water can serve as a feasible reliever of water pressure, attention about its technologies and potential risks is growing in the meantime. Most established wastewater treatment plants (WWTPs) predate many new contaminants, which means treatment processes cannot ensure to dislodge certain contaminants completely from origin water. Furthermore, a wide range of factors, such as seasons and influent variations, affect occurrence and concentration of reclaimed water-borne contaminants, making research about quality of reclaimed water especially significant. Many reclaimed water-borne contaminants, including biological and chemical contaminants, are toxic to human health, and complex wastewater matrix may aggravate water quality of concern. The widespread use of reclaimed water continues to be a concern on agriculture, ecological environment and human health. This study aims to: 1) provide a critical review about occurrence and profiles of diverse contaminants in the treated reclaimed water, 2) discuss the possibility to avoid the secondary pollution in reuse of reclaimed water, and 3) reveal the prospective consequences of using reclaimed water on agriculture, ecological environment and human health.
Collapse
Affiliation(s)
- Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| |
Collapse
|
17
|
Sunger N, Hamilton KA, Morgan PM, Haas CN. Comparison of pathogen-derived 'total risk' with indicator-based correlations for recreational (swimming) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30614-30624. [PMID: 29644614 DOI: 10.1007/s11356-018-1881-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
Typical recreational water risk to swimmers is assessed using epidemiologically derived correlations by means of fecal indicator bacteria (FIB). It has been documented that concentrations of FIB do not necessarily correlate well with protozoa and viral pathogens, which pose an actual threat of illness and thus sometimes may not adequately assess the overall microbial risks from water resources. Many of the known pathogens have dose-response relationships; however, measuring water quality for all possible pathogens is impossible. In consideration of a typical freshwater receiving secondarily treated effluent, we investigated the level of consistency between the indicator-derived correlations and the sum of risks from six reference pathogens using a quantitative microbial risk assessment (QMRA) approach. Enterococci and E. coli were selected as the benchmark FIBs, and norovirus, human adenovirus (HAdV), Campylobacter jejuni, Salmonella enterica, Cryptosporidium spp., and Giardia spp. were selected as the reference pathogens. Microbial decay rates in freshwater and uncertainties in exposure relationships were considered in developing our analysis. Based on our exploratory assessment, the total risk was found within the range of risk estimated by the indicator organisms, with viral pathogens as dominant risk agents, followed by protozoan and bacterial pathogens. The risk evaluated in this study captured the likelihood of gastrointestinal illnesses only, and did not address the overall health risk potential of recreational waters with respect to other disease endpoints. Since other highly infectious pathogens like hepatitis A and Legionella spp. were not included in our analysis, these estimates should be interpreted with caution.
Collapse
Affiliation(s)
- Neha Sunger
- Department of Health, West Chester University, 855 South New Street, West Chester, PA, 19383, USA.
| | - Kerry A Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 251 Curtis Hall, 3141 Chestnut St, Philadelphia, PA, 19104, USA
| | - Paula M Morgan
- Department of Health, West Chester University, 855 South New Street, West Chester, PA, 19383, USA
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 251 Curtis Hall, 3141 Chestnut St, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Wen X, Zheng H, Yuan F, Zhu H, Kuang D, Shen Z, Lu Y, Yuan Z. Comparative Study of Two Methods of Enteric Virus Detection and Enteric Virus Relationship with Bacterial Indicator in Poyang Lake, Jiangxi, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183384. [PMID: 31547457 PMCID: PMC6765907 DOI: 10.3390/ijerph16183384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/01/2023]
Abstract
Currently, water contaminated with fecal matter poses a threat to public health and safety. Thus, enteric viruses are tested for as a part of water quality indicator assays; however, enteric viruses have not yet been listed in the criteria. Effective and sensitive methods for detecting enteric viruses are required in order to increase water safety. This study utilized enteric viruses as possible alternative indicators of water quality to examine fresh water in six sites in Poyang Lake, Nanchang, Jiangxi Province. The presence of norovirus geno-groups II (NoV GII), enteroviruses (EoV) and adenoviruses (AdV) were determined using Tianjin's protocol and Hawaii's protocol during a six month period from 2016-2017. The former used an electropositive material method for viral concentration and Taqman-q reverse transcription polymerase chain reaction (RT-PCR) to detect enteric viruses; while the latter used a filtration-based method for viral concentration and RT-PCR for enteric virus detection. There is a statistically significant difference between Tianjin's method and Hawaii's method for the detection of enteric viruses, such as NoV GII, EoV, and AdV (n = 36, p < 0.001). The enteric viruses showed no significant positive correlation with bacteria indicators (n = 36, p > 0.05). These data stress the need for additional indicators when establishing water quality systems, and the possibility of using enteric viruses as water quality indicators. It has become essential to improve shortcomings in order to search for an adequate method to detect enteric viruses in water and to implement such method in water quality monitoring.
Collapse
Affiliation(s)
- Xiaotong Wen
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| | - Huilie Zheng
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| | - Fang Yuan
- Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
| | - Hui Zhu
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| | - Duyi Kuang
- Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
| | - Zhiqiang Shen
- Tianjin Institute of Health and Environmental Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China.
| | - Yuanan Lu
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
- Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
| | - Zhaokang Yuan
- School of Public Health, Nanchang University, Nanchang, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang 330006, China.
| |
Collapse
|
19
|
Lun JH, Crosbie ND, White PA. Genetic diversity and quantification of human mastadenoviruses in wastewater from Sydney and Melbourne, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:305-312. [PMID: 31030137 DOI: 10.1016/j.scitotenv.2019.04.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 05/27/2023]
Abstract
Human mastadenoviruses (HAdVs) are DNA viruses that can cause a wide range of clinical diseases, including gastroenteritis, respiratory illnesses, conjunctivitis, and in more severe cases hepatitis, pancreatitis and disseminated diseases. HAdV infections are generally asymptomatic or self-limiting, but can cause adverse outcomes within vulnerable populations. Since most HAdV serotypes replicate within the human gastrointestinal tract, high levels of HAdV DNA are excreted into wastewater systems. In this study, we identified the genetic diversity of HAdV at a population level using wastewater samples collected from Sydney and Melbourne from 2016 to 2017, with the use of next generation sequencing (NGS) technologies. In addition, HAdV DNA levels were quantified using quantitative polymerase chain reaction (qPCR) based methods to better understand the health risks involved if wastewater contamination occurs. An average of 1.8 × 107 genome copies of HAdV DNA was detected in one litre of wastewater collected in Sydney and Melbourne, over the two-year study period. A total of six major groups of HAdV were identified in wastewater samples using MiSeq, which included 19 different serotypes. Of those, the most prevalent was F41 (83.5%), followed by F40 (11.0%) and A31 (3.7%). In contrast, five groups of HAdV were identified in clinical samples with F41 as the most dominant serotype, (52.5% of gastroenteritis cases), followed by C1 and C2 (each responsible for 15.0%), and B3 was the fourth most common serotype (7.5%). This study demonstrated the practicability of using amplicon based NGS to identify HAdV diversity and quantify HAdV genome levels in environmental water samples, as well as broadening our current understanding of circulating HAdV in the Australian population.
Collapse
Affiliation(s)
- Jennifer H Lun
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia.
