1
|
Trofimov S, Lips K, Naydenov B. Voltage detected single spin dynamics in diamond at ambient conditions. Nat Commun 2025; 16:3518. [PMID: 40229264 PMCID: PMC11997230 DOI: 10.1038/s41467-025-58635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Defect centres in crystals like diamond or silicon find a wide application in quantum technology, where the detection and control of their quantum states is crucial for their implementation as quantum sensors and qubits. The quantum information is usually encoded in the spin state of these defect centres, but they also often possess a charge which is typically not utilized. We report here the detection of elementary charges bound to single nitrogen-vacancy (NV) centres several nanometres below the diamond surface using Kelvin Probe Force Microscopy (KPFM) under laser illumination. Moreover, the measured signal depends on the NV's electron spin state, thus allowing to perform a non-optical single spin readout, a technique we refer to as "Surface Voltage Detected Magnetic Resonance" (SVDMR). Our method opens a way of coherent spin dynamics detection for quantum sensing applications and could be potentially applied to other solid state systems. We believe that this voltage-based readout would help to simplify the design of devices for quantum technology.
Collapse
Affiliation(s)
- Sergei Trofimov
- Berlin Joint EPR Laboratory and Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Klaus Lips
- Berlin Joint EPR Laboratory and Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- Adjunct Professor, Department of Physics & Astronomy, University of Utah, Salt Lake City, USA
| | - Boris Naydenov
- Berlin Joint EPR Laboratory and Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Sun S, Zhang C, An P, Xu P, Zhang W, Ren Y, Tan X, Yu J. First-Principles Calculations for Glycine Adsorption Dynamics and Surface-Enhanced Raman Spectroscopy on Diamond Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:502. [PMID: 40214547 PMCID: PMC11990154 DOI: 10.3390/nano15070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
Based on first-principles calculations, the stability of three adsorption configurations of glycine on the (100) surface of diamonds was studied, leading to an investigation into the surface-enhanced Raman scattering (SERS) effect of the diamond substrate. The results showed that the carboxyl-terminated adsorption configuration (CAR) was the most stable and shortest interface distance compared to other configurations. This stability was primarily attributed to the formation of strong polar covalent bonds between the carboxyl O atoms and the surface C atoms of the (100) surface of diamonds. These results were further corroborated by first-principles molecular dynamics simulations. Within the temperature range of 300 to 500 K, the glycine molecules in the carboxyl-terminated adjacent-dimer phenyl-like (CAR) configuration exhibited only simple thermal vibrations with varying amplitudes. In contrast, the metastable ATO and carboxyl-terminated trans-dimer phenyl-like ring (CTR) configurations were observed to gradually transform into benzene-ring-like structures akin to the CAR configuration. After adsorption, the intensity of glycine's characteristic peaks increased substantially, accompanied by a blue shift phenomenon. Notably, the characteristic peaks related to the carboxyl and amino groups exhibited the highest enhancement amplitude, exceeding 200 times, with an average enhancement amplitude exceeding 50 times. The diamond substrate, with its excellent adsorption properties and strong surface Raman spectroscopy characteristics, represents a highly promising candidate in the field of biomedicine.
Collapse
Affiliation(s)
- Shiyang Sun
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China (P.X.); (W.Z.); (Y.R.); (X.T.)
| | - Chi Zhang
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China (P.X.); (W.Z.); (Y.R.); (X.T.)
| | - Peilun An
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China (P.X.); (W.Z.); (Y.R.); (X.T.)
| | - Pingping Xu
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China (P.X.); (W.Z.); (Y.R.); (X.T.)
| | - Wenxing Zhang
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China (P.X.); (W.Z.); (Y.R.); (X.T.)
| | - Yuan Ren
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China (P.X.); (W.Z.); (Y.R.); (X.T.)
| | - Xin Tan
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China (P.X.); (W.Z.); (Y.R.); (X.T.)
| | - Jinlong Yu
- Beiben Trucks Group Co., Ltd., Baotou 014010, China
| |
Collapse
|
3
|
Zheng Y, Hoffman A, Huang K. Nitridation of diamond(111) surface by density functional theory. J Chem Phys 2024; 160:214713. [PMID: 38842494 DOI: 10.1063/5.0196681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Density functional theory was employed to examine the adsorption and thermal evolution of nitrogen species on diamond(111) impacted by microwave N2 plasma. On bare domains of diamond, as represented by the models of C(111)-2 × 1 and graphite-like C(111), N2(ad) is identified as the major surface species; the desorption of N2(ad) proceeds on both models via a concerted process of breaking two C-N bonds. By contrast, there is evidence of the formation of (NH)2(ad) via the insertion reaction of microwave N2 plasma on hydrogenated domains of diamond, as represented by the models of C(111)-2 × 1-H and C(111)-1 × 1-H. Interestingly, contrasting dynamics of desorption of (NH)2(ad) are presented on these two models, that is, via sequential breaking of two C-N bonds on C(111)-2 × 1-H and via concerted breaking of both C-N bonds on C(111)-1 × 1-H. Our results demonstrate that the observed diversity of surface nitrogen species in composition, bonding, vibration, and desorption in prior experiments is linked to domains of a variety of surface terminations and reconstructions on diamond(111).
