1
|
Liu T, Wu B, Zhang Y, Li Z, Xue Y, Ding X, Yang Z, Zhu J, Han Y. The Gene SiPrx from Saussurea involucrata Enhances the Stress Resistance of Silphium perfoliatum L. PLANTS (BASEL, SWITZERLAND) 2025; 14:1030. [PMID: 40219098 PMCID: PMC11990491 DOI: 10.3390/plants14071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Peroxiredoxin (Prx) plays a role in maintaining the balance of intracellular reactive oxygen species. The peroxidase SiPrx gene from the Tianshan Snow Lotus (Saussurea involucrata) has been proved to significantly enhance the stress resistance of plants. In this study, the SiPrx gene was expressed heterogeneously in high-quality herbage Silphium perfoliatum L. (SP). After treatment with NaCl, the transgenic SP only exhibited partial leaf wilting, whereas the wild-type (WT) plants were on the brink of death. Simultaneously, physiological and biochemical assays indicated that under high-salt conditions, the content of malondialdehyde in the transgenic plants was significantly lower than that in the WT plants, while the activity of antioxidant enzymes was significantly higher than that in the WT plants. The expression of the SiPrx gene has been shown to significantly enhance the salt stress resistance of transgenic SP. Furthermore, after treatment at -10 °C for 48 h, the leaves of transgenic plants were able to maintain a certain morphological structure, whereas the WT plants were completely wilted. Physiological and biochemical index measurements indicated that all indicators in the transgenic plants were significantly better than those in the WT plants. Based on these findings, this study plans to overexpress the SiPrx gene extracted from Saussurea involucrata in Comfrey using the Agrobacterium-mediated method and then study its effects on the stress resistance of transgenic SP. The research results indicate that the SiPrx gene shows significant application potential in enhancing the cold resistance and salt tolerance of SP. This study provides a certain research basis and scientific evidence for the mining of stress resistance genes in Saussurea involucrata and the cultivation of new varieties of SP.
Collapse
Affiliation(s)
- Tao Liu
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Baotang Wu
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Yao Zhang
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Zhongqing Li
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Yanhua Xue
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Xiaoqin Ding
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Zhihui Yang
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Jianbo Zhu
- College of Life Science, Shihezi University, Shihezi 832003, China; (T.L.); (B.W.); (Y.Z.); (Z.L.); (Y.X.); (X.D.); (Z.Y.)
| | - Yajie Han
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Mirzadi Gohari A, Mehrabi R, Kilaru S, Schuster M, Steinberg G, de Wit PPJGM, Kema GHJ. Functional characterization of extracellular and intracellular catalase-peroxidases involved in virulence of the fungal wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2024; 25:e70009. [PMID: 39363778 PMCID: PMC11450260 DOI: 10.1111/mpp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024]
Abstract
Understanding how pathogens defend themselves against host defence mechanisms, such as hydrogen peroxide (H2O2) production, is crucial for comprehending fungal infections. H2O2 poses a significant threat to invading fungi due to its potent oxidizing properties. Our research focuses on the hemibiotrophic fungal wheat pathogen Zymoseptoria tritici, enabling us to investigate host-pathogen interactions. We examined two catalase-peroxidase (CP) genes, ZtCpx1 and ZtCpx2, to elucidate how Z. tritici deals with host-generated H2O2 during infection. Our analysis revealed that ZtCpx1 was up-regulated during biotrophic growth and asexual spore formation in vitro, while ZtCpx2 showed increased expression during the transition from biotrophic to necrotrophic growth and in-vitro vegetative growth. Deleting ZtCpx1 increased the mutant's sensitivity to exogenously added H2O2 and significantly reduced virulence, as evidenced by decreased Septoria tritici blotch symptom severity and fungal biomass production. Reintroducing the wild-type ZtCpx1 allele with its native promoter into the mutant strain restored the observed phenotypes. While ZtCpx2 was not essential for full virulence, the ZtCpx2 mutants exhibited reduced fungal biomass development during the transition from biotrophic to necrotrophic growth. Moreover, both CP genes act synergistically, as the double knock-out mutant displayed a more pronounced reduced virulence compared to ΔZtCpx1. Microscopic analysis using fluorescent proteins revealed that ZtCpx1 was localized in the peroxisome, indicating its potential role in managing host-generated reactive oxygen species during infection. In conclusion, our research sheds light on the crucial roles of CP genes ZtCpx1 and ZtCpx2 in the defence mechanism of Z. tritici against host-generated hydrogen peroxide.
Collapse
Affiliation(s)
- Amir Mirzadi Gohari
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | - Rahim Mehrabi
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | | | | | | | | | - Gert H. J. Kema
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
3
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
4
|
Wang J, Song J, Qi H, Zhang H, Wang L, Zhang H, Cui C, Ji G, Muhammad S, Sun G, Xu Z, Zhang H. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO 3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107876. [PMID: 37413942 DOI: 10.1016/j.plaphy.2023.107876] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongling Qi
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Hongjiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Salman Muhammad
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiru Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
5
|
Comprehensive identification, evolutionary patterns and the divergent response of PRX genes in Phaseolus vulgaris under biotic and abiotic interactions. 3 Biotech 2022; 12:175. [PMID: 35855475 PMCID: PMC9288579 DOI: 10.1007/s13205-022-03246-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
Peroxiredoxins (Prxs) are novel cysteine-based peroxidases which are involved in protecting cells from oxidative damage by catalyzing the reduction of different peroxides. The present study addressed, for the first time, genome-wide identification, evolutionary patterns and expression dynamics of Phaseolus vulgaris Prx gene family (PvPrx). Nine Prx proteins were identified in P. vulgaris based on homology searches. The phylogeny analysis of Prxs from seven plant species revealed that Prx proteins can be clustered into four groups (1C-Prx, 2C-Prxs, PrxQ and type II Prxs). Both tandem and segmental duplication contributed to PvPrx gene family expansion. Intragenic reorganizations including gain/loss of exon/intron and insertions/deletions have also contributed to PvPrx gene diversification. The collinearity analysis revealed the presence of some orthologous Prx gene pairs between A. thaliana and P. vulgaris genomes. The Ka/Ks ratio indicated that two of the three PvPrx duplicated gene pairs have undergone a purifying selection. Redundant stress-related cis-acting elements were also found in the promoters of most PvPrx genes. RT q-PCR analysis revealed an upregulation of key PvPrx members in response to symbiosis and different abiotic factors. The upregulation of targeted PvPrx members, particularly in leaves exposed to salinity or drought, was accompanied by an accumulation of hydrogen peroxide (H2O2). When exogenously applied, H2O2 modulated almost all PvPrx genes, suggesting a potential H2O2-scavenging role for these proteins. Collectively, our analysis provided valuable information for further functional analysis of key PvPrx members to improve common bean stress tolerance and/or its symbiotic performance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03246-8.
Collapse
|
6
|
Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC PLANT BIOLOGY 2022; 22:373. [PMID: 35896978 PMCID: PMC9327194 DOI: 10.1186/s12870-022-03754-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m- 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. RESULTS Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m- 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. CONCLUSIONS The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth's surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.
Collapse
Affiliation(s)
- Mohammad Omidi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran.
| | - Azizollah Khandan-Mirkohi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Mohsen Kafi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Zabihollah Zamani
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Ladan Ajdanian
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Babaei
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Abbas T, Fan R, Hussain S, Sattar A, Khalid S, Butt M, Shahzad U, Muhammad Atif H, Batool M, Ullah S, Li Y, Al-Hashimi A, Elshikh MS, Al-Yahyai R. Protective effect of jasmonic acid and potassium against cadmium stress in peas ( Pisum sativum L.). Saudi J Biol Sci 2022; 29:2626-2633. [PMID: 35531166 PMCID: PMC9073065 DOI: 10.1016/j.sjbs.2021.12.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
A combination of mineral nutrients and plant growth regulators should be assessed to improve crop performance under various abiotic stresses. There is a need to include plant growth regulators in fertilization regime of various crops along with essential mineral nutrients, especially when they are irrigated with polluted water with higher levels of heavy metals. The performance of pea was evaluated under cadmium (Cd) stress coupled with potassium (K) and jasmonic acid (JA) supplementation. The Cd stress (50 μM) was applied to soil (sandy loam) grown pea plants as basal dose after a month of sowing. The control and stressed plants were then supplemented with K (5 M), JA (0.5 mM) and their collective application along with control as distilled water. Cd stress showed a marked reduction in growth pattern, however, the collective supplementation sufficiently improved the growth pattern of stressed peas plants as evidenced by improvement in shoot length (cm), root length (cm), number of leaves per plant, leaf area (cm2), plant fresh and dry weight (gm). Potassium application under Cd stress significantly enhanced internodal distance (cm) while the number of seeds per pod and relative water contents remained nonsignificant. The applied treatment (JA + K) under Cd stress prominently improved enzymatic activities, which were measured as nitrate reductase activity (NRA), nitrite reductase activity (NiRA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Cd stress impacted the biochemical profile by enhancing antioxidant capacity (AC), antioxidant activity (AA), total phenols (TP), while reducing total soluble protein (TSP), chlorophyll 'a', chlorophyll 'b' and carotenoids. The combined application of JA and K under Cd stress enhanced AC, AA, TP, Chl a and b, TSP and carotenoids. The results indicate that foliar application of JA and K efficiently negated the harmful effects of Cd stress on peas.