| | - Nicholas D Crosbie
- Melbourne Water Corporation, Docklands, VIC, Australia; School of Civil and Environmental Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Shaheen MNF, Elmahdy EM, Chawla-Sarkar M. Quantitative PCR-based identification of enteric viruses contaminating fresh produce and surface water used for irrigation in Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21619-21628. [PMID: 31129895 DOI: 10.1007/s11356-019-05435-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Fresh produce irrigated with surface water that may contain pathogens such as enteric viruses can lead to outbreaks of foodborne viral illnesses. In the current study, we performed real-time PCR (qPCR) to monitor the presence of enteric viruses such as human adenoviruses (HAdVs), hepatitis A virus (HAV), rotavirus group A (RVA), and norovirus GI (NoV GI) in surface water and fresh produce that were grown using this surface water in Egypt. Samples were collected on four occasions from different sites located in the Delta and in Greater Cairo, Egypt. Of the 32 water samples and 128 fresh produce samples, 27/32 (84.3%) and 99/128 (77.3%), respectively, were positive for at least one virus. HAdV (30/32) with a mean viral load = 1.5 × 107 genome copies/L (GC/L) was the most commonly detected virus in water, followed by RVA (16/32, with a mean viral load = 2.7 × 105 GC/L), HAV (11/32, with a mean viral load = 1.2 × 104 GC /L), and NoV GI (10/32, with a mean viral load = 3.5 × 103 GC/L). Additionally, HAdV (71/128, with a mean viral load = 9.8 × 105 GC/g) was also the most commonly detected virus in the fresh produce, followed by NoV GI (43/128, with a mean viral load = 4.5 × 103 GC/g), HAV (33/128, with a mean viral load = 6.4 × 103 GC/g), and RVA (25/128, with a mean viral load = 1.5 × 104 GC/g). Our results indicate that fresh produce may be contaminated with a wide range of enteric viruses, and these viruses may originate from virus-contaminated irrigation water. Moreover, this fresh produce may serve as a potential vector for the transmission of viral foodborne illnesses. These findings are important for future risk assessment analysis related to water/foodborne viruses. Graphical abstract . Please provide caption for Graphical AbstractGraphical abstract showing sample collection and processing.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Elmahdy M Elmahdy
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Scheme-XM, Kolkata, West Bengal, India
| |
Collapse
|
21
|
Goh SG, Saeidi N, Gu X, Vergara GGR, Liang L, Fang H, Kitajima M, Kushmaro A, Gin KYH. Occurrence of microbial indicators, pathogenic bacteria and viruses in tropical surface waters subject to contrasting land use. WATER RESEARCH 2019; 150:200-215. [PMID: 30528917 PMCID: PMC7112093 DOI: 10.1016/j.watres.2018.11.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 05/21/2023]
Abstract
Fecal indicator bacteria, such as Escherichia coli (E.coli) and Enterococcus, have been widely used to indicate the presence of pathogens. However, the suitability of fecal indicator bacteria to represent health risks is still being challenged, particularly in tropical aquatic environments. The objective of this study is to understand the occurrence and prevalence of indicators and pathogens in areas with contrasting land use, as well as to identify the major correlations between indicators, pathogens and environmental parameters. The spatial and temporal variation of indicators and pathogens was studied to examine the distribution patterns for areas with different land use, and the impact of seasonal changes on microbial populations. A total of 234 water samples were sampled for two years from reservoirs and their tributaries, and tested for fecal indicator bacteria, coliphages, human specific markers, pathogenic bacteria and viruses. The prevalence of indicators and pathogens in reservoirs were generally low, while relatively high concentrations were observed in tributaries to varying degrees. Of the enteric viruses, norovirus GII was among the most prevalent and had the highest concentration. Although strong correlations were found between indicators, only relatively weak correlations were found between indicators and pathogens. The results in this study showed that none of the bacteria/phage indicators were universal predictors for pathogens. Inclusion of the alternative indicators, Methanobrevibacter smithii, Bacteroides and human polyomaviruses (HPyVs) to monitoring programs could help to determine whether the fecal source was human. The microbial distribution patterns allow the classification of sampling sites to different clusters and thus, help to identify sites which have poor water quality. This approach will be useful for water quality management to pinpoint factors that influence water quality and help to prioritize sites for restoration of water quality.
Collapse
Affiliation(s)
- Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Nazanin Saeidi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Xiaoqiong Gu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | | | - Liang Liang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Haoming Fang
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ariel Kushmaro
- School of Material Science and Engineering, Nanyang Technological University, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore.
| |
Collapse
|
22
|
Aguirre BP, Masachessi G, Ferreyra LJ, Biganzoli P, Grumelli Y, Panero MD, Wassaf MM, Pisano MB, Welter A, Mangeaud A, Ré V, Nates SV, Pavan JV. Searching variables to assess recreational water quality: the presence of infectious human enterovirus and its correlation with the main variables of water pollution by multivariate statistical approach in Córdoba, Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6586-6601. [PMID: 30628001 DOI: 10.1007/s11356-019-04124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Surface waters are used by local populations for different purposes, such as recreational activities, water source for human and animal consumption, and irrigation among others, which lead to the need for management strategies on water health and associated risks. During this study, we investigated physicochemical parameters, fecal coliform bacteria, and infectious human enterovirus detection to determine the water quality in different beaches (categorized as an urban area, non-urban areas, and an intermediate position) from San Roque Dam, in Argentina. Multivariate techniques were applied. Principal component analysis allowed identification of subgroup of variables responsible for the water quality. A cluster analysis and multivariate analysis of variance showed the urban beach as the highest pollution area. The following variables (measured at the urban beach) would be enough to describe the quality of the aquatic body: nitrites, fecal coliforms, total phosphorous, and infectious human enterovirus. The infectious human enterovirus was an independent variable detected in 69.1% of the samples showing a steady frequency of detection during the whole period studied and could identify human fecal contaminations as a source of water pollution. The selected variables would contribute to water quality regarding the risk for human health using San Roque dam waters for recreational propose.
Collapse
Affiliation(s)
- Belquis Pamela Aguirre
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Obispo Trejo 323, X5000IYH, Cordoba, Argentina
| | - Gisela Masachessi
- Instituto de Virología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo s/n Ciudad Universitaria, X5000GYA, Córdoba, Argentina
| | - Leonardo Jesús Ferreyra
- Instituto de Virología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo s/n Ciudad Universitaria, X5000GYA, Córdoba, Argentina
- Departamento de Salud, Universidad Nacional de La Rioja, Av. Luis M. de la Fuente S/N, Ciudad Universitaria de la Ciencia y de la Técnica, F5300, La Rioja, Argentina
| | - Patricia Biganzoli
- Instituto de Virología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo s/n Ciudad Universitaria, X5000GYA, Córdoba, Argentina
| | - Yanina Grumelli
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Obispo Trejo 323, X5000IYH, Cordoba, Argentina
| | - Mariangeles Diaz Panero
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Obispo Trejo 323, X5000IYH, Cordoba, Argentina
| | - Maribel Martinez Wassaf
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Obispo Trejo 323, X5000IYH, Cordoba, Argentina
| | - María Belén Pisano
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Obispo Trejo 323, X5000IYH, Cordoba, Argentina
| | - Adriana Welter
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Obispo Trejo 323, X5000IYH, Cordoba, Argentina
| | - Arnaldo Mangeaud
- Departamento de Bioestadística. Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av Velez Sarsfield 1611, 5000, Córdoba, Argentina
| | - Viviana Ré
- Instituto de Virología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo s/n Ciudad Universitaria, X5000GYA, Córdoba, Argentina
| | - Silvia Viviana Nates
- Instituto de Virología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo s/n Ciudad Universitaria, X5000GYA, Córdoba, Argentina
| | - Jorge Victorio Pavan
- Instituto de Virología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo s/n Ciudad Universitaria, X5000GYA, Córdoba, Argentina.
| |
Collapse
|
23
|
Prez VE, Martínez LC, Victoria M, Giordano MO, Masachessi G, Ré VE, Pavan JV, Colina R, Barril PA, Nates SV. Tracking enteric viruses in green vegetables from central Argentina: potential association with viral contamination of irrigation waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:665-671. [PMID: 29758423 DOI: 10.1016/j.scitotenv.2018.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Consumption of green vegetable products is commonly viewed as a potential risk factor for infection with enteric viruses. The link between vegetable crops and fecally contaminated irrigation water establishes an environmental scenario that can result in a risk to human health. The aim of this work was to analyze the enteric viral quality in leafy green vegetables from Córdoba (Argentina) and its potential association with viral contamination of irrigation waters. During July-December 2012, vegetables were collected from peri-urban green farms (n = 19) and its corresponding urban river irrigation waters (n = 12). Also, urban sewage samples (n = 6) were collected to analyze the viral variants circulating in the community. Viruses were eluted and concentrated by polyethylene glycol precipitation and then were subject to Reverse Transcription Polymerase Chain Reaction to assess the genome presence of norovirus, rotavirus and human astrovirus. The concentrates were also inoculated in HEp-2 (Human Epidermoid carcinoma strain #2) cells to monitor the occurrence of infective enterovirus. The frequency of detection of the viral groups in sewage, irrigation water and crops was: norovirus 100%, 67% and 58%, rotavirus 100%, 75% and 5%, astrovirus 83%, 75% and 32% and infective enterovirus 50%, 33% and 79%, respectively. A similar profile in sewage, irrigation water and green vegetables was observed for norovirus genogroups (I and II) distribution as well as for rotavirus and astrovirus G-types. These results provide the first data for Argentina pointing out that green leafy vegetables are contaminated with a broad range of enteric viruses and that the irrigation water would be a source of contamination. The presence of viral genomes and infective particles in food that in general suffer minimal treatment before consumption underlines that green crops can act as potential sources of enteric virus transmission. Public intervention in the use of the river waters as irrigation source is needed.