Collapse
Affiliation(s)
- Yusen Zheng
- Chemistry Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong Province 515063, China
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Alon Hoffman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kai Huang
- Chemistry Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong Province 515063, China
| |
Collapse
|
4
|
Hua R, Jiang Y, Shi L, Liang S, Zhang C, Song Y, Dong RY, Dong Y. Significant thermal rectification induced by phonon mismatch of functional groups in a single-molecule junction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:135401. [PMID: 38096577 DOI: 10.1088/1361-648x/ad15c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
Single-molecule junctions (SMJs) may bring exotic physical effects. In this work, a significant thermal rectification effect is observed in a cross-dimensional system, comprising a diamond, a single-molecule junction, and a carbon nanotube (CNT). The molecular dynamics simulations indicate that the interfacial thermal resistance varies with the direction of heat flow, the orientation of the crystal planes of the diamond, and the length of the CNT. We find that the thermal rectification ratio escalates with the length of the CNT, achieving a peak value of 730% with the CNT length of 200 nm. A detailed analysis of phonon vibrations suggests that the primary cause of thermal rectification is the mismatched vibrations between the biphenyl and carbonyl groups. This discovery may offer theoretical insights for both the experimental exploration and practical application of SMJs in efficient thermal management strategy for high power and highly integrated chips.
Collapse
Affiliation(s)
- Renjie Hua
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yunlei Jiang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Lei Shi
- Hangzhou Zhongneng Photoeletricity Technology Co., Ltd, Hangzhou 310018, People's Republic of China
| | - Suxia Liang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Chi Zhang
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| | - Yingru Song
- Department of Mechanical Engineering, William Marsh Rice University, Houston, TX 77005, United States of America
| | - Ruo-Yu Dong
- School of Astronautics, Beihang University, Beijing 102206, People's Republic of China
- Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University, Ningbo 315100, People's Republic of China
| | - Yuan Dong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
5
|
Li C, Oliveira EF, Biswas A, Puthirath AB, Zhang X, Pramanik A, Garratt EJ, Neupane MR, Pate BB, Birdwell AG, Ivanov TG, Terlier T, Vajtai R, Ajayan PM. Heteroatom Functionalization of H-Terminated Diamond Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39980-39988. [PMID: 37555428 DOI: 10.1021/acsami.3c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Diamond surface functionalization has received significant research interest recently. Specifically, H-termination has been widely adopted because it endows the diamond surface with negative electron affinity and the hole carrier is injected in the presence of surface transfer dopants. Exploring different functional groups' attachment on diamond surfaces and their impact on the electronic structure, using wet and dry chemical approaches, would hence be of interest in engineering diamond as a semiconductor. Here, we report the functionalization of the H-terminated diamond surface with nitrogen and sulfur heteroatoms. Surface characterization of functionalized diamond surfaces shows that these groups are well-distributed and covalently bonded to diamonds. Four chemical functional groups (-SH, -S-S-, -S-O, and -S=O) were found on the sulfurized diamond surface, and two groups (-NH2 and =NH) upon amination. We also report co-functionalization of surface with N and S (N-S), where sulfurization promotes sequential amination efficiency with reduced exposure time. Electrical measurement shows that heteroatom-modified diamond surfaces possess higher conductivity than H-terminated diamonds. Density functional theory (DFT) shows that upon functionalization with various N/S ratios, the conduction band minimum and valence band maximum downshift, which lowers the bandgap in comparison to an H-terminated diamond. These observations suggest the possibility of heteroatom functionalizations with enhanced surface electrical conductivity on the diamond that are useful for various electronic applications.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Eliezer F Oliveira
- School of Sciences, Department of Physics and Meteorology, São Paulo State University (Unesp), Bauru, São Paulo 17033-360, Brazil
| | - Abhijit Biswas
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Xiang Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Atin Pramanik
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Elias J Garratt
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Mahesh R Neupane
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Bradford B Pate
- Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | - Tony G Ivanov
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Tanguy Terlier
- Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Robert Vajtai
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Mielech-Łukasiewicz K. Determination of Terbinafine at a Boron-Doped Diamond (BDD) Electrode Modified with Polypyrrole and γ-Cyclodextrin by Square Wave Voltammetry (SWV). ANAL LETT 2023. [DOI: 10.1080/00032719.2022.2164587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Abstract
