1
|
Liu B, Wang Y, Shao L, Chen Y, Xu Z, Zhu L. Antiviral activity of Scutellaria baicalensis Georgi Extract against Getah virus in vivo and in vitro. Front Vet Sci 2025; 12:1551501. [PMID: 40201079 PMCID: PMC11977417 DOI: 10.3389/fvets.2025.1551501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/24/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction The Getah virus (GETV) is a zoonotic arbovirus causing disease in humans and animals, a member of the Alphavirus genus. Currently, approved antiviral drugs and vaccines against alphaviruses are few available. This study aimed to investigate the anti-GETV activity of the Extract of Scutellaria baicalensis Georgi (ESG) in vivo and in vitro. Methods The cytotoxic effects of ESG on BHK-21 cells were quantitatively evaluated through the MTT assay. Quantitative analysis of viral replication was performed using qRT-PCR, while E2 protein expression was analyzed through western blotting. Furthermore, molecular docking simulations were conducted to examine the binding affinity between the principal bioactive constituents of ESG and the E2 structural proteins. Additionally, the therapeutic potential of ESG in alleviating viremia was evaluated in GETV-infected mouse models. Results The results showed that ESG significantly attenuated the cytopathic effects induced by GETV infection in BHK-21 cells, concurrently reducing both viral replication and E2 protein expression. Notably, ESG exhibited its most potent antiviral activity during the viral attachment and entry phases, with IC50 values of 3.69 μg/mL and 3.94 μg/mL, respectively. At a concentration of 10 μg/mL, ESG achieved 95.08% inhibition efficiency against viral attachment. Furthermore, in vivo studies revealed that ESG treatment significantly reduced the peak viral load and shortened the duration of viremia in GETV-infected mice. The main components of ESG are baicalin and baicalein, and molecular docking simulations demonstrated strong binding affinities between these compounds and the active site of GETV E2 protein, with docking scores of -6.99 kcal/mol for baicalin and -5.21 kcal/mol for baicalein. Conclusion The experimental findings demonstrate that ESG exhibits significant antiviral efficacy against GETV infection both in vitro and in vivo. These results indicate that ESG represents a promising therapeutic candidate for the prevention and treatment of GETV infections. Mechanistically, the antiviral activity of ESG appears to be mediated, at least in part, through the modulation of E2 protein expression.
Collapse
Affiliation(s)
- Baoling Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuling Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lina Shao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanhang Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Wahaab A, Mustafa BE, Hameed M, Batool H, Tran Nguyen Minh H, Tawaab A, Shoaib A, Wei J, Rasgon JL. An Overview of Zika Virus and Zika Virus Induced Neuropathies. Int J Mol Sci 2024; 26:47. [PMID: 39795906 PMCID: PMC11719530 DOI: 10.3390/ijms26010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain-Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Abdul Wahaab
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Bahar E Mustafa
- School of Veterinary Science, Faculty of Science, The University of Melbourne, Melbourne, VIC 3030, Australia;
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hira Batool
- Chughtai Lab, Head Office, 7-Jail Road, Main Gulberg, Lahore 54000, Pakistan;
| | - Hieu Tran Nguyen Minh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdul Tawaab
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:621-636. [PMID: 39368944 DOI: 10.1016/j.joim.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/07/2024] [Indexed: 10/07/2024]
Abstract
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; 22(6): 621-636.
Collapse
Affiliation(s)
- Xin-Yang Liu
- School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Wei Xie
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - He-Yang Zhou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Hui-Qing Zhang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| | - Yong-Sheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Dong Y, Shao E, Li S, Wang R, Wang D, Wang L, Yang H, He Y, Luan T, Chen Y, Wang Y, Lin L, Wang Y, Zhong Z, Zhao W. Baicalein suppresses Coxsackievirus B3 replication by inhibiting caspase-1 and viral protease 2A. Virol Sin 2024; 39:685-693. [PMID: 39025463 PMCID: PMC11401470 DOI: 10.1016/j.virs.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.
Collapse
Affiliation(s)
- Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Enze Shao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Ruiqi Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Dan Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Lixin Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Hong Yang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yingxia He
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
5
|
Sharma KK, Devi S, Kumar D, Ali Z, Fatma N, Misra R, Kumar G. Role of Natural Products against the Spread of SARS-CoV-2 by Inhibition of ACE-2 Receptor: A Review. Curr Pharm Des 2024; 30:2562-2573. [PMID: 39041269 DOI: 10.2174/0113816128320161240703092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, and Piper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (π- π) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor- binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.
Collapse
Affiliation(s)
- Krishana Kumar Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Shoma Devi
- Department of Zoology, Krishna College of Science & Information Technology, Bijnor 246701 (UP), India
| | - Dharmendra Kumar
- Science Branch, Pt. Deendayal Upadhyay Institute of Archaeology, Archaeological Survey of India, Greater Noida 201013, India
| | - Zeeshan Ali
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Nishat Fatma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Raghvendra Misra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Gajendra Kumar
- Department of Chemistry, Constituent Government College, MJP Rohilkhand University, Bareilly, Hasanpur, Amroha 244241 (UP), India
| |
Collapse
|
6
|
Dobhal K, Garg R, Singh A, Semwal A. Insight into the Natural Biomolecules (BMs): Promising Candidates as Zika Virus Inhibitors. Infect Disord Drug Targets 2024; 24:e020224226681. [PMID: 38318833 DOI: 10.2174/0118715265272414231226092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024]
Abstract
Zika virus (ZIKV) is among the relatively new infectious disease threats that include SARS-CoV-2, coronavirus, monkeypox (Mpox) virus, etc. ZIKV has been reported to cause severe health risks to the fetus. To date, satisfactory treatment is still not available for the treatment of ZIKV infection. This review examines the last five years of work using natural biomolecules (BMs) to counteract the ZIKV through virtual screening and in vitro investigations. Virtual screening has identified doramectin, pinocembrin, hesperidins, epigallocatechin gallate, pedalitin, and quercetin as potentially active versus ZIKV infection. In vitro, testing has shown that nordihydroguaiaretic acid, mefloquine, isoquercitrin, glycyrrhetinic acid, patentiflorin-A, rottlerin, and harringtonine can reduce ZIKV infections in cell lines. However, in vivo, testing is limited, fortunately, emetine, rottlerin, patentiflorin-A, and lycorine have shown in vivo anti- ZIKV potential. This review focuses on natural biomolecules that show a particularly high selective index (>10). There is limited in vivo and clinical trial data for natural BMs, which needs to be an active area of investigation. This review aims to compile the known reference data and discuss the barriers associated with discovering and using natural BM agents to control ZIKV infection.
Collapse
Affiliation(s)
- Kiran Dobhal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| | - Ruchika Garg
- School of Pharmacy, Maharaja Agrasen Universities, Baddi, Solan, Himachal Pradesh, 174103, India
| | - Alka Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Balawala, Dehradun, Uttarakhand, India
| | - Amit Semwal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| |
Collapse
|
7
|
Zhang N, Tan Z, Wei J, Zhang S, Liu Y, Miao Y, Ding Q, Yi W, Gan M, Li C, Liu B, Wang H, Zheng Z. Identification of novel anti-ZIKV drugs from viral-infection temporal gene expression profiles. Emerg Microbes Infect 2023; 12:2174777. [PMID: 36715162 PMCID: PMC9946313 DOI: 10.1080/22221751.2023.2174777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Zika virus (ZIKV) infections are typically asymptomatic but cause severe neurological complications (e.g. Guillain-Barré syndrome in adults, and microcephaly in newborns). There are currently no specific therapy or vaccine options available to prevent ZIKV infections. Temporal gene expression profiles of ZIKV-infected human brain microvascular endothelial cells (HBMECs) were used in this study to identify genes essential for viral replication. These genes were then used to identify novel anti-ZIKV agents and validated in publicly available data and functional wet-lab experiments. Here, we found that ZIKV effectively evaded activation of immune response-related genes and completely reprogrammed cellular transcriptional architectures. Knockdown of genes, which gradually upregulated during viral infection but showed distinct expression patterns between ZIKV- and mock infection, discovered novel proviral and antiviral factors. One-third of the 74 drugs found through signature-based drug repositioning and cross-reference with the Drug Gene Interaction Database (DGIdb) were known anti-ZIKV agents. In cellular assays, two promising antiviral candidates (Luminespib/NVP-AUY922, L-161982) were found to reduce viral replication without causing cell toxicity. Overall, our time-series transcriptome-based methods offer a novel and feasible strategy for antiviral drug discovery. Our strategies, which combine conventional and data-driven analysis, can be extended for other pathogens causing pandemics in the future.
