1
|
Anaya-Prado R, Canseco-Villegas AI, Anaya-Fernández R, Anaya-Fernandez MM, Guerrero-Palomera MA, Guerrero-Palomera C, Garcia-Ramirez IF, Gonzalez-Martinez D, Azcona-Ramírez CC, Garcia-Perez C, Lizarraga-Valencia AL, Hernandez-Zepeda A, Palomares-Covarrubias JF, Blackaller-Medina JHA, Soto-Hintze J, Velarde-Castillo MC, Cruz-Melendrez DA. Role of nitric oxide in cerebral ischemia/reperfusion injury: A biomolecular overview. World J Clin Cases 2025; 13:101647. [PMID: 40191680 PMCID: PMC11670034 DOI: 10.12998/wjcc.v13.i10.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Nitric oxide (NO) is a gaseous molecule produced by 3 different NO synthase (NOS) isoforms: Neural/brain NOS (nNOS/bNOS, type 1), endothelial NOS (eNOS, type 3) and inducible NOS (type 2). Type 1 and 3 NOS are constitutively expressed. NO can serve different purposes: As a vasoactive molecule, as a neurotransmitter or as an immunomodulator. It plays a key role in cerebral ischemia/reperfusion injury (CIRI). Hypoxic episodes simulate the production of oxygen free radicals, leading to mitochondrial and phospholipid damage. Upon reperfusion, increased levels of oxygen trigger oxide synthases; whose products are associated with neuronal damage by promoting lipid peroxidation, nitrosylation and excitotoxicity. Molecular pathways in CIRI can be altered by NOS. Neuroprotective effects are observed with eNOS activity. While nNOS interplay is prone to endothelial inflammation, oxidative stress and apoptosis. Therefore, nNOS appears to be detrimental. The interaction between NO and other free radicals develops peroxynitrite; which is a cytotoxic agent. It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator (t-PA). Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
Collapse
Affiliation(s)
- Roberto Anaya-Prado
- Department of Research & Department of Surgery, School of Medicine and Health Sciences, Tecnologico de Monterrey, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Direction of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Abraham I Canseco-Villegas
- Department of Research, School of Medicine and Health Sciences, Tecnologico de Monterrey, Zapopan 45116, Jalisco, Mexico
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Roberto Anaya-Fernández
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Michelle Marie Anaya-Fernandez
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
| | - Miguel A Guerrero-Palomera
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Citlalli Guerrero-Palomera
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Ivan F Garcia-Ramirez
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Division of Research, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Daniel Gonzalez-Martinez
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Consuelo Cecilia Azcona-Ramírez
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Claudia Garcia-Perez
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Airim L Lizarraga-Valencia
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Aranza Hernandez-Zepeda
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Jacqueline F Palomares-Covarrubias
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
| | - Jorge HA Blackaller-Medina
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Research, School of Medicine, UNIVA University, Zapopan 45116, Jalisco, Mexico
| | - Jacqueline Soto-Hintze
- Department of Research, School of Medicine and Health Sciences, Tecnologico de Monterrey, Zapopan 45116, Jalisco, Mexico
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Mayra C Velarde-Castillo
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Dayri A Cruz-Melendrez
- Division of Research, School of Medicine, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
2
|
Anaya-Fernández R, Anaya-Prado R, Anaya-Fernandez MM, Guerrero-Palomera MA, Garcia-Ramirez IF, Gonzalez-Martinez D, Azcona-Ramirez CC, Guerrero-Palomera CS, Garcia-Perez C, Tenorio-Gonzalez B, Tenorio-Gonzalez JE, Vargas-Ascencio LF, Canseco-Villegas AI, Servin-Romero G, Barragan-Arias AR, Reyna-Rodriguez B. Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. OBM NEUROBIOLOGY 2024; 08:1-15. [DOI: 10.21926/obm.neurobiol.2403239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Oxidative stress in cerebral ischemia/reperfusion injury (CIRI) involves reactive oxygen and nitrogen species (ROS and RNS). Despite efficient antioxidant pathways in the brain, hypoxia triggers the production of oxygen free radicals and downregulates ATP, which leads to oxidative stress. Sources of free radicals during CIRI include Ca<sup>2+</sup>-dependent enzymes, phospholipid degradation and mitochondrial enlargement. Upon reperfusion, the abrupt increase of oxygen triggers a massive radical production via enzymes like xantin oxidase (XO), phospholipase A2 (PLA2) and oxide synthases (OS). These enzymes play an essential role in neuronal damage by excitotoxicity, lipoperoxidation, nitrosylation, inflammation and programmed cell death (PCD). Endothelial nitric oxide synthase (eNOS) decreases as compared to neuronal nitric oxide synthase (nNOS). This is associated with neuronal damage, endothelial inflammation, apoptosis and oxidative stress. Strategies promoting activation of eNOS while inhibiting nNOS could offer neuroprotective benefits in CIRI. Understanding and targeting these pathways could mitigate brain damage in ischemia/reperfusion events. Clinically, tissue plasminogen activator (t-PA) has been shown to restore cerebral blood flow. However, serious side effects have been described, including hemorrhagic transformation. Different treatments are currently under investigation to avoid I/R injury. Baicalin has been reported as a potential agent that could improve t-PA adverse effects, which have to do with peroxynitrite synthesis and matrix metalloproteinase (MMP) expression. In this review, CIRI and interventions in oxidative stress are addressed. Special attention is paid to efficient antioxidant mechanisms in the brain and the production of free radicals, especially nNOS-derived nitric oxide (NO). The primary purpose is to describe accessible radical pathways with the activity of Ca<sup>2+</sup>-dependent oxidative enzymes, leading to membrane phospholipids and mitochondrial breakdown. <strong>Key</strong><strong>w</strong><strong>ords</strong>Oxidative stress; cerebral ischemia/reperfusion; nitric oxide; reactive oxygen species; nitric oxide synthase
Collapse
|
3
|
Chen X, Xia Q, Sun N, Zhou H, Xu Z, Yang X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Liao X, Li S, Liu Y. Shear stress enhances anoikis resistance of cancer cells through ROS and NO suppressed degeneration of Caveolin-1. Free Radic Biol Med 2022; 193:95-107. [PMID: 36243211 DOI: 10.1016/j.freeradbiomed.2022.10.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) acquire enhanced anti-anoikis abilities after experiencing flow shear stress in the circulatory system. Our previous study demonstrated that low shear stress (LSS) promotes anoikis resistance of human breast carcinoma cells via caveolin-1 (Cav-1)-dependent extrinsic and intrinsic apoptotic pathways. However, the underlying mechanism how LSS enhanced Cav-1 expression in suspended cancer cells remains unclear. Herein, we found that LSS induced redox signaling was involved in the regulation of Cav-1 level and anoikis resistance in suspension cultured cancer cells. Exposure of human breast carcinoma MDA-MB-231 cells to LSS (2 dyn/cm2) markedly induced ROS and •NO generation, which promoted the cell viability and reduced the cancer cell apoptosis. Furthermore, ROS and •NO scavenging inhibited the upregulation of Cav-1 by interfering ubiquitination, and suppressed the anoikis resistance of suspended tumor cells. These findings provide new insight into the mechanism by which LSS-stimulated ROS and •NO generation increases Cav-1 stabilization in suspended cancer cells through inhibition of ubiquitination and proteasomal degradation, which could be a potential target for therapy of metastatic tumors.