Boron-doped diamond (BDD) electrodes have emerged as next-generation electrode materials for various applications in electrochemistry such as electrochemical sensors, electrochemical organic synthesis, CO2 reduction, ozone water generation, electrochemiluminescence, etc. An optimal BDD electrode design is necessary to realize these applications. The electrochemical properties of BDD electrodes are determined by important parameters such as (1) surface termination, (2) surface orientation, and (3) boron doping level.In this Account, we discuss how these parameters contribute to the function of BDD electrodes. First, control of the surface termination (hydrogen/oxygen) is described. The electrochemical conditions such as the solution pH and the application potential were studied precisely. It was confirmed that an acidic solution and the application of negative potential accelerate hydrogenation, and the mechanism behind this is discussed. For oxygenation, we directly observed changes in surface functional groups by in situ attenuated total reflection infrared spectroscopy and electrochemical X-ray photoelectron spectroscopy measurements.Next, the difference in surface orientation was examined. We prepared homoepitaxial single-crystal diamond electrodes comprising (100) and (111) facets with similar boron concentrations and resistivities and evaluated their electrochemical properties. Experimental results and theoretical calculations revealed that (100)-oriented single-crystal BDD has a wider space charge layer than (111)-oriented BDD, resulting in a slower response. Furthermore, isolated single-crystal microparticles of BDD with exposed (100) and (111) crystal facets were grown, and we studied the electrochemical properties of the respective facets by combination with hopping-mode scanning electrochemical cell microscopy.We also systematically investigated how the boron concentration and sp2 species affect the electrochemical properties. The results showed that the appropriate composition (boron and sp2 species level) is dependent on the application. The transmission electron microscopy images and electron energy loss spectra of highly boron-doped BDD are shown, and the relationship between the composition and electrochemical properties is discussed. Finally, we investigated in detail the effect of the sp2 component on low-doped BDD. Surprisingly, although the sp2 component is usually expected to induce a narrowing of the potential window and an increase in the charging current, low-doped BDD showed the opposite trend depending on the degree of sp2 carbon.The results and discussion presented in this Account will hopefully promote a better understanding of the fundamentals of BDD electrodes and be useful for the optimal development of electrodes for future applications.
Collapse
Affiliation(s)
- Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
8
|
Chromatographic Properties of Hydrogenated Microdiamond Synthesized by High Pressure and High Temperature. J Chromatogr A 2022; 1673:463127. [DOI: 10.1016/j.chroma.2022.463127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
|
9
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
10
|
Cirocka A, Zarzeczańska D, Wcisło A. Good Choice of Electrode Material as the Key to Creating Electrochemical Sensors-Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO). MATERIALS 2021; 14:ma14164743. [PMID: 34443265 PMCID: PMC8400331 DOI: 10.3390/ma14164743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
The search for new electrode materials has become one of the goals of modern electrochemistry. Obtaining electrodes with optimal properties gives a product with a wide application potential, both in analytics and various industries. The aim of this study was to select, from among the presented electrode materials (carbon and oxide), the one whose parameters will be optimal in the context of using them to create sensors. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were used to determine the electrochemical properties of the materials. On the other hand, properties such as hydrophilicity/hydrophobicity and their topological structure were determined using contact angle measurements and confocal microscopy, respectively. Based on the research carried out on a wide group of electrode materials, it was found that transparent conductive oxides of the FTO (fluorine doped tin oxide) type exhibit optimal electrochemical parameters and offer great modification possibilities. These electrodes are characterized by a wide range of work and high chemical stability. In addition, the presence of a transparent oxide layer allows for the preservation of valuable optoelectronic properties. An important feature is also the high sensitivity of these electrodes compared to other tested materials. The combination of these properties made FTO electrodes selected for further research.
Collapse
Affiliation(s)
- Anna Cirocka
- Correspondence: (A.C.); (A.W.); Tel.: +48-58523-5106 (A.C.); +48-58523-5157 (A.W.)
| | | | - Anna Wcisło
- Correspondence: (A.C.); (A.W.); Tel.: +48-58523-5106 (A.C.); +48-58523-5157 (A.W.)
| |
Collapse
|
11
|
Mani N, Ahnood A, Peng D, Tong W, Booth M, Jones A, Murdoch B, Tran N, Houshyar S, Fox K. Single-Step Fabrication Method toward 3D Printing Composite Diamond-Titanium Interfaces for Neural Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31474-31484. [PMID: 34192459 DOI: 10.1021/acsami.1c07318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to several key attributes, diamond is an attractive candidate material for neural interfacing electrodes. The emergence of additive-manufacturing (AM) of diamond-based materials has addressed multiple challenges associated with the fabrication of diamond electrodes using the conventional chemical vapor deposition (CVD) approach. Unlike the CVD approach, AM methods have enabled the deposition of three-dimensional diamond-based material at room temperature. This work demonstrates the feasibility of using laser metal deposition to fabricate diamond-titanium hybrid electrodes for neuronal interfacing. In addition to exhibiting a high electrochemical capacitance of 1.1 mF cm-2 and a low electrochemical impedance of 1 kΩ cm2 at 1 kHz in physiological saline, these electrodes exhibit a high degree of biocompatibility assessed in vitro using cortical neurons. Furthermore, surface characterization methods show the presence of an oxygen-rich mixed-phase diamond-titanium surface along the grain boundaries. Overall, we demonstrated that our unique approach facilitates printing biocompatible titanium-diamond site-specific coating-free conductive hybrid surfaces using AM, which paves the way to printing customized electrodes and interfacing implantable medical devices.
