1
|
Kou G, Yao S, Ullah A, Fang S, Guo E, Bo Y. Polystyrene microplastics impair brown and beige adipocyte function via the gut microbiota-adipose tissue crosstalk in high-fat diet mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138225. [PMID: 40220396 DOI: 10.1016/j.jhazmat.2025.138225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Microplastics (MPs) are pervasive in the environment and food. The potential health hazards of this emerging pollutant have raised significant concerns in recent years. However, the underlying mechanism by which MPs have any impact on brown and beige adipocytes in the context of obesity is yet to be investigated. METHODS The C57BL/6 J mice were randomly assigned to the HFD and HFD+MPs group for 12 weeks of exposure to explore the differences in brown and beige adipocyte function. The gut microbiota analysis, fecal microbiota transplantation and metabolomic profiling were carried out to further determine its potential mechanism. RESULTS The present work demonstrated that high-fat diet mice accumulate lipids and have reduced energy expenditure after three months of oral administration of MPs. In addition to escalating intestinal dysbiosis, exposing HFD mice to MPs induces thermogenic dysfunction in inguinal white adipose tissue and brown adipose tissue. Following the fecal microbiota transplantation, the accumulation of lipids and dysfunction in energy expenditure within the microbiota of recipient mice further elucidated the inhibitory effect of MPs. CONCLUSIONS Our results suggest that MPs induced the thermogenic dysfunction of BAT and iWAT by affecting gut microbiota composition. The present study highlights the mechanisms by which MPs produce thermogenic dysfunction in BAT and iWAT and disruption in the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Yao
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuhao Fang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Erni Guo
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yacong Bo
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Kumar C, Singh H, Kaur M, Arya SK, Khatri M. Remediation strategies for micro/nanoplastic pollution using magnetic nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36663-2. [PMID: 40562997 DOI: 10.1007/s11356-025-36663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 06/11/2025] [Indexed: 06/28/2025]
Abstract
The widespread presence of microplastics (MPs) and nanoplastics (NPs) in the terrestrial and aquatic environments is posing a great threat globally. MPs/NPs pervade our environment in different forms and sizes. Their widespread presence can negatively affect aquatic organisms, soil, wildlife, birds, and humans. As a result, it becomes critical to develop remediation options for MPs/NPs. Among numerous materials, magnetic nanomaterials are one of the potential thrust areas for mitigating MP/NP pollution. In the present review, we discuss the recent developments in applying magnetic nanomaterials (such as nanoscale zero-valent iron, iron oxide nanoparticles, magnetic nanocomposites, spinel ferrites, and magnetic perovskites) for MP/NP removal from various matrices. Different methods including adsorption, coagulation removal, and degradation have been highlighted in detail to remediate MPs/NPs. Then, the performance comparison between different technologies and magnetic nanomaterials has been done to highlight their relative efficiencies, limitations, and suitability for MP/NP remediation. Finally, the limitations, practical challenges in real contaminated ecosystems, and future solutions for the use of magnetic nanomaterials are discussed.
Collapse
Affiliation(s)
- Chaitanya Kumar
- Centre for Nanoscience & Nanotechnology, University Institute for Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India
| | - Manvinderpreet Kaur
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Bai X, Zhang G, Xu L, Li K, Zhang M, Huang Y. Rewiring photosynthetic carbon flow: Engineered cyanobacterial factories for sustainable carbohydrate production and carbon-negative biomanufacturing. BIORESOURCE TECHNOLOGY 2025:132850. [PMID: 40541576 DOI: 10.1016/j.biortech.2025.132850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 06/11/2025] [Accepted: 06/18/2025] [Indexed: 06/22/2025]
Abstract
Cyanobacteria are promising platforms for light-driven carbon fixation and carbohydrate biosynthesis. However, optimization strategies that focus solely on carbon allocation are insufficient to achieve substantial improvements in yield and sustainability. Here, Synechococcus elongatus PCC 7942 was engineered to enhance sucrose production by simultaneously increasing total carbon input and reinforcing the artificial sink. The engineered strain secreted 5.821 g L-1 sucrose, which was 27.4 times higher than the wild-type. Transcriptomic analysis revealed upregulation of abundant genes involved in carbon fixation, sucrose biosynthesis, and electron transport chains. Furthermore, a synthetic light-driven consortium was established to directly convert CO2 into value-added compounds. This system produced 323.5 mg L-1 polyhydroxybutyrate, reducing CO2 emissions by 12.4 g per g of polyhydroxybutyrate compared to conventional heterotrophic processes. These findings highlight the potential of cyanobacteria-based systems for carbon-negative biomanufacturing, demonstrating their role in advancing sustainable carbohydrate and biochemical production while exemplifying circular bioeconomy principles.
Collapse
Affiliation(s)
- Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Mibe (Shenzhen) Biotech Co. Ltd., Shenzhen, Guangdong 518107, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
4
|
Hong CE, Oh MS, An S, Song KH, Lee S. Cobalt-Catalyzed C─H Oxidation of Alkanes and Postfunctionalization of Polyolefin Elastomers. Chemistry 2025:e202500510. [PMID: 40243266 DOI: 10.1002/chem.202500510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/18/2025]
Abstract
This study focuses on the postfunctionalization of polyolefin elastomers (POEs) through direct C─H activation using a novel cobalt-based catalytic system. The investigation, initiated with the oxidation of cyclohexane, identified the cumene hydroperoxide (CumHPO) as the optimal oxidant and ligands L3, L4, and L7 as effective in chlorinated benzene solvents. Cobalt catalyst (Cat. 1) demonstrated superior activity in the oxidation of octadecane, achieving a 42% yield with a minimal amount of catalyst. The catalytic system was successfully extended to the C─H oxidation of POE, introducing functional groups in solvents like 1,2-Cl2C6H4 and 1,2,4-Cl3C6H3. Our findings propose a simple and green approach for the postfunctionalization of POE, offering versatility and potential for broader applications in the field of polymeric compounds.
Collapse
Affiliation(s)
- Chae Eun Hong
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Min Seok Oh
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seunghwan An
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kwang Ho Song
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
5
|
Li D, Li Y, Zhang Y, Xu Y, Zhang X, Hakkarainen M. Designing Biobased Poly(ethylene- co-isosorbide terephthalate) Copolyesters with Tunable Properties and Degradability. Biomacromolecules 2025; 26:2304-2316. [PMID: 40056101 PMCID: PMC12004518 DOI: 10.1021/acs.biomac.4c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025]
Abstract
Production of high-performance polyesters with tailored degradability remains a challenge. Here, a series of poly(ethylene-co-isosorbide terephthalate) (PEIT) copolyesters were synthesized by varying the isosorbide (IS) content (0-20 mol %) using tetrabutyl titanate (TBT) as the catalyst. By variation of the IS content, the thermal, mechanical, and optical properties of the copolyesters were effectively tailored. As the IS content increased, the Tg was raised from 80 to 101 °C, and the tensile strength from 58.8 to 68.7 MPa. Moreover, excellent transparency was maintained (up to 90% light transmittance). Interestingly, the susceptibility to hydrolytic degradation was significantly enhanced by the incorporation of IS, with PEIT-20 showing approximately 3.5 times higher weight loss compared to PET after 50 days of alkaline degradation in 0.1 M NaOH solution. This outlines an attractive approach for developing high-performance copolyesters with tunable properties and degradation rates, suitable for applications in transparent thermal packaging materials.