Collapse
Affiliation(s)
- V E Prez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n - Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina.
| | - L C Martínez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n - Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - M Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - M O Giordano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n - Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - G Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n - Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - V E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n - Ciudad Universitaria, CP 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - J V Pavan
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n - Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | - R Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - P A Barril
- Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina; Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.), Expedicionarios del Desierto 1310, CP 8309 Centenario, Neuquén, Argentina
| | - S V Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n - Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
24
|
Dias J, Pinto RN, Vieira CB, de Abreu Corrêa A. Detection and quantification of human adenovirus (HAdV), JC polyomavirus (JCPyV) and hepatitis A virus (HAV) in recreational waters of Niterói, Rio de Janeiro, Brazil. MARINE POLLUTION BULLETIN 2018; 133:240-245. [PMID: 30041311 DOI: 10.1016/j.marpolbul.2018.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 05/09/2023]
Abstract
This study evaluated the impact of sewage discharge in recreational coastal marine environments of Niteroi, Rio de Janeiro, Brazil, over a six-month period by the detection of waterborne enteric viruses. Ten-liter water samples were collected in four beaches from January to July 2017. Viruses were concentrated by an organic flocculation and human adenoviruses (HAdV), polyomavirus (JCPyV), and Hepatitis A virus (HAV) detected by qPCR. Forty-eight water samples were collected, being 43% positive for HAdV and 23% for JCPyV; only one sample was positive for HAV. Viruses were detected in all sampling sites, including in areas suitable for bathing according to the current bacterial standards. The results herein provide an overview of the viral contamination of beaches used for recreational purposes. The viral presence in the sampled areas indicates the need for more rigid effluent discharge controls in these areas, as sewage represents a possible transmission risk for waterborne viral diseases.
Collapse
Affiliation(s)
- Juliana Dias
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | - Renan Novaes Pinto
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | - Carmen Baur Vieira
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | - Adriana de Abreu Corrêa
- Laboratory of Environmental Virology, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Jacobsen S, Höhne M, Marques AM, Beslmüller K, Bock CT, Niendorf S. Co-circulation of classic and novel astrovirus strains in patients with acute gastroenteritis in Germany. J Infect 2018; 76:457-464. [PMID: 29454018 DOI: 10.1016/j.jinf.2018.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVES In order to analyze the molecular epidemiology of human astroviruses (HAstV) in Germany, a retrospective long-term study was performed to characterize circulating human astrovirus in patients with acute gastroenteritis in Germany. METHODS A total of 2877 stool samples, collected between January 2010 and December 2015 from sporadic cases and outbreaks of acute gastroenteritis were retrospectively analyzed for astrovirus. A two-step PCR algorithm was developed and used to identify and characterize human astrovirus infections. RESULTS Overall, 143 samples were astrovirus-positive (5.0%). Astrovirus infection was most frequently detectable in samples from children of 3-4 years (15%) followed by children of 1-2 years (8.6%), detection rates in adults were lower (1%-3.6%). A high number (71.3%) of co-infections, mainly with noro- or rotaviruses, were identified. Genotyping revealed that at least ten genotypes from all four human MAstV species were circulating in the study population. HAstV-1 was predominant in different age groups. Novel HAstV (MLB and VA genotypes) were also circulating in Germany. CONCLUSION Our findings give new insights into the circulation and genetic diversity of human astroviruses in patients with acute gastroenteritis. The novel HAstV-MLB and -VA genotypes could be characterized firstly in Germany while the analysis showed that these viruses have been dispersed in Germany since 2011 as a causative agent of acute gastroenteritis.
Collapse
Affiliation(s)
- Sonja Jacobsen
- Department of Infectious Diseases, Unit Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany; Consultant Laboratory for Noroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Marina Höhne
- Department of Infectious Diseases, Unit Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany; Consultant Laboratory for Noroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andreas Mas Marques
- Department of Infectious Diseases, Unit Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany; Consultant Laboratory for Noroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Klara Beslmüller
- Department of Infectious Diseases, Unit Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany; Consultant Laboratory for Noroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - C-Thomas Bock
- Department of Infectious Diseases, Unit Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Sandra Niendorf
- Department of Infectious Diseases, Unit Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany; Consultant Laboratory for Noroviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
26
|
Fernandez-Cassi X, Timoneda N, Martínez-Puchol S, Rusiñol M, Rodriguez-Manzano J, Figuerola N, Bofill-Mas S, Abril JF, Girones R. Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:870-880. [PMID: 29108696 DOI: 10.1016/j.scitotenv.2017.08.249] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 04/14/2023]
Abstract
The application of next-generation sequencing (NGS) techniques for the identification of viruses present in urban sewage has not been fully explored. This is partially due to a lack of reliable and sensitive protocols for studying viral diversity and to the highly complex analysis required for NGS data processing. One important step towards this goal is finding methods that can efficiently concentrate viruses from sewage samples. Here the application of a virus concentration method based on skimmed milk organic flocculation (SMF) using 10L of sewage collected in different seasons enabled the detection of many viruses. However, some viruses, such as human adenoviruses, could not always be detected using metagenomics, even when quantitative PCR (qPCR) assessments were positive. A targeted metagenomic assay for adenoviruses was conducted and 59.41% of the obtained reads were assigned to murine adenoviruses. However, up to 20 different human adenoviruses (HAdV) were detected by this targeted assay being the most abundant HAdV-41 (29.24%) and HAdV-51 (1.63%). To improve metagenomics' sensitivity, two different protocols for virus concentration were comparatively analysed: an ultracentrifugation protocol and a lower-volume SMF protocol. The sewage virome contained 41 viral families, including pathogenic viral species from families Caliciviridae, Adenoviridae, Astroviridae, Picornaviridae, Polyomaviridae, Papillomaviridae and Hepeviridae. The contribution of urine to sewage metavirome seems to be restricted to a few specific DNA viral families, including the polyomavirus and papillomavirus species. In experimental infections with sewage in a rhesus macaque model, infective human hepatitis E and JC polyomavirus were identified. Urban raw sewage consists of the excreta of thousands of inhabitants; therefore, it is a representative sample for epidemiological surveillance purposes. The knowledge of the metavirome is of significance to public health, highlighting the presence of viral strains that are circulating within a population while acting as a complex matrix for viral discovery.
Collapse
Affiliation(s)
- X Fernandez-Cassi
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain.
| | - N Timoneda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, University of Barcelona and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - S Martínez-Puchol
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - M Rusiñol
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - J Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - N Figuerola
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - S Bofill-Mas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - J F Abril
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, University of Barcelona and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - R Girones
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
27
|
Sidhu JPS, Sena K, Hodgers L, Palmer A, Toze S. Comparative enteric viruses and coliphage removal during wastewater treatment processes in a sub-tropical environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:669-677. [PMID: 29103646 DOI: 10.1016/j.scitotenv.2017.10.265] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 04/14/2023]
Abstract
Microbiological safety of reclaimed water is one of the most important issues in managing potential health risks related to wastewater recycling. Presence and removal of human adenovirus (HAdV), human polyomavirus (HPyV), human torque teno virus (HTtV) and somatic coliphage family Microviridae in three wastewater treatment plants (WWTP) in sub-tropical Brisbane, Australia was investigated. All three WWTPs employ activated sludge process with added on Bardenpho process for nutrient removal. HPyV, HAdV, HTtV and Microviridae were consistently detected in the influent (105 to 106 Genomic copies (GC) L-1) and secondary treated effluent (102 to 103GCL-1). The results of this study suggest that, under appropriate conditions, WWTPs with activated sludge process in sub-tropical climate could be an effective treatment barrier with >3 log10 removal of enteric virus. The geometric mean of pooled data for each virus from all sites showed the highest removal for HPyV (3.65 log10) and lowest for HAdV (2.79 log10) which was statistically significant (p=0.00001). Whereas, the removal rate of HTtV and Microviridae was identical (2.81 log10). A poor correlation between the presence of enteric virus in influent or effluent with routinely monitored physicochemical parameters suggests limited use of physicochemical parameters as predictors of enteric virus presence. High prevalence of HAdV in influent and effluent combined with comparatively low removal suggest that it could be used as a model microorganism for determining enteric virus removal efficacy. Additional tertiary treatment may be required prior to effluent reuse for non-potable purposes or discharge into the recreational waters to prevent exposure of people to health hazards.