Collapse
Affiliation(s)
- Nour Mani
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia
- Centre for Additive Manufacturing, RMIT University, 58 Cardigan Street, Melbourne, Victoria 3001, Australia
| | - Arman Ahnood
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia
| | - Danli Peng
- School of Physics, The University of Melbourne, Tin Alley, Parkville, Melbourne, Victoria 3010, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Tin Alley, Parkville, Melbourne, Victoria 3010, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria 3010, Australia
| | - Marsilea Booth
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia
| | - Alan Jones
- Centre for Additive Manufacturing, RMIT University, 58 Cardigan Street, Melbourne, Victoria 3001, Australia
| | - Billy Murdoch
- RMIT Microscopy and Microanalysis Facility, 124 La Trobe Street, Melbourne, Victoria 3001, Australia
| | - Nhiem Tran
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia
| | - Kate Fox
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3001, Australia
- Centre for Additive Manufacturing, RMIT University, 58 Cardigan Street, Melbourne, Victoria 3001, Australia
| |
Collapse
|
12
|
Pandey PC, Shukla S, Pandey G, Narayan RJ. Nanostructured diamond for biomedical applications. NANOTECHNOLOGY 2021; 32:132001. [PMID: 33307540 DOI: 10.1088/1361-6528/abd2e7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostructured forms of diamond have been recently considered for use in a variety of medical devices due to their unusual biocompatibility, corrosion resistance, hardness, wear resistance, and electrical properties. This review considers several routes for the synthesis of nanostructured diamond, including chemical vapor deposition, hot filament chemical vapor deposition, microwave plasma-enhanced chemical vapor deposition, radio frequency plasma-enhanced chemical vapor deposition, and detonation synthesis. The properties of nanostructured diamond relevant to medical applications are described, including biocompatibility, surface modification, and cell attachment properties. The use of nanostructured diamond for bone cell interactions, stem cell interactions, imaging applications, gene therapy applications, and drug delivery applications is described. The results from recent studies indicate that medical devices containing nanostructured diamond can provide improved functionality over existing materials for the diagnosis and treatment of various medical conditions.
Collapse
Affiliation(s)
- Prem C Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Shubhangi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Govind Pandey
- Department of Pediatrics, King George Medical University, Lucknow-226003, India
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, United States of America
| |
Collapse
|
13
|
Electrochemical Determination of Ciclopirox Olamine by Using Boron-Doped Diamond Electrode Modified with Overoxidized Polypyrrole Film. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Lourencao BC, Brocenschi RF, Medeiros RA, Fatibello‐Filho O, Rocha‐Filho RC. Analytical Applications of Electrochemically Pretreated Boron‐Doped Diamond Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000050] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bruna C. Lourencao
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Ricardo F. Brocenschi
- Centro de Estudos do Mar Universidade Federal do Paraná (UFPR) C.P. 61 83255-976 Pontal do Paraná – PR Brazil
| | - Roberta A. Medeiros
- Departamento de Química Universidade Estadual de Londrina (UEL) C.P. 10.011 86057-970 Londrina – PR Brazil
| | - Orlando Fatibello‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Romeu C. Rocha‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| |
Collapse
|
16
|
A simple procedure to obtain nanodiamonds from leftover of HFCVD system for biological application. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Kozak H, Artemenko A, Ukraintsev E, Choukourov A, Rezek B, Kromka A. Infrared Absorption Spectroscopy of Albumin Binding with Amine-Containing Plasma Polymer Coatings on Nanoporous Diamond Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13844-13852. [PMID: 31550890 DOI: 10.1021/acs.langmuir.9b02327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanocrystalline diamond (NCD) layers functionalized with amine-containing functional groups have generated considerable interest as biocompatible substrates for attachment of biomolecules and cells with a view to biosensor and tissue engineering applications. Here we prepare nanoporous diamond layers with the surfaces modified by hydrogen plasma, oxygen plasma, and conformal 7 nm amine-containing plasma polymer (PP). Immobilization of bovine serum albumin (BSA) molecules is characterized on such surfaces. Grazing angle reflectance infrared spectroscopy as well as X-ray photoelectron spectroscopy show that concentration of amine-containing bonds after BSA exposure depends on the type of NCD surface modification. AFM measurements reveal that BSA proteins are physisorbed on H- and O-terminated diamond surfaces in different thicknesses and morphology. When the diamond layers are coated with the amine-containing PP, BSA molecules assume similar thickness and morphology, and their adhesion is significantly increased on both types of the diamond surfaces.