Collapse
Affiliation(s)
- Nailou Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhongyuan Tan
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Jinbo Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Sai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yuanjiu Miao
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qingwen Ding
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Wenfu Yi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Min Gan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chunjie Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Bin Liu
- Characteristic Medical Center of Chinese People’s Armed Police Forces, Tianjin, People’s Republic of China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China, Zhenhua Zheng CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| |
Collapse
|
8
|
Putri GN, Gudla CS, Singh M, Ng CH, Idris FFH, Oo Y, Tan JHY, Wong JFJ, Chu JJH, Selvam V, Selvaraj SS, Shandil RK, Narayanan S, Alonso S. Expanding the anti-flaviviral arsenal: Discovery of a baicalein-derived Compound with potent activity against DENV and ZIKV. Antiviral Res 2023; 220:105739. [PMID: 37944824 DOI: 10.1016/j.antiviral.2023.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
With approximately 3.8 billion people at risk of infection in tropical and sub-tropical regions, Dengue ranks among the top ten threats worldwide. Despite the potential for severe disease manifestation and the economic burden it places on endemic countries, there is a lack of approved antiviral agents to effectively treat the infection. Flavonoids, including baicalein, have garnered attention for their antimicrobial properties. In this study, we took a rational and iterative approach to develop a series of baicalein derivatives with improved antiviral activity against Dengue virus (DENV). Compound 11064 emerged as a promising lead candidate, exhibiting antiviral activity against the four DENV serotypes and representative strains of Zika virus (ZIKV) in vitro, with attractive selectivity indices. Mechanistic studies revealed that Compound 11064 did not prevent DENV attachment at the cell surface, nor viral RNA synthesis and viral protein translation. Instead, the drug was found to impair the post-receptor binding entry steps (endocytosis and/or uncoating), as well as the late stage of DENV infection cycle, including virus assembly/maturation and/or exocytosis. The inability to raise DENV resistant mutants, combined with significant antiviral activity against an unrelated RNA virus (Enterovirus-A71) suggested that Compound 11064 targets the host rather than a viral protein, further supporting its broad-spectrum antiviral potential. Overall, Compound 11064 represents a promising antiviral candidate for the treatment of Dengue and Zika.
Collapse
Affiliation(s)
- Geraldine Nadya Putri
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Mayas Singh
- Foundation for Neglected Disease Research, Bangalore, Karnataka, India
| | - Chin Huan Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Fakhriedzwan Fitri Haji Idris
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yukei Oo
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Jasmine Hwee Yee Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Joel Feng Jie Wong
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore
| | - Vignesh Selvam
- Foundation for Neglected Disease Research, Bangalore, Karnataka, India
| | | | | | | | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Huang Q, Wang M, Wang M, Lu Y, Wang X, Chen X, Yang X, Guo H, He R, Luo Z. Scutellaria baicalensis: a promising natural source of antiviral compounds for the treatment of viral diseases. Chin J Nat Med 2023; 21:563-575. [PMID: 37611975 DOI: 10.1016/s1875-5364(23)60401-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 08/25/2023]
Abstract
Viruses, the smallest microorganisms, continue to present an escalating threat to human health, being the leading cause of mortality worldwide. Over the decades, although significant progress has been made in the development of therapies and vaccines against viral diseases, the need for effective antiviral interventions remains urgent. This urgency stems from the lack of effective vaccines, the severe side effects associated with current drugs, and the emergence of drug-resistant viral strains. Natural plants, particularly traditionally-used herbs, are often considered an excellent source of medicinal drugs with potent antiviral efficacy, as well as a substantial safety profile. Scutellaria baicalensis, a traditional Chinese medicine, has garnered considerable attention due to its extensive investigation across diverse therapeutic areas and its demonstrated efficacy in both preclinical and clinical trials. In this review, we mainly focused on the potential antiviral activities of ingredients in Scutellaria baicalensis, shedding light on their underlying mechanisms of action and therapeutic applications in the treatment of viral infections.
Collapse
Affiliation(s)
- Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Muyang Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Min Wang
- Hainan Affiliated Hospital of Hainan Medical University, Department of Pharmacy, Haikou 570311, China
| | - Yuhui Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Xiaohua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xin Yang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China.
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China.
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
10
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|
11
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
12
|
Sawadpongpan S, Jaratsittisin J, Hitakarun A, Roytrakul S, Wikan N, Smith DR. Investigation of the activity of baicalein towards Zika virus. BMC Complement Med Ther 2023; 23:143. [PMID: 37138273 PMCID: PMC10158012 DOI: 10.1186/s12906-023-03971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) is a mosquito transmitted virus spread primarily by Aedes species mosquitoes that can cause disease in humans, particularly when infection occurs in pregnancy where the virus can have a significant impact on the developing fetus. Despite this, there remains no prophylactic agent or therapeutic treatment for infection. Baicalein is a trihydroxyflavone, that is found in some traditional medicines commonly used in Asia, and has been shown to have several activities including antiviral properties. Importantly, studies have shown baicalein to be safe and well tolerated in humans, increasing its potential utilization. METHODS This study sought to determine the anti-ZIKV activity of baicalein using a human cell line (A549). Cytotoxicity of baicalein was determined by the MTT assay, and the effect on ZIKV infection determined by treating A549 cells with baicalien at different time points in the infection process. Parameters including level of infection, virus production, viral protein expression and genome copy number were assessed by flow cytometry, plaque assay, western blot and quantitative RT-PCR, respectively. RESULTS The results showed that baicalein had a half-maximal cytotoxic concentration (CC50) of > 800 µM, and a half-maximal effective concentration (EC50) of 124.88 µM. Time-of-addition analysis showed that baicalein had an inhibitory effect on ZIKV infection at the adsorption and post-adsorption stages. Moreover, baicalein also exerted a significant viral inactivation activity on ZIKV (as well as on dengue virus and Japanese encephalitis virus) virions. CONCLUSION Baicalein has now been shown to possess anti-ZIKV activity in a human cell line.
Collapse
Affiliation(s)
| | | | - Atitaya Hitakarun
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand.
| |
Collapse
|
13
|
Boonyasuppayakorn S, Saelee T, Huynh TNT, Hairani R, Hengphasatporn K, Loeanurit N, Cao V, Vibulakhaophan V, Siripitakpong P, Kaur P, Chu JJH, Tunghirun C, Choksupmanee O, Chimnaronk S, Shigeta Y, Rungrotmongkol T, Chavasiri W. The 8-bromobaicalein inhibited the replication of dengue, and Zika viruses and targeted the dengue polymerase. Sci Rep 2023; 13:4891. [PMID: 36966240 PMCID: PMC10039358 DOI: 10.1038/s41598-023-32049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Dengue and Zika viruses are mosquito-borne flaviviruses burdening millions every year with hemorrhagic fever and neurological symptoms. Baicalein was previously reported as a potential anti-flaviviral candidate and halogenation of flavones and flavanones potentiated their antiviral efficacies. Here, we reported that a chemically modified 8-bromobaicalein effectively inhibited all dengue serotypes and Zika viruses at 0.66-0.88 micromolar in cell-based system. The compound bound to dengue serotype 2 conserved pocket and inhibited the dengue RdRp activity with 6.93 fold more than the original baicalein. Moreover, the compound was mildly toxic against infant and adult C57BL/6 mice despite administering continuously for 7 days. Therefore, the 8-bromobaicalein should be investigated further in pharmacokinetics and efficacy in an animal model.