Collapse
Affiliation(s)
- J P S Sidhu
- CSIRO Land and Water, Ecoscience Precinct, 41 Boggo Road, Brisbane 4102, Australia; School of Public Health, University of Queensland, Herston Road, Brisbane, Qld 4006, Australia.
| | - K Sena
- Department of Forestry, University of Kentucky, Lexington, KY, USA
| | - L Hodgers
- CSIRO Land and Water, Ecoscience Precinct, 41 Boggo Road, Brisbane 4102, Australia
| | - A Palmer
- CSIRO Land and Water, Ecoscience Precinct, 41 Boggo Road, Brisbane 4102, Australia
| | - S Toze
- CSIRO Land and Water, Ecoscience Precinct, 41 Boggo Road, Brisbane 4102, Australia; School of Public Health, University of Queensland, Herston Road, Brisbane, Qld 4006, Australia
| |
Collapse
|
28
|
Mabasa VV, Meno KD, Taylor MB, Mans J. Environmental Surveillance for Noroviruses in Selected South African Wastewaters 2015-2016: Emergence of the Novel GII.17. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:16-28. [PMID: 28779481 DOI: 10.1007/s12560-017-9316-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Norovirus (NoV) GII.4 is the predominant genotype associated with gastroenteritis pandemics and new strains emerge every 2-3 years. Between 2008 and 2011, environmental studies in South Africa (SA) reported NoVs in 63% of the sewage-polluted river water samples. The aim of this study was to assess whether wastewater samples could be used for routine surveillance of NoVs, including GII.4 variants. From April 2015 to March 2016, raw sewage and effluent water samples were collected monthly from five wastewater treatment plants in SA. A total of 108 samples were screened for NoV GI and GII using real-time RT-qPCR. Overall 72.2% (78/108) of samples tested positive for NoVs with 4.6% (5/108) GI, 31.5% (34/108) GII and 36.1% (39/108) GI + GII strains being detected. Norovirus concentrations ranged from 1.02 × 102 to 3.41 × 106 genome copies/litre for GI and 5.00 × 103 to 1.31 × 106 genome copies/litre for GII. Sixteen NoV genotypes (GI.2, GI.3, GI.4, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GII.9, GII.10, GII.14, GII.16, GII.17, GII.20, and GII.21) were identified. Norovirus GII.2 and GII.17 co-dominated and the majority of GII.17 strains clustered with the novel Kawasaki 2014 variant. Sewage surveillance facilitated detection of Kawasaki 2014 in SA, which to date has not been detected with surveillance in children with gastroenteritis <5 years of age. Combined surveillance in the clinical setting and environment appears to be a valuable strategy to monitor emergence of NoV strains in countries that lack NoV outbreak surveillance.
Collapse
Affiliation(s)
- V V Mabasa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa
| | - K D Meno
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa
| | - M B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa
| | - Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa.
| |
Collapse
|
29
|
Elucidating Waterborne Pathogen Presence and Aiding Source Apportionment in an Impaired Stream. Appl Environ Microbiol 2018; 84:AEM.02510-17. [PMID: 29305503 DOI: 10.1128/aem.02510-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Fecal indicator bacteria (FIB) are the basis for water quality regulations and are considered proxies for waterborne pathogens when conducting human health risk assessments. The direct detection of pathogens in water and simultaneous identification of the source of fecal contamination are possible with microarrays, circumventing the drawbacks to FIB approaches. A multigene target microarray was used to assess the prevalence of waterborne pathogens in a fecally impaired mixed-use watershed. The results indicate that fecal coliforms have improved substantially in the watershed since its listing as a 303(d) impaired stream in 2002 and are now near United States recreational water criterion standards. However, waterborne pathogens are still prevalent in the watershed, as viruses (bocavirus, hepatitis E and A viruses, norovirus, and enterovirus G), bacteria (Campylobacter spp., Clostridium spp., enterohemorrhagic and enterotoxigenic Escherichia coli, uropathogenic E. coli, Enterococcus faecalis, Helicobacter spp., Salmonella spp., and Vibrio spp.), and eukaryotes (Acanthamoeba spp., Entamoeba histolytica, and Naegleria fowleri) were detected. A comparison of the stream microbial ecology with that of sewage, cattle, and swine fecal samples revealed that human sources of fecal contamination dominate in the watershed. The methodology presented is applicable to a wide range of impaired streams for the identification of human health risk due to waterborne pathogens and for the identification of areas for remediation efforts.IMPORTANCE The direct detection of waterborne pathogens in water overcomes many of the limitations of the fecal indicator paradigm. Furthermore, the identification of the source of fecal impairment aids in identifying areas for remediation efforts. Multitarget gene microarrays are shown to simultaneously identify waterborne pathogens and aid in determining the sources of impairment, enabling further focused investigations. This study shows the use of this methodology in a historically impaired watershed in which total maximum daily load reductions have been successfully implemented to reduce risk. The results suggest that while the fecal indicators have been reduced more than 96% and are nearing recreational water criterion levels, pathogens are still detectable in the watershed. Microbial source tracking results show that additional remediation efforts are needed to reduce the impact of human sewage in the watershed.
Collapse
|
30
|
Fernandez-Cassi X, Timoneda N, Gonzales-Gustavson E, Abril JF, Bofill-Mas S, Girones R. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water. Int J Food Microbiol 2017. [PMID: 28646670 DOI: 10.1016/j.ijfoodmicro.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial food-borne diseases are still frequently reported despite the implementation of microbial quality legislation to improve food safety. Among all the microbial agents, viruses are the most important causative agents of food-borne outbreaks. The development and application of a new generation of sequencing techniques to test for viral contaminants in fresh produce is an unexplored field that allows for the study of the viral populations that might be transmitted by the fecal-oral route through the consumption of contaminated food. To advance this promising field, parsley was planted and grown under controlled conditions and irrigated using contaminated river water. Viruses polluting the irrigation water and the parsley leaves were studied by using metagenomics. To address possible contamination due to sample manipulation, library preparation, and other sources, parsley plants irrigated with nutritive solution were used as a negative control. In parallel, viruses present in the river water used for plant irrigation were analyzed using the same methodology. It was possible to assign viral taxons from 2.4 to 74.88% of the total reads sequenced depending on the sample. Most of the viral reads detected in the river water were related to the plant viral families Tymoviridae (66.13%) and Virgaviridae (14.45%) and the phage viral families Myoviridae (5.70%), Siphoviridae (5.06%), and Microviridae (2.89%). Less than 1% of the viral reads were related to viral families that infect humans, including members of the Adenoviridae, Reoviridae, Picornaviridae and Astroviridae families. On the surface of the parsley plants, most of the viral reads that were detected were assigned to the Dicistroviridae family (41.52%). Sequences related to important viral pathogens, such as the hepatitis E virus, several picornaviruses from species A and B as well as human sapoviruses and GIV noroviruses were detected. The high diversity of viral sequences found in the parsley plants suggests that irrigation on fecally-tainted food may have a role in the transmission of a wide diversity of viral families. This finding reinforces the idea that the best way to avoid food-borne viral diseases is to introduce good field irrigation and production practices. New strains have been identified that are related to the Picornaviridae and distantly related to the Hepeviridae family. However, the detection of a viral genome alone does not necessarily indicate there is a risk of infection or disease development. Thus, further investigation is crucial for correlating the detection of viral metagenomes in samples with the risk of infection. There is also an urgent need to develop new methods to improve the sensitivity of current Next Generation Sequencing (NGS) techniques in the food safety area.
Collapse
Affiliation(s)
- X Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain.
| | - N Timoneda
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - E Gonzales-Gustavson
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - J F Abril
- Computational Genomics Lab, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain; Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - S Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - R Girones
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
31
|
Köndgen S, Calvignac-Spencer S, Grützmacher K, Keil V, Mätz-Rensing K, Nowak K, Metzger S, Kiyang J, Lübke-Becker A, Deschner T, Wittig RM, Lankester F, Leendertz FH. Evidence for Human Streptococcus pneumoniae in wild and captive chimpanzees: A potential threat to wild populations. Sci Rep 2017; 7:14581. [PMID: 29109465 PMCID: PMC5674046 DOI: 10.1038/s41598-017-14769-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022] Open
Abstract
Habituation of wild great apes for tourism and research has had a significant positive effect on the conservation of these species. However, risks associated with such activities have been identified, specifically the transmission of human respiratory viruses to wild great apes, causing high morbidity and, occasionally, mortality. Here, we investigate the source of bacterial-viral co-infections in wild and captive chimpanzee communities in the course of several respiratory disease outbreaks. Molecular analyses showed that human respiratory syncytial viruses (HRSV) and human metapneumoviruses (HMPV) were involved in the etiology of the disease. In addition our analysis provide evidence for coinfection with Streptococcus (S.) pneumoniae. Characterisation of isolates from wild chimpanzees point towards a human origin of these bacteria. Transmission of these bacteria is of concern because - in contrast to HRSV and HMPV - S. pneumoniae can become part of the nasopharyngeal flora, contributing to the severity of respiratory disease progression. Furthermore these bacteria have the potential to spread to other individuals in the community and ultimately into the population. Targeted vaccination programs could be used to vaccinate habituated great apes but also human populations around great ape habitats, bringing health benefits to both humans and wild great apes.