Collapse
Affiliation(s)
- Halyna Kozak
- Institute of Physics , Czech Academy of Sciences , 162 00 Prague 6, Czech Republic
| | - Anna Artemenko
- Institute of Physics , Czech Academy of Sciences , 162 00 Prague 6, Czech Republic
| | - Egor Ukraintsev
- Institute of Physics , Czech Academy of Sciences , 162 00 Prague 6, Czech Republic
| | - Andrei Choukourov
- Faculty of Mathematics and Physics , Charles University , 18000 Prague 8, Czech Republic
| | - Bohuslav Rezek
- Institute of Physics , Czech Academy of Sciences , 162 00 Prague 6, Czech Republic
- Faculty of Electrical Engineering , Czech Technical University , 166 27 Prague 6, Czech Republic
| | - Alexander Kromka
- Institute of Physics , Czech Academy of Sciences , 162 00 Prague 6, Czech Republic
| |
Collapse
|
18
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
19
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
20
|
Yamaguchi C, Natsui K, Iizuka S, Tateyama Y, Einaga Y. Electrochemical properties of fluorinated boron-doped diamond electrodes via fluorine-containing plasma treatment. Phys Chem Chem Phys 2019; 21:13788-13794. [DOI: 10.1039/c8cp07402j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It was systematically demonstrated that the electrochemical properties of fluorinated boron-doped diamond electrodes could be attributed to interfacial band bending.
Collapse
Affiliation(s)
- Chizu Yamaguchi
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Keisuke Natsui
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Shota Iizuka
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yoshitaka Tateyama
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
- ACCEL
| |
Collapse
|
21
|
Sartori AF, Orlando S, Bellucci A, Trucchi DM, Abrahami S, Boehme T, Hantschel T, Vandervorst W, Buijnsters JG. Laser-Induced Periodic Surface Structures (LIPSS) on Heavily Boron-Doped Diamond for Electrode Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43236-43251. [PMID: 30431259 PMCID: PMC6326536 DOI: 10.1021/acsami.8b15951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diamond is known as a promising electrode material in the fields of cell stimulation, energy storage (e.g., supercapacitors), (bio)sensing, catalysis, etc. However, engineering its surface and electrochemical properties often requires costly and complex procedures with addition of foreign material (e.g., carbon nanotube or polymer) scaffolds or cleanroom processing. In this work, we demonstrate a novel approach using laser-induced periodic surface structuring (LIPSS) as a scalable, versatile, and cost-effective technique to nanostructure the surface and tune the electrochemical properties of boron-doped diamond (BDD). We study the effect of LIPSS on heavily doped BDD and investigate its application as electrodes for cell stimulation and energy storage. We show that quasi-periodic ripple structures formed on diamond electrodes laser-textured with a laser accumulated fluence of 0.325 kJ/cm2 (800 nm wavelength) displayed a much higher double-layer capacitance of 660 μF/cm2 than the as-grown BDD (20 μF/cm2) and that an increased charge-storage capacity of 1.6 mC/cm2 (>6-fold increase after laser texturing) and a low impedance of 2.74 Ω cm2 turn out to be appreciable properties for cell stimulation. Additional morphological and structural characterization revealed that ripple formation on heavily boron-doped diamond (2.8 atom % [B]) occurs at much lower accumulated fluences than the 2 kJ/cm2 typically reported for lower doping levels and that the process involves stronger graphitization of the BDD surface. Finally, we show that the exposed interface between sp2 and sp3 carbon layers (i.e. the laser-ablated diamond surface) revealed faster kinetics than the untreated BDD in both ferrocyanide and RuHex mediators, which can be used for electrochemical (bio)sensing. Overall, our work demonstrates that LIPSS is a powerful single-step tool for the fabrication of surface-engineered diamond electrodes with tunable material, electrochemical, and charge-storage properties.
Collapse
Affiliation(s)
- André F. Sartori
- Department of Precision
and Microsystems Engineering, Research Group of Micro and Nano Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- E-mail: . Tel.: +31 (0)15 27 86089 (A.F.S.)