Collapse
Affiliation(s)
- Tahira Abbas
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub campus Layyah, Pakistan
| | - Rong Fan
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Sattar
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub campus Layyah, Pakistan
| | - Samina Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Madiha Butt
- Department of Horticulture, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Pakistan
| | - Umbreen Shahzad
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub campus Layyah, Pakistan
| | - Hafiz Muhammad Atif
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub campus Layyah, Pakistan
| | - Momal Batool
- Department of Horticulture, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sami Ullah
- Department of Horticulture, MNS University of Agriculture Multan Pakistan
| | - Yunzhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
- Department of Crop Science, University of Reading, UK
| |
Collapse
|
8
|
de Anicésio ÉCA, Monteiro FA. Potassium reduces oxidative stress in tanzania guinea grass under cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1184-1198. [PMID: 34350569 DOI: 10.1007/s11356-021-15620-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Plants used for phytoextraction of metals need to tolerate toxicity conditions. Potassium (K) participates in physiological and biochemical processes that can alleviate toxicity by heavy metals, including cadmium (Cd). This study aimed to evaluate the effect of K on photosynthesis and on the changes in the antioxidant system of tanzania guinea grass [Panicum maximum Jacq. cv. Tanzania (syn. Megathyrsus maximus (Jacq,) B.K. Simon & S.W.L. Jacobs)] under Cd toxicity. Plants were grown in a greenhouse, in nutrient solution, in a randomized complete block design, arranged in a 3 × 4 factorial, with three replications. Plants were supplied with three K levels (0.4 [K deficiency], 6.0, and 11.6 mmol L-1) and exposed to four Cd levels (0.0, 0.5, 1.0, and 1.5 mmol L-1). Two plant growth periods were evaluated. High Cd level (1.5 mmol L-1) led to a reduction in net photosynthesis (76%) by causing low stomatal conductance and losses in quantum efficiency of photosystem II. However, high K supply (11.6 mmol L-1) increased the net photosynthesis by 15% in plants exposed to 1.0 mmol L-1 Cd, due to upregulation of proline synthesis. Cd toxicity resulted in increases in lipid peroxidation and hydrogen peroxide concentration (35 and 50%; 25 and 30%, at first and second harvest, respectively) and reduction by 80-100% in activity of the antioxidant enzymes: superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase in the shoots of the grass. However, the high K supply (11.6 mmol L-1) increased the activity of these enzymes (about 50-75%) and reduced lipid peroxidation (36%), restoring cellular homeostasis. Moreover, high K supply promoted a 25% increase in spermidine and spermine concentrations in the shoots. Therefore, K reduced the Cd-induced oxidative stress and increased the net photosynthesis in tanzania guinea grass by increasing the activity of antioxidant enzymes and proline and polyamines synthesis, which enhances the tolerance of this grass to Cd.
Collapse
Affiliation(s)
- Éllen Cristina Alves de Anicésio
- Soil Science Department, University of São Paulo, "Luiz de Queiroz" College of Agriculture (ESALQ/USP), Pádua Dias Avenue, # 11, Zip Code 13418-900 Piracicaba, São Paulo, Brazil
| | - Francisco Antonio Monteiro
- Soil Science Department, University of São Paulo, "Luiz de Queiroz" College of Agriculture (ESALQ/USP), Pádua Dias Avenue, # 11, Zip Code 13418-900 Piracicaba, São Paulo, Brazil.
| |
Collapse
|
9
|
Li H, Yang M, Zhao C, Wang Y, Zhang R. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. BMC PLANT BIOLOGY 2021; 21:513. [PMID: 34736392 PMCID: PMC8567644 DOI: 10.1186/s12870-021-03295-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drought stress severely limits maize seedling growth and crop yield. Previous studies have elucidated the mechanisms by which maize acquires drought resistance and contends with water deficiency. However, the link between the physiological and molecular variations among maize cultivars are unknown. Here, physiological and proteomic analyses were conducted to compare the stress responses of two maize cultivars with contrasting drought stress tolerance. RESULTS The physiological analysis showed that the drought-tolerant SD609 maize variety maintains relatively high photochemical efficiency by enhancing its protective cyclic electron flow (CEF) mechanism and antioxidative enzymes activities. Proteomics analysis revealed that 198 and 102 proteins were differentially expressed in SD609 and the drought-sensitive SD902 cultivar, respectively. GO and KEGG enrichments indicated that SD609 upregulated proteins associated with photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. Upregulation of the proteins related to PSII repair and photoprotection improved photochemical capacity in SD609 subjected to moderate drought stress. In SD902, however, only the molecular chaperones and sucrose synthesis pathways were induced and they failed to protect the impaired photosystem. Further analysis demonstrated that proteins related to the electron transport chain (ETC) and redox homeostasis as well as heat shock proteins (HSPs) may be important in protecting plants from drought stress. CONCLUSIONS Our experiments explored the mechanism of drought tolerance and clarified the interconnections between the physiological and proteomic factors contributing to it. In summary, our findings aid in further understanding of the drought tolerance mechanisms in maize.
Collapse
Affiliation(s)
- Hongjie Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mei Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengfeng Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Urban MO, Planchon S, Hoštičková I, Vanková R, Dobrev P, Renaut J, Klíma M, Vítámvás P. The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:628167. [PMID: 34177973 PMCID: PMC8231708 DOI: 10.3389/fpls.2021.628167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.
Collapse
Affiliation(s)
- Milan O. Urban
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Irena Hoštičková
- Department of Plant Production and Agroecology, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Miroslav Klíma
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Pavel Vítámvás
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| |
Collapse
|
11
|
Littlejohn GR, Breen S, Smirnoff N, Grant M. Chloroplast immunity illuminated. THE NEW PHYTOLOGIST 2021; 229:3088-3107. [PMID: 33206379 DOI: 10.1111/nph.17076] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary metabolism - key targets in the complex virulence strategies of diverse pathogens - the chloroplast integrates, decodes and responds to environmental signals. The capacity of chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites, combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both perceive and respond to biotic stresses. These processes also represent a plethora of opportunities for pathogens to evolve strategies to directly or indirectly target 'chloroplast immunity'. This review covers the contribution of the chloroplast to pathogen associated molecular pattern and effector triggered immunity as well as systemic acquired immunity. We address phytohormone modulation of immunity and surmise how chloroplast-derived reactive oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic modification of core chloroplast components and direct pathogen targeting of the chloroplast. We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes during disease and defence and look at future research challenges.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Susan Breen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
12
|
Zhang Z, Xia B, Li Y, Lin Y, Xie J, Wu P, Lin L, Liao D. Comparative proteomic analysis of Prunella vulgaris L. spica ripening. J Proteomics 2020; 232:104028. [PMID: 33129985 DOI: 10.1016/j.jprot.2020.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Prunella vulgaris L., better known as 'self-heal', has been extensively used in the traditional system of medicines. To reveal the regulatory mechanism of its development, TMT-based quantitative proteome analysis was performed in the Prunella vulgaris L. spica before and during ripening (Group A and Group B, respectively). This analysis resulted in the identification of 7655 proteins, of which 1910 showed differential abundance between the two groups. Pronounced changes in the proteomic profile included the following: 1) Stress-responsive proteins involved in protecting cells and promoting fruit ripening and seed development were highly abundant during ripening. 2) The degradation of chlorophyll, inhibition of chlorophyll biosynthesis and increased abundance of transketolase occurred simultaneously in the spica of Prunella vulgaris L., resulting in the spica changing color from green to brownish red. 3) The abundance of protein species related to phenylpropanoid biosynthesis mainly increased during ripening, while flavonoid and terpenoid backbone biosynthesis mostly occurred before ripening. SIGNIFICANCE: This study establishes a link between protein profiles and mature phenotypes, which will help to improve our understanding of the molecular mechanisms involved in the maturation of Prunella vulgaris L. at the proteome level and reveal the scientific connotation for the best time to harvest Prunella vulgaris L. This work provides a scientific basis for the production of high-quality medicinal Prunella vulgaris L., as well as a typical demonstration of molecular research used for the harvest period of traditional Chinese medicine. BIOLOGICAL SIGNIFICANCE: This work provided a comprehensive overview on the functional protein profile changes of Prunella vulgaris L. spica at different growing stages, as well as the scientific rationale of Prunella vulgaris L. harvested in summer after brownish red, thus laid an intriguing stepping stone for elucidating the molecular mechanisms of quality development.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
13
|
Wang Y, Liu Z, Wang P, Jiang B, Lei X, Wu J, Dong W, Gao C. A 2-Cys peroxiredoxin gene from Tamarix hispida improved salt stress tolerance in plants. BMC PLANT BIOLOGY 2020; 20:360. [PMID: 32731892 PMCID: PMC7393912 DOI: 10.1186/s12870-020-02562-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/21/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Peroxiredoxins (Prxs) are a large family of antioxidant enzymes that respond to biotic and abiotic stress by decomposing reactive oxygen species (ROS). In this study, the stress tolerance function of the Th2CysPrx gene was further analysed. It lays a foundation for further studies on the salt tolerance molecular mechanism of T. hispida and improved salt tolerance via transgenic plants. RESULTS In this study, the stress tolerance function of the Th2CysPrx gene was further analysed. The results of transgenic tobacco showed higher seed germination rates, root lengths, and fresh weight under salt stress than wild-type tobacco. Simultaneously, physiological indicators of transgenic tobacco and T. hispida showed that Th2CysPrx improved the activities of antioxidant enzymes and enhanced ROS removal ability to decrease cellular damage under salt stress. Moreover, Th2CysPrx improved the expression levels of four antioxidant genes (ThGSTZ1, ThGPX, ThSOD and ThPOD). CONCLUSIONS Overall, these results suggested that Th2CysPrx enhanced the salt tolerance of the transgenic plants. These findings lay a foundation for further studies on the salt tolerance molecular mechanism of T. hispida and improved salt tolerance via transgenic plants.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Bo Jiang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Jing Wu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Wenfang Dong
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
| |
Collapse
|
14
|
Yayci A, Baraibar ÁG, Krewing M, Fueyo EF, Hollmann F, Alcalde M, Kourist R, Bandow JE. Plasma-Driven in Situ Production of Hydrogen Peroxide for Biocatalysis. CHEMSUSCHEM 2020; 13:2072-2079. [PMID: 32026604 PMCID: PMC7216967 DOI: 10.1002/cssc.201903438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Peroxidases and peroxygenases are promising classes of enzymes for biocatalysis because of their ability to carry out one-electron oxidation reactions and stereoselective oxyfunctionalizations. However, industrial application is limited, as the major drawback is the sensitivity toward the required peroxide substrates. Herein, we report a novel biocatalysis approach to circumvent this shortcoming: in situ production of H2 O2 by dielectric barrier discharge plasma. The discharge plasma can be controlled to produce hydrogen peroxide at desired rates, yielding desired concentrations. Using horseradish peroxidase, it is demonstrated that hydrogen peroxide produced by plasma treatment can drive the enzymatic oxidation of model substrates. Fungal peroxygenase is then employed to convert ethylbenzene to (R)-1-phenylethanol with an ee of >96 % using plasma-generated hydrogen peroxide. As direct treatment of the reaction solution with plasma results in reduced enzyme activity, the use of plasma-treated liquid and protection strategies are investigated to increase total turnover. Technical plasmas present a noninvasive means to drive peroxide-based biotransformations.