Collapse
Affiliation(s)
- Sophie Köndgen
- Epidemiology of highly pathogenic microorganisms, Robert Koch-Institute, 13353, Berlin, Germany.,Institute of Medical Virology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | - Kim Grützmacher
- Epidemiology of highly pathogenic microorganisms, Robert Koch-Institute, 13353, Berlin, Germany
| | - Verena Keil
- Epidemiology of highly pathogenic microorganisms, Robert Koch-Institute, 13353, Berlin, Germany
| | | | - Kathrin Nowak
- Epidemiology of highly pathogenic microorganisms, Robert Koch-Institute, 13353, Berlin, Germany.,Department for Infectious Disease Epidemiology, Robert-Koch-Institute, 13353, Berlin, Germany
| | - Sonja Metzger
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, 04103, Leipzig, Germany.,Evolutionary Ecology, Leipniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - John Kiyang
- Limbe Wildlife Centre, Limbe, SW Region, Cameroon
| | - Antina Lübke-Becker
- Berlin Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163, Berlin, Germany
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, 04103, Leipzig, Germany
| | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, 04103, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan, Ivory Coast
| | - Felix Lankester
- Limbe Wildlife Centre, Limbe, SW Region, Cameroon.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Fabian H Leendertz
- Epidemiology of highly pathogenic microorganisms, Robert Koch-Institute, 13353, Berlin, Germany.
| |
Collapse
|
32
|
El-Senousy WM, Abou-Elela SI. Assessment and Evaluation of an Integrated Hybrid Anaerobic-Aerobic Sewage Treatment System for the Removal of Enteric Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:287-303. [PMID: 28197973 DOI: 10.1007/s12560-017-9286-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 05/02/2023]
Abstract
The capability of a cost-effective and a small size decentralized pilot wastewater treatment plant (WWTP) to remove enteric viruses such as rotavirus, norovirus genogroup I (GGI), norovirus genogroup II (GGII), Hepatitis E virus (HEV), and adenovirus was studied. This pilot plant is an integrated hybrid anaerobic/aerobic setup which consisted of anaerobic sludge blanket (UASB), biological aerated filter (BAF), and inclined plate settler (IPS). Both the UASB and BAF are packed with a non-woven polyester fabric (NWPF). Results indicated that the overall log10 reductions of enteric viruses' genome copies through the whole system were 3.1 ± 1, 3.3 ± 0.5, and 2.6 ± 0.9 log10 for rotavirus, norovirus GGI, and adenovirus, respectively. Reduction efficiency for both norovirus GGII and HEV after the different treatment steps could not be calculated because there were no significant numbers of positive samples for both viruses. The overall reduction of rotavirus infectious units through the whole system was 2.2 ± 0.8 log10 reduction which is very close to the overall log10 reduction of adenovirus infectious units through the whole system which was 2.1 ± 0.8 log10 reduction. There was no considerable difference in the removal efficiency for different rotavirus G and P types. Adenovirus 41 was the only type detected in the all positive samples. Although the pilot WWTP investigated is cost effective, has a small footprint, does not need a long distance network pipes, and easy to operate, its efficiency to remove enteric viruses is comparable with the conventional centralized WWTPs.
Collapse
Affiliation(s)
- Waled Morsy El-Senousy
- Environmental Virology Lab., Department of Water Pollution Research, National Research Centre (NRC), 33 El-Buhouth st., Dokki, Giza, P.O. 12622, Egypt.
| | - Sohair Imam Abou-Elela
- Wastewater Treatment Lab., Department of Water Pollution Research, National Research Centre (NRC), 33 El-Buhouth st., Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
33
|
Osuolale O, Okoh A. Human enteric bacteria and viruses in five wastewater treatment plants in the Eastern Cape, South Africa. J Infect Public Health 2017; 10:541-547. [DOI: 10.1016/j.jiph.2016.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/10/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
|
34
|
Tian P, Yang D, Shan L, Wang D, Li Q, Gorski L, Lee BG, Quiñones B, Cooley MB. Concurrent Detection of Human Norovirus and Bacterial Pathogens in Water Samples from an Agricultural Region in Central California Coast. Front Microbiol 2017; 8:1560. [PMID: 28871242 PMCID: PMC5566579 DOI: 10.3389/fmicb.2017.01560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens and human norovirus (HuNoV) are major cause for acute gastroenteritis caused by contaminated food and water. Public waterways can become contaminated from a variety of sources and flood after heavy rain events, leading to pathogen contamination of produce fields. We initiated a survey of several public watersheds in a major leafy green produce production region of the Central California Coast to determine the prevalence of HuNoV as well as bacterial pathogens. Moore swabs were used to collect environmental samples bi-monthly at over 30 sampling sites in the region. High prevalence of HuNoV and bacterial pathogens were detected in environmental water samples in the region. The overall detection rates of HuNoV, O157 Shiga toxin-producing Escherichia coli (STEC), non-O157 STEC, Salmonella, and Listeria were 25.58, 7.91, 9.42, 59.65, and 44.30%, respectively. The detection rates of Salmonella and L. monocytogenes were significantly higher in the spring. Fall and spring had elevated detection rates of O157 STEC. The overall detection rates of non-O157 STEC in the fall were lower than the other seasons but not significant. The overall detection rates of HuNoV were highest in fall, followed by spring and winter, with summer being lowest and significantly lower than other seasons. This study presented the first study of evaluating the correlation between the detection rate of HuNoV and the detection rates of four bacterial pathogens from environmental water. Overall, there was no significant difference in HuNoV detection rates between samples testing positive or negative for the four bacterial pathogens tested. Pathogens in animal-impacted and human-impacted areas were investigated. There were significant higher detection rates in animal-impacted areas than that of human-impacted areas for bacterial pathogens. However, there was no difference in HuNoV detection rates between these two areas. The overall detection levels of generic E. coli and detection rate of HuNoV showed no correlation.
Collapse
Affiliation(s)
- Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - David Yang
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Lei Shan
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Dapeng Wang
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States.,MOST-USDA Joint Research Center for Food Safety and Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Qianqian Li
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States.,Department of Bioengineering, Shanghai Institute of TechnologyShanghai, China
| | - Lisa Gorski
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Bertram G Lee
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, AlbanyCA, United States
| |
Collapse
|
35
|
Sidhu JPS, Ahmed W, Palmer A, Smith K, Hodgers L, Toze S. Optimization of sampling strategy to determine pathogen removal efficacy of activated sludge treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19001-19010. [PMID: 28656581 DOI: 10.1007/s11356-017-9557-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2017] [Indexed: 05/27/2023]
Abstract
Large-scale wastewater schemes rely on multi-barrier approach for the production of safe and sustainable recycled water. In multi-barrier wastewater reclamation systems, conventional activated sludge process (ASP) often constitutes a major initial treatment step. The main aim of this research was to determine most appropriate sampling approach to establish pathogen removal efficacy of ASP. The results suggest that ASP is capable of reducing human adenovirus (HAdV) and polyomavirus (HPyV) by up to 3 log10. The virus removal data suggests that HAdV removal is comparable to somatic bacteriophage belonging to Microviridae family. Due to the high removal of Escherichia coli (>3 log10) and very poor correlation with the enteric virus, it is not recommended that E. coli be used as a surrogate for enteric virus removal. The results also demonstrated no statistically significant differences (t test, P > 0.05) in calculated log removal values (LRVs) for HAdV, HPyV, and Microviridae from samples collected on hydraulic retention time (HRT) or simultaneous paired samples collected for influent and effluent. This indicates that a more practical approach of simultaneous sampling for influent and effluent could be used to determine pathogen removal efficiency of ASP. The results also suggest that a minimum of 10, preferably 20 samples, are required to fully capture variability in the removal of virus. In order to cover for the potential seasonal prevalence of viruses such as norovirus and rotavirus, sampling should be spread across all seasons.
Collapse
Affiliation(s)
- Jatinder P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia.