Collapse
Affiliation(s)
- Xiangyan Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Qiong Xia
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Ningwei Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Hailei Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Zhihao Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Xi Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Ran Yan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Ping Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, PR China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
4
|
Oxidative eustress: On constant alert for redox homeostasis. Redox Biol 2021; 41:101867. [PMID: 33657525 PMCID: PMC7930632 DOI: 10.1016/j.redox.2021.101867] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
In the open metabolic system, redox-related signaling requires continuous monitoring and fine-tuning of the steady-state redox set point. The ongoing oxidative metabolism is a persistent challenge, denoted as oxidative eustress, which operates within a physiological range that has been called the 'Homeodynamic Space', the 'Goldilocks Zone' or the 'Golden Mean'. Spatiotemporal control of redox signaling is achieved by compartmentalized generation and removal of oxidants. The cellular landscape of H2O2, the major redox signaling molecule, is characterized by orders-of-magnitude concentration differences between organelles. This concentration pattern is mirrored by the pattern of oxidatively modified proteins, exemplified by S-glutathionylated proteins. The review presents the conceptual background for short-term (non-transcriptional) and longer-term (transcriptional/translational) homeostatic mechanisms of stress and stress responses. The redox set point is a variable moving target value, modulated by circadian rhythm and by external influence, summarily denoted as exposome, which includes nutrition and lifestyle factors. Emerging fields of cell-specific and tissue-specific redox regulation in physiological settings are briefly presented, including new insight into the role of oxidative eustress in embryonal development and lifespan, skeletal muscle and exercise, sleep-wake rhythm, and the function of the nervous system with aspects leading to psychobiology.
Collapse
|
5
|
Tewari D, Sah AN, Bawari S, Nabavi SF, Dehpour AR, Shirooie S, Braidy N, Fiebich BL, Vacca RA, Nabavi SM. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr Neuropharmacol 2020; 19:114-126. [PMID: 32348225 PMCID: PMC8033982 DOI: 10.2174/1570159x18666200429001549] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive nitrogen species (RNS) and reactive oxygen species (ROS), collectively known as reactive oxygen and nitrogen species (RONS), are the products of normal cellular metabolism and interact with several vital biomolecules including nucleic acid, proteins, and membrane lipids and alter their function in an irreversible manner which can lead to cell death. There is an imperative role for oxidative stress in the pathogenesis of cognitive impairments and the development and progression of neural injury. Elevated production of higher amounts of nitric oxide (NO) takes place in numerous pathological conditions, such as neurodegenerative diseases, inflammation, and ischemia, which occur concurrently with elevated nitrosative/oxidative stress. The enzyme nitric oxide synthase (NOS) is responsible for the generation of NO in different cells by conversion of L-arginine (Arg) to L-citrulline. Therefore, the NO signaling pathway represents a viable therapeutic target. Naturally occurring polyphenols targeting the NO signaling pathway can be of major importance in the field of neurodegeneration and related complications. Here, we comprehensively review the importance of NO and its production in the human body and afterwards highlight the importance of various natural products along with their mechanisms against various neurodegenerative diseases involving their effect on NO production.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand 263136, India
| | - Sweta Bawari
- School of Pharmacy, Sharda University, Knowledge Park-III, Greater Noida, Uttar Pradesh, 201310, India
| | - Seyed F Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rosa A Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| |
Collapse
|
6
|
Peliciari-Garcia RA, Darley-Usmar V, Young ME. An overview of the emerging interface between cardiac metabolism, redox biology and the circadian clock. Free Radic Biol Med 2018; 119:75-84. [PMID: 29432800 PMCID: PMC6314011 DOI: 10.1016/j.freeradbiomed.2018.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/17/2023]
Abstract
At various biological levels, mammals must integrate with 24-hr rhythms in their environment. Daily fluctuations in stimuli/stressors of cardiac metabolism and oxidation-reduction (redox) status have been reported over the course of the day. It is therefore not surprising that the heart exhibits dramatic oscillations in various cellular processes over the course of the day, including transcription, translation, ion homeostasis, metabolism, and redox signaling. This temporal partitioning of cardiac processes is governed by a complex interplay between intracellular (e.g., circadian clocks) and extracellular (e.g., neurohumoral factors) influences, thus ensuring appropriate responses to daily stimuli/stresses. The purpose of the current article is to review knowledge regarding control of metabolism and redox biology in the heart over the course of the day, and to highlight whether disruption of these daily rhythms contribute towards cardiac dysfunction observed in various disease states.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Frenay ARS, de Borst MH, Bachtler M, Tschopp N, Keyzer CA, van den Berg E, Bakker SJL, Feelisch M, Pasch A, van Goor H. Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients. Free Radic Biol Med 2016; 99:345-351. [PMID: 27554970 DOI: 10.1016/j.freeradbiomed.2016.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/24/2016] [Accepted: 08/18/2016] [Indexed: 02/03/2023]
Abstract
Oxidative stress contributes significantly to graft failure, morbidity and mortality in renal transplant recipients (RTR). In cells, free sulfhydryl groups (reduced thiols, R-SH) are the transducers of redox-regulated events; their oxidation status is modulated by interaction with reactive oxygen and nitrogen oxide species and thought to be in equilibrium with the circulating pool. We hypothesized that high levels of serum free thiols are a reflection of a favorable redox status and therefore positively associated with cardiovascular risk parameters, patient and graft survival in RTR. To test this, reactive free thiol groups (R-SH; corrected for total protein) were quantified in serum of 695 RTR (57% male, 53±13yr, functioning graft ≥1yr) using Ellman's Reagent, and R-SH determinants were evaluated with multivariable linear regression models. Associations between R-SH and mortality or graft failure were assessed using multivariable Cox regression analyses. In multivariable models, male gender, estimated glomerular filtration rate and serum thiosulfate positively associated with R-SH while BMI, HbA1c, corrected calcium and NT-pro-BNP inversely associated with R-SH (model R2=0.26). During follow-up (3.1 [2.7-3.9] yrs), 79 (11%) patients died and 45 (7%) patients developed graft failure. R-SH correlated inversely with all-cause mortality (HR 0.58 [95% CI 0.45-0.75] per SD increase) and graft failure (HR 0.42 [0.30-0.59]; both P<0.001), independent of parameters with which R-SH significantly associated in the multivariable regression analyses, except for NT-pro-BNP. Serum R-SH are associated with a beneficial cardiovascular risk profile and better patient and graft survival in RTR, suggesting potential usefulness as low-cost, high-throughput screening tool for whole-body redox status in translational studies. Whether R-SH modification improves long-term outcome of RTR warrants further exploration.
Collapse
Affiliation(s)
- Anne-Roos S Frenay
- Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, The Netherlands
| | - Martin H de Borst
- Nephrology, University Medical Center Groningen and University of Groningen, The Netherlands
| | - Matthias Bachtler
- Department of Clinical Research, University of Bern, Inselspital, Switzerland
| | - Nadine Tschopp
- Department of Clinical Research, University of Bern, Inselspital, Switzerland
| | - Charlotte A Keyzer
- Nephrology, University Medical Center Groningen and University of Groningen, The Netherlands
| | - Else van den Berg
- Nephrology, University Medical Center Groningen and University of Groningen, The Netherlands
| | - Stephan J L Bakker
- Nephrology, University Medical Center Groningen and University of Groningen, The Netherlands; Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Andreas Pasch
- Department of Clinical Research, University of Bern, Inselspital, Switzerland
| | - Harry van Goor
- Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, The Netherlands.
| |
Collapse
|
8
|
Hjelmeland A, Zhang J. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression. Biomed J 2016; 39:98-106. [PMID: 27372165 PMCID: PMC5514543 DOI: 10.1016/j.bj.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex disease marked by uncontrolled cell growth and invasion. These processes are driven by the accumulation of genetic and epigenetic alterations that promote cancer initiation and progression. Contributing to genome changes are the regulation of oxidative stress and reactive species-induced damage to molecules and organelles. Redox regulation, metabolic plasticity, autophagy, and mitophagy play important and interactive roles in cancer hallmarks including sustained proliferation, activated invasion, and replicative immortality. However, the impact of these processes can differ depending on the signaling pathways altered in cancer, tumor type, tumor stage, and/or the differentiation state. Here, we highlight some of the representative studies on the impact of oxidative and nitrosative activities, mitochondrial bioenergetics, metabolism, and autophagy and mitophagy in the context of tumorigenesis. We discuss the implications of these processes for cellular activities in cancer for anti-cancer-based therapeutics.