Collapse
Affiliation(s)
- Dan Li
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center Advanced Textile Technology, Shaoxing 312030, China
| | - Youbing Li
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center Advanced Textile Technology, Shaoxing 312030, China
| | - Yu Zhang
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yunsheng Xu
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center Advanced Textile Technology, Shaoxing 312030, China
| | - Xianming Zhang
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center Advanced Textile Technology, Shaoxing 312030, China
| | - Minna Hakkarainen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, Stockholm 10044, Sweden
| |
Collapse
|
6
|
Yang B, Wang Z, Fan B. Solo water-gelatinized starch enhances the barrier properties of starch/PBAT. Int J Biol Macromol 2025; 302:140621. [PMID: 39904443 DOI: 10.1016/j.ijbiomac.2025.140621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Glycerol-plasticized thermoplastic starch blending with biodegradable materials reduces costs and enhances toughness at the expense of deteriorating barrier properties. Herein, solo water-gelatinized corn starch (GCS) was melt-blended with polybutylene adipate terephthalate (PBAT) at 130 °C, and subsequent dehydration converted GCS into retrograded corn starch (RCS), yielding RCS-filled PBAT composites. As a barrier filler, RCS dispersed in smaller particles, combined with an interfacial compatibilizer, pentaerythritol monolaurate (PM), dramatically enhances the barrier properties. At 40 % RCS content, the oxygen permeability coefficient decreases to 0.78 × 10-14 cm3·cm/cm2·s·Pa, which is about one order of magnitude lower than that of neat PBAT. Meanwhile, the water vapor permeability coefficient, light transmittance, and haze are all comparable to neat PBAT. Although the mechanical properties of RCS-filled PBAT decreased, the tensile strength and elongation at break remained at 9.60 MPa and 462.19 % (30 % RCS), respectively. This work presents an innovative and cost-effective approach for starch-filled biodegradable polymers.
Collapse
Affiliation(s)
- Biao Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Zicheng Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Baomin Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Genet MB, Zhuang X, Tan X, Zhang Q, Miao C, Zhang Z, Jembere AL. Cellulose nanocrystal-based synthetic biodegradable biopolymeric composites: A comprehensive review on recent progress. Int J Biol Macromol 2025; 299:140098. [PMID: 39848381 DOI: 10.1016/j.ijbiomac.2025.140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
With the worldwide transformation to a circular and low-carbon economy, the demand for sustainable materials has skyrocketed in recent years. Of various methods, sustainable and biodegradable biopolymers derived from renewable bioresources have received significant interest. Synthetic biodegradable biopolymers offer tremendous advantages over natural biodegradable biopolymers due to their stability, flexibility, and a wide range of achievable properties to fit several applications. However, the widespread adoption of synthetic biodegradable polymers in high-performance applications is limited by shortcomings in their functional properties. Researchers are actively working to enhance the properties of these materials. A potential solution to improve the performance of biopolymers is to reinforce them with cellulose nanocrystals (CNCs). This review delves into the inclusion of CNCs into synthetic biodegradable biopolymer blends, examining their impact on the mechanical, thermal, morphological, rheological, and barrier properties. Surface modification of CNCs promotes a uniform distribution and strong bonding with the polymer matrix which is pivotal to unlocking their outstanding properties. Moreover, this review highlights the promising potential of CNCs to enhance the performance of synthetic biodegradable composites for a more sustainable future, particularly in packaging applications.
Collapse
Affiliation(s)
- Melkamu Birlie Genet
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, PO Box 26, Bahir Dar, Ethiopia.
| | - Xinshu Zhuang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Xuesong Tan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Quan Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| | - Changlin Miao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Addis Lemessa Jembere
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, PO Box 26, Bahir Dar, Ethiopia; Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| |
Collapse
|
8
|
Jiang F, Kleiner FH, Aubin-Tam ME. Harnessing photosynthesis for materials, devices, and environmental technologies. Curr Opin Biotechnol 2025; 92:103265. [PMID: 39908644 DOI: 10.1016/j.copbio.2025.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Photosynthetic organisms convert solar light into chemical energy through the process of photosynthesis. The employment of photosynthetic organisms in novel materials and devices provides them with a solar-powered and sustainable functionality. In general, photosynthesis utilizes light, water, and CO2 to generate various organic compounds while releasing secondary valuable products such as O2, extracellular electrons, carbohydrates, or H2. The light-dependent inputs and outputs are harnessed for environmental purification, biomedical applications, and production of biofuel, electricity, nanomaterials, or bioplastics. In this review, we summarize photosynthesis-assisted materials and engineering applications based on the products and substrates of photosynthetic processes, and we highlight key challenges that remain to be addressed.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Friedrich H Kleiner
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
9
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Huang S, Dong Q, Che S, Li R, Tang KHD. Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178911. [PMID: 40022973 DOI: 10.1016/j.scitotenv.2025.178911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
As awareness of plastic pollution increases, there is a growing emphasis on sustainable alternatives. Bioplastics and biodegradable plastics have surfaced as potential substitutes. Yet, their limited properties and high production costs hinder their practicality. This paper systematically reviews more than 280 articles to comprehensively outline the advantages and drawbacks of emerging bioplastics and biodegradable plastics, alongside advancements in cleaner production methods. Bioplastics, sourced from renewable materials, decrease dependency on fossil fuels and help lower carbon footprints during production and disposal. Some bioplastics, such as polylactic acid (PLA) and polyhydroxyalkanoates, are compostable, but their manufacturing costs usually surpass that of conventional plastics. Additionally, certain bioplastics exhibit lower mechanical strength, heat resistance, or durability. PLA and bio-polybutylene succinate (bio-PBS) are viable for single-use items and biodegradable products, with scalable production using established technologies, although bio-PBS is somewhat pricier than PLA. Biodegradable plastics lessen environmental impact by naturally degrading and can be composted in industrial settings, providing an eco-friendly disposal option. However, they require specific industrial composting conditions for complete degradation, which can lead to microplastic formation in the environment. PBS, polybutylene adipate terephthalate, and polybutylene succinate-co-adipate seem to be the most promising options, with PBS being a strong contender for replacing traditional plastics due to its biodegradable and compostable nature. It has the potential to be partially or entirely bio-based (bio-PBS). Innovative technologies, especially next-generation industrial biotechnology and microbial cell factories, offer cleaner methods for synthesizing these plastics. This review aids in identifying feasible and sustainable alternatives to conventional plastics.