- School of Public Health, University of Queensland, Herston Road, Brisbane, QLD, 4006, Australia.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Andrew Palmer
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Kylie Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Leonie Hodgers
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
- School of Public Health, University of Queensland, Herston Road, Brisbane, QLD, 4006, Australia
| |
Collapse
|
36
|
Shih YJ, Tao CW, Tsai HC, Huang WC, Huang TY, Chen JS, Chiu YC, Hsu TK, Hsu BM. First detection of enteric adenoviruses genotype 41 in recreation spring areas of Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017. [PMID: 28639027 DOI: 10.1007/s11356-017-9513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Human adenoviruses (HAdVs) are DNA viruses found in recreational water, such as water parks and swimming pools. Human adenovirus 41 (HAdV-41) is the most common serotype detected and is a leading cause of acute diarrheal disease. The focus of this study is to determine the prevalence of HAdVs in hot springs. Of 57 samples collected from four different geological sites, 16 samples have shown evidence of HAdVs (28.1%). HAdV-41 and porcine adenovirus 5 (PAdV-5) were the two types isolated, with a greater frequency of HAdV-41, which in other settings has been associated with acute diarrhea. The highest occurrence was found in private hot tubs/Yuya (37.5%), followed by an outlet of hot springs (30.8%); public pools and foot pools shared the same detection rate of 21.4% (3/14). However, there was no evidence supporting a link between water quality indicators and HAdV detection rate. From a phylogenic analysis and BLAST against the NCBI database, it was concluded that HAdV-41 obtained from hot spring areas are closely related to global environmental genotypes.
Collapse
Affiliation(s)
- Yi-Jia Shih
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, Republic of China
| | - Chi-Wei Tao
- Section of Respiratory Therapy, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Hsin-Chi Tsai
- School of Medicine, Tzu-Chi University, Hualien, Taiwan, Republic of China
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan, Republic of China
| | - Wen-Chien Huang
- Department of Medicine, Mackay Medicine College, Taipei, Taiwan, Republic of China
- Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
- Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, Republic of China
| | - Tung-Yi Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, Republic of China
| | - Jung-Sheng Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, Republic of China.
| |
Collapse
|
37
|
Assis ASF, Otenio MH, Drumond BP, Fumian TM, Miagostovich MP, da Rosa E Silva ML. Optimization of the skimmed-milk flocculation method for recovery of adenovirus from sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:163-168. [PMID: 28094048 DOI: 10.1016/j.scitotenv.2017.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 05/21/2023]
Abstract
Return of treated sludge to the environment poses concerns and has stimulated the development of studies on viral monitoring in this matrix, in order to assess its potential risks for public health. Human adenovirus (HAdV) has been identified as a putative viral marker of faecal contamination due to its stability and resistance to the sewage treatment process. The aim of this study was to optimize the organic flocculation procedure in order to establish an appropriate methodology for HAdV recovery from sewage sludge samples. Four protocols (A-D) have been proposed, with changes in the initial sample dilution, in the stirring time and in the final concentration of skimmed-milk. A single sludge sample was obtained in Wastewater Treatment Plant (WWTP) and divided into aliquots. In each protocol, three aliquots were inoculated with HAdV and bacteriophage PP7 and a non-inoculated one was used as negative control. Viral load and recovery rate were determined by quantitative PCR. HAdV recovery rate varied between the protocols tested (p=0.016) and the best result was obtained through the protocol C. In order to confirm this result a field study with activated, thickened and digested sludge samples was carried out. Different types of sludge were obtained in two WWTPs and processed using protocol C. HAdV was detected in all samples, with a similar or higher viral load than those obtained with other concentration techniques already applied to sludge. Protocol C proved to be really efficient, with the advantage of showing low cost and practicability in routine laboratories.
Collapse
Affiliation(s)
- Andrêssa S F Assis
- Laboratory of Virology, Microbiology Department, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Marcelo Henrique Otenio
- Brazilian Agricultural Research Corporation, Embrapa Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Betânia P Drumond
- Laboratory of Virology, Microbiology Department, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Tulio M Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marize P Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luzia da Rosa E Silva
- Laboratory of Virology, Microbiology Department, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
38
|
Iaconelli M, Muscillo M, Della Libera S, Fratini M, Meucci L, De Ceglia M, Giacosa D, La Rosa G. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:79-88. [PMID: 27682315 DOI: 10.1007/s12560-016-9263-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/23/2016] [Indexed: 05/22/2023]
Abstract
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.
Collapse
Affiliation(s)
- M Iaconelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - M Muscillo
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - M Fratini
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Meucci
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - M De Ceglia
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - D Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino, Turin, Italy
| | - G La Rosa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
39
|
Grützmacher K, Keil V, Leinert V, Leguillon F, Henlin A, Couacy-Hymann E, Köndgen S, Lang A, Deschner T, Wittig RM, Leendertz FH. Human quarantine: Toward reducing infectious pressure on chimpanzees at the Taï Chimpanzee Project, Côte d'Ivoire. Am J Primatol 2017; 80. [PMID: 28095600 PMCID: PMC7161855 DOI: 10.1002/ajp.22619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/02/2022]
Abstract
Due to their genetic relatedness, great apes are highly susceptible to common human respiratory pathogens. Although most respiratory pathogens, such as human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), rarely cause severe disease in healthy human adults, they are associated with considerable morbidity and mortality in wild great apes habituated to humans for research or tourism. To prevent pathogen transmission, most great ape projects have established a set of hygiene measures ranging from keeping a specific distance, to the use of surgical masks and establishment of quarantines. This study investigates the incidence of respiratory symptoms and human respiratory viruses in humans at a human‐great ape interface, the Taï Chimpanzee Project (TCP) in Côte d'Ivoire, and consequently, the effectiveness of a 5‐day quarantine designed to reduce the risk of potential exposure to human respiratory pathogens. To assess the impact of quarantine as a preventative measure, we monitored the quarantine process and tested 262 throat swabs for respiratory viruses, collected during quarantine over a period of 1 year. Although only 1 subject tested positive for a respiratory virus (HRSV), 17 subjects developed symptoms of infection while in quarantine and were subsequently kept from approaching the chimpanzees, preventing potential exposure in 18 cases. Our results suggest that quarantine—in combination with monitoring for symptoms—is effective in reducing the risk of potential pathogen exposure. This research contributes to our understanding of how endangered great apes can be protected from human‐borne infectious disease.
Collapse
Affiliation(s)
- Kim Grützmacher
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Verena Keil
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | - Vera Leinert
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Floraine Leguillon
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany.,University Montpellier 2, Montpellier, France
| | - Arthur Henlin
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany.,University Montpellier 2, Montpellier, France
| | - Emmanuel Couacy-Hymann
- Laboratoire National d'appui au Développement Agricole/Laboratoire Central de Pathologie Animale, Bingerville, Côte d'Ivoire
| | - Sophie Köndgen
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | - Alexander Lang
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - Fabian H Leendertz
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
40
|
Waterborne Viruses and F-Specific Coliphages in Mixed-Use Watersheds: Microbial Associations, Host Specificities, and Affinities with Environmental/Land Use Factors. Appl Environ Microbiol 2017; 83:AEM.02763-16. [PMID: 27836843 DOI: 10.1128/aem.02763-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml-1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml-1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets.
Collapse
|
41
|
Fauvel B, Ogorzaly L, Cauchie HM, Gantzer C. Interactions of infectious F-specific RNA bacteriophages with suspended matter and sediment: Towards an understanding of FRNAPH distribution in a river water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:960-968. [PMID: 27668848 DOI: 10.1016/j.scitotenv.2016.09.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The association of viruses with settling particles is certainly a major process controlling the spread of viral pollution in surface water and sediment. To better understand the viral distribution in a river system, the behavior of F-specific RNA bacteriophages (FRNAPHs) was investigated in relationship with the suspended solids and sediment. The partitioning of phage particles (free or associated with solids) in surface water and the attachment capabilities of eight distinct strains of phages to sediment were studied in lab experiments. In situ observations were also performed with the genotyping of 166 individual plaques of FRNAPHs isolated from surface water and sediment. The results reported here demonstrate a variation of the status of infectious phages as a function of the hydro-climatological conditions. Phage-solid association seems to mainly occur during the peak of rainfall-runoff events but also to a certain extent during the recession phase compared to low flow conditions. The transfer of phages from the water column to sediment may occur at this time. Furthermore, the ability of FRNAPHs to interact with sediment was established for six strains out of eight, belonging to genogroups II, III and IV. A similar dynamic was observed for strains within a same genogroup despite different intensity of attachment and inactivation rates for strains of genogroups III and IV. The latter results match the in situ observations in the water and sediment compartments of the studied area. Infectious FRNAPH genogroup II was more abundant in sediment than in surface water. Its capability to sorb to sediment and its higher persistence in the environment compared to genogroups III and IV were the two main explanations. Together, lab and in situ experiments produce an overall vision of the mechanisms governing FRNAPH distribution among the water column and riverbed sediment.