Collapse
Affiliation(s)
- Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanaphon Saelee
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thao Nguyen Thanh Huynh
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rita Hairani
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vipanee Vibulakhaophan
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panattida Siripitakpong
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parveen Kaur
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Chairat Tunghirun
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Opas Choksupmanee
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sarin Chimnaronk
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Sadeer NB, El Kalamouni C, Khalid A, Abdalla AN, Zengin G, Khoa Bao LV, Mahomoodally MF. Secondary metabolites as potential drug candidates against Zika virus, an emerging looming human threat: Current landscape, molecular mechanism and challenges ahead. J Infect Public Health 2023; 16:754-770. [PMID: 36958171 DOI: 10.1016/j.jiph.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Nature has given us yet another wild card in the form of Zika virus (ZIKV). It was found in 1947, but has only recently become an important public health risk, predominantly to pregnant women and their unborn offspring. Currently, no specific therapeutic agent exists for ZIKV and treatment is mainly supportive. Natural products (NPs) can serve as a major source of potent antiviral drugs. To create this review, a comprehensive search was conducted from different databases (PubMed, ScienceDirect, Google scholar). A statistical analysis on the number of publications related to NPs and ZIKV was conducted to analyse the trend in research covering the period 1980-2020. From the data collated in this review, a number of NPs have been found to be inhibitive towards different stages of the ZIKV lifecycle in in vitro studies. For instance, baicalin, (-)-epigallocatechin gallate, curcumin, nanchangmycin, gossypol, cephaeline, emetine, resveratrol, berberine, amongst others, can prevent viral entry by attacking ZIKV E protein. Compounds luteolin, myricetin, astragalin, rutin, (-)-epigallocatechin gallate, carnosine, pedalitin, amongst others, inhibited NS2B-NS3 protease activity which consequently hamper replication. Interestingly, a few NPs had the ability to arrest both viral entry and replication, namely baicalin, (-)-epigallocatechin gallate, curcumin, cephaeline, emetine, and resveratrol. To the best of our knowledge, we obtained only one in vivo study conducted on emetine and results showed that it decreased the levels of circulating ZIKV by approximately 10-fold. Our understanding on NPs exhibiting anti-ZIKV effects in in vivo testing as well as clinical trials is limited. Our trend analysis showed that interest in searching for a cure or prevention against Zika in NPs is negligible and there are no publications yet covering the clinical evaluation. NPs with anti-ZIKV property can a winning strategy in controlling the bio-burden of an epidemic or pandemic. We therefore opine that in the future, more research should be devoted to ZIKV. This review attempts to provide baseline data and roadmap to pursuit detailed investigations for developing potent and novel therapeutic agents to prevent and cure ZIKV infection.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, the Republic of the Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, 42250 Konya, Turkey
| | - Le Van Khoa Bao
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
| |
Collapse
|
15
|
Jin D, Wang J, Xue J, Zhao Y, Yan G, Li X, Wang X. Contribution of Chinese herbal medicine in the treatment of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2023; 37:1015-1035. [PMID: 36382689 DOI: 10.1002/ptr.7669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global epidemic, and there is no specific treatment for anti-COVID-19 drugs. However, treatment of COVID-19 using Chinese herbal medicine (CHM) has been widely practiced in China. PubMed, Embase, Cochrane Library, CNKI, Wanfang and VIP databases were searched to evaluate the efficacy and safety of CHM in the treatment of COVID-19. Twenty-six studies were included in this meta-analysis. The included cases were all patients diagnosed with COVID-19 according to the "New Coronary Virus Pneumonia Diagnosis and Treatment Program," with a total of 2,407 cases. Patients were treated with CHM, including 36 prescriptions, and 105 flavors of CHM were included. The results of the meta-analysis showed that the CHM group improved in lung CT, clinical cure rate, clinical symptom score and time to negative for viral nucleic acid. However, this study still has many limitations due to the limited number of included studies. Therefore, high-quality RCT studies are needed to provide more reliable evidence for CHM treatment of COVID-19. In conclusion, CHM may significantly improve the clinical manifestations and laboratory indicators of patients with COVID-19. In addition, no serious adverse reactions were found after CHM treatment. Therefore, CHM may be used as a potential candidate for COVID-19. HIGHLIGHTS: COVID-19 has become a global epidemic, and there is no specific treatment for anti-COVID-19 drugs. CHM has made a new breakthrough in the treatment of COVID-19. CHM may relieve lung CT images of COVID-19 patients. CHM may improve clinical symptoms of COVID-19 patients. CHM may inhibit the expression of inflammatory factors in patients with COVID-19.
Collapse
Affiliation(s)
- Di Jin
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guanchi Yan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Cui X, Liu X, Wang F, Lou K, Hong J, Bai H, Chen R, Yang Y, Liu Q. Determination of the synergistic anti-influenza effect of Huangqin Su tablet and Oseltamivir and investigation of mechanism of the tablet based on gut microbiota and network pharmacology. BMC Complement Med Ther 2023; 23:36. [PMID: 36739385 PMCID: PMC9898901 DOI: 10.1186/s12906-023-03858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
Huangqin Su (HQS) tablet is mainly composed of baicalein which has been evaluated for its ability to inhibit influenza. The present study aimed to investigate the effect of HQS and oseltamivir phosphate (OS) (single or combination therapy) on influenza-induced acute pneumonia in male and female ICR mice. The regulatory effect of HQS on gut microbiota was also studied by using 16 s rDNA sequencing, and the targets and mechanisms of HQS against influenza were comprehensively analyzed by network pharmacology. Pharmacodynamic results, including lung index and pathological changes, showed that HQS exhibited significant anti-influenza efficacy and could improve the efficacy of low-dose OS (P < 0.05 and P < 0.01, respectively). The results of 16 s rDNA sequencing revealed that HQS modulated the gut microbiota and remarkably enriched the abundance of Lactobacillus. The findings of network pharmacology research suggested that the anti-influenza mechanism of HQS was related to TLRs, MAPK, and other signal transduction pathways. Taken together, this study identified the possibility of the combined use of HQS and OS and demonstrated the role of HQS in modulating the gut microbiota of mice against influenza. Network pharmacology studies also suggested that the anti-influenza effect of HQS was related to TLRs, MAPK, TNF, and other signaling pathways.
Collapse
Affiliation(s)
- Xuran Cui
- grid.24696.3f0000 0004 0369 153XBeijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China ,Beijing Institute of Chinese Medicine, Beijing, China ,Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing, China
| | - Xibao Liu
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Feng Wang
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Kun Lou
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Junping Hong
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Hequn Bai
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Rongchu Chen
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Yang Yang
- CSPC ZhongQi Pharmaceutical Technology Co., Ltd, Shijiazhuang, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China. .,Beijing Institute of Chinese Medicine, Beijing, China. .,Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing, China.
| |
Collapse
|
17
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2023; 20:254-283. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of fast-spreading SARS-CoV-2 mutants has sparked a new phase of COVID-19 pandemic. There is a dire necessity for antivirals targeting highly conserved genomic domains on SARS-CoV-2 that are less prone to mutation. The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), the core component of 'SARS-CoV-2 replication-transcription complex', is a potential well-conserved druggable antiviral target. Several FDA-approved RdRp 'nucleotide analog inhibitors (NAIs)' such as remdesivir, have been repurposed to treat COVID-19 infections. The NAIs target RdRp protein translation and competitively block the nucleotide insertion into the RNA chain, resulting in the inhibition of viral replication. However, the replication proofreading function of nsp14-ExoN could provide resistance to SARS-CoV-2 against many NAIs. Conversely, the 'non-nucleoside analog inhibitors (NNAIs)' bind to allosteric sites on viral polymerase surface, change the redox state; thereby, exert antiviral activity by altering interactions between the enzyme substrate and active core catalytic site of the RdRp. NNAIs neither require metabolic activation (unlike NAIs) nor compete with intracellular pool of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAIs from phytonutrient origin are potential antiviral candidates compared to their synthetic counterparts. Several in-silico studies reported the antiviral spectrum of natural phytonutrient-NNAIs such as Suramin, Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein (5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bioflavonoid), Lycorine (pyrrolidine alkaloid), with superior redox characteristics (free binding energy, hydrogen-bonds, etc.) than antiviral drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAIs also exert anti-inflammatory, antioxidant, immunomodulatory and cardioprotective functions, with multifunctional therapeutic benefits in the clinical management of COVID-19.
Collapse
Affiliation(s)
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
19
|
Chen Z, Ye SY. Research progress on antiviral constituents in traditional Chinese medicines and their mechanisms of action. PHARMACEUTICAL BIOLOGY 2022; 60:1063-1076. [PMID: 35634712 PMCID: PMC9154771 DOI: 10.1080/13880209.2022.2074053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Viruses have the characteristics of rapid transmission and high mortality. At present, western medicines still lack an ideal antiviral. As natural products, many traditional Chinese medicines (TCM) have certain inhibitory effects on viruses, which has become the hotspot of medical research in recent years. OBJECTIVE The antiviral active ingredients and mechanisms of TCM against viral diseases was studied in combination with the pathogenesis of viral diseases and antiviral effects. MATERIALS AND METHODS English and Chinese literature from 1999 to 2021 was collected from databases including Web of Science, PubMed, Elsevier, Chinese Pharmacopoeia 2020 (CP), and CNKI (Chinese). Traditional Chinese medicines (TCM), active ingredients, antiviral, mechanism of action, and anti-inflammatory effect were used as the key words. RESULTS The antiviral activity of TCM is clarified to put forward a strategy for discovering active compounds against viruses, and provide reference for screening antivirus drugs from TCM. TCM can not only directly kill viruses and inhibit the proliferation of viruses in cells, but also prevent viruses from infecting cells and causing cytophilia. It can also regulate the human immune system, enhance human immunity, and play an indirect antiviral role. DISCUSSION AND CONCLUSION Based on the experimental study and antiviral mechanism of TCM, this paper can provide analytical evidence that supports the effectiveness of TCM in treating virus infections, as well as their mechanisms against viruses. It could be helpful to provide reference for the research and development of innovative TCMs with multiple components, multiple targets and low toxicity.