Collapse
Affiliation(s)
- Shirui Huang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Qianhe Dong
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Sichen Che
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Kuok Ho Daniel Tang
- The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Santos JF, Silva CWC, Silva BPG, Britto-Costa PH, Costa CS, Otubo L, Carbonari AW, Cabrera-Pasca GA. Enhancing Cassava Starch Bioplastics with Vismia guianensis Alcoholic Extract: Characterization with Potential Applications. Polymers (Basel) 2025; 17:419. [PMID: 39940621 PMCID: PMC11819721 DOI: 10.3390/polym17030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 02/16/2025] Open
Abstract
This work investigates the incorporation of Vismia guianensis alcoholic extract (EAVG) into cassava starch, with the aim of improving its bioplastic properties. Cassava starch was dissolved into distilled water and doped with 0.2%, 0.5%, and 1.0% EAVG under a temperature controlled at the gelatinization point (∼70 °C) and then cast to form bioplastics. The resulting samples were characterized via attenuated total reflectance/Fourier transform infrared spectroscopy (ATR/FTIR), thermogravimetric and differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), atomic force microscopy (AFM), and mechanical essays, providing insights into chemical composition, thermal stability, crystallinity, surface morphology, and mechanical properties. The results demonstrated that EAVG played an effective role, enhancing the flexibility and stability of the bioplastic with potential use in biomedical applications. Moreover, the results also showed significant improvements in mechanical and thermal properties, suggesting that EAVG is a valuable addition to bioplastics. Therefore, EAVG presents a pathway for advancing bioplastics with enhanced mechanical, thermal, and functional characteristics, with the potential for further advancements in these fields.
Collapse
Affiliation(s)
- Josiel F. Santos
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais—PPGCEM, Universidade Federal do Pará (UFPA), Ananindeua 67130-660, PA, Brazil;
| | - Crystian Willian C. Silva
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Barbara P. G. Silva
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Pedro H. Britto-Costa
- Research Center for Gas Innovation, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-030, SP, Brazil;
| | - Cleidilane S. Costa
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará (UFPA), Abaetetuba 684440-000, PA, Brazil;
| | - Larissa Otubo
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Artur W. Carbonari
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN-CNEN/SP, São Paulo 05508-000, SP, Brazil; (C.W.C.S.); (B.P.G.S.); (L.O.)
| | - Gabriel A. Cabrera-Pasca
- Research Center for Gas Innovation, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-030, SP, Brazil;
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará (UFPA), Abaetetuba 684440-000, PA, Brazil;
| |
Collapse
|
12
|
Huang Y, Han M, Bi Z, Gu N, Gu D, Hu T, Li G, Lu J. Differentiating low-carbon waste management strategies for bio-based and biodegradable plastics under various energy decarbonization scenarios. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:328-338. [PMID: 39693998 DOI: 10.1016/j.wasman.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Bio-based and biodegradable (bio-)plastics are heralded as a key solution to mitigate plastic pollution and reduce CO2 emissions. Yet, their end-of-life treatments embodies complex energy and material interactions, potentially leading to emissions through incineration or recycling. This study investigates the cradle-to-grave, emphasizing the waste management stage, carbon footprint for several types of bio-plastics, leveraging both GWP100a and CO2 uptake methods to explore the carbon reduction benefits of recycling over disposal. Our findings indicate that in scenarios characterized by carbon-intensive electricity, using polylactic acid (PLA) as an example, incineration with energy recovery (-1.6316 kg CO2-eq/kg, PLA) yields a more favorable carbon footprint compared to chemical recycling (-1.5317 kg CO2-eq/kg, PLA). In contrast, in environments with a high proportion of renewable energy, chemical recycling is a superior method, and compared to incineration (-1.4087 kg CO2-eq/kg, PLA), the carbon footprint of chemical recycling (-2.0406 kg CO2-eq/kg, PLA) are significantly reduced. While mechanical recycling presents considerable environmental benefits, its applicability is constrained by the waste quality, especially in the case of biodegradable plastics like PLA. In addition, the degradation of biodegradable plastics such as PLA was modeled during compost and anaerobic digestion processes. This enables us to quantify the specific biogenic carbon emissions released during these processing steps, revealing the direct emissions with dynamic degradation. This study highlights the importance of tailoring bio-plastic waste management strategies to support global energy decarbonization while understanding their life-cycle carbon metabolism to effectively tackle plastic pollution and climate change.
Collapse
Affiliation(s)
- Yuxin Huang
- Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China
| | - Mengqi Han
- Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China
| | - Zhujie Bi
- Shanghai Environmental Sanitary Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Nannan Gu
- Shanghai Environmental Sanitary Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Dungang Gu
- Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China
| | - Tingting Hu
- Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China
| | - Guanghui Li
- Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China
| | - Jiaqi Lu
- Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
13
|
Ewurum N, McDonald AG. Lignin Reinforcement in Polybutylene Succinate Copolymers. Polymers (Basel) 2025; 17:194. [PMID: 39861266 PMCID: PMC11768263 DOI: 10.3390/polym17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigated the valorization of industrial lignin for producing biodegradable polybutylene succinate (PBS)-lignin copolymers. PBS was blended with varying lignin contents (0-45 wt. %) and crosslinked/grafted using dicumyl peroxide (DCP). The preparation of the copolymers by reactive extrusion was successful, with mechanical, thermal, and morphological properties comprehensively analyzed. Lignin addition decreased tensile strength but improved stiffness (modulus) and thermal stability. Crosslinking with DCP improved the interfacial adhesion between PBS and lignin, resulting in better flexural performance at moderate lignin levels. Differential scanning calorimetry showed that lignin initially improved the crystallization temperature, but hindered it at higher concentrations due to its rigid, aromatic structure. Scanning electron microscopy analysis showed poor interfacial adhesion in PBS-lignin blends, but the surface morphology improved in crosslinked PBS-lignin copolymers, with less phase separation observed. An optimal lignin concentration appeared to depend on the property of interest. While 30% lignin provided the best improvement in flexural strength, 20% lignin offered a more balanced enhancement for most properties without the severe reduction in tensile strength observed at higher lignin contents.
Collapse
Affiliation(s)
| | - Armando G. McDonald
- Department of Forest and Fire Sciences, University of Idaho, Moscow, ID 83844-1132, USA;
| |
Collapse
|
14
|
Hussain R, Aziz A, Amin R, Khurshid A. Development and Characterization of Polymeric-based Biomaterial from Agro-food Waste: A Sustainable and Eco-friendly Approach Towards Plastic Pollution. Curr Pharm Biotechnol 2025; 26:550-563. [PMID: 38847261 DOI: 10.2174/0113892010304507240528064315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Commercial plastics are potentially hazardous and can be carcinogenic due to the incorporation of chemical additives along with other additional components utilized as brominated flame retardants and phthalate plasticizers during production that excessively produce large numbers of gases, litter, and toxic components resulting in environmental pollution. METHODS Biodegradable plastic derived from natural renewable resources is the novel, alternative, and innovative approach considered to be potentially safe as a substitute for traditional synthetic plastic as they decompose easily without causing any harm to the ecosystem and natural habitat. The utilization of undervalued compounds, such as by-products of fruits and vegetables in the production of biodegradable packaging films, is currently a matter of interest because of their accessibility, affordability, ample supply, nontoxicity, physiochemical and nutritional properties. Industrial food waste was processed under controlled conditions with appropriate plasticizers to extract polymeric materials. Biodegradability, solubility, and air test analysis were performed to examine the physical properties of polymers prior to the characterization of the biofilm by Fourier-transformed infrared spectroscopy (FTIR) for the determination of polymeric characteristics. RESULTS The loss of mass examined in each bioplastic film was in the range of 0.01g to 0.20g. The dimension of each bioplastic was recorded in the range of 4.6 mm to 28.7 mm. The existence of -OH, C=C, C=O stretching, and other crucial functional groups that aid in the creation of a solid polymeric material are confirmed by FTIR analysis. This study provides an alternative approach for sustainable and commercially value-added production of polymeric-based biomaterials from agro-industrial waste as they are rich in starch, cellulose, and pectin for the development of bio-plastics. CONCLUSION The rationale of this project is to achieve a straightforward, economical, and durable method for the production of bio-plastics through effective utilization of industrial and commercial fruit waste, ultimately aiding in revenue generation.