Collapse
Affiliation(s)
- Blandine Fauvel
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN); 41, rue du Brill, L-4422 Belvaux, Luxembourg; Université de Lorraine, Laboratoire de Chimie, Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, Nancy F-54000, France; CNRS, LCPME, UMR 7564, Nancy F-54000, France
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN); 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN); 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Christophe Gantzer
- Université de Lorraine, Laboratoire de Chimie, Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, Nancy F-54000, France; CNRS, LCPME, UMR 7564, Nancy F-54000, France
| |
Collapse
|
42
|
Dienus O, Sokolova E, Nyström F, Matussek A, Löfgren S, Blom L, Pettersson TJR, Lindgren PE. Norovirus Dynamics in Wastewater Discharges and in the Recipient Drinking Water Source: Long-Term Monitoring and Hydrodynamic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10851-10858. [PMID: 27649279 DOI: 10.1021/acs.est.6b02110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Norovirus (NoV) that enters drinking water sources with wastewater discharges is a common cause of waterborne outbreaks. The impact of wastewater treatment plants (WWTPs) on the river Göta älv (Sweden) was studied using monitoring and hydrodynamic modeling. The concentrations of NoV genogroups (GG) I and II in samples collected at WWTPs and drinking water intakes (source water) during one year were quantified using duplex real-time reverse-transcription polymerase chain reaction. The mean (standard deviation) NoV GGI and GGII genome concentrations were 6.2 (1.4) and 6.8 (1.8) in incoming wastewater and 5.3 (1.4) and 5.9 (1.4) log10 genome equivalents (g.e.) L-1 in treated wastewater, respectively. The reduction at the WWTPs varied between 0.4 and 1.1 log10 units. In source water, the concentration ranged from below the detection limit to 3.8 log10 g.e. L-1. NoV GGII was detected in both wastewater and source water more frequently during the cold than the warm period of the year. The spread of NoV in the river was simulated using a three-dimensional hydrodynamic model. The modeling results indicated that the NoV GGI and GGII genome concentrations in source water may occasionally be up to 2.8 and 1.9 log10 units higher, respectively, than the concentrations measured during the monitoring project.
Collapse
Affiliation(s)
- Olaf Dienus
- Ryhov County Hospital , Medical Services, Clinical Microbiology, SE-551 85 Jönköping, Sweden
- Linköping University , Department of Clinical and Experimental Medicine, Medical Microbiology, SE-581 85 Linköping, Sweden
| | - Ekaterina Sokolova
- Chalmers University of Technology , Department of Civil and Environmental Engineering, Water Environment Technology, SE-412 96 Gothenburg, Sweden
| | - Fredrik Nyström
- Ryhov County Hospital , Medical Services, Clinical Microbiology, SE-551 85 Jönköping, Sweden
- Linköping University , Department of Clinical and Experimental Medicine, Medical Microbiology, SE-581 85 Linköping, Sweden
| | - Andreas Matussek
- Ryhov County Hospital , Medical Services, Clinical Microbiology, SE-551 85 Jönköping, Sweden
| | - Sture Löfgren
- Ryhov County Hospital , Medical Services, Clinical Microbiology, SE-551 85 Jönköping, Sweden
| | - Lena Blom
- Chalmers University of Technology , Department of Civil and Environmental Engineering, Water Environment Technology, SE-412 96 Gothenburg, Sweden
- City of Gothenburg , Department of Sustainable Waste and Water, Box 123, SE-424 23 Angered, Sweden
| | - Thomas J R Pettersson
- Chalmers University of Technology , Department of Civil and Environmental Engineering, Water Environment Technology, SE-412 96 Gothenburg, Sweden
| | - Per-Eric Lindgren
- Ryhov County Hospital , Medical Services, Clinical Microbiology, SE-551 85 Jönköping, Sweden
- Linköping University , Department of Clinical and Experimental Medicine, Medical Microbiology, SE-581 85 Linköping, Sweden
| |
Collapse
|
43
|
Reducing pathogens in combined sewer overflows using performic acid. Int J Hyg Environ Health 2016; 219:700-708. [DOI: 10.1016/j.ijheh.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 11/22/2022]
|
44
|
Grützmacher KS, Köndgen S, Keil V, Todd A, Feistner A, Herbinger I, Petrzelkova K, Fuh T, Leendertz SA, Calvignac-Spencer S, Leendertz FH. Codetection of Respiratory Syncytial Virus in Habituated Wild Western Lowland Gorillas and Humans During a Respiratory Disease Outbreak. ECOHEALTH 2016; 13:499-510. [PMID: 27436109 PMCID: PMC7088376 DOI: 10.1007/s10393-016-1144-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 05/11/2023]
Abstract
Pneumoviruses have been identified as causative agents in several respiratory disease outbreaks in habituated wild great apes. Based on phylogenetic evidence, transmission from humans is likely. However, the pathogens have never been detected in the local human population prior to or at the same time as an outbreak. Here, we report the first simultaneous detection of a human respiratory syncytial virus (HRSV) infection in western lowland gorillas (Gorilla gorilla gorilla) and in the local human population at a field program in the Central African Republic. A total of 15 gorilla and 15 human fecal samples and 80 human throat swabs were tested for HRSV, human metapneumovirus, and other respiratory viruses. We were able to obtain identical sequences for HRSV A from four gorillas and four humans. In contrast, we did not detect HRSV or any other classic human respiratory virus in gorilla fecal samples in two other outbreaks in the same field program. Enterovirus sequences were detected but the implication of these viruses in the etiology of these outbreaks remains speculative. Our findings of HRSV in wild but human-habituated gorillas underline, once again, the risk of interspecies transmission from humans to endangered great apes.
Collapse
Affiliation(s)
- Kim S Grützmacher
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Sophie Köndgen
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Verena Keil
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Angelique Todd
- World Wildlife Fund (WWF), Dzanga Sangha Protected Areas, Bayanga, Central African Republic
| | - Anna Feistner
- World Wildlife Fund (WWF), Dzanga Sangha Protected Areas, Bayanga, Central African Republic
| | | | - Klara Petrzelkova
- Institute of Vertebrate Biology, Academy of Sciences, Brno, 60365, Czech Republic
- Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Terrence Fuh
- World Wildlife Fund (WWF), Dzanga Sangha Protected Areas, Bayanga, Central African Republic
| | - Siv Aina Leendertz
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Sébastien Calvignac-Spencer
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Fabian H Leendertz
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany.
| |
Collapse
|
45
|
Fernandez-Cassi X, Silvera C, Cervero-Aragó S, Rusiñol M, Latif-Eugeni F, Bruguera-Casamada C, Civit S, Araujo RM, Figueras MJ, Girones R, Bofill-Mas S. Evaluation of the microbiological quality of reclaimed water produced from a lagooning system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16816-33. [PMID: 27194016 DOI: 10.1007/s11356-016-6812-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/02/2016] [Indexed: 05/07/2023]
Abstract
The use of lagooning as a complementary natural method of treating secondary effluents of wastewater treatment plants has been employed as an affordable and easy means of producing reclaimed water. However, using reclaimed water for some purposes, for example, for food irrigation, presents some risks if the effluents contain microbial pathogens. Classical bacterial indicators that are used to assess faecal contamination in water do not always properly indicate the presence of bacterial or viral pathogens. In the current study, the presence of faecal indicator bacteria (FIB), heterotrophic bacterial counts (HBC), pathogens and opportunistic pathogens, such as Legionella spp., Aeromonas spp., Arcobacter spp., free-living amoeba (FLA), several viral indicators (human adenovirus and polyomavirus JC) and viral pathogens (noroviruses and hepatitis E virus) were analysed for 1 year in inlet and outlet water to assess the removal efficiency of a lagooning system. We observed 2.58 (1.17-4.59) and 1.65 (0.15-3.14) log reductions in Escherichia coli (EC) and intestinal enterococci (IE), respectively, between the inlet and outlet samples. Genomic copies of the viruses were log reduced by 1.18 (0.24-2.93), 0.64 (0.12-1.97), 0.45 (0.04-2.54) and 0.72 (0.22-2.50) for human adenovirus (HAdV), JC polyomavirus (JCPyV) and human noroviruses (NoV GI and GII), respectively. No regrowth of opportunistic pathogens was observed within the system. FLA, detected in all samples, did not show a clear trend. The reduction of faecal pathogens was irregular with 6 out of 12 samples and 4 out of 12 samples exceeding the EC and IE values, specified in the Spanish legislation for reclaimed water (RD 1620/2007). This data evidences that there is a need for more studies to evaluate the removal mechanisms of lagooning systems in order to optimize pathogen reduction. Moreover, surveillance of water used to irrigate raw edible vegetables should be conducted to ensure the fulfilment of the microbial requirements for the production of safe reclaimed water.