Collapse
Affiliation(s)
- Zhi Chen
- Pharmaceutical College, Shandong University of TCM, Jinan, People’s Republic of China
| | - Si-yong Ye
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, People’s Republic of China
| |
Collapse
|
20
|
Wang W, Li W, Wen Z, Wang C, Liu W, Zhang Y, Liu J, Ding T, Shuai L, Zhong G, Bu Z, Qu L, Ren M, Li F. Gossypol Broadly Inhibits Coronaviruses by Targeting RNA-Dependent RNA Polymerases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203499. [PMID: 36266926 PMCID: PMC9762316 DOI: 10.1002/advs.202203499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Indexed: 05/03/2023]
Abstract
Outbreaks of coronaviruses (CoVs), especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have posed serious threats to humans and animals, which urgently calls for effective broad-spectrum antivirals. RNA-dependent RNA polymerase (RdRp) plays an essential role in viral RNA synthesis and is an ideal pan-coronaviral therapeutic target. Herein, based on cryo-electron microscopy and biochemical approaches, gossypol (GOS) is identified from 881 natural products to directly block SARS-CoV-2 RdRp, thus inhibiting SARS-CoV-2 replication in both cellular and mouse infection models. GOS also acts as a potent inhibitor against the SARS-CoV-2 variant of concern (VOC) and exerts same inhibitory effects toward mutated RdRps of VOCs as the RdRp of the original SARS-CoV-2. Moreover, that the RdRp inhibitor GOS has broad-spectrum anti-coronavirus activity against alphacoronaviruses (porcine epidemic diarrhea virus and swine acute diarrhea syndrome coronavirus), betacoronaviruses (SARS-CoV-2), gammacoronaviruses (avian infectious bronchitis virus), and deltacoronaviruses (porcine deltacoronavirus) is showed. The findings demonstrate that GOS may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and other coronavirus outbreaks.
Collapse
Affiliation(s)
- Wenjing Wang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
- Hainan Yazhou Bay Seed LaboratorySanyaHainan572025P. R. China
| | - Wenkang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Chong Wang
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Weilong Liu
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518112P. R. China
| | - Yufang Zhang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Juncheng Liu
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Tianze Ding
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
| | - Lei Shuai
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Gongxun Zhong
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Zhigao Bu
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinHeilongjiang150069P. R. China
| | - Lingbo Qu
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Maozhi Ren
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduSichuan610213P. R. China
- Hainan Yazhou Bay Seed LaboratorySanyaHainan572025P. R. China
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologySchool of Agricultural SciencesZhengzhou UniversityZhengzhouHenan450001P. R. China
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenan455000P. R. China
- Hainan Yazhou Bay Seed LaboratorySanyaHainan572025P. R. China
| |
Collapse
|
21
|
Natural Compounds as Non-Nucleoside Inhibitors of Zika Virus Polymerase through Integration of In Silico and In Vitro Approaches. Pharmaceuticals (Basel) 2022; 15:ph15121493. [PMID: 36558945 PMCID: PMC9788182 DOI: 10.3390/ph15121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.
Collapse
|
22
|
Xu X, Chen Y, Lu X, Zhang W, Fang W, Yuan L, Wang X. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges. Biochem Pharmacol 2022; 205:115279. [PMID: 36209840 PMCID: PMC9535928 DOI: 10.1016/j.bcp.2022.115279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The highly transmissible variants of SARS-CoV-2, the causative pathogen of the COVID-19 pandemic, bring new waves of infection worldwide. Identification of effective therapeutic drugs to combat the COVID-19 pandemic is an urgent global need. RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication, is the most promising target for antiviral drug research since it has no counterpart in human cells and shows the highest conservation across coronaviruses. This review summarizes recent progress in studies of RdRp inhibitors, focusing on interactions between these inhibitors and the enzyme complex, based on structural analysis, and their effectiveness. In addition, we propose new possible strategies to address the shortcomings of current inhibitors, which may guide the development of novel efficient inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yuheng Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wanlin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wenxiu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Luping Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
23
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
24
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
25
|
Zhang ZZ, Yu XH, Tan WH. Baicalein inhibits macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα pathway. Clin Exp Immunol 2022; 209:316-325. [PMID: 35749304 PMCID: PMC9521661 DOI: 10.1093/cei/uxac062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 01/23/2023] Open
Abstract
Lipid accumulation and inflammatory response are two major risk factors for atherosclerosis. Baicalein, a phenolic flavonoid widely used in East Asian countries, possesses a potential atheroprotective activity. However, the underlying mechanisms remain elusive. This study was performed to explore the impact of baicalein on lipid accumulation and inflammatory response in THP-1 macrophage-derived foam cells. Our results showed that baicalein up-regulated the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, liver X receptor α (LXRα), and peroxisome proliferator-activated receptor γ (PPARγ), promoted cholesterol efflux, and inhibited lipid accumulation. Administration of baicalein also reduced the expression and secretion of TNF-α, IL-1β, and IL-6. Knockdown of LXRα or PPARγ with siRNAs abrogated the effects of baicalein on ABCA1 and ABCG1 expression, cholesterol efflux, lipid accumulation as well as pro-inflammatory cytokine release. In summary, these findings suggest that baicalein exerts a beneficial effect on macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα signaling pathway.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei-Hua Tan
- Correspondence: Wei-Hua Tan, Emergency Department, The First Affiliated Hospital of University of South China, Hengyang 421001 Hunan, China.
| |
Collapse
|
26
|
Xu W, Niu Y, Ai X, Xia C, Geng P, Zhu H, Zhou W, Huang H, Shi X. Liver-Targeted Nanoparticles Facilitate the Bioavailability and Anti-HBV Efficacy of Baicalin In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10040900. [PMID: 35453650 PMCID: PMC9025464 DOI: 10.3390/biomedicines10040900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 01/30/2023] Open
Abstract
The anti-hepatitis B virus (HBV) efficacy of baicalin (BA) is mediated by HBV-related hepatocyte nuclear factors (HNFs). However, this efficacy is severely limited by the low bioavailability of BA. Therefore, a novel liver-targeted BA liposome was constructed to promote the bioavailability and antiviral ability of BA. The results showed that apolipoprotein A1 (ApoA1)–modified liposomes (BAA1) significantly enhanced BA’s cellular uptake and specific distribution in the liver. Furthermore, the substantial inhibitory effects of BAA1 on HBsAg, HBeAg, HBV RNA, and HBV DNA were assessed in HB-infected cells and mice. Western blotting, co-immunoprecipitation, and transcriptomics analysis further revealed that the enhanced anti-HBV efficacy of BAA1 was attributed to the interaction between hepatocyte nuclear factors (HNFs) and estrogen receptors (ERs). Based on the findings, we propose that the ApoA1-modified liposomes aid BA in inhibiting HBV transcription and replication by augmenting its bioavailability and the HNFs–ERs axis.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
| | - Yijun Niu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
| | - Xin Ai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
| | - Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
| | - Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, China;
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China; (W.X.); (Y.N.); (X.A.); (C.X.); (P.G.); (H.Z.); (H.H.)