Collapse
Affiliation(s)
- Rabbia Hussain
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Athar Aziz
- School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, M5 4WT, Manchester, United Kingdom
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, 39524, Hafar Al-Batin, Saudi Arabia
| | - Asma Khurshid
- DOW Research Institute of Biotechnology and Biomedical Sciences, DOW University of Health Sciences, Karachi, 75280, Pakistan
| |
Collapse
|
15
|
Ali W, Jeong H, Kim DH, Lee JS, Zinck P, Souissi S, Lee JS. Adverse effects of environmentally relevant microplastics on in vivo endpoints, oxidative stress, and mitogen-activated protein kinase signaling pathway and multixenobiotic resistance system in the marine rotifer Brachionus plicatilis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178027. [PMID: 39700983 DOI: 10.1016/j.scitotenv.2024.178027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
This study compared the toxicological effects of environmentally relevant microplastics (MPs) on the marine rotifer Brachionus plicatilis, focusing on MPs derived from various sources, including fossil fuel-based low-density polyethylene, bio-based polylactic acid (PLA), biodegradable poly(butylene adipate-co-terephthalate), and a novel PLA modified with β-cyclodextrin. We assessed in vivo effects such as reproductive output and mortality, alongside in vitro oxidative stress responses, including oxidative stress, antioxidant enzyme activities, and activation of the mitogen-activated protein kinase (MAPK) signaling pathway and the multixenobiotic resistance (MXR) system. Reproductive output and lifespan reduced significantly across all MP types, ranging from 0.5 to 10 mg L-1, indicating compromised reproductive fitness and life maintenance. At an environmentally relevant concentration of 0.5 mg L-1, in vitro assessments revealed differential modulation of reactive oxygen species levels and antioxidant enzyme activities, contingent upon the specific MP type. Moreover, MAPK signaling pathway and MXR assays showed changes in phosphorylation and detoxification proteins depending on the type of MPs. This study highlights the ecological risks that various MPs, including bio-based, biodegradable, and petrochemical-based MPs, could pose in marine environments.
Collapse
Affiliation(s)
- Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
16
|
Morrison HM, Bose A. Purple non-sulfur bacteria for biotechnological applications. J Ind Microbiol Biotechnol 2024; 52:kuae052. [PMID: 39730143 PMCID: PMC11730080 DOI: 10.1093/jimb/kuae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 12/29/2024]
Abstract
In this review, we focus on how purple non-sulfur bacteria can be leveraged for sustainable bioproduction to support the circular economy. We discuss the state of the field with respect to the use of purple bacteria for energy production, their role in wastewater treatment, as a fertilizer, and as a chassis for bioplastic production. We explore their ability to serve as single-cell protein and production platforms for fine chemicals from waste materials. We also introduce more Avant-Garde technologies that leverage the unique metabolisms of purple bacteria, including microbial electrosynthesis and co-culture. These technologies will be pivotal in our efforts to mitigate climate change and circularize the economy in the next two decades. ONE-SENTENCE SUMMARY Purple non-sulfur bacteria are utilized for a range of biotechnological applications, including the production of bio-energy, single cell protein, fertilizer, bioplastics, fine chemicals, in wastewater treatment and in novel applications like co-cultures and microbial electrosynthesis.
Collapse
Affiliation(s)
- Hailee M Morrison
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
17
|
Schmidt A, Bittmann-Hennes B, Moncada D, Montero B. Self-Reinforced Biocomposites Made from Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV): An Innovative Approach to Sustainable Packaging Production through Melt Processing. ACS OMEGA 2024; 9:51073-51088. [PMID: 39758632 PMCID: PMC11696434 DOI: 10.1021/acsomega.4c05957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
The production of self-reinforced composites allows for a targeted tailoring of the property profile for specific applications and offers the physical-mechanical advantages of a synergistic combination of the two components with a high value in terms of their end-of-life scenarios. This study deals with the preparation and evaluation of self-reinforced biocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with PHBV microparticles produced for the first time by industry-oriented melt processing. First, microparticles with a size of 4 μm were prepared and characterized by using the miniemulsion/evaporation technique. These microparticles were then incorporated into the PHBV matrix by extrusion and injection molding. Electron microscopy revealed particles in biocomposites. The results indicate heterogeneous nucleation, leading to higher crystallinity at higher melting temperatures. This leads to a slight embrittlement and an improvement of the barrier properties against oxygen and water vapor. These industrially produced biocomposites benefit from particles by showing, among other things, higher barrier properties while retaining their green character, making them promising and easily accessible candidates for future packaging applications.
Collapse
Affiliation(s)
- Anja Schmidt
- Grupo
de Polímeros, Centro de Investigación en Tecnologías
Navales e Industriales (CITENI), Departamento de Física y Ciencias
de la Tierra, Universidade da Coruña
(UDC), Campus Industrial
de Ferrol, 15471 Ferrol, Spain
| | - Birgit Bittmann-Hennes
- Leibniz-Institut
für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Str. Geb. 58, 67663 Kaiserslautern, Germany
| | - Danny Moncada
- Grupo
de Polímeros, Centro de Investigación en Tecnologías
Navales e Industriales (CITENI), Departamento de Física y Ciencias
de la Tierra, Universidade da Coruña
(UDC), Campus Industrial
de Ferrol, 15471 Ferrol, Spain
| | - Belén Montero
- Grupo
de Polímeros, Centro de Investigación en Tecnologías
Navales e Industriales (CITENI), Departamento de Física y Ciencias
de la Tierra, Universidade da Coruña
(UDC), Campus Industrial
de Ferrol, 15471 Ferrol, Spain
| |
Collapse
|
18
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
19
|
Schick S, Heindel J, Groten R, Seide GH. Overcoming Challenges in the Commercialization of Biopolymers: From Research to Applications-A Review. Polymers (Basel) 2024; 16:3498. [PMID: 39771350 PMCID: PMC11679288 DOI: 10.3390/polym16243498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Biopolymers are promising sustainable alternatives to petrochemical polymers, but the recent increase in published research articles has not translated into marketable products. Here, we discuss barriers to market entry by exploring application-specific, ecological, and economic aspects, such as the utilization of biodegradable polymers to mitigate the accumulation of microplastics. We summarize previous studies revealing how fiber surface properties and the dwell time during fiber spinning affect degradability. We show how biopolymers can be processed on existing machines and how degradability can be tailored by changing process parameters. This novel approach, known as degradation by design, will allow us to rethink product development and ensure that biopolymers are not only able to replace petrochemical polymers but also reduce the environmental harm they cause.