Collapse
Affiliation(s)
- Anita Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
9
|
Luke JJ, LoRusso P, Shapiro GI, Krivoshik A, Schuster R, Yamazaki T, Arai Y, Fakhoury A, Dmuchowski C, Infante JR. ASP9853, an inhibitor of inducible nitric oxide synthase dimerization, in combination with docetaxel: preclinical investigation and a Phase I study in advanced solid tumors. Cancer Chemother Pharmacol 2016; 77:549-58. [PMID: 26811179 DOI: 10.1007/s00280-016-2967-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE ASP9853 is an inhibitor of inducible nitric oxide (NO) synthase (iNOS) dimerization, which results in decreased NO production. Here, we report preclinical pharmacology of ASP9853 and the impact of ASP9853 in combination with a taxane on tumor volume in vivo. In addition, a Phase I open-label study of ASP9853 plus docetaxel was conducted to assess this combination in patients with advanced solid tumors. METHODS The preclinical efficacy of ASP9853 in combination with a taxane was studied in tumor-bearing mice. In the clinic, patients with solid tumors that had progressed or failed to respond to previous therapies were treated with once-daily ASP9853 in combination with docetaxel once every 3 weeks to assess safety and tolerability and to determine the maximum tolerated dose (MTD) and the recommended Phase II dose (RP2D) of the combination. RESULTS ASP9853 in combination with docetaxel showed greater tumor growth inhibition than docetaxel alone against non-small lung cancer xenografts. Twenty patients were treated with ASP9853 and docetaxel. Five patients experienced neutropenic dose-limiting toxicities. Owing to overall toxicity that limited further dose escalation, the ASP9853 concentrations predicted for efficacy, based on the preclinical data, were not achieved. Due to toxicity and lack of clear efficacy, the study was terminated without determination of MTD or RP2D. CONCLUSIONS Inhibition of iNOS by ASP9853 in combination with docetaxel was not tolerable and resulted in the possible potentiation of neutropenia. Manipulation of the iNOS pathway, with or without chemotherapy, appears to be more complicated than initially expected.
Collapse
Affiliation(s)
- Jason J Luke
- Section of Hematology/Oncology, The University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Krivoshik
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Robin Schuster
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Takao Yamazaki
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Yukinori Arai
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, Japan
| | - Allam Fakhoury
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Carl Dmuchowski
- Astellas Pharma Global Development Inc., 1 Astellas Way, Northbrook, IL, USA
| | - Jeffrey R Infante
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| |
Collapse
|
10
|
Zhang L, Wan YN, Zhao JH, Wang YJ, Wang YX, Yan JW, Huang XL, Wang J. The association between systemic sclerosis, arginine and asymmetric dimethylarginine. Inflammation 2015; 38:218-23. [PMID: 25252854 DOI: 10.1007/s10753-014-0025-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systemic sclerosis (SSc) is a kind of autoimmune disease characterized by inflammatory and endothelial dysfunction. Asymmetric dimethylarginine (ADMA), as an endogenous nitric oxide synthase inhibitor, can cause or contribute to the inflammatory syndrome and endothelial dysfunction. Recently, increased ADMA levels have been demonstrated in SSc, revealing that ADMA might play an important role for the associated manifestations of SSc. Besides, ADMA may play a significant role in the level of NO, which is produced by arginine. In the review, we discuss the role of arginine and ADMA in patients with SSc.
Collapse
Affiliation(s)
- Li Zhang
- Medical Genetics Center, Anhui Medical College, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Di Domenico F, Pupo G, Tramutola A, Giorgi A, Schininà ME, Coccia R, Head E, Butterfield DA, Perluigi M. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. Free Radic Biol Med 2014; 71:270-280. [PMID: 24675226 PMCID: PMC4686229 DOI: 10.1016/j.freeradbiomed.2014.03.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/04/2014] [Accepted: 03/18/2014] [Indexed: 01/18/2023]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Gilda Pupo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Raffaella Coccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA; Department of Chemistry and Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
12
|
Zamani Taghizadeh Rabe S, Mousavi SH, Tabasi N, Rastin M, Zamani Taghizadeh Rabe S, Siadat Z, Mahmoudi M. Rose Bengal suppresses gastric cancer cell proliferation via apoptosis and inhibits nitric oxide formation in macrophages. J Immunotoxicol 2014; 11:367-75. [PMID: 24575814 DOI: 10.3109/1547691x.2013.853715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rose Bengal (RB) has been used as a safe agent in clinical diagnosis. In addition, it is used as a photodynamic sensitizer for removing microorganisms and cancer cells. Recently, its preferential toxicity after direct exposure to cancer cells was proven. The present study focuses on anti-cancer and anti-inflammatory activities of RB. The toxicity of RB against AGS gastric cancer and NIH 3T3 fibroblast cell lines was studied using an MTT assay. Patterns of any cell death among the AGS cells were defined using Annexin-V and PI staining. In addition, the effect of RB on nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production induced by lipopolysaccha-ride in J774A.1 macrophages was determined. Modulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions in the macrophages was also evaluated by Western blots. The results showed that AGS cells exhibited significant concentration-dependent decreases in growth in response to RB; these cells showed a greater growth inhibition than did non-malignant 3T3 cells, suggesting that anti-growth activity of RB could be cell-specific. Moreover, AGS cells exposed to RB exhibited a significant increase in apoptosis; only at high RB doses did the cells display significant levels of necrosis. While RB also caused a modest decrease in the growth of J774A.1 macrophages, the cells displayed remarkable decreases in NO production and iNOS expression without significant concurrent modulation in PGE(2) production or COX-2 expression. The data from this study appears to suggest that RB differentially impacts on transformed cell lines, preferentially suppresses growth of a gastric cancer cell line through induction of apoptosis, and induces changes in cells that could reflect potential anti-inflammatory effects that might be induced in situ.
Collapse
|
13
|
Barbieri M, Roncone R, Gabbini R, Nicolis S, Monzani E, Galliano M, Casella L. Nitrative Stress Causes Nitration, Oxidation, and Subunit Cross Linking in Human Hemoglobin. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Darley-Usmar VM, Ball LE, Chatham JC. Protein O-linked β-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 2012; 52:538-49. [PMID: 21878340 PMCID: PMC3928598 DOI: 10.1016/j.yjmcc.2011.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 01/10/2023]
Abstract
The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAc) is emerging as an important mechanism for the regulation of numerous biological processes critical for normal cell function. Active synthesis of O-GlcNAc is essential for cell viability and acute activation of pathways resulting in increased protein O-GlcNAc levels improves the tolerance of cells to a wide range of stress stimuli. Conversely sustained increases in O-GlcNAc levels have been implicated in numerous chronic disease states, especially as a pathogenic contributor to diabetic complications. There has been increasing interest in the role of O-GlcNAc in the heart and vascular system and acute activation of O-GlcNAc levels have been shown to reduce ischemia/reperfusion injury, attenuate vascular injury responses as well mediate some of the detrimental effects of diabetes and hypertension on cardiac and vascular function. Here we provide an overview of our current understanding of pathways regulating protein O-GlcNAcylation, summarize the different methodologies for identifying and characterizing O-GlcNAcylated proteins and subsequently focus on two emerging areas: 1) the role of O-GlcNAc as a potential regulator of cardiac metabolism and 2) the cross talk between O-GlcNAc and reactive oxygen species. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren E. Ball
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
15
|
Boddupalli S, Mein JR, Lakkanna S, James DR. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Front Genet 2012; 3:7. [PMID: 22303412 PMCID: PMC3264924 DOI: 10.3389/fgene.2012.00007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022] Open
Abstract
Consumption of fruits and vegetables is recognized as an important part of a healthy diet. Increased consumption of cruciferous vegetables in particular has been associated with a decreased risk of several degenerative and chronic diseases, including cardiovascular disease and certain cancers. Members of the cruciferous vegetable family, which includes broccoli, Brussels sprouts, cauliflower, and cabbage, accumulate significant concentrations of glucosinolates, which are metabolized in vivo to biologically active isothiocyanates (ITCs). The ITC sulforaphane, which is derived from glucoraphanin, has garnered particular interest as an indirect antioxidant due to its extraordinary ability to induce expression of several enzymes via the KEAP1/Nrf2/ARE pathway. Nrf2/ARE gene products are typically characterized as Phase II detoxification enzymes and/or antioxidant (AO) enzymes. Over the last decade, human clinical studies have begun to provide in vivo evidence of both Phase II and AO enzyme induction by SF. Many AO enzymes are redox cycling enzymes that maintain redox homeostasis and activity of free radical scavengers such as vitamins A, C, and E. In this review, we present the existing evidence for induction of PII and AO enzymes by SF, the interactions of SF-induced AO enzymes and proposed maintenance of the essential vitamins A, C, and E, and, finally, the current view of genotypic effects on ITC metabolism and AO enzyme induction and function.