Collapse
Affiliation(s)
- Abdulkadir Yayci
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Álvaro Gómez Baraibar
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Marco Krewing
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Elena Fernandez Fueyo
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis and Petrochemistry (CSIC)Campus Cantoblanco28049MadridSpain
| | - Robert Kourist
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
- current address: Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 14GrazAustria
| | - Julia E. Bandow
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
15
|
Huihui Z, Xin L, Yupeng G, Mabo L, Yue W, Meijun A, Yuehui Z, Guanjun L, Nan X, Guangyu S. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO 3 stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110259. [PMID: 32097787 DOI: 10.1016/j.ecoenv.2020.110259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
In this paper, the effects of 100 mM NaCl and NaHCO3 stress on reactive oxygen species (ROS) and physiological and proteomic aspects of ROS metabolism in mulberry seedling leaves were studied. The results showed that NaCl stress had little effect on photosynthesis and respiration of mulberry seedling leaves. Superoxide dismutase (SOD) activity and the expression of related proteins in leaves increased by varying degrees, and accumulation of superoxide anion (O2·-) not observed. Under NaHCO3 stress, photosynthesis and respiration were significantly inhibited, while the rate of O2·- production rate and H2O2 content increased. The activity of catalase (CAT) and the expression of CAT (W9RJ43) increased under NaCl stress. In response to NaHCO3 stress, the activity and expression of CAT were significantly decreased, but the ability of H2O2 scavenging of peroxidase (POD) was enhanced. The ascorbic acid-glutathione (AsA-GSH) cycle in mulberry seedling leaves was enhancement in both NaCl and NaHCO3 stress. The expression of 2-Cys peroxiredoxin BAS1 (2-Cys Prx BAS1), together with thioredoxin F (TrxF), thioredoxin O1 (TrxO1), thioredoxin-like protein CITRX (Trx CITRX), and thioredoxin-like protein CDSP32 (Trx CDSP32) were significantly increased under NaCl stress. Under NaHCO3 stress, the expression of the electron donor of ferredoxin-thioredoxin reductase (FTR), together with Trx-related proteins, such as thioredoxin M (TrxM), thioredoxin M4 (TrxM4), thioredoxin X (TrxX), TrxF, and Trx CSDP32 were significantly decreased, suggesting that the thioredoxin-peroxiredoxin (Trx-Prx) pathway's function of scavenging H2O2 of in mulberry seedling leaves was inhibited. Taken together, under NaCl stress, excessive production of O2·- mulberry seedlings leaves was inhibited, and H2O2 was effectively scavenged by CAT, AsA-GSH cycle and Trx-Prx pathway. Under NaHCO3 stress, despite the enhanced functions of POD and AsA-GSH cycle, the scavenging of O2·- by SOD was not effective, and that of H2O2 by CAT and Trx-Prx pathway were inhibited; and in turn, the oxidative damage to mulberry seedling leaves could not be reduced.
Collapse
Affiliation(s)
- Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guan Yupeng
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li Mabo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - An Meijun
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhang Yuehui
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Liu Guanjun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xu Nan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
16
|
Rani MH, Liu Q, Yu N, Zhang Y, Wang B, Cao Y, Zhang Y, Islam MA, Zegeye WA, Cao L, Cheng S. ES5 is involved in the regulation of phosphatidylserine synthesis and impacts on early senescence in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2020; 102:501-515. [PMID: 31919641 DOI: 10.1007/s11103-019-00961-964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/30/2019] [Indexed: 05/24/2023]
Abstract
Leaf senescence, which affects plant growth and yield in rice, is an ideal target for crop improvement and remarkable advances have been made to identify the mechanism underlying this process. We have characterized an early senile mutant es5 (early leaf senescence 5) in rice exhibiting leaf yellowing phenotype after the 4-leaf stage. This phenotype was confirmed by the higher accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the disintegration of chloroplasts, reduction in chlorophyll content and photosynthetic rate and up-regulation of senescence-associated genes (SAGs) like Osh36, OsI57, and OsI85. Positional cloning revealed that the es5 phenotype is the result of one base substitution in ES5, encoding phosphatidylserine synthase (PSS) family protein, which is involved in the base-exchange type reaction to synthesize the minor membrane phospholipid phosphatidylserine. Functional complementation of ES5 in the es5 plants completely restored the wild-type phenotype. Ultra-high-performance liquid chromatography (UHPLC) analysis showed that es5 plants had increased levels of phosphatidylserine (PS) and decreased level of phosphatidylcholine (PC). These results provide evidence about the role of PS in rice leaf senescence.
Collapse
Affiliation(s)
- Mohammad Hasanuzzaman Rani
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Bangladesh Institute of Nuclear Agriculture, Mymensingh, 2202, Bangladesh
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Beifang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yongrun Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Md Anowerul Islam
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Workie Anley Zegeye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Department of Plant Sciences, University of Gondar, Gondar, Ethiopia
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
17
|
Rani MH, Liu Q, Yu N, Zhang Y, Wang B, Cao Y, Zhang Y, Islam MA, Zegeye WA, Cao L, Cheng S. ES5 is involved in the regulation of phosphatidylserine synthesis and impacts on early senescence in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2020; 102:501-515. [PMID: 31919641 PMCID: PMC7026238 DOI: 10.1007/s11103-019-00961-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
Leaf senescence, which affects plant growth and yield in rice, is an ideal target for crop improvement and remarkable advances have been made to identify the mechanism underlying this process. We have characterized an early senile mutant es5 (early leaf senescence 5) in rice exhibiting leaf yellowing phenotype after the 4-leaf stage. This phenotype was confirmed by the higher accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), the disintegration of chloroplasts, reduction in chlorophyll content and photosynthetic rate and up-regulation of senescence-associated genes (SAGs) like Osh36, OsI57, and OsI85. Positional cloning revealed that the es5 phenotype is the result of one base substitution in ES5, encoding phosphatidylserine synthase (PSS) family protein, which is involved in the base-exchange type reaction to synthesize the minor membrane phospholipid phosphatidylserine. Functional complementation of ES5 in the es5 plants completely restored the wild-type phenotype. Ultra-high-performance liquid chromatography (UHPLC) analysis showed that es5 plants had increased levels of phosphatidylserine (PS) and decreased level of phosphatidylcholine (PC). These results provide evidence about the role of PS in rice leaf senescence.
Collapse
Affiliation(s)
- Mohammad Hasanuzzaman Rani
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Bangladesh Institute of Nuclear Agriculture, Mymensingh, 2202, Bangladesh
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Beifang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yongrun Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Md Anowerul Islam
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Workie Anley Zegeye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Department of Plant Sciences, University of Gondar, Gondar, Ethiopia
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
18
|
Ratajczak E, Staszak AM, Wojciechowska N, Bagniewska-Zadworna A, Dietz KJ. Regulation of thiol metabolism as a factor that influences the development and storage capacity of beech seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:61-70. [PMID: 31200171 DOI: 10.1016/j.jplph.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 05/07/2023]
Abstract
Seeds are the basis of propagation for the common beech (Fagus sylvatica L.), but the seed set of the beech is unsteady, with 5-10 years between abundant crops. Beech seeds are very difficult to store and lose their viability quickly even in optimum storage conditions. To date, it has not been possible to determine factors indicative of the aging process and the loss of viability of beech seeds during storage. To address this important economic challenge and interesting scientific problem, we analyzed the adjustment of the redox state during the development and storage of seeds. Many metabolic processes are based on reduction and oxidation reactions. Thiol proteins control and react to the redox state in the cells. The level of thiol proteins increased during seed maturation and decreased during storage. Gel-based redox proteomics identified 17 proteins in beech seeds during development. The proteins could be assigned to processes like metabolism and antioxidant functions. During storage, the number of proteins decreased to only six, i.e., oxidoreductases, peptidases, hydrolases and isomerases. The occurrence of peroxiredoxins (PRX) as thiol peroxidases and redox regulators indicates an important role of cytosolic 1CysPRX and PRXIIC, mitochondrial PRXIIF, and plastidic PRXIIE, 2CysPRX, and PRXQ in beech seeds during development and storage. Particularly, 2CysPRX was present in beech seeds during development and storage and may perform an important function in regulation of the redox state during both seed development and storage. The role of thiol proteins in the regulation of the redox state during the development and storage of beech seeds is discussed.