Collapse
Affiliation(s)
- Simon Schick
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands;
| | - Julia Heindel
- Department of Business Administration, University of Applied Sciences Munich, Lothstrasse 34, 80335 Munich, Germany
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Mönchengladbach, Webschulstrasse 31, 41065 Mönchengladbach, Germany
| | - Gunnar H. Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands;
| |
Collapse
|
20
|
Galhano J, Kurutos A, Dobrikov GM, Duarte MP, Santos HM, Capelo-Martínez JL, Lodeiro C, Oliveira E. Fluorescent polymers for environmental monitoring: Targeting pathogens and metal contaminants with naphthalimide derivatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136107. [PMID: 39405715 DOI: 10.1016/j.jhazmat.2024.136107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Monitoring Hg2+ levels in aqueous environments is crucial to assess the potential methylmercury contamination via bacterial conversion, however, existing methods often require extensive sample treatment and expensive equipment. To mitigate this issue, this study examines the synthesis and application of three naphthalimide-based compounds, with significant fluorescent and solvatochromic behavior (C1, C2, and C3). Compounds C1 and C2 demonstrated a strong affinity for Hg2+ metal ions, with C2 showing selectivity and a strong antibacterial profile, particularly against S. aureus (MIC50 (C2) = 0.01 µg/mL). Moreover, these compounds were incorporated into three polymeric matrices, namely polyvinyl chloride (PVC), poly (methyl methacrylate-co-methacrylic acid) (PMMMA), and Starch, allowing for the development of solid-support sensors/surfaces with a strong antibacterial profile, highlighting the inherent dual-functionality of the compounds. Interestingly, the C2-doped Starch biopolymer detected low concentrations of Hg2+ ions, such as 23 nM in tap water (value within the WHO standards for drinking water), through a rapid spectroscopic evaluation without sample treatment. This biopolymer was generated via a sustainable, green-chemistry-oriented, temperature-dependent water/Starch synthetic route, without the addition of plasticizers and any associated ecotoxicity. The study used sustainable methods for environmental monitoring and antibacterial applications, advancing material science to offer effective, accessible, and eco-friendly solutions for detecting and mitigating mercury pollution and bacterial contaminations, enhancing environmental and health safety.
Collapse
Affiliation(s)
- Joana Galhano
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria; University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, Sofia 1756, Bulgaria.
| | - Georgi M Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria
| | - Maria Paula Duarte
- MEtRICs / NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Hugo M Santos
- PROTEOMASS Scientific Society, Costa da Caparica 2825-466, Portugal
| | | | - Carlos Lodeiro
- PROTEOMASS Scientific Society, Costa da Caparica 2825-466, Portugal.
| | | |
Collapse
|
21
|
Spiridonov V, Lukmanova A, Pozdyshev D, Antonova Y, Kusaja V, Muronetz V, Yaroslavov A. Enzyme-induced degradation of natural and artificial linear polyanions. Carbohydr Res 2024; 546:109310. [PMID: 39541826 DOI: 10.1016/j.carres.2024.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Synthetic and natural polymers are widely used for constructing drug delivery systems. Biocompatibility, water solubility and non-toxicity make polymers a convenient matrix for encapsulation, delivery and release of bioactive compounds. Coupling of a drug with a biodegraded polymer matrix is a promising way for a controlled drug delivery. Along this line, the degradation of the four polymers in the presence of two enzymes in aqueous solutions was investigated. The following polymers were used: natural polysaccharides, sodium alginate and sodium hyaluronate, artificial (modified) sodium carboxymethylcellulose and synthetic sodium polyacrylate (control); their degradation was caused by the addition of alginate lyase and hyaluronidase. The first enzyme only cleaved the specific alginate substrate and left three other intact. Contrastingly, the second enzyme degraded all three polysaccharides, including artificial carboxymethylcellulose, but did not degrade synthetic polyacrylate. The biodegradation of polymers was accompanied by decreasing the size of polymer particles in solution from 100 to 200 nm down to 20-30 nm; the latter are capable of removing from the body through the kidneys. The initial polysaccharides showed the negative surface charge in aqueous solution, which changed but retained negative after biodegradation. The initial and biodegraded polysaccharides demonstrated negligible cytotoxicity during long exposure period. The obtained results are valuable for the development of polymer carriers for drug encapsulation and delivery.
Collapse
Affiliation(s)
- Vasily Spiridonov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia.
| | - Alina Lukmanova
- Lomonosov Moscow State University, Faculty of Materials Science, Leninskie gory 1-73, 119991, Moscow, Russia
| | - Denis Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992, Moscow, Russia
| | - Yulia Antonova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia
| | - Viktorija Kusaja
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia
| | - Vladimir Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992, Moscow, Russia
| | - Alexander Yaroslavov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119991, Moscow, Russia
| |
Collapse
|
22
|
Chaudhary S, Kour M, Kumar R. Bioplastic films from starch of Colocasia esculenta and its waste: A smart template for sensing applications. Int J Biol Macromol 2024; 281:136218. [PMID: 39362432 DOI: 10.1016/j.ijbiomac.2024.136218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The over usage plastics have possessed serious threat to the ecological system. Thus progressive advancement in fabricating biodegradable and renewable bioplastics is persuasively required to furnish an effective alternative to non-biodegradable plastics. In this view, the current work highlights the production of starch based bioplastic films using waste Colocasia esculenta (taro herb) as a viable starting precursor. The functional ability of developed taro starch based film was further modified by incorporating carbon dots (CQDs) fillers generated from the waste slurry produced during starch extraction from taro herbs. The optimization of films production was achieved by varying the CQDs amount (0.4 %, 0.8 %, 2 % and 4 % w/w) on taro-based films using casting technology. The data illustrates that the addition of CQDs has the ability to enhance the fluorescence property, mechanical properties (Tensile Strength 0.332-4.635 MPa, Elongation at break 42.45-547.63 %) and water resistance ability of films (Moisture content 15-6.4 %, Water Solubility 50-30 % Water Vapour Transmission Rate 2.0012-1.0054 g-2 h-1 and Water Contact Angle 40.6-89.6°). The developed films are found to be thermally stable. The formed films possessed anti-oxidative abilities which safeguard the film from oxidative attacks and ultimately protect the film from the external environment. The fluorescence nanosensor probe has further been developed by utilizing CQDs embedded in a starch-based bioplastic nanocomposite. The developed sensor displayed selective sensing ability towards Fe2+ ion with high sensitivity and accuracy in aqueous medium. Thus, the proposed sensor in this work offers a portable, efficient, low-cost, disposable, non-lethal, and eco-friendly nanosensor for on-site monitoring of metal ion for the food, beverage, and pharmaceutical industries. This is one of the primary reports where metal ions sensing is reported for Taro@CQDs nanocomposites based films. Our outcomes of this work hold significant relevance to providing a smart sensory and biodegradable probe for metal ion sensing by using waste resources, thus offering a better and sustainable alternative for environmental remediation applications.