| | - Stefano Orlando
- Istituto di Struttura della Materia (ISM), Unit of Montelibretti, Consiglio Nazionale delle Ricerche (CNR), Research
Area of Rome 1, Via Salaria
km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Alessandro Bellucci
- Istituto di Struttura della Materia (ISM), Unit of Montelibretti, Consiglio Nazionale delle Ricerche (CNR), Research
Area of Rome 1, Via Salaria
km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Daniele M. Trucchi
- Istituto di Struttura della Materia (ISM), Unit of Montelibretti, Consiglio Nazionale delle Ricerche (CNR), Research
Area of Rome 1, Via Salaria
km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Shoshan Abrahami
- Department
of Materials and Chemistry, Research Group Electrochemical and Surface
Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Thijs Boehme
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- IKS-Department of Physics, KU Leuven, Celestijnenlaan
200D, B-3001 Leuven, Belgium
| | | | - Wilfried Vandervorst
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- IKS-Department of Physics, KU Leuven, Celestijnenlaan
200D, B-3001 Leuven, Belgium
| | - Josephus G. Buijnsters
- Department of Precision
and Microsystems Engineering, Research Group of Micro and Nano Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- E-mail: . Tel.: +31 (0)15 27 85396 (J.G.B)
| |
Collapse
|
22
|
Electrochemical oxidation and determination of methylparaben at overoxidized polypyrrole film modified a boron-doped diamond electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1458-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
24
|
1,5 diphenyl carbazide immobilized cross-linked chitosan films: An integrated approach towards enhanced removal of Cr(VI). J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Nistor PA, May PW. Diamond thin films: giving biomedical applications a new shine. J R Soc Interface 2017; 14:20170382. [PMID: 28931637 PMCID: PMC5636274 DOI: 10.1098/rsif.2017.0382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/29/2017] [Indexed: 01/10/2023] Open
Abstract
Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo, diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required.
Collapse
Affiliation(s)
- P A Nistor
- Regenerative Medicine Laboratory, University of Bristol, Bristol BS8 1TD, UK
| | - P W May
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
26
|
Gayen P, Chaplin BP. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27638-27648. [PMID: 28749130 DOI: 10.1021/acsami.7b06028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO4- formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO4- formation decreased from rates of 0.45 ± 0.03 mmol m-2 min-1 during 1 mM NaClO3 oxidation and 0.28 ± 0.01 mmol m-2 min-1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (<0.12 μmoles m-2 min-1) for the BDD electrode functionalized by a 1H,1H,2H,2H-perfluorodecyltrichlorosilane SAM. These decreases in rates corresponded to 99.94 and 99.85% decreases in selectivity for ClO4- formation during the electrolysis of 10 mM NaCl and 1 mM NaClO3 electrolytes, respectively. By contrast, the oxidation rates of phenol were reduced by only 16.3% in the NaCl electrolyte and 61% in a nonreactive 0.1 M KH2PO4 electrolyte. Cyclic voltammetry with Fe(CN)63-/4- and Fe3+/2+ redox couples indicated that the long fluorinated chains created a blocking layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH• production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m-2 min-1) for up to 10 consecutive NaClO3 oxidation experiments.
Collapse
Affiliation(s)
- Pralay Gayen
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| |
Collapse
|
27
|
Suaebah E, Naramura T, Myodo M, Hasegawa M, Shoji S, Buendia JJ, Kawarada H. Aptamer-Based Carboxyl-Terminated Nanocrystalline Diamond Sensing Arrays for Adenosine Triphosphate Detection. SENSORS 2017; 17:s17071686. [PMID: 28753998 PMCID: PMC5539861 DOI: 10.3390/s17071686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
Abstract
Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current–drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current–drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface.
Collapse
Affiliation(s)
- Evi Suaebah
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Takuro Naramura
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Miho Myodo
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Masataka Hasegawa
- Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
| | - Shuichi Shoji
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Jorge J Buendia
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Hiroshi Kawarada
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Material Science and Technology, Shinjuku-ku, Tokyo 169-0051, Japan.
| |
Collapse
|
28
|
Ryl J, Zielinski A, Burczyk L, Bogdanowicz R, Ossowski T, Darowicki K. Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Thostenson JO, Ngaboyamahina E, Sellgren KL, Hawkins BT, Piascik JR, Klem EJD, Parker CB, Deshusses MA, Stoner BR, Glass JT. Enhanced H 2O 2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16610-16619. [PMID: 28471651 PMCID: PMC5437662 DOI: 10.1021/acsami.7b01614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This work investigates the surface chemistry of H2O2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H2O2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H2O2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H2O2. Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H2O2 more efficiently compared to static potential methods.