Collapse
|
16
|
Nakaizumi A, Horie T, Kida T, Kurimoto T, Sugiyama T, Ikeda T, Oku H. Nitric oxide potentiates TNF-α-induced neurotoxicity through suppression of NF-κB. Cell Mol Neurobiol 2012; 32:95-106. [PMID: 21833550 PMCID: PMC11498544 DOI: 10.1007/s10571-011-9739-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/07/2011] [Indexed: 11/25/2022]
Abstract
Modulation of enzyme activity through nitrosylation has recently been identified as a new physiological activity of nitric oxide (NO). We hypothesized that NO enhances the TNF-α-induced death of retinal neurons through a suppression of nuclear factor-κB (NF-κB) by nitrosylation. In this study, cells from the RGC-5 line were exposed to different concentrations (2.0, 10, and 50 ng/ml) of TNF-α, and the degree of TNF-α-induced cell death was determined by the WST-8 assay and by flow cytometric measurements of the externalization of phosphatidylserine. The effects of etanercept, a soluble TNFR-Fc fusion protein, and S-nitroso-N-penicillamine (SNAP), an NO donor, on the toxicity were determined. Experiments were also performed to determine whether nitric oxide synthase (NOS) was associated with the toxicity of TNF-α. The activation of NF-κB was determined by the detection of the p65 subunit in the nuclear extracts. Our results showed that exposure of RGC-5 cells to different concentrations of TNF-α significantly decreased the number of living cells in a dose-dependent way. The death was partially due to apoptosis with an externalization of phosphatidylserine, and the death was suppressed by etanercept. Exposure to TNF-α increased the activation of NF-κB and the expression of iNOS. Although NF-κB inhibitors suppressed the increase of iNOS, they also potentiated the TNF-α-induced death. Both L-NAME and aminoguanidine, both NOS inhibitors, rescued the cells from death. In contrast, addition of SNAP caused nitrosylation of the inhibitory κB kinase, and suppressed the NF-κB activation and potentiated the TNF-α-induced neurotoxicity. These results indicate that NO potentiates the neurotoxicity of TNF-α by suppressing NF-κB.
Collapse
Affiliation(s)
- Atsuko Nakaizumi
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Takuji Kurimoto
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Tetsuya Sugiyama
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| |
Collapse
|
17
|
Abstract
Mechanisms of left ventricular (LV) dysfunction in isolated mitral regurgitation (MR) are not well understood. Vasodilator therapy in other forms of LV dysfunction reduces LV wall stress and improves LV function; however, studies in isolated MR show no beneficial effect on LV remodeling using vasodilator drugs or renin-angiotensin system blockade. Therefore, the search for new therapies that improve LV remodeling and function in isolated MR is clinically significant. Recent work in the authors' laboratory has demonstrated increased oxidants from a number of sources including the enzyme xanthine oxidase (XO) in the LV of patients with isolated MR. In addition to being a major source of reactive oxygen species, XO is linked to bioenergetic dysfunction because its substrates derive from adenosine triphosphate catabolism. Correspondingly, there was also evidence of aggregates of small mitochondria in cardiomyocytes, which is generally considered a response to bioenergetic deficit in cells. Future studies are required to determine whether XO and persistent oxidative stress are causative in maladaptive LV remodeling and offer potential therapeutic targets in ameliorating LV damage in patients with isolated MR.
Collapse
|
18
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kosmala A. Are nitric oxide donors a valuable tool to study the functional role of nitric oxide in plant metabolism? PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:747-56. [PMID: 21815979 DOI: 10.1111/j.1438-8677.2010.00430.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the present work, we tested known nitric oxide (NO) modulators generating the NO+ (sodium nitroprusside, SNP) and NO˙ forms (S-nitroso-N-acetyl-D-penicillamine, SNAP and nitrosoglutathione, GSNO). This allowed us to compare downstream NO-related physiological effects on proteins found in leaves of pelargonium (Pelargonium peltatum L.). Protein modification via NO donors generally affects plant metabolism in a distinct manner, manifested by a lower thiobarbituric acid reactive substance (TBARS) content and lipoxygenase (LOX) activity in response to SNAP and GSNO. This is in contrast to the response observed for SNP treatment. Most changes in enzyme activity (GR, glutathione reductase; GST, glutathione-S-transferase; GPX, glutathione peroxidase) are most spectacular and repeatable during the first 8 h of incubation, which is explained by the half-life of the applied donors. In particular, a close dependence was found between the time-course of NO emission from the applied donors and the temporary inhibition of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX). The observed changes were accompanied by time-dependent alterations in protein accumulation as analysed by two-dimensional gel electrophoresis (2-DE) in pelargonium leaves treated with NO donors (SNP, SNAP and GSNO). Using proteomics, different proteins were found to be down- and up-regulated. However, no new protein spots characteristic of all three donors were found. These results indicate that the form of NO emitted from the donor structure plays a key role in switching on appropriate metabolic modifications. It has been noted that several NO-affected metabolomic changes induced by the used donors were not comparable, which confirms the need to maintain caution when interpreting results obtained using the pharmacological approach with different NO modulator compounds.