Collapse
Affiliation(s)
- E Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, 62-035, Kórnik, Poland.
| | - A M Staszak
- Plant Physiology Department, Faculty of Biology and Chemistry, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - N Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - A Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - K J Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, University Street 25, Bielefeld, 33501, Germany
| |
Collapse
|
19
|
Tuzet A, Rahantaniaina MS, Noctor G. Analyzing the Function of Catalase and the Ascorbate-Glutathione Pathway in H 2O 2 Processing: Insights from an Experimentally Constrained Kinetic Model. Antioxid Redox Signal 2019; 30:1238-1268. [PMID: 30044135 DOI: 10.1089/ars.2018.7601] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Plant stress involves redox signaling linked to reactive oxygen species such as hydrogen peroxide (H2O2), which can be generated at high rates in photosynthetic cells. The systems that process H2O2 include catalase (CAT) and the ascorbate-glutathione pathway, but interactions between them remain unclear. Modeling can aid interpretation and pinpoint areas for investigation. Recent Advances: Based on emerging data and concepts, we introduce a new experimentally constrained kinetic model to analyze interactions between H2O2, CAT, ascorbate, glutathione, and NADPH. The sensitivity points required for accurate simulation of experimental observations are analyzed, and the implications for H2O2-linked redox signaling are discussed. CRITICAL ISSUES We discuss several implications of the modeled results, in particular the following. (i) CAT and ascorbate peroxidase can share the load in H2O2 processing even in optimal conditions. (ii) Intracellular H2O2 concentrations more than the low μM range may rarely occur. (iii) Ascorbate redox turnover is largely independent of glutathione until ascorbate peroxidation exceeds a certain value. (iv) NADPH availability may determine glutathione redox status through its influence on monodehydroascorbate reduction. (v) The sensitivity of glutathione status to oxidative stress emphasizes its potential suitability as a sensor of increased H2O2. FUTURE DIRECTIONS Important future questions include the roles of other antioxidative systems in interacting with CAT and the ascorbate-glutathione pathway as well as the nature and significance of processes that achieve redox exchange between different subcellular compartments. Progress in these areas is likely to be favored by integrating kinetic modeling analyses into experimentally based programs, allowing each approach to inform the other.
Collapse
Affiliation(s)
- Andrée Tuzet
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France
| | - Marie-Sylviane Rahantaniaina
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France.,2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Graham Noctor
- 2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
20
|
Murata MM, Omar AA, Mou Z, Chase CD, Grosser JW, Graham JH. Novel Plastid-Nuclear Genome Combinations Enhance Resistance to Citrus Canker in Cybrid Grapefruit. FRONTIERS IN PLANT SCIENCE 2019; 9:1858. [PMID: 30666259 PMCID: PMC6330342 DOI: 10.3389/fpls.2018.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/30/2018] [Indexed: 05/23/2023]
Abstract
Host disease resistance is the most desirable strategy for control of citrus canker, a disease caused by a gram-negative bacterium Xanthomonas citri subsp. citri. However, no resistant commercial citrus cultivar has been identified. Cybridization, a somatic hybridization approach that combines the organelle and nuclear genomes from different species, was used to create cybrids between citrus canker resistant 'Meiwa' kumquat (Fortunella crassifolia Swingle snym. Citrus japonica Thunb.) and susceptible grapefruit (Citrus paradisi Macfad) cultivars. From these fusions, cybrids with grapefruit nucleus, kumquat mitochondria and kumquat chloroplasts and cybrids with grapefruit nucleus, kumquat mitochondria and grapefruit chloroplasts were generated. These cybrids showed a range of citrus canker response, but all cybrids with kumquat chloroplasts had a significantly lower number of lesions and lower Xanthomonas citri subsp. citri populations than the grapefruit controls. Cybrids with grapefruit chloroplasts had a significantly higher number of lesions than those with kumquat chloroplasts. To understand the role of chloroplasts in the cybrid disease defense, quantitative PCR was performed on both cybrid types and their parents to examine changes in gene expression during Xanthomonas citri subsp. citri infection. The results revealed chloroplast influences on nuclear gene expression, since isonuclear cybrids and 'Marsh' grapefruit had different gene expression profiles. In addition, only genotypes with kumquat chloroplasts showed an early up-regulation of reactive oxygen species genes upon Xanthomonas citri subsp. citri infection. These cybrids have the potential to enhance citrus canker resistance in commercial grapefruit orchards. They also serve as models for understanding the contribution of chloroplasts to plant disease response and raise the question of whether other alien chloroplast genotypes would condition similar results.
Collapse
Affiliation(s)
- Mayara M. Murata
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
21
|
Li L, Wu Q, Wang Y, Aghdam MS, Ban Z, Zhang X, Lu H, Li D, Yan J, Limwachiranon J, Luo Z. Systematically quantitative proteomics and metabolite profiles offer insight into fruit ripening behavior in Fragaria × ananassa. RSC Adv 2019; 9:14093-14108. [PMID: 35519301 PMCID: PMC9064045 DOI: 10.1039/c9ra00549h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/28/2019] [Indexed: 11/21/2022] Open
Abstract
Profound metabolic and proteomic changes involved in the primary and the secondary metabolism are required for the ripeness of fleshy fruit such as strawberries (Fragaria × ananassa). Here we present the quantitative proteomic profiling in parallel with metabolic and transcriptional profiling at five developmental stages of strawberry fruit ripening, and correlations between changes in representative metabolites and the abundance of related proteins were analyzed. Hierarchical clustering analysis of the quantitative proteomic profiling identified 143 proteins in strawberry fruit across five developmental stages. Meanwhile, both protein abundance and gene expression spanned a wide range of roles, such as the primary and the secondary metabolism, defense system, and response to stress stimuli. The decreased abundance of proteins contributed to the carbohydrate metabolism and the up-regulated expression of secondary biosynthetic proteins was found to be positively correlated with the accumulation of primary and secondary metabolites during strawberry development. Moreover, with the same annotations and high homology, the gene function of key genes involved in primary and secondary metabolism (FaTPI, FaPAL, FaMDH and FaME) was confirmed in Nicotiana via the transient expression assay, which provides further evidence for the role of those genes in metabolism of strawberry fruit. The results of the present study may serve as an important resource for the functional analysis of the proteome and offer new perspectives on regulation of fruit quality. Proteome and metabolite profiles of fruit ripening behavior in Fragaria × ananassa Duch. ‘Benihoppe’.![]()
Collapse
|
22
|
Otsubo M, Ikoma C, Ueda M, Ishii Y, Tamura N. Functional Role of Fibrillin5 in Acclimation to Photooxidative Stress. PLANT & CELL PHYSIOLOGY 2018; 59:1670-1682. [PMID: 29741733 DOI: 10.1093/pcp/pcy093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 05/13/2023]
Abstract
The functional role of a lipid-associated soluble protein, fibrillin5 (FBN5), was determined with the Arabidopsis thaliana homozygous fbn5-knockout mutant line (SALK_064597) that carries a T-DNA insertion within the FBN5 gene. The fbn5 mutant remained alive, displaying a slow growth and a severe dwarf phenotype. The mutant grown even under growth light conditions at 80 µmol m-2 s-1 showed a drastic decrease in electron transfer activities around PSII, with little change in electron transfer activities around PSI, a phenomenon which was exaggerated under high light stress. The accumulation of plastoquinone-9 (PQ-9) was suppressed in the mutant, and >90% of the PQ-9 pool was reduced under growth light conditions. Non-photochemical quenching (NPQ) in the mutant functioned less efficiently, resulting from little contribution by energy-dependent quenching (qE). The ultrastructure of thylakoids in the mutant revealed that their grana were unstacked and transformed into loose and disordered structures. Light-harvesting complex (LHC)-containing large photosystem complexes and photosystem core complexes in the mutant were less abundant than those in wild-type plants. These results suggest that the lack of FBN5 causes a decrease in PQ-9 and imbalance of the redox state of PQ-9, resulting in misconducting both short-term and long-term control of the input of light energy to photosynthetic reaction centers. Furthermore, in the fbn5 mutant, the expression of genes involved in jasmonic acid biosynthesis was suppressed to ≤10% of that in the wild type under both growth-light and high-light conditions, suggesting that FBN5 functions as a transmitter of 1O2 in the stroma.
Collapse
Affiliation(s)
- Mayuko Otsubo
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Chikako Ikoma
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Mariko Ueda
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Yumi Ishii
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Noriaki Tamura
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
23
|
Burra DD, Lenman M, Levander F, Resjö S, Andreasson E. Comparative Membrane-Associated Proteomics of Three Different Immune Reactions in Potato. Int J Mol Sci 2018; 19:ijms19020538. [PMID: 29439444 PMCID: PMC5855760 DOI: 10.3390/ijms19020538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved different types of immune reactions but large-scale proteomics about these processes are lacking, especially in the case of agriculturally important crop pathosystems. We have established a system for investigating PAMP-triggered immunity (PTI) and two different effector-triggered immunity (ETI; triggered by Avr2 or IpiO) responses in potato. The ETI responses are triggered by molecules from the agriculturally important Phytophthora infestans interaction. To perform large-scale membrane protein-based comparison of these responses, we established a method to extract proteins from subcellular compartments in leaves. In the membrane fractions that were subjected to quantitative proteomics analysis, we found that most proteins regulated during PTI were also regulated in the same way in ETI. Proteins related to photosynthesis had lower abundance, while proteins related to oxidative and biotic stress, as well as those related to general antimicrobial defense and cell wall degradation, were found to be higher in abundance. On the other hand, we identified a few proteins—for instance, an ABC transporter-like protein—that were only found in the PTI reaction. Furthermore, we also identified proteins that were regulated only in ETI interactions. These included proteins related to GTP binding and heterotrimeric G-protein signaling, as well as those related to phospholipase signaling.
Collapse
Affiliation(s)
- Dharani Dhar Burra
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden.