Collapse
Affiliation(s)
- Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Manmeet Kour
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| |
Collapse
|
23
|
Kouchakinejad R, Lotfi Z, Golzary A. Exploring Azolla as a sustainable feedstock for eco-friendly bioplastics: A review. Heliyon 2024; 10:e39252. [PMID: 39640731 PMCID: PMC11620271 DOI: 10.1016/j.heliyon.2024.e39252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
In today's world, environmental concerns about plastic pollution of aquatic and terrestrial ecosystems are at the forefront of many conversations. However, a solution that is gaining momentum is bioplastics. Bioplastics come from sustainable biological sources such as plants, bio-waste, or microorganisms, rather than non-renewable fossil fuels like petroleum or natural gas. The properties of Azolla, including its growth in aquatic environments, high nutrient content, and ability to symbiotically fix nitrogen, make it an intriguing candidate for sustainable bioplastics feedstock. By analyzing the current state of research on bioplastics, this review aims to demonstrate the feasibility, challenges and environmental sustainability of this new environmentally friendly alternative to plastics. Thus, we contribute to the ongoing discourse on addressing plastic pollution and environmental degradation through innovative, sustainable materials. The research results show that the unique properties of Azolla such as rapid growth and nutritional content make it a strong contender for sustainable bioplastics raw materials. Azolla-based bioplastics can be helpful as an environmentally friendly alternative to conventional plastics. However, it is crucial to address challenges related to cultivation, processing, and economic feasibility for practical implementation. Azolla-based bioplastics are an opportunity to reduce the environmental impact of plastic waste and contribute to a more sustainable future.
Collapse
Affiliation(s)
| | - Zahra Lotfi
- Department of Environment, Semnan Bureau, Semnan, Iran
| | - Abooali Golzary
- School of Environment, College of Engineering, Faculty of Environment, University of Tehran, P.O. Box 14155-6135, Tehran, Iran
| |
Collapse
|
24
|
Sun X, Jiang F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications. Carbohydr Polym 2024; 341:122305. [PMID: 38876711 DOI: 10.1016/j.carbpol.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
25
|
Luo Q, Ding CJ, Zhong CZ, Wang L, Wang NL, Li WD, Tang ZH, Xu S. Urchin-like NiCo-based bimetallic hydroxide decorated with DOPO as highly hydrophobic flame retardant for remarkably reducing fire hazard of poly (L-lactic acid). Int J Biol Macromol 2024; 280:136028. [PMID: 39332573 DOI: 10.1016/j.ijbiomac.2024.136028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Designing high-performance flame retardants for poly (L-lactic acid) (PLA) materials and exploring a simple and scalable strategy have been hot topics in research. In this work, a novel and highly efficient flame retardant, that is, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) decorated urchin-like NiCo-based bimetallic hydroxide (NiCo-BH@DOPO), was synthesized and incorporated into PLA to prepare PLA and NiCo-BH@DOPO (PLA/NiCo-BH@DOPO) composite. Benefiting from the DOPO organic modification, NiCo-BH@DOPO had superb hydrophobicity and presented excellent dispersion in the PLA matrix. When 20 wt% NiCo-BH@DOPO was added, the LOI value of PLA/NiCo-BH@DOPO composites reached 33.2 %, passed the V-0 level of UL-94 grade, and its maximum peak heat release rate (PHRR) and total heat release (THR) were reduced by 13.2 % and 17.3 %, respectively, compared with PLA/NiCo-BH composites. Furthermore, the residue of PLA/NiCo-BH@DOPO at 800 °C reached 19.8 wt% and the T10% (temperature at 10 % weight loss) increased by 33 °C. More importantly, the residual PLA/NiCo-BH@DOPO char exhibits a significantly reduced presence of large cracks compared to PLA/NiCo-BH, indicating a more compact formation of residual char. NiCo-BH@DOPO endowed PLA with outstanding flame retardancy, thermal stability and carbonization properties, which were owing to the multi-coordinating effect transition metal (NiCo-BH) catalyzed the char formation to form a char layer barrier and DOPO free radicals captured to inhibit the combustion reaction chain. This investigation provided a facile strategy for the novel multi-function NiCo-based bimetallic hydroxide flame retardant, expanding NiCo-BH potential applications in PLA.
Collapse
Affiliation(s)
- Qian Luo
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Chi-Jie Ding
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Cheng-Zhi Zhong
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Lei Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Niang-Liang Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| | - Wei-Du Li
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Zhe-Hong Tang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Sheng Xu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
26
|
Negrete-Bolagay D, Guerrero VH. Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance. Polymers (Basel) 2024; 16:2561. [PMID: 39339026 PMCID: PMC11434805 DOI: 10.3390/polym16182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the environmental impact and increasing cost competitiveness. Bioplastics represent a sustainable alternative in this scenario. However, the replacement of plastics must be addressed considering several aspects along their lifecycle, from bioplastic processing to the final application of the product. In this review, the effects of using different additives, biomass sources, and processing techniques on the mechanical and thermal behavior, as well as on the biodegradability, of bioplastics is discussed. The importance of using bioplasticizers is highlighted, besides studying the role of surfactants, compatibilizers, cross-linkers, coupling agents, and chain extenders. Cellulose, lignin, starch, chitosan, and composites are analyzed as part of the non-synthetic bioplastics considered. Throughout the study, the emphasis is on the use of well-established manufacturing processes, such as extrusion, injection, compression, or blow molding, since these are the ones that satisfy the quality, productivity, and cost requirements for large-scale industrial production. Particular attention is also given to fused deposition modeling, since this additive manufacturing technique is nowadays not only used for making prototypes, but it is being integrated into the development of parts for a wide variety of biomedical and industrial applications. Finally, recyclability and the commercial requirements for bioplastics are discussed, and some future perspectives and challenges for the development of bio-based plastics are discussed, with the conclusion that technological innovations, economic incentives, and policy changes could be coupled with individually driven solutions to mitigate the negative environmental impacts associated with conventional plastics.
Collapse
Affiliation(s)
| | - Víctor H. Guerrero
- Department of Materials, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| |
Collapse
|
27
|
Ho LYL, Pan L, Meng F, Ho KTM, Liu F, Wu MT, Lei HI, Bhachu G, Wang X, Dahlsten O, Sun Y, Lee PH, Tan GYA. Quantum modeling simulates nutrient effect of bioplastic polyhydroxyalkanoate (PHA) production in Pseudomonas putida. Sci Rep 2024; 14:18255. [PMID: 39107357 PMCID: PMC11303679 DOI: 10.1038/s41598-024-68727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) could be used to make sustainable, biodegradable plastics. However, the precise and accurate mechanistic modeling of PHA biosynthesis, especially medium-chain-length PHA (mcl-PHA), for yield improvement remains a challenge to biology. PHA biosynthesis is typically triggered by nitrogen limitation and tends to peak at an optimal carbon-to-nitrogen (C/N) ratio. Specifically, simulation of the underlying dynamic regulation mechanisms for PHA bioprocess is a bottleneck owing to surfeit model complexity and current modeling philosophies for uncertainty. To address this issue, we proposed a quantum-like decision-making model to encode gene expression and regulation events as hidden layers by the general transformation of a density matrix, which uses the interference of probability amplitudes to provide an empirical-level description for PHA biosynthesis. We implemented our framework modeling the biosynthesis of mcl-PHA in Pseudomonas putida with respect to external C/N ratios, showing its optimization production at maximum PHA production of 13.81% cell dry mass (CDM) at the C/N ratio of 40:1. The results also suggest the degree of P. putida's preference in channeling carbon towards PHA production as part of the bacterium's adaptative behavior to nutrient stress using quantum formalism. Generic parameters (kD, kN and theta θ) obtained based on such quantum formulation, representing P. putida's PHA biosynthesis with respect to external C/N ratios, was discussed. This work offers a new perspective on the use of quantum theory for PHA production, demonstrating its application potential for other bioprocesses.