Collapse
Affiliation(s)
- M Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | | | | |
Collapse
|
19
|
Zhang W, He XJ, Ma YY, Wang HJ, Xia YJ, Zhao ZS, Ye ZY, Tao HQ. Inducible nitric oxide synthase expression correlates with angiogenesis, lymphangiogenesis, and poor prognosis in gastric cancer patients. Hum Pathol 2011; 42:1275-82. [PMID: 21333324 DOI: 10.1016/j.humpath.2010.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/27/2010] [Accepted: 09/02/2010] [Indexed: 01/28/2023]
Abstract
Increased nitric oxide synthase expression plays a key role in tumor progression. To examine inducible nitric oxide synthase expression and its correlation with clinical variables, such as tumor progression, angiogenesis, lymphangiogenesis, and prognosis in gastric cancer, we studied inducible nitric oxide synthase expression in gastric cancer samples from 211 patients with 5-year follow-up. CD105 and D2-40 were adopted as biomarkers for tumor angiogenesis and lymphangiogenesis, respectively. Inducible nitric oxide synthase staining was mainly found in the cytoplasm of gastric cancer tumor cells. Positive inducible nitric oxide synthase immunoreactivity was seen in 54.03% of gastric cancer specimens, which was correlated with lymph node metastasis, vascular invasion, distant metastasis, and TNM stage. Compared with inducible nitric oxide synthase negative patients, inducible nitric oxide synthase-positive patients had significantly shorter survival times and higher microvessel density and lymphatic vessel density. Intratumor and peritumor blood microvessel density and lymphatic vessel density correlated with inducible nitric oxide synthase expression (Spearman ρ test, P < .05). We conclude that inducible nitric oxide synthase expression correlates with lymph node metastasis, vascular invasion, distant metastasis, TNM stage, and poor survival rate in gastric cancer. We propose that synthesized inducible nitric oxide synthase increases angiogenesis, and lymphangiogenesis thus promotes tumor progression. Inducible nitric oxide synthase expression may be a good biomarker for poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Wenzhou Medical College, Wenzhou, 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sikora AG, Gelbard A, Davies MA, Sano D, Ekmekcioglu S, Kwon J, Hailemichael Y, Jayaraman P, Myers JN, Grimm EA, Overwijk WW. Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy. Clin Cancer Res 2010; 16:1834-44. [PMID: 20215556 PMCID: PMC2858983 DOI: 10.1158/1078-0432.ccr-09-3123] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Aberrant expression of inflammatory molecules, such as inducible nitric oxide (NO) synthase (iNOS), has been linked to cancer, suggesting that their inhibition is a rational therapeutic approach. Whereas iNOS expression in melanoma and other cancers is associated with poor clinical prognosis, in vitro and in vivo studies suggest that iNOS and NO can have both protumor and antitumor effects. We tested the hypothesis that targeted iNOS inhibition would interfere with human melanoma growth and survival in vivo in a preclinical model. EXPERIMENTAL DESIGN We used an immunodeficient non-obese diabetic/severe combined immunodeficient xenograft model to test the susceptibility of two different human melanoma lines to the orally-given iNOS-selective small molecule antagonist N(6)-(1-iminoethyl)-l-lysine-dihydrochloride (L-nil) with and without cytotoxic cisplatin chemotherapy. RESULTS L-nil significantly inhibited melanoma growth and extended the survival of tumor-bearing mice. L-nil treatment decreased the density of CD31+ microvessels and increased the number of apoptotic cells in tumor xenografts. Proteomic analysis of melanoma xenografts with reverse-phase protein array identified alterations in the expression of multiple cell signaling and survival genes after L-nil treatment. The canonical antiapoptotic protein Bcl-2 was downregulated in vivo and in vitro after L-nil treatment, which was associated with increased susceptibility to cisplatin-mediated tumor death. Consistent with this observation, combination therapy with L-nil plus cisplatin in vivo was more effective than either drug alone, without increased toxicity. CONCLUSIONS These data support the hypothesis that iNOS and iNOS-derived NO support tumor growth in vivo and provide convincing preclinical validation of targeted iNOS inhibition as therapy for solid tumors.
Collapse
Affiliation(s)
- Andrew G. Sikora
- UT MD Anderson Cancer Center: Dept. of Melanoma Medical Oncology, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
- UT MD Anderson Cancer Center: Dept. of Head and Neck Surgery, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
- Departments of Otolaryngology, Immunobiology, Oncological Sciences, and Dermatology, Mount Sinai School of Medicine, One Gustave L. Levy. Place, Box 1189, New York, NY 10029
| | - Alexander Gelbard
- UT MD Anderson Cancer Center: Dept. of Melanoma Medical Oncology, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
- UT MD Anderson Cancer Center: Dept. of Head and Neck Surgery, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
- Bobby Alford Department of Otolaryngology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Michael A. Davies
- UT MD Anderson Cancer Center: Dept. of Melanoma Medical Oncology, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
- UT MD Anderson Cancer Center: Dept. Of Systems Biology, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
| | - Daisuke Sano
- UT MD Anderson Cancer Center: Dept. of Head and Neck Surgery, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
| | - Suhendan Ekmekcioglu
- UT MD Anderson Cancer Center: Dept. of Experimental Therapeutics, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
| | - John Kwon
- UT MD Anderson Cancer Center: Dept. of Experimental Therapeutics, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
| | - Yared Hailemichael
- CORRESPONDING AUTHOR: WWO (; Phone: 713-563-5294; Fax: 713-563-3424).. AGS (; Phone: 212-659-9516; Fax: 212-369-5701)
| | - Padmini Jayaraman
- Departments of Otolaryngology, Immunobiology, Oncological Sciences, and Dermatology, Mount Sinai School of Medicine, One Gustave L. Levy. Place, Box 1189, New York, NY 10029
| | - Jeffrey N. Myers
- UT MD Anderson Cancer Center: Dept. of Head and Neck Surgery, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
| | - Elizabeth A. Grimm
- UT MD Anderson Cancer Center: Dept. of Experimental Therapeutics, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
| | - Willem W. Overwijk
- UT MD Anderson Cancer Center: Dept. of Melanoma Medical Oncology, 1515 Holcombe Blvd, Unit 430, Houston, TX 77030
| |
Collapse
|
21
|
Stowe DF, Camara AKS. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009; 11:1373-414. [PMID: 19187004 PMCID: PMC2842133 DOI: 10.1089/ars.2008.2331] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O(2)(*-)) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H(2)O(2) inside and outside the mitochondrial matrix by superoxide dismutases. H(2)O(2) is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O(2)(*-). Cell ischemia, hypoxia, or toxins can result in excess O(2)(*-) production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H(2)O(2) can combine with Fe(2+) complexes to form reactive ferryl species (e.g., Fe(IV) = O(*)). In the presence of nitric oxide (NO(*)), O(2)(*-) forms the reactant peroxynitrite (ONOO(-)), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca(2+) entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O(2)(*-) emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O(2)(*-) by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O(2)(*-) generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in modulation of cell function and cell death has grown exponentially over the past few years, but we are still limited in how to apply this knowledge to develop its full therapeutic potential.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratories, Department of Anesthesiology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
22
|
Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Anal Bioanal Chem 2009; 394:95-105. [DOI: 10.1007/s00216-009-2692-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 01/29/2009] [Accepted: 02/09/2009] [Indexed: 01/09/2023]
|
23
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lancaster JR. Protein cysteine thiol nitrosation: Maker or marker of reactive nitrogen species-induced nonerythroid cellular signaling? Nitric Oxide 2008; 19:68-72. [DOI: 10.1016/j.niox.2008.04.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 02/07/2023]
|
25
|
Decker NK, Abdelmoneim SS, Yaqoob U, Hendrickson H, Hormes J, Bentley M, Pitot H, Urrutia R, Gores GJ, Shah VH. Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1002-12. [PMID: 18755846 DOI: 10.2353/ajpath.2008.080158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.
Collapse
|
26
|
Jung T, Engels M, Klotz LO, Kröncke KD, Grune T. Nitrotyrosine and protein carbonyls are equally distributed in HT22 cells after nitrosative stress. Free Radic Biol Med 2007; 42:773-86. [PMID: 17320760 DOI: 10.1016/j.freeradbiomed.2006.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/22/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
The generation of reactive oxygen and nitrogen species is an inevitable result of cellular metabolism and environmental influence. Such oxidation processes are always combined with the formation of various protein oxidation products. Environmental oxidants might either be activated inside the cell or act by themselves. Therefore, differences in the localization of oxidant formation might change the major compartment of oxidant action. Therefore, we employed NO donors (SNOC, DETA/NO, and Spe/NO) alone or in combination with the redox-cycling bipyridinium compound paraquat, the superoxide- and NO-releasing compound SIN-1, the relatively more lipophilic oxidants tert-butyl and cumene hydroperoxide, and peroxynitrite itself to test the ability of these compounds to generate oxidized and nitrated proteins in various cellular compartments. Combined treatment with oxidants and nitrating compounds led to the formation of protein carbonyls and nitrotyrosine with a severalfold higher concentration in the cytosol, compared to the nucleus. In fluorescence microscopy studies, the resulting protein modifications show a similar distribution of oxidized proteins and nitrotyrosine with highest concentrations in the perinuclear area. Studying the time- and concentration-dependent formation and degradation of protein carbonyls and nitrated proteins large similarities could be measured. Therefore, it can be concluded that formation, localization, and kinetics of protein carbonyl and nitrotyrosine formation parallel each other depending on the stress-inducing agent.