- Correspondence: ; Tel.: +86-21-54237431; Fax: +86-21-51980037
| |
Collapse
|
27
|
Cao S, Zhang M, Yuan M, Yang D, Zhao M, Zhang S, Wang P, Zhang R, Gao X. The pharmaceutical excipient PEG400 affect the absorption of baicalein in Caco-2 monolayer model by interacting with UDP-glucuronosyltransferases and efflux transport proteins. Pharmacol Res Perspect 2022; 10:e00928. [PMID: 35148019 PMCID: PMC8929329 DOI: 10.1002/prp2.928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
The bioavailability of drugs is often related to intestinal metabolism and transport mechanisms. In previous studies, pharmaceutical excipients were recognized as inert substances in clinical safety evaluations. However, a large number of studies have shown that pharmaceutical excipients regulate the metabolism and transport of drugs in the body and improve the bioavailability. The pharmaceutical excipient polyethylene glycol 400 (PEG400) as a good solubilizer and surfactant has the potential to improve the bioavailability of drugs. The combined action of UDP-glucuronosyltransferases (UGTs) and efflux transport proteins is responsible for the intestinal disposition and poor bioavailability of baicalein. Our aim is to study the effect of PEG400 on the absorption of baicalein on the Caco-2 monolayer, and confirm the interaction of PEG400 with UGTs (UGT1A8 and UGT1A9) and efflux transports. We initially found that baicalein in the Caco-2 monolayer would be metabolized into glucuronide conjugates BG and B6G under the action of UGT1A8 and UGT1A9 on the endoplasmic reticulum membrane, and then mainly excreted to different sides by acting of MRP and BCRP. The addition of PEG400 significantly accelerated the metabolism of B in Caco-2 cells and increased the penetration of BG and B6G. Furthermore, PEG400 also significantly decreased the efflux ratio of BG and B6G, which was the evidence of the interaction with the efflux transporters. In the in vitro intestinal microsome regeneration system, low concentration PEG400 decreased the Km value of UGT1A8 and UGT1A9 (key enzymes that mediate the production of BG and B6G); high concentration PEG400 enhanced the Vmax value of UGT1A8 and UGT1A9. In conclusion, our results determined that PEG400 interacted with some UGTs and efflux transporters, which were the main factors affecting the absorption of baicalein.
Collapse
Affiliation(s)
- Siyuan Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Minyan Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Dan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Mei Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| | - Shuo Zhang
- Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China.,Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Rongping Zhang
- School of Pharmacy, Kunming Medical University, Kunming, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China.,Department of Education of Guizhou, Center of Microbiology and Biochemical Pharmaceutical Engineering, Guiyang, China
| |
Collapse
|
28
|
Li H, Cong X, Sui J, Jiang Z, Fu K, Huan Y, Cao R, Tian W, Feng Y. Baicalin enhances the thermotolerance of mouse blastocysts by activating the ERK1/2 signaling pathway and preventing mitochondrial dysfunction. Theriogenology 2022; 178:85-94. [PMID: 34808561 DOI: 10.1016/j.theriogenology.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Heat stress causes oxidative damage and induces excessive cell apoptosis and thus affects the development and/or even causes the death of preimplantation embryos. The effects of baicalin on the developmental competence of heat-stressed mouse embryos were investigated in this experiment. Two-cell embryos were cultured in the presence of baicalin and subjected to heat stress (42 °C for 1 h) at their blastocyst stage followed by continuous culture at 37 °C until examination. The results showed that heat stress (H group) increased reactive oxygen species (ROS) production, apoptosis and even embryo death, along with reductions in both mitochondrial activity and membrane potential (ΔΨm). Both heat stress (H group) and inhibition of the ERK1/2 signaling pathway (U group) led to significantly reduced expression levels of the genes c-fos, AP-1 and ERK2, and the phosphorylation of ERK1/2 and c-Fos, along with significantly increased c-Jun mRNA expression and phosphorylation levels. These negative effects of heat stress on the ERK1/2 signaling pathway were neutralized by baicalin treatment. To explore the signal transduction mechanism of baicalin in improving embryonic tolerance to heat stress, mitochondrial quality and apoptosis rate in the mouse blastocysts were also examined. Baicalin was found to up-regulate the expression of mtDNA and TFAM mRNA, increased mitochondria activity and ΔΨm, and improved the cellular mitochondria quality of mouse blastocysts undergoing heat stress. Moreover, baicalin decreased Bax transcript abundance in blastocyst, along with an increase in the blastocyst hatching rate, which were negatively affected by heat stress. Our findings suggest that baicalin improves the developmental capacity and quality of heat-stressed mouse embryos via a mechanism whereby mitochondrial quality is improved by activating the ERK1/2 signaling pathway and inducing anti-cellular apoptosis.
Collapse
Affiliation(s)
- Huatao Li
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xia Cong
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Junxia Sui
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Zhongling Jiang
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Kaiqiang Fu
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yanjun Huan
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Rongfeng Cao
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wenru Tian
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Yanni Feng
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
29
|
Kumar S, Garg C, Kaushik S, Buttar HS, Garg M. Demystifying therapeutic potential of medicinal plants against chikungunya virus. Indian J Pharmacol 2021; 53:403-411. [PMID: 34854411 DOI: 10.4103/ijp.ijp_81_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Viral infections are posing a great threat to humanity for the last few years. Among these, Chikungunya which is a mosquito-borne viral infection has produced enormous epidemics around the world after been rebounded. Although this infection shows a low mortality rate, patients suffer from fever, arthralgia, and maculopapular rashes, which reduce the quality of life for several weeks to years. The currently available treatments only provide symptomatic relief based on analgesics, antipyretics, and anti-inflammatory drugs which are nonspecific without satisfactory results. Medicinal plants are a widely accepted source of new molecules for the treatment of infectious diseases including viral infections. The scientific reports, primarily focusing on the anti-chikungunya activity of plant extracts, natural origin pure compounds, and their synthetic analog published from 2011 to 2021, were selected from PubMed, Google Scholar, and Scopus by using related keywords like anti-chikungunya plants, natural antivirals for Chikungunya. The present review decodes scientific reports on medicinal plants against chikungunya virus (CHIKV) infection and demystifies the potential phytoconstituents which reveals that the screening of flavonoids containing plants and phytochemicals showing efficacy against other arbovirus infections, may prove as a potential lead for drug development against CHIKV. The present article also outlines pathogenesis, clinical aspects, molecular virology, and diagnostic approaches of CHIKV infection.
Collapse
Affiliation(s)
- Sukender Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Samander Kaushik
- Center for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
30
|
Liu H, Ye F, Sun Q, Liang H, Li C, Li S, Lu R, Huang B, Tan W, Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem 2021; 36:497-503. [PMID: 33491508 DOI: 10.1101/2020.04.10.035824] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50's of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50's of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.
Collapse
Affiliation(s)
- Hongbo Liu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Fei Ye
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hao Liang
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chunmei Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Siyang Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
31
|
Shagufta, Ahmad I. An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS-CoV-2 Activity. ChemistrySelect 2021; 6:11502-11527. [PMID: 34909460 PMCID: PMC8661826 DOI: 10.1002/slct.202103301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
Natural products recognized traditionally as a vital source of active constituents in pharmacotherapy. The COVID-19 infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic, and considered an ongoing global health emergency. The emergence of COVID-19 globally and the lack of adequate treatment brought attention towards herbal medicines, and scientists across the globe instigated the search for novel drugs from medicinal plants and natural products to tackle this deadly virus. The natural products rich in scaffold diversity and structural complexity are an excellent source for antiviral drug discovery. Recently the investigation of several natural products and their synthetic derivatives resulted in the identification of promising anti SARS-CoV-2 agents. This review article will highlight the pharmacological relevance and chemical synthesis of the recently discovered natural product and their synthetic analogs as SARS-CoV-2 inhibitors. The summarized information will pave the path for the natural product-based drug discovery of safe and potent antiviral agents, particularly against SARS-CoV-2.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| | - Irshad Ahmad
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| |
Collapse
|
32
|
Fakhri S, Mohammadi Pour P, Piri S, Farzaei MH, Echeverría J. Modulating Neurological Complications of Emerging Infectious Diseases: Mechanistic Approaches to Candidate Phytochemicals. Front Pharmacol 2021; 12:742146. [PMID: 34764869 PMCID: PMC8576094 DOI: 10.3389/fphar.2021.742146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
Growing studies are revealing the critical manifestations of influenza, dengue virus (DENV) infection, Zika virus (ZIKV) disease, and Ebola virus disease (EVD) as emerging infectious diseases. However, their corresponding mechanisms of major complications headed for neuronal dysfunction are not entirely understood. From the mechanistic point of view, inflammatory/oxidative mediators are activated during emerging infectious diseases towards less cell migration, neurogenesis impairment, and neuronal death. Accordingly, the virus life cycle and associated enzymes, as well as host receptors, cytokine storm, and multiple signaling mediators, are the leading players of emerging infectious diseases. Consequently, chemokines, interleukins, interferons, carbohydrate molecules, toll-like receptors (TLRs), and tyrosine kinases are leading orchestrates of peripheral and central complications which are in near interconnections. Some of the resulting neuronal manifestations have attracted much attention, including inflammatory polyneuropathy, encephalopathy, meningitis, myelitis, stroke, Guillain-Barré syndrome (GBS), radiculomyelitis, meningoencephalitis, memory loss, headaches, cranial nerve abnormalities, tremor, and seizure. The complex pathophysiological mechanism behind the aforementioned complications urges the need for finding multi-target agents with higher efficacy and lower side effects. In recent decades, the natural kingdom has been highlighted as promising neuroprotective natural products in modulating several dysregulated signaling pathways/mediators. The present study provides neuronal manifestations of some emerging infectious diseases and underlying pathophysiological mechanisms. Besides, a mechanistic-based strategy is developed to introduce candidate natural products as promising multi-target agents in combating major dysregulated pathways towards neuroprotection in influenza, DENV infection, ZIKV disease, and EVD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
33
|
Cataneo AHD, Ávila EP, Mendes LADO, de Oliveira VG, Ferraz CR, de Almeida MV, Frabasile S, Duarte Dos Santos CN, Verri WA, Bordignon J, Wowk PF. Flavonoids as Molecules With Anti- Zika virus Activity. Front Microbiol 2021; 12:710359. [PMID: 34566915 PMCID: PMC8462986 DOI: 10.3389/fmicb.2021.710359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-born virus that is mainly transmitted to humans by mosquitoes of the genus Aedes spp. Since its first isolation in 1947, only a few human cases had been described until large outbreaks occurred on Yap Island (2007), French Polynesia (2013), and Brazil (2015). Most ZIKV-infected individuals are asymptomatic or present with a self-limiting disease and nonspecific symptoms such as fever, myalgia, and headache. However, in French Polynesia and Brazil, ZIKV outbreaks led to the diagnosis of congenital malformations and microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. These new clinical presentations raised concern from public health authorities and highlighted the need for anti-Zika treatments and vaccines to control the neurological damage caused by the virus. Despite many efforts in the search for an effective treatment, neither vaccines nor antiviral drugs have become available to control ZIKV infection and/or replication. Flavonoids, a class of natural compounds that are well-known for possessing several biological properties, have shown activity against different viruses. Additionally, the use of flavonoids in some countries as food supplements indicates that these molecules are nontoxic to humans. Thus, here, we summarize knowledge on the use of flavonoids as a source of anti-ZIKV molecules and discuss the gaps and challenges in this area before these compounds can be considered for further preclinical and clinical trials.