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| |
Collapse
|
24
|
Shaikhali J, Wingsle G. Redox-regulated transcription in plants: Emerging concepts. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Urban MO, Vašek J, Klíma M, Krtková J, Kosová K, Prášil IT, Vítámvás P. Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. J Proteomics 2016; 152:188-205. [PMID: 27838467 DOI: 10.1016/j.jprot.2016.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
The cultivar-dependent differences in Brassica napus L. seed yield are significantly affected by drought stress. Here, the response of leaf proteome to long-term drought (28days) was studied in cultivars (cvs): Californium (C), Cadeli (D), Navajo (N), and Viking (V). Analysis of twenty-four 2-D DIGE gels revealed 134 spots quantitatively changed at least 2-fold; from these, 79 proteins were significantly identified by MALDI-TOF/TOF. According to the differences in water use, the cultivars may be assigned to two categories: water-savers or water-spenders. In the water-savers group (cvs C+D), proteins related to nitrogen assimilation, ATP and redox homeostasis were increased under stress, while in the water-spenders category (cvs N+V), carbohydrate/energy, photosynthesis, stress related and rRNA processing proteins were increased upon stress. Taking all data together, we indicated cv C as a drought-adaptable water-saver, cv D as a medium-adaptable water-saver, cv N as a drought-adaptable water-spender, and cv V as a low-adaptable drought sensitive water-spender rapeseed. Proteomic data help to evaluate the impact of drought and the extent of genotype-based adaptability and contribute to the understanding of their plasticity. These results provide new insights into the provenience-based drought acclimation/adaptation strategy of contrasting winter rapeseeds and link data at gasometric, biochemical, and proteome level. SIGNIFICANCE Soil moisture deficit is a real problem for every crop. The data in this study demonstrates for the first time that in stem-prolongation phase cultivars respond to progressive drought in different ways and at different levels. Analysis of physiological and proteomic data showed two different water regime-related strategies: water-savers and spenders. However, not only water uptake rate itself, but also individual protein abundances, gasometric and biochemical parameters together with final biomass accumulation after stress explained genotype-based responses. Interestingly, under a mixed climate profile, both water-use patterns (savers or spenders) can be appropriate for drought adaptation. These data suggest, than complete "acclimation image" of rapeseeds in stem-prolongation phase under drought could be reached only if these characteristics are taken, explained and understood together.
Collapse
Affiliation(s)
- Milan Oldřich Urban
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic; Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic.
| | - Jakub Vašek
- Czech University of Life Sciences Prague, Department of Genetics and Breeding, Kamýcká 129, Prague, Czech Republic
| | - Miroslav Klíma
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Jana Krtková
- Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic
| | - Klára Kosová
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Ilja Tom Prášil
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Pavel Vítámvás
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| |
Collapse
|
26
|
Lee JT, Lee SS, Mondal S, Tripathi BN, Kim S, Lee KW, Hong SH, Bai HW, Cho JY, Chung BY. Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli. Mol Cells 2016; 39:594-602. [PMID: 27457208 PMCID: PMC4990751 DOI: 10.14348/molcells.2016.0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/20/2016] [Accepted: 06/22/2016] [Indexed: 11/27/2022] Open
Abstract
Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of Ser(78) to Cys(78) resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of Cys(78) in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone.
Collapse
Affiliation(s)
- Jae Taek Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
- Fruit Vegetables Research Institute, Jellabuk-do Agricultural Research & Extension Services, Gunsan 54062,
Korea
| | - Seung Sik Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
- Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34113,
Korea
| | - Suvendu Mondal
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| | - Bhumi Nath Tripathi
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| | - Siu Kim
- Division of Applied Life Science (Brain Korea 21 Program), Gyeong-sang National University, Jinju 52828,
Korea
| | - Keun Woo Lee
- Division of Applied Life Science (Brain Korea 21 Program), Gyeong-sang National University, Jinju 52828,
Korea
| | - Sung Hyun Hong
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186,
Korea
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| | - Jae-Young Cho
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896,
Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212,
Korea
| |
Collapse
|
27
|
Noctor G, Mhamdi A, Foyer CH. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. PLANT, CELL & ENVIRONMENT 2016; 39:1140-60. [PMID: 26864619 DOI: 10.1111/pce.12726] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field.
Collapse
Affiliation(s)
- Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Amna Mhamdi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB, Department of Plant Systems Biology, Technologie Park 927, B-9052, Ghent, Belgium
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology and Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
28
|
Ishiga Y, Ishiga T, Ikeda Y, Matsuura T, Mysore KS. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ 2016; 4:e1938. [PMID: 27168965 PMCID: PMC4860297 DOI: 10.7717/peerj.1938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs), and NADPH-dependent thioredoxin reductase C (NTRC). However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD) accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA) and jasmonic acid (JA)-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | - Takako Ishiga
- Plant Biology, The Samuel Roberts Noble Foundation , Ardmore, OK , USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University , Kurashiki , Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University , Kurashiki , Japan
| | | |
Collapse
|
29
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cheng F, Yin LL, Zhou J, Xia XJ, Shi K, Yu JQ, Zhou YH, Foyer CH. Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in Solanum lycopersicum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1919-33. [PMID: 26834179 PMCID: PMC4783371 DOI: 10.1093/jxb/erw013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
2-Cys peroxiredoxins (2-CPs) function in the removal of hydrogen peroxide and lipid peroxides but their precise roles in the induction of autophagy have not been characterized. Here we show that heat stress, which is known to induce oxidative stress, leads to the simultaneous accumulation of transcripts encoding 2-CPs and autophagy proteins, as well as autophagosomes, in tomato (Solanum lycopersicum) plants. Virus-induced gene silencing of the tomato peroxiredoxin genes 2-CP1, 2-CP2, and 2-CP1/2 resulted in an increased sensitivity of tomato plants to heat stress. Silencing 2-CP2 or 2-CP1/2 increased the levels of transcripts associated with ascorbate biosynthesis but had no effect on the glutathione pool in the absence of stress. However, the heat-induced accumulation of transcripts associated with the water-water cycle was compromised by the loss of 2-CP1/2 functions. The transcript levels of autophagy-related genes ATG5 and ATG7 were higher in plants with impaired 2-CP1/2 functions, and the formation of autophagosomes increased, together with an accumulation of oxidized and insoluble proteins. Silencing of ATG5 or ATG7 increased the levels of 2-CP transcripts and protein but decreased heat stress tolerance. These results demonstrate that 2-CPs fulfil a pivotal role in heat stress tolerance in tomato, via interactions with ascorbate-dependent pathways and autophagy.
Collapse
Affiliation(s)
- Fei Cheng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ling-Ling Yin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Christine Helen Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
31
|
Ahmad P, Abdel Latef AA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:513. [PMID: 27200003 PMCID: PMC4847423 DOI: 10.3389/fpls.2016.00513] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/01/2016] [Indexed: 05/18/2023]
Abstract
This work examined the role of exogenously applied calcium (Ca; 50 mM) and potassium (K; 10 mM) (alone and in combination) in alleviating the negative effects of cadmium (Cd; 200 μM) on growth, biochemical attributes, secondary metabolites and yield of chickpea (Cicer arietinum L.). Cd stress significantly decreased the length and weight (fresh and dry) of shoot and root and yield attributes in terms of number of pods and seed yield (vs. control). Exhibition of decreases in chlorophyll (Chl) a, Chl b, and total Chl was also observed with Cd-exposure when compared to control. However, Cd-exposure led to an increase in the content of carotenoids. In contrast, the exogenous application of Ca and K individually as well as in combination minimized the extent of Cd-impact on previous traits. C. arietinum seedlings subjected to Cd treatment exhibited increased contents of organic solute (proline, Pro) and total protein; whereas, Ca and K-supplementation further enhanced the Pro and total protein content. Additionally, compared to control, Cd-exposure also caused elevation in the contents of oxidative stress markers (hydrogen peroxidase, H2O2; malondialdehyde, MDA) and in the activity of antioxidant defense enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Ca, K, and Ca + K supplementation caused further enhancements in the activity of these enzymes but significantly decreased contents of H2O2 and MDA, also that of Cd accumulation in shoot and root. The contents of total phenol, flavonoid and mineral elements (S, Mn, Mg, Ca and K) that were also suppressed in Cd stressed plants in both shoot and root were restored to appreciable levels with Ca- and K-supplementation. However, the combination of Ca + K supplementation was more effective in bringing the positive response as compared to individual effect of Ca and K on Cd-exposed C. arietinum. Overall, this investigation suggests that application of Ca and/or K can efficiently minimize Cd-toxicity and eventually improve health and yield in C. arietinum by the cumulative outcome of the enhanced contents of organic solute, secondary metabolites, mineral elements, and activity of antioxidant defense enzymes.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany, Sri Pratap CollegeSrinagar, India
- *Correspondence: Parvaiz Ahmad
| | - Arafat A. Abdel Latef
- Botany Department, Faculty of Science, South Valley UniversityQena, Egypt
- Biology Department, College of Applied Medical Sciences, Taif UniversityTaif, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Department of Plant Production, Faculty of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Abeer Hashem
- Department of Botany and Microbiology, Faculty of Science, King Saud UniversityRiyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Agriculture Research Center, Plant Pathology Research InstituteGiza, Egypt
| | - Maryam Sarwat
- Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity UniversityUttar Pradesh, India
| | - Naser A. Anjum
- Department of Chemistry, Centre for Environmental and Marine Studies, University of AveiroAveiro, Portugal
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityLefkosa, Cyprus
| |
Collapse
|
32
|
Liu H, Meng H, Pan Y, Liang X, Jiao J, Li Y, Chen S, Cheng Z. Fine genetic mapping of the white immature fruit color gene w to a 33.0-kb region in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2375-85. [PMID: 26239410 DOI: 10.1007/s00122-015-2592-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/23/2015] [Indexed: 05/25/2023]
Abstract
The white immature fruit color gene w was rapidly mapped to a 33.0-kb region to identify a valuable candidate gene that encodes peroxidase. The skin color of immature fruit is a crucial external trait of cucumbers, and white skin is shared by limited numbers of commercial cultivars. Herein, one BC1 population and two F2 segregating populations were constructed using four inbred parental lines (WD3 × B-2-2 and Q30 × Q24) to investigate the inheritance patterns and chromosomal locations of immature fruit color genes in cucumbers. Consequently, a single recessive gene, w, was identified that controls white immature fruit color. A total of 526 markers, which were derived from published genetic maps, two reference cucumber genomes ("9930" and GY14), and two parents (Q30 and Q24) for which whole-genome sequence information is available, were used to map the target gene w to a 33.0-kb region flanked by two SNP-based markers, ASPCR39262 and ASPCR39229, which are physically located at 39262450 and 39229482 of chromosome 3 ("9930" draft genome assembly), respectively. Gene prediction indicated that four potential genes were located in the target region. One gene that encodes peroxidase is likely to be a valuable candidate gene because quantitative real-time PCR revealed an eightfold difference in its transcriptional level, and several amino acid variations were found when the deduced amino acid sequence was aligned. A co-segregating marker was used synergistically to test its ability to predict the skin colors of 83 dark green/white germplasms, and the validity of its utility in marker-assisted selection was confirmed. Fine mapping of this locus will assist in cloning the gene and in marker-assisted breeding to develop dark green/white cucumber cultivars.