Collapse
Affiliation(s)
- James O. Thostenson
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Edgard Ngaboyamahina
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Katelyn L. Sellgren
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Brian T. Hawkins
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Jeffrey R. Piascik
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Ethan J. D. Klem
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Charles B. Parker
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Marc A. Deshusses
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Brian R. Stoner
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
- Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina 27709, United States
| | - Jeffrey T. Glass
- Department
of Electrical and Computer Engineering and Department of Civil and Environmental
Engineering, Duke University, Durham, North Carolina 27708, United States
- E-mail:
| |
Collapse
|
30
|
Aryldiazonium salt derived mixed organic layers: From surface chemistry to their applications. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Szunerits S, Coffinier Y, Boukherroub R. Diamond Nanowires: A Recent Success Story for Biosensing. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2017. [DOI: 10.1007/5346_2017_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
33
|
Meijs S, Alcaide M, Sørensen C, McDonald M, Sørensen S, Rechendorff K, Gerhardt A, Nesladek M, Rijkhoff NJM, Pennisi CP. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodesin vivo. J Neural Eng 2016; 13:056011. [DOI: 10.1088/1741-2560/13/5/056011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
|
35
|
A glassy carbon electrode modified with carboxylated diamond nanoparticles for differential pulse voltammetric simultaneous determination of guanine and adenine. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1868-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
|
37
|
Berisha A, Chehimi M, Pinson J, Podvorica F. Electrode Surface Modification Using Diazonium Salts. ELECTROANALYTICAL CHEMISTRY: A SERIES OF ADVANCES 2015. [DOI: 10.1201/b19196-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Niedziałkowski P, Ossowski T, Zięba P, Cirocka A, Rochowski P, Pogorzelski S, Ryl J, Sobaszek M, Bogdanowicz R. Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Randriamahazaka H, Ghilane J. Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis. ELECTROANAL 2015. [DOI: 10.1002/elan.201500527] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Svítková J, Ignat T, Švorc Ľ, Labuda J, Barek J. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing. Crit Rev Anal Chem 2015; 46:248-56. [DOI: 10.1080/10408347.2015.1082125] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jana Svítková
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Teodora Ignat
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ján Labuda
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
41
|
The effects of surface oxidation and fluorination of boron-doped diamond anodes on perchlorate formation and organic compound oxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Lockett MR, Smith LM. Carbon Substrates: A Stable Foundation for Biomolecular Arrays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:263-285. [PMID: 26048550 PMCID: PMC6287745 DOI: 10.1146/annurev-anchem-071114-040146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since their advent in the early 1990s, microarray technologies have developed into a powerful and ubiquitous platform for biomolecular analysis. Microarrays consist of three major elements: the substrate upon which they are constructed, the chemistry employed to attach biomolecules, and the biomolecules themselves. Although glass substrates and silane-based attachment chemistries are used for the vast majority of current microarray platforms, these materials suffer from severe limitations in stability, due to hydrolysis of both the substrate material itself and of the silyl ether linkages employed for attachment. These limitations in stability compromise assay performance and render impossible many potential microarray applications. We describe here a suite of alternative carbon-based substrates and associated attachment chemistries for microarray fabrication. The substrates themselves, as well as the carbon-carbon bond-based attachment chemistries, offer greatly increased chemical stability, enabling a myriad of novel applications.
Collapse
Affiliation(s)
- Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| | | |
Collapse
|
43
|
Hetemi D, Hazimeh H, Decorse P, Galtayries A, Combellas C, Kanoufi F, Pinson J, Podvorica FI. One-step formation of bifunctionnal aryl/alkyl grafted films on conducting surfaces by the reduction of diazonium salts in the presence of alkyl iodides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5406-5415. [PMID: 25893643 DOI: 10.1021/acs.langmuir.5b00754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The formation of partial perfluoroalkyl or alkyl radicals from partial perfluoroalkyl or alkyl iodides (ICH2CH2C6F13 and IC6H13) and their reaction with surfaces takes place at low driving force (∼-0.5 V/SCE) when the electrochemical reaction is performed in acetonitrile in the presence of diazonium salts (ArN2(+)), at a potential where the latter is reduced. By comparison to the direct grafting of ICH2CH2C6F13, this corresponds to a gain of ∼2.1 V in the case of 4-nitrobenzenediazonium. Such electrochemical reaction permits the modification of gold surfaces (and also carbon, iron, and copper) with mixed aryl-alkyl groups (Ar = 3-CH3-C6H4, 4-NO2-C6H4, and 4-Br-C6H4, R = C6H13 or (CH2)2-C6F13). These strongly bonded mixed layers are characterized by IRRAS, XPS, ToF-SIMS, ellipsometry, water contact angles, and cyclic voltammetry. The relative proportions of grafted aryl and alkyl groups can be varied along with the relative concentrations of diazonium and iodide components in the grafting solution. The formation of the films is assigned to the reaction of aryl and alkyl radicals on the surface and on the first grafted layer. The former is obtained from the electrochemical reduction of the diazonium salt; the latter results from the abstraction of an iodine atom by the aryl radical. The mechanism involved in the growth of the film provides an example of complex surface radical chemistry.