Collapse
Affiliation(s)
| | - Eloah Pereira Ávila
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Camila Rodrigues Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| |
Collapse
|
34
|
Alesci A, Fumia A, Lo Cascio P, Miller A, Cicero N. Immunostimulant and Antidepressant Effect of Natural Compounds in the Management of Covid-19 Symptoms. J Am Coll Nutr 2021; 41:840-854. [PMID: 34550044 DOI: 10.1080/07315724.2021.1965503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
35
|
Rehman MFU, Akhter S, Batool AI, Selamoglu Z, Sevindik M, Eman R, Mustaqeem M, Akram MS, Kanwal F, Lu C, Aslam M. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics (Basel) 2021; 10:1011. [PMID: 34439061 PMCID: PMC8388999 DOI: 10.3390/antibiotics10081011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS CoV-2 pandemic has affected millions of people around the globe. Despite many efforts to find some effective medicines against SARS CoV-2, no established therapeutics are available yet. The use of phytochemicals as antiviral agents provides hope against the proliferation of SARS-CoV-2. Several natural compounds were analyzed by virtual screening against six SARS CoV-2 protein targets using molecular docking simulations in the present study. More than a hundred plant-derived secondary metabolites have been docked, including alkaloids, flavonoids, coumarins, and steroids. SARS CoV-2 protein targets include Main protease (MPro), Papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), Spike glycoprotein (S), Helicase (Nsp13), and E-Channel protein. Phytochemicals were evaluated by molecular docking, and MD simulations were performed using the YASARA structure using a modified genetic algorithm and AMBER03 force field. Binding energies and dissociation constants allowed the identification of potentially active compounds. Ligand-protein interactions provide an insight into the mechanism and potential of identified compounds. Glycyrrhizin and its metabolite 18-β-glycyrrhetinic acid have shown a strong binding affinity for MPro, helicase, RdRp, spike, and E-channel proteins, while a flavonoid Baicalin also strongly binds against PLpro and RdRp. The use of identified phytochemicals may help to speed up the drug development and provide natural protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Fayyaz ur Rehman
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Shahzaib Akhter
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha 41600, Pakistan;
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde 51240, Turkey;
| | - Mustafa Sevindik
- Department of Food Processing, Bahçe Vocational School, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey;
| | - Rida Eman
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha, Bhakkar Campus, Bhakkar 30000, Pakistan;
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK;
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Lahore 54600, Pakistan
| |
Collapse
|
36
|
Species of the Genus Teucrium L. as Sources of Active Pharmaceutical Substances with Antimicrobial, Anti-Inflammatory, and Radioprotective Activity (Review). Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02443-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Chen R, Wang T, Song J, Pu D, He D, Li J, Yang J, Li K, Zhong C, Zhang J. Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics. Int J Nanomedicine 2021; 16:4959-4984. [PMID: 34326637 PMCID: PMC8315226 DOI: 10.2147/ijn.s315705] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022] Open
Abstract
Antiviral drugs (AvDs) are the primary resource in the global battle against viruses, including the recent fight against corona virus disease 2019 (COVID-19). Most AvDs require multiple medications, and their use frequently leads to drug resistance, since they have poor oral bioavailability and low efficacy due to their low solubility/low permeability. Characterizing the in vivo metabolism and pharmacokinetic characteristics of AvDs may help to solve the problems associated with AvDs and enhance their efficacy. In this review of AvDs, we systematically investigated their structure-based metabolic reactions and related enzymes, their cellular pharmacology, and the effects of metabolism on AvD pharmacodynamics and pharmacokinetics. We further assessed how delivery systems achieve better metabolism and pharmacology of AvDs. This review suggests that suitable nanosystems may help to achieve better pharmacological activity and pharmacokinetic behavior of AvDs by altering drug metabolism through the utilization of advanced nanotechnology and appropriate administration routes. Notably, such AvDs as ribavirin, remdesivir, favipiravir, chloroquine, lopinavir and ritonavir have been confirmed to bind to the severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) receptor and thus may represent anti-COVID-19 treatments. Elucidating the metabolic and pharmacokinetic characteristics of AvDs may help pharmacologists to identify new formulations with high bioavailability and efficacy and help physicians to better treat virus-related diseases, including COVID-19.
Collapse
Affiliation(s)
- Ran Chen
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Song
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Daojun Pu
- Pharmaceutical Institute, Southwest Pharmaceutical Limited Company, Chongqing, 400038, People's Republic of China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianjun Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
38
|
Baicalein 5,6-Dimethyl Ether Prevents Memory Deficits in the Scopolamine Zebrafish Model by Regulating Cholinergic and Antioxidant Systems. PLANTS 2021; 10:plants10061245. [PMID: 34207381 PMCID: PMC8233988 DOI: 10.3390/plants10061245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
Baicalein 5,6-dimethyl ether, a bioactive flavonoid isolated for the first time from Alnus rugosa, was explored for its capability to relieve memory deficits and decrease oxidative stress. We examined the neuropharmacological effects of baicalein 5,6-dimethyl ether on scopolamine (Sco)-induced zebrafish (Danio rerio) anxiety, amnesia, and brain oxidative stress and attempted to elucidate the underlying mechanisms. Anxiety-like behavior, exploratory behavior, and memory performance were measured using novel tank-diving test (NTT), Y-maze, and novel object recognition (NOR) tests. For 10 days, baicalein 5,6-dimethyl ether (1, 3, and 5 µg/L) was administered through immersion, whereas Sco (100 μM) was delivered 30 min before behavioral tests. Treatment with baicalein 5,6-dimethyl ether reduced anxiety and memory impairment, and increased exploratory behavior in specific tests, along with significant protection from neuronal oxidative stress in the brain tissue of Sco-treated zebrafish. Antioxidant and anti-acetylcholinesterase (AChE) activities of baicalein 5,6-dimethyl ether in the Sco-induced zebrafish were further confirmed using in vivo assays. In Sco-treated zebrafish, baicalein 5,6-dimethyl ether regulated cholinergic function by inhibiting AChE activity. Baicalein 5,6-dimethyl ether may be a promising candidate compound for treating anxiety and amnesia by restoring cholinergic activity and reducing brain oxidative stress, according to our findings.