Collapse
Affiliation(s)
- Lawrence Yuk Lung Ho
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Li Pan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Fei Meng
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Kin Tung Michael Ho
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Feiyang Liu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Tsung Wu
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Hei I Lei
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Govind Bhachu
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Xin Wang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Oscar Dahlsten
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, London, UK.
| | - Giin Yu Amy Tan
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
28
|
Hoang TD, Van Anh N, Yusuf M, Ali S A M, Subramanian Y, Hoang Nam N, Minh Ky N, Le VG, Thi Thanh Huyen N, Abi Bianasari A, K Azad A. Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies. CHEM REC 2024; 24:e202300333. [PMID: 39051717 DOI: 10.1002/tcr.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/08/2024] [Indexed: 07/27/2024]
Abstract
Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to "value-added" products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.
Collapse
Affiliation(s)
- Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
- Vietam National Univeristy Hanoi -, School of Interdisciplinary Sciences and Arts, 144 Cau Giay, Hanoi, 10000, Hanoi, Vietnam
| | - Nguyen Van Anh
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India
| | - Muhammed Ali S A
- Fuel Cell Institute, (CETRI), Universiti Kebangsasn Malaysia, 43600, Bangi, Malaysia
| | - Yathavan Subramanian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Nguyen Hoang Nam
- Faculty of Environment, Climate change and Urban Studies, National Economics University, 10000, Hanoi, Vietnam
| | - Nguyen Minh Ky
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Vietnam
| | | | - Alien Abi Bianasari
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Abul K Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
29
|
Vanheusden C, Samyn P, Vackier T, Steenackers H, D'Haen J, Peeters R, Buntinx M. Fabrication of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ZnO Nanocomposite Films for Active Packaging Applications: Impact of ZnO Type on Structure-Property Dynamics. Polymers (Basel) 2024; 16:1861. [PMID: 39000717 PMCID: PMC11243840 DOI: 10.3390/polym16131861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.
Collapse
Affiliation(s)
- Chris Vanheusden
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Pieter Samyn
- Department Circular Economy and Renewable Materials, SIRRIS, Gaston Geenslaan 8, 3001 Leuven, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Jan D'Haen
- Analytical & Microscopical Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Roos Peeters
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Mieke Buntinx
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| |
Collapse
|
30
|
Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R. Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications. Biomimetics (Basel) 2024; 9:373. [PMID: 38921253 PMCID: PMC11201842 DOI: 10.3390/biomimetics9060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges. Fortunately, protein-based biopolymers can compete with and potentially surpass the performance of petro-based polymers because they can be biologically produced and degraded in an environmentally friendly fashion. This paper reviews four groups of protein-based polymers, including fibrous proteins (collagen, silk fibroin, fibrillin, and keratin), elastomeric proteins (elastin, resilin, and wheat glutenin), adhesive/matrix proteins (spongin and conchiolin), and cyanophycin. We discuss the connection between protein sequence, structure, function, and biomimetic applications. Protein engineering techniques, such as directed evolution and rational design, can be used to improve the functionality of natural protein-based materials. For example, the inclusion of specific protein domains, particularly those observed in structural proteins, such as silk and collagen, enables the creation of novel biomimetic materials with exceptional mechanical properties and adaptability. This review also discusses recent advancements in the production and application of new protein-based materials through the approach of synthetic biology combined biomimetics, providing insight for future research and development of cutting-edge bio-inspired products. Protein-based polymers that utilize nature's designs as a base, then modified by advancements at the intersection of biology and engineering, may provide mankind with more sustainable products.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | - Liping Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | | | - Zhong Hu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA;
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
31
|
Jing L, Shi T, Chang Y, Meng X, He S, Xu H, Yang S, Liu J. Cellulose-based materials in environmental protection: A scientometric and visual analysis review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172576. [PMID: 38649055 DOI: 10.1016/j.scitotenv.2024.172576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
As sustainable materials, cellulose-based materials have attracted significant attention in the field of environmental protection, resulting in the publication of numerous academic papers. However, there is a scarcity of literature that involving scientometric analysis within this specific domain. This review aims to address this gap and highlight recent research in this field by utilizing scientometric analysis and a historical review. As a result, 21 highly cited articles and 10 mostly productive journals were selected out. The scientometric analysis reveals that recent studies were objectively clustered into five interconnected main themes: extraction of cellulose from raw materials and its degradation, adsorption of pollutants using cellulose-based materials, cellulose-acetate-based membrane materials, nanocellulose-based materials, and other cellulose-based materials such as carboxymethyl cellulose and bacterial cellulose for environmental protection. Analyzing the distribution of author keywords and thoroughly examining relevant literature, the research focuses within these five themes were summarized. In the future, the development of eco-friendly and cost-effective methods for extracting and preparing cellulose and its derivatives, particularly nanocellulose-based materials, remains an enduring pursuit. Additionally, machine learning techniques holds promise for the advancement and application of cellulose-based materials. Furthermore, there is potential to expand the research and application scope of cellulose-based materials for environmental protection.
Collapse
Affiliation(s)
- Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tianyu Shi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yulung Chang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Xingliang Meng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuai He
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Hang Xu
- School of Material Science & Chemical Engineering, Harbin University of Science and Technology, Harbin, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jia Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Institute of Qinghai-Tibet Plateau, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
32
|
Mogany T, Bhola V, Bux F. Algal-based bioplastics: global trends in applied research, technologies, and commercialization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38022-38044. [PMID: 38787471 PMCID: PMC11189328 DOI: 10.1007/s11356-024-33644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The excessive global demand for plastic materials has resulted in severe plastic waste pollution. Conventional plastics derived from non-renewable fossil fuels are non-biodegradable, leading to significant environmental problems. Algal-based bioplastics represent a more viable, renewable, and sustainable alternative to conventional plastics. They have identical properties and characteristics as conventional plastics while being naturally biodegradable. The potential of the algal biomass value chain has already been well-established by researchers. Here, we review the novel insights on research, technology, and commercialization trends of algal-based bioplastics, encompassing macroalgae and green microalgae/cyanobacteria. Data showed that within the last decade, there has been substantial interest in utilizing microalgae for biopolymer production, with more focus on using cyanobacterial species compared to green algae. Moreover, most of the research conducted has largely focused on the production of PHA or its co-polymers. Since 2011, there have been a total of 55 patents published related to algal-based bioplastics production. To date, ~ 81 entities worldwide (commercial and private businesses) produce bioplastics from algae. Overall results of this study emphasized that even with the economic and social challenges, algae possess a substantial potential for the sustainable development of bioplastics while also addressing the UN's SDGs.