Collapse
Affiliation(s)
- Dardan Hetemi
- †Sorbonne Paris Cité, Univ Paris Diderot, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75013 Paris, France
- ‡Chemistry Department of Natural Sciences Faculty, University of Prishtina, rr. "Nëna Tereze" nr. 5, 10000 Prishtina, Kosovo
| | - Hassan Hazimeh
- §ESPCI ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Philippe Decorse
- †Sorbonne Paris Cité, Univ Paris Diderot, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Anouk Galtayries
- ∥Institut de Recherche de Chimie Paris, UMR 8247 CNRS, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Catherine Combellas
- †Sorbonne Paris Cité, Univ Paris Diderot, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75013 Paris, France
- §ESPCI ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Frédéric Kanoufi
- †Sorbonne Paris Cité, Univ Paris Diderot, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75013 Paris, France
- §ESPCI ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Jean Pinson
- †Sorbonne Paris Cité, Univ Paris Diderot, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Fetah I Podvorica
- †Sorbonne Paris Cité, Univ Paris Diderot, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75013 Paris, France
- ‡Chemistry Department of Natural Sciences Faculty, University of Prishtina, rr. "Nëna Tereze" nr. 5, 10000 Prishtina, Kosovo
- §ESPCI ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
44
|
Godet C, Ababou-Girard S, Fabre B, Molard Y, Fadjie-Djomkam A, Députier S, Guilloux-Viry M, Cordier S. Surface immobilization of Mo6I8 octahedral cluster cores on functionalized amorphous carbon using a pyridine complexation strategy. DIAMOND AND RELATED MATERIALS 2015; 55:131-138. [DOI: 10.1016/j.diamond.2015.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Janíková-Bandžuchová L, Šelešovská R, Schwarzová-Pecková K, Chýlková J. Sensitive voltammetric method for rapid determination of pyridine herbicide triclopyr on bare boron-doped diamond electrode. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Natsui K, Yamamoto T, Akahori M, Einaga Y. Photochromism-induced amplification of critical current density in superconducting boron-doped diamond with an azobenzene molecular layer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:887-894. [PMID: 25494096 DOI: 10.1021/am5074613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A key issue in molecular electronics is the control of electronic states by optical stimuli, which enables fast and high-density data storage and temporal-spatial control over molecular processes. In this article, we report preparation of a photoswitchable superconductor using a heavily boron-doped diamond (BDD) with a photochromic azobenzene (AZ) molecular layer. BDDs electrode properties allow for electrochemical immobilization, followed by copper(I)-catalyzed alkyne-azide cycloaddition (a "click" reaction). Superconducting properties were examined with magnetic and electrical transport measurements, such as field-dependent isothermal magnetization, temperature-dependent resistance, and the low-temperature voltage-current response. These measurements revealed reversible amplification of the critical current density by 55% upon photoisomerization. This effect is explained as the reversible photoisomerization of AZ inducing an inhomogeneous electron distribution along the BDD surface that renormalizes the surface pinning contribution to the critical current.
Collapse
Affiliation(s)
- Keisuke Natsui
- Department of Chemistry, Keio University , 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | | | | | | |
Collapse
|
47
|
Krysova H, Vlckova-Zivcova Z, Barton J, Petrak V, Nesladek M, Cigler P, Kavan L. Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification. Phys Chem Chem Phys 2015; 17:1165-72. [DOI: 10.1039/c4cp04148h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The boron-doped diamond electrode is efficiently sensitized with a light-harvesting molecule using a facile and versatile synthetic method.
Collapse
Affiliation(s)
- Hana Krysova
- J. Heyrovský Institute of Physical Chemistry
- v.v.i. Academy of Sciences of the Czech Republic
- 18223 Prague 8
- Czech Republic
| | - Zuzana Vlckova-Zivcova
- J. Heyrovský Institute of Physical Chemistry
- v.v.i. Academy of Sciences of the Czech Republic
- 18223 Prague 8
- Czech Republic
| | - Jan Barton
- Institute of Organic Chemistry and Biochemistry
- v.v.i. Academy of Sciences of the Czech Republic
- 166 10 Prague 6
- Czech Republic
| | - Vaclav Petrak
- Institute of Physics
- v.v.i. Academy of Sciences of the Czech Republic
- Prague 8
- Czech Republic
| | | | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry
- v.v.i. Academy of Sciences of the Czech Republic
- 166 10 Prague 6
- Czech Republic
| | - Ladislav Kavan
- J. Heyrovský Institute of Physical Chemistry
- v.v.i. Academy of Sciences of the Czech Republic
- 18223 Prague 8
- Czech Republic
| |
Collapse
|
48
|
Yu Y, Wu L, Zhi J. Diamant-Nanodrähte: Herstellung, Struktur, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Yu Y, Wu L, Zhi J. Diamond nanowires: fabrication, structure, properties, and applications. Angew Chem Int Ed Engl 2014; 53:14326-51. [PMID: 25376154 DOI: 10.1002/anie.201310803] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/12/2022]
Abstract
C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P.R. China)
| | | | | |
Collapse
|
50
|
Ratautaite V, Nesladek M, Ramanaviciene A, Baleviciute I, Ramanavicius A. Evaluation of Histamine Imprinted Polypyrrole Deposited on Boron Doped Nanocrystalline Diamond. ELECTROANAL 2014. [DOI: 10.1002/elan.201400294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|