Collapse
|
39
|
Baicalin decreases somatic cell count in mastitis of dairy cows. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Baicalin is a flavonoid that has an influence on molecular processes. It possesses anticancer, anti-inflammatory, antiviral, antioxidative, and antithrombotic properties. It was found that baicalein treatment attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase, TNFα, and IL-1β in mice with mastitis. The aim of the study was a pilot analysis of baicalin tolerability after intramammary (IMM) administration and its impact on somatic cell count (SCC) after multiple IMM treatment on dairy cows with clinical mastitis. Moreover, the determination of baicalin in milk was performed by the sensitive ultra-high performance liquid chromatography with tandem mass spectrometry. The pharmacokinetic analyses were performed using Phoenix® WinNonlin® 6.4 and ThothPro v 4.1 software. Twelve dairy cows with clinical mastitis were selected for this study. The pharmacodynamic endpoint was SCC level and the clinical investigation was also carried out. Baseline SCC analysis was performed every 24 h among all cows three days before the first dose (B1–B3). After the baseline monitoring, 8 days of treatment (T1–T8) was performed and 8 days within recovery period SCC level was observed (R1–R8). Starting from T1 to T8, a decrease of SCC in relation to baseline was characterized by a declining trend. The presented results confirm the effect of baicalin on the reduction of SCC in mastitis in dairy cows after this therapy. The current study has shown that baicalin accumulation was not confirmed.
Collapse
|
40
|
Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, Lan S, Slack RL, Kirby KA, Bassit L, Amblard F, Kim B, AbuBakar S, Sarafianos SG, Schinazi RF. Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. Microorganisms 2021; 9:microorganisms9050893. [PMID: 33921971 PMCID: PMC8143456 DOI: 10.3390/microorganisms9050893] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/18/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a deadly emerging infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Because SARS-CoV-2 is easily transmitted through the air and has a relatively long incubation time, COVID-19 has rapidly developed into a global pandemic. As there are no antiviral agents for the prevention and treatment of this severe pathogen except for remdesivir, development of antiviral therapies to treat infected individuals remains highly urgent. Here, we showed that baicalein and baicalin exhibited significant antiviral activity against SARS-CoV-2, the causative agent of COVID-19 through in vitro studies. Our data through cell-based and biochemical studies showed that both compounds act as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors directly and inhibit the activity of the SARS-CoV-2 RdRp, but baicalein was more potent. We also showed specific binding of baicalein to the SARS-CoV-2 RdRp, making it a potential candidate for further studies towards therapeutic development for COVID-19 as a selective non-nucleoside polymerase inhibitor.
Collapse
Affiliation(s)
- Keivan Zandi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
- Correspondence: ; Tel.: +1-404-727-1575
| | - Katie Musall
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Adrian Oo
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (B.L.)
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (B.L.)
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (P.H.); (S.A.)
| | - Shuiyun Lan
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Ryan L. Slack
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Karen A. Kirby
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Baek Kim
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (P.H.); (S.A.)
| | - Stefan G. Sarafianos
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.); (A.O.); (S.L.); (R.L.S.); (K.A.K.); (L.B.); (F.A.); (B.K.); (S.G.S.); (R.F.S.)
| |
Collapse
|
41
|
|
42
|
Jha N, Jeyaraman M, Rachamalla M, Ojha S, Dua K, Chellappan D, Muthu S, Sharma A, Jha S, Jain R, Jeyaraman N, GS P, Satyam R, Khan F, Pandey P, Verma N, Singh S, Roychoudhury S, Dholpuria S, Ruokolainen J, Kesari K. Current Understanding of Novel Coronavirus: Molecular Pathogenesis, Diagnosis, and Treatment Approaches. IMMUNO 2021; 1:30-66. [DOI: 10.3390/immuno1010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
An outbreak of “Pneumonia of Unknown Etiology” occurred in Wuhan, China, in late December 2019. Later, the agent factor was identified and coined as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease was named coronavirus disease 2019 (COVID-19). In a shorter period, this newly emergent infection brought the world to a standstill. On 11 March 2020, the WHO declared COVID-19 as a pandemic. Researchers across the globe have joined their hands to investigate SARS-CoV-2 in terms of pathogenicity, transmissibility, and deduce therapeutics to subjugate this infection. The researchers and scholars practicing different arts of medicine are on an extensive quest to come up with safer ways to curb the pathological implications of this viral infection. A huge number of clinical trials are underway from the branch of allopathy and naturopathy. Besides, a paradigm shift on cellular therapy and nano-medicine protocols has to be optimized for better clinical and functional outcomes of COVID-19-affected individuals. This article unveils a comprehensive review of the pathogenesis mode of spread, and various treatment modalities to combat COVID-19 disease.
Collapse
Affiliation(s)
- Niraj Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Dinesh Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Saurabh Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Naveen Jeyaraman
- Department of Orthopedics, Kasturba Medical College, Manipal 575001, Karnataka, India
| | - Prajwal GS
- Department of Orthopedics, JJM Medical College, Davangere 577004, Karnataka, India
| | - Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Nitin Verma
- School of Pharmacy, Chitkara University, Punjab 140401, Himachal Pradesh, India
| | - Sandeep Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | | | - Sunny Dholpuria
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Kavindra Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
43
|
Liu H, Ye F, Sun Q, Liang H, Li C, Li S, Lu R, Huang B, Tan W, Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem 2021; 36:497-503. [PMID: 33491508 PMCID: PMC7850424 DOI: 10.1080/14756366.2021.1873977] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50’s of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50’s of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.
Collapse
Affiliation(s)
- Hongbo Liu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Fei Ye
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hao Liang
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chunmei Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Siyang Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
44
|
Song J, Zhang L, Xu Y, Yang D, Zhang L, Yang S, Zhang W, Wang J, Tian S, Yang S, Yuan T, Liu A, Lv Q, Li F, Liu H, Hou B, Peng X, Lu Y, Du G. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol 2021; 183:114302. [PMID: 33121927 PMCID: PMC7588320 DOI: 10.1016/j.bcp.2020.114302] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
Baicalein is the main active compound of Scutellaria baicalensis Georgi, a medicinal herb with multiple pharmacological activities, including the broad anti-virus effects. In this paper, the preclinical study of baicalein on the treatment of COVID-19 was performed. Results showed that baicalein inhibited cell damage induced by SARS-CoV-2 and improved the morphology of Vero E6 cells at a concentration of 0.1 μM and above. The effective concentration could be reached after oral administration of 200 mg/kg crystal form β of baicalein in rats. Furthermore, baicalein significantly inhibited the body weight loss, the replication of the virus, and relieved the lesions of lung tissue in hACE2 transgenic mice infected with SARS-CoV-2. In LPS-induced acute lung injury of mice, baicalein improved the respiratory function, inhibited inflammatory cell infiltration in the lung, and decreased the levels of IL-1β and TNF-α in serum. In conclusion, oral administration of crystal form β of baicalein could reach its effective concentration against SARS-CoV-2. Baicalein could inhibit SARS-CoV-2-induced injury both in vitro and in vivo. Therefore, baicalein might be a promising therapeutic drug for the treatment of COVID-19.
Collapse
Affiliation(s)
- Junke Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yanfeng Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dezhi Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shiying Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shuo Tian
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shengqian Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Qi Lv
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fengdi Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongqi Liu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Biyu Hou
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yang Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
45
|
Luo Z, Kuang XP, Zhou QQ, Yan CY, Li W, Gong HB, Kurihara H, Li WX, Li YF, He RR. Inhibitory effects of baicalein against herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:2323-2338. [PMID: 33354504 PMCID: PMC7745058 DOI: 10.1016/j.apsb.2020.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and widespread human pathogen, which gives rise to a range of diseases, including cold sores, corneal blindness, and encephalitis. Currently, the use of nucleoside analogs, such as acyclovir and penciclovir, in treating HSV-1 infection often presents limitation due to their side effects and low efficacy for drug-resistance strains. Therefore, new anti-herpetic drugs and strategies should be urgently developed. Here, we reported that baicalein, a naturally derived compound widely used in Asian countries, strongly inhibited HSV-1 replication in several models. Baicalein was effective against the replication of both HSV-1/F and HSV-1/Blue (an acyclovir-resistant strain) in vitro. In the ocular inoculation mice model, baicalein markedly reduced in vivo HSV-1/F replication, receded inflammatory storm and attenuated histological changes in the cornea. Consistently, baicalein was found to reduce the mortality of mice, viral loads both in nose and trigeminal ganglia in HSV-1 intranasal infection model. Moreover, an ex vivo HSV-1-EGFP infection model established in isolated murine epidermal sheets confirmed that baicalein suppressed HSV-1 replication. Further investigations unraveled that dual mechanisms, inactivating viral particles and inhibiting IκB kinase beta (IKK-β) phosphorylation, were involved in the anti-HSV-1 effect of baicalein. Collectively, our findings identified baicalein as a promising therapy candidate against the infection of HSV-1, especially acyclovir-resistant strain. Baicalein is highly effective against HSV-1infection ex vivo and in vivo. Inactivation of viral particles and suppression of NF-κB activation were involved in the anti-viral effect of baicalein. Hence, our work offers experimental basis for baicalein as a potential drug in treating HSV-1 associated diseases.