Collapse
Affiliation(s)
- Tobias Jung
- Research Institute of Environmental Medicine, Heinrich Heine University, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
Abstract
The characteristic structural organization of mitochondria is the product of synthesis of macromolecules within the mitochondria together with the import of proteins and lipids synthesized outside the organelle. Synthetic and import processes are required for mitochondrial proliferation and might also facilitate the growth of pre-existing mitochondria. Recent evidence indicates that these events are regulated in a complex way by several agonists and environmental conditions, through activation of specific signaling pathways and transcription factors. A newly discovered role of this organelle in retrograde intracellular signaling back to the nucleus has also emerged. This is likely to have far-reaching implications in development, aging, disease and environmental adaptation. Generation of nitric oxide (NO) appears to be an important player in these processes, possibly acting as a unifying molecular switch to trigger the whole mitochondrial biogenesis process. High levels of NO acutely inhibit cell respiration by binding to cytochrome c oxidase. Conversely, chronic, smaller increases in NO levels stimulate mitochondrial biogenesis in diverse cell types. NO-induced mitochondrial biogenesis seems to be linked to proliferation and differentiation of normal and tumor cells, as well as in aging.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, Milan University, via Vanvitelli 32, 20129 Milan, Italy.
| | | |
Collapse
|
28
|
Abstract
Mitochondria have long been known to play a critical role in maintaining the bioenergetic status of cells under physiological conditions. It was also recognized early in mitochondrial research that the reduction of oxygen to generate the free radical superoxide occurs at various sites in the respiratory chain and was postulated that this could lead to mitochondrial dysfunction in a variety of disease states. Over recent years, this view has broadened substantially with the discovery that reactive oxygen, nitrogen, and lipid species can also modulate physiological cell function through a process known as redox cell signaling. These redox active second messengers are formed through regulated enzymatic pathways, including those in the mitochondrion, and result in the posttranslational modification of mitochondrial proteins and DNA. In some cases, the signaling pathways lead to cytotoxicity. Under physiological conditions, the same mediators at low concentrations activate the cytoprotective signaling pathways that increase cellular antioxidants. Thus, it is critical to understand the mechanisms by which these pathways are distinguished to develop strategies that will lead to the prevention of cardiovascular disease. In this review, we describe recent evidence that supports the hypothesis that mitochondria have an important role in cell signaling, and so contribute to both the adaptation to oxidative stress and the development of vascular diseases.
Collapse
Affiliation(s)
- Jessica Gutierrez
- Department of Physiology and Biophysics, Center for Free Radical Biology, University of Alabama at Birmingham, USA
| | | | | | | |
Collapse
|
29
|
Carini R, Trincheri NF, Alchera E, De Cesaris MG, Castino R, Splendore R, Albano E, Isidoro C. PI3K-dependent lysosome exocytosis in nitric oxide-preconditioned hepatocytes. Free Radic Biol Med 2006; 40:1738-48. [PMID: 16678013 DOI: 10.1016/j.freeradbiomed.2006.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/23/2005] [Accepted: 01/09/2006] [Indexed: 11/19/2022]
Abstract
We investigated the signal mediators and the cellular events involved in the nitric oxide (NO)-induced hepatocyte resistance to oxygen deprivation in isolated hepatocytes treated with the NO donor (Z)-1-(N-methyl-N-[6-(N-methylammoniohexyl)amino])diazen-1-ium-1,2-diolate (NOC-9). NOC-9 greatly induced PI3K activation, as tested by phosphorylation of PKB/Akt. This effect was prevented by either 1H-(1,2,4)-oxadiazolo-(4,3)-quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (sGC), or KT5823, an inhibitor of cGMP-dependent kinase (cGK), as well as by farnesyl protein transferase inhibitor, which blocks the function of Ras GTPase. Bafilomycin A, an inhibitor of the lysosome-type vacuolar H+-ATPase, cytochalasin D, which disrupts the cytoskeleton-dependent organelle traffic, and wortmannin, which inhibits the PI3K-dependent traffic of lysosomes, all abolished the NOC-9-induced hepatocyte protection. The treatment with NOC-9 was associated with the PI3K-dependent peripheral translocation and fusion with the plasma membrane of lysosomes and the appearance at the cell surface of the vacuolar H+-ATPase. Inhibition of sGC, cGK, and Ras, as well as the inhibition of PI3K by wortmannin, prevented the exocytosis of lysosomes and concomitantly abolished the protective effect of NOC-9 on hypoxia-induced pHi and [Na+]i alterations and cell death. These data indicate that NO increases hepatocyte resistance to hypoxic injury by activating a pathway involving Ras, sGC, and cGK that determines PI3K-dependent exocytosis of lysosomes.
Collapse
Affiliation(s)
- Rita Carini
- Laboratory of Pathology, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Watanabe N, Zmijewski JW, Takabe W, Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J, Arai H, Kodama T, Murphy MP, Kalyanaraman R, Darley-Usmar VM, Noguchi N. Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1737-48. [PMID: 16651638 PMCID: PMC1606607 DOI: 10.2353/ajpath.2006.050648] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2006] [Indexed: 01/09/2023]
Abstract
Lysophosphatidylcholine (lysoPC) evokes diverse biological responses in vascular cells including Ca(2+) mobilization, production of reactive oxygen species, and activation of the mitogen-activated protein kinases, but the mechanisms linking these events remain unclear. Here, we provide evidence that the response of mitochondria to the lysoPC-dependent increase in cytosolic Ca(2+) leads to activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase through a redox signaling mechanism in human umbilical vein endothelial cells. ERK activation was attenuated by inhibitors of the electron transport chain proton pumps (rotenone and antimycin A) and an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), suggesting that mitochondrial inner membrane potential plays a key role in the signaling pathway. ERK activation was also selectively attenuated by chain-breaking antioxidants and by vitamin E targeted to mitochondria, suggesting that transduction of the mitochondrial hydrogen peroxide signal is mediated by a lipid peroxidation product. Inhibition of ERK activation with MEK inhibitors (PD98059 or U0126) diminished induction of the antioxidant enzyme heme oxygenase-1. Taken together, these data suggest a role for mitochondrially generated reactive oxygen species and Ca(2+) in the redox cell signaling path-ways, leading to ERK activation and adaptation of the pathological stress mediated by oxidized lipids such as lysoPC.
Collapse
Affiliation(s)
- Nobuo Watanabe
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK. Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. EUKARYOTIC CELL 2006; 5:518-29. [PMID: 16524907 PMCID: PMC1398057 DOI: 10.1128/ec.5.3.518-529.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of the fungal pathogen Cryptococcus neoformans to evade the mammalian innate immune response and cause disease is partially due to its ability to respond to and survive nitrosative stress. In this study, we use proteomic and genomic approaches to elucidate the response of C. neoformans to nitric oxide stress. This nitrosative stress response involves both transcriptional, translational, and posttranslational regulation. Proteomic and genomic analyses reveal changes in expression of stress response genes. In addition, genes involved in cell wall organization, respiration, signal transduction, transport, transcriptional control, and metabolism show altered expression under nitrosative conditions. Posttranslational modifications of transaldolase (Tal1), aconitase (Aco1), and the thiol peroxidase, Tsa1, are regulated during nitrosative stress. One stress-related protein up-regulated in the presence of nitric oxide stress is glutathione reductase (Glr1). To further investigate its functional role during nitrosative stress, a deletion mutant was generated. We show that this glr1Delta mutant is sensitive to nitrosative stress and macrophage killing in addition to being avirulent in mice. These studies define the response to nitrosative stress in this important fungal pathogen.