Collapse
Affiliation(s)
- Hanqiang Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinjing Liang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianqing Jiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
Lee EM, Lee SS, Tripathi BN, Jung HS, Cao GP, Lee Y, Singh S, Hong SH, Lee KW, Lee SY, Cho JY, Chung BY. Site-directed mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions. ANNALS OF BOTANY 2015; 116:713-25. [PMID: 26141131 PMCID: PMC4577999 DOI: 10.1093/aob/mcv094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/08/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS The 2-Cys peroxiredoxin (Prx) A protein of Arabidopsis thaliana performs the dual functions of a peroxidase and a molecular chaperone depending on its conformation and the metabolic conditions. However, the precise mechanism responsible for the functional switching of 2-Cys Prx A is poorly known. This study examines various serine-to-cysteine substitutions on α-helix regions of 2-Cys Prx A in Arabidopsis mutants and the effects they have on the dual function of the protein. METHODS Various mutants of 2-Cys Prx A were generated by replacing serine (Ser) with cysteine (Cys) at different locations by site-directed mutagenesis. The mutants were then over-expressed in Escherichia coli. The purified protein was further analysed by size exclusion chromatography, polyacrylamide gel electrophoresis, circular dichroism spectroscopy and transmission electron microscopy (TEM) and image analysis. Peroxidase activity, molecular chaperone activity and hydrophobicity of the proteins were also determined. Molecular modelling analysis was performed in order to demonstrate the relationship between mutation positions and switching of 2-Cys Prx A activity. KEY RESULTS Replacement of Ser(150) with Cys(150) led to a marked increase in holdase chaperone and peroxidase activities of 2-Cys Prx A, which was associated with a change in the structure of an important domain of the protein. Molecular modelling demonstrated the relationship between mutation positions and the switching of 2-Cys Prx A activity. Examination of the α2 helix, dimer-dimer interface and C-term loop indicated that the peroxidase function is associated with a fully folded α2 helix and easy formation of a stable reduced decamer, while a more flexible C-term loop makes the chaperone function less likely. CONCLUSIONS Substitution of Cys for Ser at amino acid location 150 of the α-helix of 2-Cys Prx A regulates/enhances the dual enzymatic functions of the 2-Cys Prx A protein. If confirmed in planta, this leads to the potential for it to be used to maximize the functional utility of 2-Cys Prx A protein for improved metabolic functions and stress resistance in plants.
Collapse
Affiliation(s)
- Eun Mi Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup 580-185, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup 580-185, Republic of Korea
| | - Bhumi Nath Tripathi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup 580-185, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Guang Ping Cao
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea and
| | - Yuno Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea and
| | - Sudhir Singh
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup 580-185, Republic of Korea
| | - Sung Hyun Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup 580-185, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea and
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea and
| | - Jae-Young Cho
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup 580-185, Republic of Korea,
| |
Collapse
|
34
|
Ostaszewska-Bugajska M, Rychter AM, Juszczuk IM. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:25-38. [PMID: 26339750 DOI: 10.1016/j.jplph.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
We examined the functioning of the antioxidative defense system in Arabidopsis thaliana under sulphur (S) deficiency with an emphasis on the role of mitochondria. In tissue extracts and in isolated mitochondria from S-deficient plants, the concentration of non-protein thiols declined but protein thiols did not change. Superoxide anion and hydrogen peroxide were accumulated in leaf blades and the generation of superoxide anion by isolated mitochondria was higher. Lower abundance of reduced (GSH) plus oxidized (GSSG) glutathione in the leaf and root tissues, and leaf mitochondria from S-deficient plants was accompanied by a decrease in the level of GSH and the changes in the GSH/GSSG ratios. In the chloroplasts, the total level of glutathione decreased. Lower levels of reduced (AsA) and oxidized (DHA) ascorbate were reflected in much higher ratios of AsA/DHA. Sulphur deficiency led to an increase in the activity of cytosolic, mitochondrial and chloroplastic antioxidative enzymes, peroxidases, catalases and superoxide dismutases. The protein carbonyl level was higher in the leaves of S-deficient plants and in the chloroplasts, while in the roots, leaf and root mitochondria it remained unchanged. Protease activity in leaf extracts of S-deficient plants was higher, but in root extracts it did not differ. The proteolytic system reflected subcellular specificity. In leaf and root mitochondria the protease activity was higher, whereas in the chloroplasts it did not change. We propose that the preferential incorporation of S to protein thiols and activation of antioxidative and proteolytic systems are likely important for the survival of S-deficient plants and that the mitochondria maintain redox homeostasis.
Collapse
Affiliation(s)
- Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| | - Anna M Rychter
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| | - Izabela M Juszczuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
35
|
An BC, Lee SS, Jung HS, Kim JY, Lee Y, Lee KW, Lee SY, Tripathi BN, Chung BY. An additional cysteine in a typical 2-Cys peroxiredoxin ofPseudomonaspromotes functional switching between peroxidase and molecular chaperone. FEBS Lett 2015; 589:2831-40. [DOI: 10.1016/j.febslet.2015.07.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 01/15/2023]
|
36
|
Abou-Mansour E, Débieux JL, Ramírez-Suero M, Bénard-Gellon M, Magnin-Robert M, Spagnolo A, Chong J, Farine S, Bertsch C, L'Haridon F, Serrano M, Fontaine F, Rego C, Larignon P. Phytotoxic metabolites from Neofusicoccum parvum, a pathogen of Botryosphaeria dieback of grapevine. PHYTOCHEMISTRY 2015; 115:207-15. [PMID: 25747381 DOI: 10.1016/j.phytochem.2015.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/18/2015] [Accepted: 01/29/2015] [Indexed: 05/04/2023]
Abstract
Liquid chromatography-diode array screening of the organic extract of the cultures of 13 isolates of the fungus Neofusicoccum parvum, the main causal agent of botryosphaeria dieback of grapevine, showed similar metabolites. One strain was selected for further chemical studies and led to the isolation and characterisation of 13 metabolites. Structures were elucidated through spectroscopic analyses, including one- and two-dimensional NMR and mass spectrometry, and through comparison to literature data. The isolated compounds belong to four different chemical families: five metabolites, namely, (-)-terremutin (1), (+)-terremutin hydrate (2), (+)-epi-sphaeropsidone (3) (-)-4-chloro-terremutin hydrate (4) and(+)-4-hydroxysuccinate-terremutin hydrate (5), belong to the family of dihydrotoluquinones; two metabolites, namely, (6S,7R) asperlin (6) and (6R,7S)-dia-asperlin (7), belong to the family of epoxylactones; four metabolites, namely, (R)-(-)-mellein (8), (3R,4R)-4-hydroxymellein (9), (3R,4S)-4-hydroxymellein (10) (R)(-)-3-hydroxymellein (11), belong to the family of dihydroisocoumarins; and two of the metabolites, namely, 6-methyl-salicylic acid (12) and 2-hydroxypropyl salicylic acid (13), belong to the family of hydroxybenzoic acids. We determined the phytotoxic activity of the isolated metabolites through a leaf disc assay and the expression of defence-related genes in Vitis vinifera cells cv. Chardonnay cultured with (-)-terremutin (1), the most abundant metabolite. Finally, analysis of the brown stripes of grapevine wood from plants showing botryosphaeria dieback symptoms revealed the presence of two of the isolated phytotoxins.
Collapse
Affiliation(s)
- Eliane Abou-Mansour
- Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland.
| | - Jean-Luc Débieux
- Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Montserrat Ramírez-Suero
- Laboratoire Vigne Biotechnologie et Environnement EA 3991, Université de Haute-Alsace, 33, rue de Herrlisheim, BP 68008 Colmar Cedex, France
| | - Mélanie Bénard-Gellon
- Laboratoire Vigne Biotechnologie et Environnement EA 3991, Université de Haute-Alsace, 33, rue de Herrlisheim, BP 68008 Colmar Cedex, France
| | - Maryline Magnin-Robert
- Laboratoire Stress Défense et Reproduction des Plantes EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences, Moulin de la Housse, 51687 Reims Cedex 2, France
| | - Alessandro Spagnolo
- Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland; Laboratoire Stress Défense et Reproduction des Plantes EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences, Moulin de la Housse, 51687 Reims Cedex 2, France
| | - Julie Chong
- Laboratoire Vigne Biotechnologie et Environnement EA 3991, Université de Haute-Alsace, 33, rue de Herrlisheim, BP 68008 Colmar Cedex, France
| | - Sibylle Farine
- Laboratoire Vigne Biotechnologie et Environnement EA 3991, Université de Haute-Alsace, 33, rue de Herrlisheim, BP 68008 Colmar Cedex, France
| | - Christohpe Bertsch
- Laboratoire Vigne Biotechnologie et Environnement EA 3991, Université de Haute-Alsace, 33, rue de Herrlisheim, BP 68008 Colmar Cedex, France
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Mario Serrano
- Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Florence Fontaine
- Laboratoire Stress Défense et Reproduction des Plantes EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences, Moulin de la Housse, 51687 Reims Cedex 2, France
| | - Cecilia Rego
- Institut Supérieur d'Agronomie, Tapada da Ajuda, Lisbonne, Portugal
| | - Philippe Larignon
- Institut Français de la Vigne et du Vin Pôle Rhône-Méditerranée, France, Domaine de Donadille, 30230 Rodilhan, France
| |
Collapse
|
37
|
Ksas B, Becuwe N, Chevalier A, Havaux M. Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis. Sci Rep 2015; 5:10919. [PMID: 26039552 PMCID: PMC4454199 DOI: 10.1038/srep10919] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Plastoquinone-9 is known as a photosynthetic electron carrier to which has also been attributed a role in the regulation of gene expression and enzyme activities via its redox state. Here, we show that it acts also as an antioxidant in plant leaves, playing a central photoprotective role. When Arabidopsis plants were suddenly exposed to excess light energy, a rapid consumption of plastoquinone-9 occurred, followed by a progressive increase in concentration during the acclimation phase. By overexpressing the plastoquinone-9 biosynthesis gene SPS1 (solanesyl diphosphate synthase 1) in Arabidopsis, we succeeded in generating plants that specifically accumulate plastoquinone-9 and its derivative plastochromanol-8. The SPS1-overexpressing lines were much more resistant to photooxidative stress than the wild type, showing marked decreases in leaf bleaching, lipid peroxidation and PSII photoinhibition under excess light. Comparison of the SPS1 overexpressors with other prenyl quinone mutants indicated that the enhanced phototolerance of the former plants is directly related to their increased capacities for plastoquinone-9 biosynthesis.