Collapse
Key Words
- Anti-HSV-1
- Baicalein
- CC50, 50% cytotoxic concentration
- DCFH-DA, 2′,7′-dichlorofluorescin diacetate
- EC50, 50% effective concentration
- GB, glycoprotein B
- HSV-1 infection
- HSV-1, herpes simplex virus types 1
- ICP, infected cell polypeptide
- IKK-β phosphorylation
- IKK-β, IκB kinase beta
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IκB-α, inhibitor of NF-κB alpha
- LPS, lipopolysaccharides
- MOI, multiplicity of infection
- NAC, N-acetyl-l-cysteine
- NF-κB activation
- NF-κB, nuclear factor kappa-B
- PFU, plaque-forming units
- PGA1, prostaglandin A1
- ROS, reactive oxygen species
- SI, selectivity index
- TG, trigeminal ganglia
- TNF-α, tumor necrosis factor alpha
- Viral inactivation
- dpi, days post-infection
- p-IKK-β, phosphorylated-IKK beta
- p-IκB-α, phosphorylated-IκB alpha
Collapse
|
46
|
Zhang FX, Li ZT, Li M, Yuan YLL, Cui SS, Chen JX, Li RM. Dissection of the potential anti-influenza materials and mechanism of Lonicerae japonicae flos based on in vivo substances profiling and network pharmacology. J Pharm Biomed Anal 2020; 193:113721. [PMID: 33147537 DOI: 10.1016/j.jpba.2020.113721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Lonicerae japonicae flos.(LJF) was widely used as a drug to treat upper respiratory tract infection or a tea to clear heat in Asian countries for thousands of years. Despite of its curative effects confirmed by modern pharmacological methods, its functional materials and mechanism against influenza were still unclear and needed further investigation. In this study, an integrated strategy based on in vivo substances profiling and network pharmacology was proposed and applied to screen out the potential anti-influenza substances and mechanism of LJF. An UHPLC/Q-TOF MS method was utilized to profile the chemical components in LJF and their metabolites in rats. The targets of absorbed prototypes were predicted by Swiss Target Prediction, and they were further analyzed by String and Kyoto Encyclopedia of Genes and Genomes (KEGG). As a result, a total of 126 chemical components mainly featuring three chemical structure types were characterized, including 70 iridoid glycosides, 17 caffeoylquinic acids, 24 flavonoids, and 15 other types compounds. Among them, ten N-contained iridoid glycosides were characterized as potential novel compounds. Moreover, 141 xenobiotics (74 prototypes and 67 metabolites) were clearly screened out in rat plasma and urine after ingestion of LJF. Phase II reactions (sulfation, glucuronidation, methylation) and phase I reactions (dehydroxylation, hydrogenation, hydrolysis, N-heterocyclization) were the main metabolic reactions of LJF in rats. Further, a total of 338 targets were predicted and TNF, PTGS2 and EGFR were the three main targets involved in the pathology of influenza. In addition to normal NF-κB pathway, T cell signal pathway and mTOR signal pathway were the other patterns for LJF to achieve its anti-flu effects. Our work provided the meaningful data for further pharmacological validation of LJF against influenza, and a new strategy was also proposed for minimizing the process to reveal the mechanism and functional basis of TCMs.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zi-Ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min Li
- Hainan Trauma and Disaster Rescue Key Laboratory, The First Affiliated Hospital of Hainan Medical College, Haikou 571199, China
| | - Yu-Lin-Lan Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Shuang-Shuang Cui
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Rui-Man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
47
|
Yu H, Han Y, Liu C, Wu X, Sun C, Xu L, Jin F. Preparation of baicalein from baicalin using a baicalin-β-D-glucuronidase from Aspergillus niger b.48 strain. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Zhang J, Deng Y, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Protective effects and molecular mechanisms of baicalein on thioacetamide-induced toxicity in zebrafish larvae. CHEMOSPHERE 2020; 256:127038. [PMID: 32470728 DOI: 10.1016/j.chemosphere.2020.127038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Baicalein is a flavonoid that is widely found in plants. Studies have shown that baicalein has anti-inflammatory, anti-cancer, and liver-protective effects. However, the effects of baicalein on TAA-induced toxicity and the underlying molecular mechanisms in zebrafish larvae are still unknown. Here, we investigated the effects of baicalein on liver development and its anti-inflammatory effects in zebrafish larvae. The results showed that baicalein has significant anti-embryonic developmental toxicity and significant antioxidant and anti-inflammatory capabilities in TAA-induced zebrafish larvae and promotes liver development and cell proliferation, reduces the expression of apoptotic proteins, and induces the expression of anti-apoptotic proteins. At the molecular level of TAA-treated zebrafish larvae, there was a decrease in the relative expression levels of mRNAs of three subfamilies, P38, ERK1, and ERK2, of the MAPK-signaling pathway and of the products of peroxisome proliferator-activated receptor (PPAR)α. Compared with TAA-treated zebrafish larvae, zebrafish larvae treated with baicalein showed an increase in the relative expression levels of P38, ERK1, and ERK2 mRNAs and the downstream products of PPARα. When MAPK signal inhibitor (SB203580) was added, it was found that liver development was inhibited and baicalin had no protective effect on TAA induced hepatotoxicity in zebrafish larvae. The results showed baicalein can protect the zebrafish larvae against toxicity induced by TAA through MAPK signal pathway. Several molecular mechanisms discovered in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
49
|
The anti-Zika virus and anti-tumoral activity of the citrus flavanone lipophilic naringenin-based compounds. Chem Biol Interact 2020; 331:109218. [PMID: 32916141 DOI: 10.1016/j.cbi.2020.109218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Flavonoids are natural products widely recognized for their plurality of applications such as antiviral, antiproliferative, antitumor activities and, antioxidant properties. The flavanone naringenin is presented in citrus fruits and has been studied to combat recurrent diseases that still lack effective treatment. Research groups have been investing efforts to the development of new, safe and active candidates to combat these agents or conditions and despite good results recently reported against the Zika virus (ZIKV) and tumor cells, the use of citrus naringenin is limited due to its low bioavailability. Structural exchanges through functionalization, for example, attaching lipophilic groups instead of hydroxyl groups, can further enhance biological properties. Here, the synthesis and characterization of regioselective naringenin mono-7-O-ethers and both mono and di-fatty acid esters, structurally lipophilic ones were demonstrated. Finally, in vitro studies of anti-ZIKV action and antiproliferative activities against melanoma (B16-F10) and breast carcinoma (4T1) cells showed the ether derivatives were actives, with IC50 ranging from 6.76, 18.5 and 22.6 μM to 28.53, 45.1 and 32.3 μM referring to ZIKV, B16-F10 and 4T1 cell lines, respectively. The lipophilic ethers present the ability to inhibit selectively ZIKV-replication in human cells and inhibitions. This class of modifications in flavonoid molecules could be further explore in the future development of specific anti-ZIKV compounds.
Collapse
|
50
|
Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther 2020; 216:107671. [PMID: 32916205 DOI: 10.1016/j.pharmthera.2020.107671] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Microbial infections have significantly increased over the last decades, and the mortality rates remain unacceptably high. The emergence of new resistance patterns and the spread of new viruses challenge the eradication of infectious diseases. The declining efficacy of antimicrobial drugs has become a global public health problem. Natural products derived from natural sources, such as plants, animals, and microorganisms, have significant efficacy for the treatment of infectious diseases accompanied by less adverse effects, synergy, and ability to overcome drug resistance. As the Chinese female scientist Youyou Tu received the Nobel Prize for the antimalarial drug artemisinin, antimicrobial drugs developed from Traditional Chinese Medicine are expected to receive increasing attention again. This review summarizes the antimicrobial agents derived from natural products approved for nearly 20 years and describes their efficacy and mode of action. The aim of this unit is to review the current status of antimicrobial drugs from natural products in order to increase the value of natural products as a source of novel drug candidates for infectious diseases.
Collapse
|