Collapse
Affiliation(s)
- X Fernandez-Cassi
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - C Silvera
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - S Cervero-Aragó
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Water Hygiene, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
- ICC Water and Health, Vienna, Austria
| | - M Rusiñol
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - F Latif-Eugeni
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - C Bruguera-Casamada
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - S Civit
- Department of Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - R M Araujo
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - M J Figueras
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - R Girones
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - S Bofill-Mas
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
46
|
Krumbholz A, Egerer R, Braun H, Schmidtke M, Rimek D, Kroh C, Hennig B, Groth M, Sauerbrei A, Zell R. Analysis of an echovirus 18 outbreak in Thuringia, Germany: insights into the molecular epidemiology and evolution of several enterovirus species B members. Med Microbiol Immunol 2016; 205:471-83. [PMID: 27369854 DOI: 10.1007/s00430-016-0464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022]
Abstract
In October and November 2010, six children and one woman were presented with symptoms of aseptic meningitis in Jena, Thuringia, Germany. Enterovirus RNA was detected in the cerebrospinal fluid of all patients by RT-PCR, and preliminary molecular typing revealed echovirus 18 (E-18) as causative agent. Virus isolates were obtained from stool samples of three patients and several contact persons. Again, most isolates were typed as E-18. In addition, coxsackievirus B5 (CV-B5) and echovirus 25 (E-25) were found to co-circulate. As only few complete E-18 sequences are available in GenBank, the entire genomes of these isolates were determined using direct RNA-sequencing technology. We did not find evidence for recombination between E-18, E-25 or CV-B5 during the outbreak. Viral protein 1 gene sequences and the cognate 3D polymerase gene sequences of each isolate and GenBank sequences were analysed in order to define type-specific recombination groups (recogroups).
Collapse
Affiliation(s)
- Andi Krumbholz
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany. .,Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany. .,Institute of Medical Microbiology, Jena University Hospital, Jena, Germany. .,Medical Laboratory Dr. Krause and colleagues MVZ GmbH, Steenbeker Weg 23, 24106, Kiel, Germany.
| | - Renate Egerer
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany.,Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Heike Braun
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany
| | - Michaela Schmidtke
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany
| | - Dagmar Rimek
- Thuringian State Authority for Consumer Protection (TLV), Bad Langensalza, Germany
| | - Claudia Kroh
- Public Health Authority, City Council of Jena, Jena, Germany
| | - Bert Hennig
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany
| | - Roland Zell
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
47
|
Staggemeier R, Bortoluzzi M, Heck TMDS, Spilki FR, Almeida SEDM. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES. Rev Inst Med Trop Sao Paulo 2016; 57:299-303. [PMID: 26422153 PMCID: PMC4616914 DOI: 10.1590/s0036-46652015000400005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively.
Collapse
|
48
|
Presencia de virus entéricos en muestras de agua para el consumo humano en Colombia: desafíos de los sistemas de abastecimiento. BIOMEDICA 2016; 36:169-78. [DOI: 10.7705/biomedica.v36i0.2987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 03/29/2016] [Indexed: 11/21/2022]
Abstract
<p><strong>Introducción.</strong> El agua de consumo humano puede ser vehículo de transmisión de agentes patógenos. La detección de virus entéricos en estas muestras de agua es esencial para establecer las acciones adecuadas de control y prevención de las enfermedades asociadas.<br /><strong>Objetivo.</strong> Analizar los resultados del diagnóstico de virus entéricos en muestras de agua para el consumo humano recibidas en el Instituto Nacional de Salud y establecer su asociación con los datos sobre la calidad del agua en los municipios de Colombia.<br /><strong>Materiales y métodos.</strong> Se hizo un análisis descriptivo retrospectivo de los resultados obtenidos en la detección de rotavirus, enterovirus, virus de la hepatitis A y adenovirus, en muestras de agua recibidas para estudios complementarios en la investigación de brotes de hepatitis entérica, de enfermedad diarreica aguda y de enfermedades transmitidas por alimentos. Dicha información se correlacionó con los datos de la vigilancia de la calidad del agua municipal determinada según el índice de riesgo de la calidad del agua (IRCA).<br /><strong>Resultados.</strong> Se procesaron 288 muestras de 102 municipios de Colombia, de las cuales el 50,7 % fue positivo para algún virus: 26,73 %, para el virus de la hepatitis A; 20,48 %, para enterovirus y rotavirus, y 18,05 % para adenovirus. Se detectaron virus en 48,26 % de las muestras de agua no tratada y en 45,83 % de las de agua tratada. El IRCA no mostró correlación con la presencia de virus.<br /><strong>Conclusiones.</strong> La presencia de virus en el agua representa un riesgo para la salud pública. La prevención de la transmisión de virus por medio del agua requiere políticas para fortalecer los sistemas de suministro y para mejorar la vigilancia epidemiológica.</p>
Collapse
|
49
|
Tao CW, Hsu BM, Kao PM, Huang WC, Hsu TK, Ho YN, Lu YJ, Fan CW. Seasonal difference of human adenoviruses in a subtropical river basin based on 1-year monthly survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2928-36. [PMID: 26490890 DOI: 10.1007/s11356-015-5501-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/23/2015] [Indexed: 05/21/2023]
Abstract
In this study, the seasonal difference and the observable presence/absence of human adenovirus (HAdV) in the Puzih River basin in Taiwan was investigated. A total of 288 water samples were collected from 24 sites from March 2014 to February 2015. Human AdV analysis of sample was subjected to viral concentration using a GN-6 Metricel® filter, followed by DNA extraction, nested-PCR, and qPCR. Human AdV was detected in 34.3 % (99/288) of the entire river water sample. A higher percentage of HAdV (76.4 %) was obtained during the winter. The HAdV median concentration was relatively high in fall (1.4 × 10(3) copies/L) and winter (2.8 × 10(3) copies/L). Significant difference and correlation were found between the seasonal variation of HAdV and water quality parameters, including heterotrophic plate count, total coliform, water temperature, and turbidity. The most frequently identified HAdV (subgenus F) serotype was 41. Human AdV-41 is the main cause of gastroenteritis and should be considered for associated human health risk potential in the Puzih River basin.
Collapse
|
50
|
Prez VE, Gil PI, Temprana CF, Cuadrado PR, Martínez LC, Giordano MO, Masachessi G, Isa MB, Ré VE, Paván JV, Nates SV, Barril PA. Quantification of human infection risk caused by rotavirus in surface waters from Córdoba, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:220-9. [PMID: 26311578 DOI: 10.1016/j.scitotenv.2015.08.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 05/27/2023]
Abstract
Fecal contamination of water is a worrying problem because it is associated with the transmission of enteric pathogenic microorganisms that can cause many infectious diseases. In this study, an environmental survey was conducted to assess the level of viral contamination by viable enterovirus and rotavirus genome in two recreational rivers (Suquía and Xanaes) of Córdoba, Argentina. Quantitative microbial risk assessment (QMRA) was calculated to estimate the risk of rotavirus infection. Water sampling was carried out during a one-year period, the presence of total and fecal coliforms was determined and water samples were then concentrated for viral determination. Cell culture and indirect immunofluorescence were applied for enterovirus detection and RT-qPCR for rotavirus quantification. Coliform bacteria levels found in Suquía River often far exceeded the guideline limits for recreational waters. The Xanaes exhibited a lower level of bacterial contamination, frequently within the guideline limits. Enterovirus and rotavirus were frequently detected in the monitoring rivers (percentage of positive samples in Suquía: 78.6% enterovirus, 100% rotavirus; in Xanaes: 87.5% enterovirus, 18.7% rotavirus). Rotavirus was detected at a media concentration of 5.7×10(5) genome copies/L (gc/L) in the Suquía and 8.5×10(0)gc/L in the Xanaes. QMRA revealed high risk of rotavirus infection in the Suquía, at sampling points with acceptable and non-acceptable bacteria numbers. The Xanaes showed significantly lower health risk of rotavirus infection but it proved to be a public health hazard. The viral occurrence was not readily explained by the levels of bacteria indicators, thus viral monitoring should be included to determine microbiological water quality. These findings provide the first data of QMRA for recreational waters in Argentina and reveal the need for public awareness of the health implications of the use of the river waters.
Collapse
Affiliation(s)
- V E Prez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - P I Gil
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - C F Temprana
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
| | - P R Cuadrado
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - L C Martínez
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - M O Giordano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - G Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - M B Isa
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - V E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - J V Paván
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - S V Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - P A Barril
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n. Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|