Collapse
Affiliation(s)
- Brigitte Ksas
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Noëlle Becuwe
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Anne Chevalier
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Michel Havaux
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| |
Collapse
|
38
|
Vidigal P, Martin-Hernandez AM, Guiu-Aragonés C, Amâncio S, Carvalho L. Selective silencing of 2Cys and type-IIB Peroxiredoxins discloses their roles in cell redox state and stress signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:591-601. [PMID: 25319151 DOI: 10.1111/jipb.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 05/12/2023]
Abstract
Peroxiredoxins (Prx) catalyse the reduction of hydrogen peroxide (H2O2) and, in association with catalases and other peroxidases, may participate in signal transduction by regulating intercellular H2O2 concentration that in turn can control gene transcription and cell signaling. Using virus-induced-gene-silencing (VIGS), 2-Cys Peroxiredoxin (2CysPrx) family and type-II Peroxiredoxin B (PrxIIB) gene were silenced in Nicotiana benthamiana, to study the impact that the loss of function of each Prx would have in the antioxidant system under control (22 °C) and severe heat stress conditions (48 °C). The results showed that both Prxs, although in different organelles, influence the regeneration of ascorbate to a significant extent, but with different purposes. 2CysPrx affects abscisic acid (ABA) biosynthesis through ascorbate, while PrxIIB does it probably through the xanthophyll cycle. Moreover, 2CysPrx is key in H2O2 scavenging and in consequence in the regulation of ABA signaling downstream of reactive oxygen species and PrxIIB provides an important assistance for H2O2 peroxisome scavenges.
Collapse
Affiliation(s)
- Patrícia Vidigal
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ana Montserrat Martin-Hernandez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Campus Universitat Autonoma de Barcelona (UAB), Edificio Center for Research in Agricultural Genomics (CRAG), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Cèlia Guiu-Aragonés
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Campus Universitat Autonoma de Barcelona (UAB), Edificio Center for Research in Agricultural Genomics (CRAG), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Sara Amâncio
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Luísa Carvalho
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
39
|
Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A. Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Proteomics 2015; 119:112-25. [PMID: 25682994 DOI: 10.1016/j.jprot.2015.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/16/2015] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
Peroxiredoxins (Prxs) have emerged as important factors linking reactive oxygen species (ROS) metabolism to redox-dependent signaling events. Together with ROS, nitric oxide (NO) is a free radical product of the cell metabolism that is essential in the signal transduction. S-Nitrosylation is emerging as a fundamental protein modification for the transduction of NO bioactivity. Using recombinant pea mitochondrial PsPrxII F (PrxII F), the effect of S-nitrosoglutathione (GSNO) and sodium nitroprusside dehydrate (SNP), which are known to mediate protein S-nitrosylation processes, was studied. S-Nitrosylation of the PrxII F was demonstrated using the biotin switch method and LC ESI-QTOF tandem MS analysis. S-nitrosylated PrxII F decreased its peroxidase activity and acquired a new transnitrosylase activity, preventing the thermal aggregation of citrate synthase (CS). For the first time, we demonstrate the dual function for PrxII F as peroxidase and transnitrosylase. This switch was accompanied by a conformational change of the protein that could favor the protein-protein interaction CS-PrxII F. The observed in vivo S-nitrosylation of PrxII F could probably function as a protective mechanism under oxidative and nitrosative stress, such as occurs under salinity. We conclude that we are dealing with a novel regulatory mechanism for this protein by NO. BIOLOGICAL SIGNIFICANCE S-Nitrosylation is a post-translational modification that is increasingly viewed as fundamental for the signal transduction role of NO in plants. This study demonstrates that S-nitrosylation of the mitochondrial peroxiredoxin PrxII F induces a conformational change in the protein and provokes a reduction in its peroxidase activity, while acquiring a novel function as transnitrosylase. The implication of this mechanism will increase our understanding of the role of posttranslational modifications in the protein function in plants under stress situations such as salinity, in which NO could act as signaling molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Juan J Lázaro
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - María C Romero-Puertas
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Alfonso Lázaro-Payo
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| |
Collapse
|
40
|
Li L, Luo Z, Huang X, Zhang L, Zhao P, Ma H, Li X, Ban Z, Liu X. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage. J Proteomics 2015; 120:44-57. [PMID: 25753123 DOI: 10.1016/j.jprot.2015.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED To elucidate the mechanisms contributing to fruit responses to senescence and stressful environmental stimuli under low temperature (LT) and controlled atmosphere (CA) storage, a label-free quantitative proteomic investigation was conducted in strawberry (Fragaria ananassa, Duch. cv. 'Akihime'). Postharvest physiological quality traits including firmness, total soluble solids, total acidity, ascorbic acid and volatile production were characterized following storage under different conditions. The observed post-storage protein expression profiles may be associated with delayed senescence features in strawberry. A total of 454 proteins were identified in differentially treated strawberry fruits. Quantitative analysis, using normalized spectral counts, revealed 73 proteins common to all treatments, which formed three clusters in a hierarchical clustering analysis. The proteins spanned a range of functions in various metabolic pathways and networks involved in carbohydrate and energy metabolism, volatile biosynthesis, phenylpropanoid activity, stress response and protein synthesis, degradation and folding. After CA and LT storage, 16 (13) and 11 (17) proteins, respectively, were significantly increased (decreased) in abundance, while expression profile of 12 proteins was significantly changed by both CA and LT. To summarize, the differential variability of abundance in strawberry proteome, working in a cooperative manner, provided an overview of the biological processes that occurred during CA and LT storage. BIOLOGICAL SIGNIFICANCE Controlled atmosphere storage at an optimal temperature is regarded to be an effective postharvest technology to delay fruit senescence and maintain fruit quality during shelf life. Nonetheless, little information on fruit proteomic changes under controlled atmosphere and/or low temperature storage is available. The significance of this paper is that it is the first study employing a label-free approach in the investigation of strawberry fruit response to controlled atmosphere and cold storage. Changes in postharvest physiological quality traits including volatile production, firmness, ascorbic acid, soluble solids and total acidity were also characterized. Significant biological changes associated with senescence were revealed and differentially abundant proteins under various storage conditions were identified. Proteomic profiles were linked to physiological aspects of strawberry fruit senescence in order to provide new insights into possible regulation mechanisms. Findings from this study not only provide proteomic information on fruit regulation, but also pave the way for further quantitative studies at the transcriptomic and metabolomic levels.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zisheng Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xinhong Huang
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lu Zhang
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pengyu Zhao
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongyuan Ma
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zhaojun Ban
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan, Shandong 250014, PR China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
| | - Xia Liu
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
41
|
Li J, Zhu L, Lu G, Zhan XB, Lin CC, Zheng ZY. Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. cv. McCain G1) leaf cells. PLoS One 2014; 9:e97197. [PMID: 24816730 PMCID: PMC4016274 DOI: 10.1371/journal.pone.0097197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023] Open
Abstract
Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H₂O₂ and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Zhu
- Jiangsu Rayguang Biotech Company, Ltd., Wuxi, Jiangsu, China
| | - Guangxing Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Rayguang Biotech Company, Ltd., Wuxi, Jiangsu, China
| | - Chi-Chung Lin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhi-Yong Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
42
|
Noctor G, Mhamdi A, Foyer CH. The roles of reactive oxygen metabolism in drought: not so cut and dried. PLANT PHYSIOLOGY 2014; 164:1636-48. [PMID: 24715539 PMCID: PMC3982730 DOI: 10.1104/pp.113.233478] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Drought is considered to cause oxidative stress, but the roles of oxidant-induced modifications in plant responses to water deficit remain obscure. Key unknowns are the roles of reactive oxygen species (ROS) produced at specific intracellular or apoplastic sites and the interactions between the complex, networking antioxidative systems in restricting ROS accumulation or in redox signal transmission. This Update discusses the physiological aspects of ROS production during drought, and analyzes the relationship between oxidative stress and drought from different but complementary perspectives. We ask to what extent redox changes are involved in plant drought responses and discuss the roles that different ROS-generating processes may play. Our discussion emphasizes the complexity and the specificity of antioxidant systems, and the likely importance of thiol systems in drought-induced redox signaling. We identify candidate drought-responsive redox-associated genes and analyze the potential importance of different metabolic pathways in drought-associated oxidative stress signaling.