Collapse
Affiliation(s)
- Tricia A Missall
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Landar A, Giles N, Zmijewski JW, Watanabe N, Oh J, Darley–Usmar VM. Modification of lipids by reactive oxygen and nitrogen species: the oxy–nitroxy–lipidome and its role in redox cell signaling. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.2.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Zmijewski JW, Landar A, Watanabe N, Dickinson DA, Noguchi N, Darley-Usmar VM. Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 2006; 33:1385-9. [PMID: 16246125 PMCID: PMC1413972 DOI: 10.1042/bst20051385] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The controlled formation of ROS (reactive oxygen species) and RNS (reactive nitrogen species) is now known to be critical in cellular redox signalling. As with the more familiar phosphorylation-dependent signal transduction pathways, control of protein function is mediated by the post-translational modification at specific amino acid residues, notably thiols. Two important classes of oxidant-derived signalling molecules are the lipid oxidation products, including those with electrophilic reactive centres, and decomposition products such as lysoPC (lysophosphatidylcholine). The mechanisms can be direct in the case of electrophiles, as they can modify signalling proteins by post-translational modification of thiols. In the case of lysoPC, it appears that secondary generation of ROS/RNS, dependent on intracellular calcium fluxes, can cause the secondary induction of H2O2 in the cell. In either case, the intracellular source of ROS/RNS has not been defined. In this respect, the mitochondrion is particularly interesting since it is now becoming apparent that the formation of superoxide from the respiratory chain can play an important role in cell signalling, and oxidized lipids can stimulate ROS formation from an undefined source. In this short overview, we describe recent experiments that suggest that the cell signalling mediated by lipid oxidation products involves their interaction with mitochondria. The implications of these results for our understanding of adaptation and the response to stress in cardiovascular disease are discussed.
Collapse
Affiliation(s)
- J W Zmijewski
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
34
|
Landar A, Oh JY, Giles NM, Isom A, Kirk M, Barnes S, Darley-Usmar VM. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress. Free Radic Biol Med 2006; 40:459-68. [PMID: 16443161 DOI: 10.1016/j.freeradbiomed.2005.08.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
The combination of proteomics with highly specific and sensitive affinity techniques is important for the identification of posttranslational modifications by reactive oxygen and nitrogen species (ROS/RNS). One of the most pressing problems with this approach is to determine accurately the extent of modification of specific amino acids, such as cysteine residues, in a complex protein sample. A number of techniques relevant to free radical biology use biotin tagging as a method to follow protein modification with high sensitivity and specificity. To realize the potential of this approach to provide quantitative data, we have prepared a series of biotinylated proteins through the modification of lysine residues. These proteins were then used as quantitative standards in electrophoretic separation of protein samples labeled with biotin-conjugated iodoacetamide. The utility of the approach was assessed by measuring modification of thiols in response to exposure to thiol oxidants, as well as the amount of protein adduct formation with a biotin-tagged electrophilic lipid. Furthermore, using a combination of native and biotin-tagged cytochrome c, this method was used to quantitate the amount of thiol relative to the amount of protein in a given spot on a two-dimensional gel. Thus, we have developed a versatile, cost-effective standard that can be used in proteomic methods to quantitate biotin tags in response to oxidative stress.
Collapse
Affiliation(s)
- Aimee Landar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Dooley A, Gao B, Bradley N, Abraham DJ, Black CM, Jacobs M, Bruckdorfer KR. Abnormal nitric oxide metabolism in systemic sclerosis: increased levels of nitrated proteins and asymmetric dimethylarginine. Rheumatology (Oxford) 2006; 45:676-84. [PMID: 16399843 DOI: 10.1093/rheumatology/kei276] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Endothelial dysfunction is a primary event in systemic sclerosis; however, the aetiology of events and the role of nitric oxide (NO) is still unclear. The aim of the present study is to investigate whether there are abnormalities in NO metabolism in plasma from patients with primary Raynaud's phenomenon (RP) and in the pathogenesis of systemic sclerosis (SSc): limited SSc (lSSc) and diffuse (dSSc). We also wanted to investigate the effect of factors within patients' SSc serum on NO metabolism in human microvascular endothelial cells (HMECs). METHODS Plasma (n=89) or serum (n=80) was assayed for total nitrate and nitrite (NOx), nitration of proteins and the NO inhibitor asymmetric dimethylarginine (ADMA). HMECs were treated with patients' SSc serum and assayed for indicators of NO metabolism. RESULTS Plasma NOx was elevated in patients with RP or lSSc (P<0.002), but not in patients with dSSc, compared with controls. Nitrated proteins in plasma, however, were found to be very high in dSSc patients (P<0.03), compared with RP, lSSc or controls. Patients with dSSc also showed increased levels of serum ADMA (P<0.05). The high level of nitrated proteins in dSSc was strongly associated with the severity and duration of dSSc disease. Skin biopsy sections from dSSc patients also showed enhanced nitrotyrosine staining compared with controls. In HMECs, pre-incubation with SSc serum impaired the activity of nitric oxide synthase (NOS) but not the expression of inducible or endothelial NOS. SSc serum also induced a reduction in intracellular cGMP synthesis, and NOx production in the cell culture medium, but was not associated with increased cell cytotoxicity. CONCLUSIONS NO formation is increased in patients with primary RP or lSSc, but nitration of proteins and elevated ADMA is a particular feature of dSSc and may reflect abnormal NO regulation and/or contribute to endothelial dysfunction in SSc.
Collapse
Affiliation(s)
- A Dooley
- Department of Biochemistry and Molecular Biology, Royal Free Campus, University College Medical School, London NW3 2PF, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 2005; 33:1385-9. [PMID: 16246125 PMCID: PMC1413972 DOI: 10.1042/bst0331385] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The controlled formation of ROS (reactive oxygen species) and RNS (reactive nitrogen species) is now known to be critical in cellular redox signalling. As with the more familiar phosphorylation-dependent signal transduction pathways, control of protein function is mediated by the post-translational modification at specific amino acid residues, notably thiols. Two important classes of oxidant-derived signalling molecules are the lipid oxidation products, including those with electrophilic reactive centres, and decomposition products such as lysoPC (lysophosphatidylcholine). The mechanisms can be direct in the case of electrophiles, as they can modify signalling proteins by post-translational modification of thiols. In the case of lysoPC, it appears that secondary generation of ROS/RNS, dependent on intracellular calcium fluxes, can cause the secondary induction of H2O2 in the cell. In either case, the intracellular source of ROS/RNS has not been defined. In this respect, the mitochondrion is particularly interesting since it is now becoming apparent that the formation of superoxide from the respiratory chain can play an important role in cell signalling, and oxidized lipids can stimulate ROS formation from an undefined source. In this short overview, we describe recent experiments that suggest that the cell signalling mediated by lipid oxidation products involves their interaction with mitochondria. The implications of these results for our understanding of adaptation and the response to stress in cardiovascular disease are discussed.
Collapse
|
37
|
|
38
|
Shariftabrizi A, Khorramizadeh MR, Saadat F, Alimoghadam K, Safavifar F, Ebrahimkhani MR. Concomitant reduction of matrix metalloproteinase-2 secretion and intracellular reactive oxygen species following anti-sense inhibition of telomerase activity in PC-3 prostate carcinoma cells. Mol Cell Biochem 2005; 273:109-16. [PMID: 16013445 DOI: 10.1007/s11010-005-8158-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The level of activity of the telomerase has been shown to correlate with the degree of invasiveness in several tumor types. In addition, cellular redox state is believed to regulate the secretion of matrix metalloproteinase-2 (MMP-2). AIMS To determine the effect of anti-sense telomerase treatment of prostate cancer cells on MMP-2 activity, and the reactive oxygen and nitrogen species (two effectors of cellular redox state). METHODS Anti-sense oligonucleotide against RNA component of human telomerase (hTR) was introduced into the cells using Fugene-6 transfection reagent. The activity of telomerase was assessed using Telomere Repeat Amplification Protocol (TRAP assay). Activity of matrix metalloproteinase-2 (MMP-2) was determined by zymography. Levels of intracellular reactive oxygen species (ROS) and nitric oxide metabolites were measured by dichlorofluorescein diacetate (DCFH-DA) staining and Griess reagent, respectively. The level of apoptosis was determined using TUNEL assay. RESULTS TRAP assay showed more than 90% inhibition of telomerase activity after 72 h of transfection. Pro-MMP-2 activity was decreased down to 50% of the control levels. Intracellular reactive oxygen species were also significantly decreased. Neither apoptosis rate nor the level of nitric oxide metabolites was significantly different between anti-sense treated and control cells. CONCLUSIONS Concomitant reduction of the pro-MMP-2 secretion and ROS in PC-3 cells following hTR inhibition suggests that over-activity of telomerase in cancer cells might increase the level of matrix metalloproteinase-2 and thus, be directly involved in the invasion process through enhancement of intracellular oxidative stress.