Collapse
Affiliation(s)
| | - Amna Mhamdi
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (G.N., A.M.); and
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (C.H.F.)
| | - Christine H. Foyer
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (G.N., A.M.); and
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (C.H.F.)
| |
Collapse
|
43
|
Zain NAM, Ismail MR, Mahmood M, Puteh A, Ibrahim MH. Alleviation of water stress effects on MR220 rice by application of periodical water stress and potassium fertilization. Molecules 2014; 19:1795-819. [PMID: 24504074 PMCID: PMC6271937 DOI: 10.3390/molecules19021795] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 01/08/2023] Open
Abstract
The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop’s instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1) standard local grower’s practice (control, 80CF = 80 kg K2O/ha + control flooding); (2) 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3) 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4) 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5) 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX), catalase (CAT) and proline levels, maximum efficiency of photosystem II (fv/fm) and lower minimal fluorescence (fo), compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350), confirming that rice yield was mostly influenced by the parameters measured during the study.
Collapse
Affiliation(s)
- Nurul Amalina Mohd Zain
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Mohd Razi Ismail
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Maziah Mahmood
- Department of Biochemistry, Faculty of Bioctechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Adam Puteh
- Department of Crop Science, Faculty of Agriculture Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Mohd Hafiz Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
44
|
Bhardwaj PK, Mala D, Kumar S. 2-Cys peroxiredoxin responds to low temperature and other cues in Caragana jubata, a plant species of cold desert of Himalaya. Mol Biol Rep 2014; 41:2951-61. [PMID: 24477582 DOI: 10.1007/s11033-014-3151-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/13/2014] [Indexed: 12/20/2022]
Abstract
A 2-Cys peroxiredoxin cDNA (CjPrx) was isolated and characterized from Caragana jubata, a temperate/alpine plant species of high altitude cold desert of Himalaya and Eurasia. The cDNA obtained was 1,064 bp long consisting of an open reading frame of 789 bp encoding 262 amino acids. The calculated molecular mass of the mature protein was 28.88 kDa and pI was 5.84. Deduced amino acid sequence of CjPrx shared a high degree homology with 2-CysPrx proteins from other plants. CjPrx had both the PRX_type 2-Cys domain and thioredoxin-like superfamily domains. CjPrx contained 26.72% α-helices, 6.87% β-turns, 20.61% extended strands and 45.80% random coils, and was a hydrophilic protein. Expression of CjPrx was modulated by low temperature, methyl jasmonate (MJ), salicylic acid and drought stress, but no significant change was observed in response to abscisic acid treatment. Among all the treatments, a strong up-regulation of CjPrx was observed in response to MJ treatment.
Collapse
Affiliation(s)
- Pardeep Kumar Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, P.O. Box 6, Palampur, HP, 176061, India
| | | | | |
Collapse
|
45
|
Abstract
AbstractPlants are redox systems and redox-active compounds control and regulate all aspects of their life. Recent studies have shown that changes in reactive oxygen species (ROS) concentration mediated by enzymatic and non-enzymatic antioxidants are transferred into redox signals used by plants to activate various physiological responses. An overview of the main antioxidants and redox signaling in plant cells is presented. In this review, the biological effects of ROS and related redox signals are discussed in the context of acclimation to changing environmental conditions. Special attention is paid to the role of thiol/disulfide exchange via thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs) in the redox regulatory network. In plants, chloroplasts and mitochondria occupying a chloroplasts and mitochondria play key roles in cellular metabolism as well as in redox regulation and signaling. The integrated redox functions of these organelles are discussed with emphasis on the importance of the chloroplast and mitochondrion to the nucleus retrograde signaling in acclimatory and stress response.
Collapse
|
46
|
Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? FRONTIERS IN PLANT SCIENCE 2013; 4:477. [PMID: 24324478 PMCID: PMC3838956 DOI: 10.3389/fpls.2013.00477] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/04/2013] [Indexed: 05/06/2023]
Abstract
Glutathione is a small redox-active molecule existing in two main stable forms: the thiol (GSH) and the disulphide (GSSG). In plants growing in optimal conditions, the GSH:GSSG ratio is high in most cell compartments. Challenging environmental conditions are known to alter this ratio, notably by inducing the accumulation of GSSG, an effect that may be influential in the perception or transduction of stress signals. Despite the potential importance of glutathione status in redox signaling, the reactions responsible for the oxidation of GSH to GSSG have not been clearly identified. Most attention has focused on the ascorbate-glutathione pathway, but several other candidate pathways may couple the availability of oxidants such as H2O2 to changes in glutathione and thus impact on signaling pathways through regulation of protein thiol-disulfide status. We provide an overview of the main candidate pathways and discuss the available biochemical, transcriptomic, and genetic evidence relating to each. Our analysis emphasizes how much is still to be elucidated on this question, which is likely important for a full understanding of how stress-related redox regulation might impinge on phytohormone-related and other signaling pathways in plants.
Collapse
Affiliation(s)
- Marie-Sylviane Rahantaniaina
- Institut de Biologie des Plantes, Université Paris-SudOrsay, France
- Institut National de Recherche Agronomique, UMR Environnement et Grandes CulturesThiverval-Grignon, France
| | - Andrée Tuzet
- Institut National de Recherche Agronomique, UMR Environnement et Grandes CulturesThiverval-Grignon, France
| | - Amna Mhamdi
- Institut de Biologie des Plantes, Université Paris-SudOrsay, France
| | - Graham Noctor
- Institut de Biologie des Plantes, Université Paris-SudOrsay, France
| |
Collapse
|
47
|
Lovazzano C, Serrano C, Correa JA, Contreras-Porcia L. Comparative analysis of peroxiredoxin activation in the brown macroalgae Scytosiphon gracilis and Lessonia nigrescens (Phaeophyceae) under copper stress. PHYSIOLOGIA PLANTARUM 2013; 149:378-88. [PMID: 23489129 DOI: 10.1111/ppl.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 06/01/2023]
Abstract
Among thiol-dependent peroxidases (TDPs) peroxiredoxins (PRXs) standout, since they are enzymes capable of reducing hydrogen peroxide, alkylhydroperoxides and peroxynitrite, and have been detected in a proteomic study of the copper-tolerant species Scytosiphon gracilis. In order to determine the importance of these enzymes in copper-stress tolerance, TDP activity and type II peroxiredoxin (II PRX) protein expression were compared between the opportunistic S. gracilis and the brown kelp Lessonia nigrescens, a species absent from copper-impacted sites due to insufficient copper-tolerance mechanisms. Individuals of both species were cultured with increasing copper concentrations (0-300 µg l(-1) Cu) for 96 h and TDP activity and lipoperoxides (LPXs) were determined together with II PRX expression by immunofluorescence and Western blot analysis. The results showed that TDP activity was higher in S. gracilis than L. nigrescens in all copper concentrations, independent of the reducing agent used (dithiothreitol, thioredoxin or glutaredoxin). This activity was copper inhibited in L. nigrescens at lower copper concentrations (20 µg l(-1) Cu) compared to S. gracilis (100 µg l(-1) Cu). The loss of activity coincided in both species with an increase in LPX, which suggests that TDP may control LPX production. Moreover, II PRX protein levels increased under copper stress only in S. gracilis. These results suggest that in S. gracilis TDP, particularly type II peroxiredoxin (II PRX), acts as an active antioxidant barrier attenuating the LPX levels generated by copper, which is not the case in L. nigrescens. Thus, from an ecological point of view these results help explaining the inability of L. nigrescens to flourish in copper-enriched environments.
Collapse
Affiliation(s)
- Carlos Lovazzano
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
48
|
Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013; 2013:585431. [PMID: 24187554 PMCID: PMC3800646 DOI: 10.1155/2013/585431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022] Open
Abstract
Plants are unique among eukaryotes in having evolved organelles: the protein storage vacuole, protein body, and chloroplast. Disulfide transfer pathways that function in the endoplasmic reticulum (ER) and chloroplasts of plants play critical roles in the development of protein storage organelles and the biogenesis of chloroplasts, respectively. Disulfide bond formation requires the cooperative function of disulfide-generating enzymes (e.g., ER oxidoreductase 1), which generate disulfide bonds de novo, and disulfide carrier proteins (e.g., protein disulfide isomerase), which transfer disulfides to substrates by means of thiol-disulfide exchange reactions. Selective molecular communication between disulfide-generating enzymes and disulfide carrier proteins, which reflects the molecular and structural diversity of disulfide carrier proteins, is key to the efficient transfer of disulfides to specific sets of substrates. This review focuses on recent advances in our understanding of the mechanisms and functions of the various disulfide transfer pathways involved in oxidative protein folding in the ER, chloroplasts, and mitochondria of plants.
Collapse
|
49
|
Zeng L, Zhang Y, Zhu Y, Yin H, Zhuang X, Zhu W, Guo X, Qin J. Extracellular proteome analysis of Leptospira interrogans serovar Lai. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:527-35. [PMID: 23895271 DOI: 10.1089/omi.2013.0043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.
Collapse
Affiliation(s)
- Lingbing Zeng
- 1 Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bykova NV, Rampitsch C. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Proteomics 2013. [PMID: 23197359 DOI: 10.1002/pmic.201200270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been clearly demonstrated that plants redox control can be exerted over virtually every cellular metabolic pathway affecting metabolic homeostasis and energy balance. Therefore, a tight link exists between cellular/compartmental steady-state redox level and cellular metabolism. Proteomics offers a powerful new way to characterize the response and regulation of protein oxidation in different cell types and in relation to cellular metabolism. Compelling evidence revealed in proteomics studies suggests the integration of the redox network with other cellular signaling pathways such as Ca(2+) and/or protein phosphorylation, jasmonic, salicylic, abscisic acids, ethylene, and other phytohormones. Here we review progress in using the various proteomics techniques and approaches to answer biological questions arising from redox signaling and from changes in redox status of the cell. The focus is on reversible redox protein modifications and on three main processes, namely oxidative and nitrosative stress, defense against pathogens, cellular redox response and regulation, drawing on examples from plant redox proteomics studies.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and AgriFood Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|