Collapse
Affiliation(s)
- Ahmad Shariftabrizi
- Hematology, Oncology and BMTResearch Center, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Unphysiologically high levels of nitric oxide (NO*) are mutagenic and may contribute to carcinogenesis. Proapoptotic and anitiapoptotic functions of NO* have been reported in various in vivo and in vitro experimental models. The complexity of biological responses induced is a consequence of the multiple chemical pathways through which NO* causes damage to critical cellular macromolecules. The extent and kinetics of apoptotic and other responses are highly dependent on steady-state NO* levels, cumulative total dose and cell type. Steady-state and total dose thresholds have been defined, both of which must be exceeded for the induction of apoptosis and other responses in human lymphoblastoid cells. DNA damage, protein modifications, p53 activation and mitochondrial respiratory inhibition contribute to NO*-mediated apoptosis via mitochondrial and Fas receptor pathways. Multifaceted cellular defense systems including glutathione, antioxidant enzymes and Nrf2-Keap1 signaling participate in protective responses to mitigate damage by toxic levels of NO*.
Collapse
Affiliation(s)
- Chun-Qi Li
- Biological Engineering Division and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 26-009, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Landar A, Darley-Usmar VM. Nitric oxide signaling gone awry: nitration of glutamine synthetase and hyperammonemia in sepsis. Hepatology 2005; 41:980-2. [PMID: 15841446 DOI: 10.1002/hep.20699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Weissman L, Garty J, Hochman A. Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl Environ Microbiol 2005; 71:2121-9. [PMID: 15812046 PMCID: PMC1082571 DOI: 10.1128/aem.71.4.2121-2129.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 11/01/2004] [Indexed: 11/20/2022] Open
Abstract
Lichens are slow-growing associations of fungi and unicellular green algae or cyanobacteria. They are poikilohydric organisms whose lifestyle in many cases consists of alternating periods of desiccation, with low metabolic activity, and hydration, which induces increase in their metabolism. Lichens have apparently adapted to such extreme transitions between desiccation and rehydration, but the mechanisms that govern these adaptations are still poorly understood. In this study, the effect of rehydration on the production of reactive oxygen species and nitric oxide as well as low-molecular-weight antioxidants was investigated with the lichen Ramalina lacera. Rehydration of R. lacera resulted in the initiation of and a rapid increase in photosynthetic activity. Recovery of photosynthesis was accompanied by bursts of intracellular production of reactive oxygen species and nitric oxide. Laser-scanning confocal microscopy using dichlorofluorescein fluorescence revealed that formation of reactive oxygen species following rehydration was associated with both symbiotic partners of the lichen. The rate and extent of reactive oxygen species production were similar in the light and in the dark, suggesting a minor contribution of photosynthesis. Diaminofluorescein fluorescence, indicating nitric oxide formation, was detected only in fungal hyphae. Activities associated with rehydration did not have a deleterious effect on membrane integrity as assessed by measurement of electrolyte leakage, but water-soluble low-molecular-weight antioxidants decreased significantly.
Collapse
Affiliation(s)
- Lior Weissman
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
42
|
Shiva S, Oh JY, Landar AL, Ulasova E, Venkatraman A, Bailey SM, Darley-Usmar VM. Nitroxia: the pathological consequence of dysfunction in the nitric oxide-cytochrome c oxidase signaling pathway. Free Radic Biol Med 2005; 38:297-306. [PMID: 15629859 DOI: 10.1016/j.freeradbiomed.2004.10.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 12/15/2022]
Abstract
It is now recognized that mitochondria play an integral role in orchestrating the response of the cell to a wide variety of metabolic and environmental stressors. Of particular interest are the interactions of reactive oxygen and nitrogen species with the organelle and their potential regulatory function. The best understood example is the O(2) sensitive binding of NO (nitric oxide) to the heme group in cytochrome c oxidase. We have proposed that this reversible process serves the function of both regulating the formation of hydrogen peroxide from the respiratory chain for the purposes of signal transduction and controlling O(2) gradients in complex organs such as the liver or heart. It now appears that maladaptation in this pathway leads to a mitochondrial dysfunction which has some of the characteristics of hypoxia, such as a deficit in ATP, but occurs in the presence of normal or enhanced levels of O(2). These are the optimal conditions for the formation of reactive nitrogen species (RNS), such as peroxynitrite which lead to the irreversible modification of proteins. We term this unique pathological condition Nitroxia and describe how it may contribute to the pathology of chronic inflammatory diseases using ethanol-dependent hepatotoxicity as an example.
Collapse
Affiliation(s)
- Sruti Shiva
- Department of Pathology, University of Alabama at Birmingham, BMR II, 901 19th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 2005; 38:2-11. [PMID: 15589366 DOI: 10.1016/j.freeradbiomed.2004.09.030] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/22/2004] [Indexed: 12/31/2022]
Abstract
In addition to powering energy needs of the cell, mitochondria function as pivotal integrators of cell survival/death signals. In recent years, numerous studies indicate that each of the major kinase signaling pathways can be stimulated to target the mitochondrion. These include protein kinase A, protein kinase B/Akt, protein kinase C, extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Although most studies focus on phosphorylation of pro- and antiapoptotic proteins (BAD, Bax, Bcl-2, Bcl-xL), kinase-mediated regulation of complex I activity, anion and cation channels, metabolic enzymes, and Mn-SOD mRNA has also been reported. Recent identification of a number of scaffold proteins (AKAP, PICK, Sab) that bring specific kinases to the cytoplasmic surface of mitochondria further emphasizes the importance of mitochondrial kinase signaling. Immunogold electron microscopy, subcellular fractionation and immunofluorescence studies demonstrate the presence of kinases within subcompartments of the mitochondrion, following diverse stimuli and in neurodegenerative diseases. Given the sensitivity of these signaling pathways to reactive oxygen and nitrogen species, in situ activation of mitochondrial kinases may represent a potent reverse-signaling mechanism for communication of mitochondrial status to the rest of the cell.
Collapse
Affiliation(s)
- Craig Horbinski
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
44
|
Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ. Ageing, oxidative stress, and mitochondrial uncoupling. ACTA ACUST UNITED AC 2004; 182:321-31. [PMID: 15569093 DOI: 10.1111/j.1365-201x.2004.01370.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mitochondria are a cell's single greatest source of reactive oxygen species. Reactive oxygen species are important for many life sustaining processes of cells and tissues, but they can also induce cell damage and death. If their production and levels within cells is not effectively controlled, then the detrimental effects of oxidative stress can accumulate. Oxidative stress is widely thought to underpin many ageing processes, and the oxidative stress theory of ageing is one of the most widely acknowledged theories of ageing. As well as being the major source of reactive oxygen species, mitochondria are also a major site of oxidative damage. The purpose of this review is a concise and current review of the effects of oxidative stress and ageing on mitochondrial function. Emphasis is placed upon the roles of mitochondrial proton leak, the uncoupling proteins, and the anti-ageing effects of caloric restriction.
Collapse
Affiliation(s)
- M-E Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|