Collapse
Affiliation(s)
- Trisha Mogany
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Virthie Bhola
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
33
|
Körpınar B, Öztürk BC, Çam NF, Akat H. Novel starch-tungsten (VI) oxide biocomposites: Preparation, characterization, and comparisons between experimental and theoretical photon attenuation coefficients. Int J Biol Macromol 2024; 270:132342. [PMID: 38750851 DOI: 10.1016/j.ijbiomac.2024.132342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
This study synthesized biocomposites containing starch and WO3 at varying ratios of 10 %, 20 %, 30 %, 40 %, and 50 % and assessed their thermal and radiation-shielding properties. These biocomposites were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction (XRD) analysis, particle-size distribution assessments, scanning electron microscopy-energy dispersive X-ray spectroscopy, and thermogravimetric analysis-differential thermogravimetry measurements. Furthermore, the linear attenuation coefficients of the biocomposites were experimentally measured using an NaI(Tl) gamma spectrometry system and theoretically computed using XCOM and GAMOS simulations for comparisons. The XRD and particle-size distribution profiles of the WO3.2H2O powder, respectively, demonstrated evident diffraction peaks and favorable pore-size distributions. Morphological characterizations revealed that the WO3 particles were homogeneously dispersed throughout the starch matrix without any agglomeration. Comparisons of the thermal degradation rates revealed that the pure starch and starch +50%WO3 biocomposite began decomposing at approximately 200°Cand 300 °C, respectively, indicating that increasing WO3 proportions enhanced thermal stability. Furthermore, the starch +50%WO3 biocomposite demonstrated the highest experimental linear attenuation coefficient, with a value of 0.2510 ± 0.0848 cm-1 at a gamma energy of 662 keV. Meanwhile, XCOM and GAMOS simulations revealed theoretical attenuation coefficients of 0.1229 and 0.1213 cm-1 for pure starch and 0.2202 cm-1 and 0.2178 cm-1 for the starch +50%WO3 biocomposite at 662 keV, respectively.
Collapse
Affiliation(s)
- Berna Körpınar
- Department of Chemistry, Faculty of Science, Manisa Celal Bayar University, Yunusemre, Manisa 45140, Turkey; Department of Chemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Buket Canbaz Öztürk
- Department of Physics, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - N Füsun Çam
- Department of Physics, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Hakan Akat
- Department of Chemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
34
|
Longo A, Fanelli F, Villano M, Montemurro M, Rizzello CG. Bioplastic Production from Agri-Food Waste through the Use of Haloferax mediterranei: A Comprehensive Initial Overview. Microorganisms 2024; 12:1038. [PMID: 38930420 PMCID: PMC11205408 DOI: 10.3390/microorganisms12061038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The research on bioplastics (both biobased and biodegradable) is steadily growing and discovering environmentally friendly substitutes for conventional plastic. This review highlights the significance of bioplastics, analyzing, for the first time, the state of the art concerning the use of agri-food waste as an alternative substrate for biopolymer generation using Haloferax mediterranei. H. mediterranei is a highly researched strain able to produce polyhydroxybutyrate (PHB) since it can grow and produce bioplastic in high-salinity environments without requiring sterilization. Extensive research has been conducted on the genes and pathways responsible for PHB production using H. mediterranei to find out how fermentation parameters can be regulated to enhance cell growth and increase PHB accumulation. This review focuses on the current advancements in utilizing food waste as a substitute for costly substrates to reduce feedstock expenses. Specifically, it examines the production of biomass and the recovery of PHB from agri-food waste. Furthermore, it emphasizes the characterization of PHB and the significance of hydroxyvalerate (HV) abundance in the formation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer. The downstream processing options are described, and the crucial factors associated with industrial scale-up are assessed, including substrates, bioreactors, process parameters, and bioplastic extraction and purification. Additionally, the economic implications of various options are discussed.
Collapse
Affiliation(s)
- Angela Longo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| | - Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Montemurro
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| |
Collapse
|
35
|
Song Z, Wu H, Fang X, Feng X, Zhou L. The cardiovascular toxicity of polystyrene microplastics in rats: based on untargeted metabolomics analysis. Front Pharmacol 2024; 15:1336369. [PMID: 38799170 PMCID: PMC11127592 DOI: 10.3389/fphar.2024.1336369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background Polystyrene microplastics (PS-MPs) exhibit multi-target, multi-dimensional, chronic, and low toxicity to the cardiovascular system. They enter the bloodstream through the gastrointestinal tract and respiratory system, altering blood parameters and conditions, inducing thrombotic diseases, and damaging myocardial tissue through the promotion of oxidative stress and inflammatory responses in myocardial cells. However, many of the links and mechanisms remain unclear. Methods In this study, 48 wistar rats were randomly divided into four groups and exposed to different concentrations of PS-MPs: control group (0 mg/kg/d), low dose group (0.5 mg/kg/d), middle dose group (5 mg/kg/d) and high dose group (50 mg/kg/d), with 12 rats in each group. After 90 consecutive days of intragastric administration of PS-MPs, biochemical markers in myocardium, aorta and blood were detected, and HE staining was performed to observe the toxic effects of PS-mps on cardiovascular system. Furthermore, non-targeted metabolomics methods were used to analyze the effect of PS-MPs exposure on the metabolism of cardiovascular system in rats, and to explore its potential molecular mechanism. Results The results revealed no pathological changes in the heart and aorta following PS-MPs exposure. However, the myocardial enzyme levels in the high dose PS-MPs group of rats showed a significant increase. Moreover, exposure to polystyrene microplastics caused a disorder in lipid metabolism in rats, and led to an increase in indicators of inflammation and oxidative stress in myocardial and aortic tissues, but resulted in a decrease in the level of IL-6. Untargeted metabolomics results showed that metabolites with antioxidant and anti-inflammatory effects, including equol and 4-hydroxybenzoic acid, were significantly upregulated. Conclusion These results suggest that long-term exposure to high concentrations of PS-MPs may lead to abnormal lipid metabolism and cardiovascular system damage. The mechanism may be related to oxidative stress and inflammatory response. Exogenous antioxidants and changes in own metabolites may have a protective effect on the injury. Therefore, understanding the toxicological mechanism of PS-MPs not only helps to elucidate its pathogenesis, but also provides new ideas for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Zikai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Haidi Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xuemin Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
36
|
Adetunji AI, Erasmus M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers (Basel) 2024; 16:1322. [PMID: 38794516 PMCID: PMC11124873 DOI: 10.3390/polym16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of conventional plastics has increased tremendously in the last decades due to rapid industrialization, population growth, and advancement in the use of modern technologies. However, overuse of these fossil fuel-based plastics has resulted in serious environmental and health hazards by causing pollution, global warming, etc. Therefore, the use of microalgae as a feedstock is a promising, green, and sustainable approach for the production of biobased plastics. Various biopolymers, such as polyhydroxybutyrate, polyurethane, polylactic acid, cellulose-based polymers, starch-based polymers, and protein-based polymers, can be produced from different strains of microalgae under varying culture conditions. Different techniques, including genetic engineering, metabolic engineering, the use of photobioreactors, response surface methodology, and artificial intelligence, are used to alter and improve microalgae stocks for the commercial synthesis of bioplastics at lower costs. In comparison to conventional plastics, these biobased plastics are biodegradable, biocompatible, recyclable, non-toxic, eco-friendly, and sustainable, with robust mechanical and thermoplastic properties. In addition, the bioplastics are suitable for a plethora of applications in the agriculture, construction, healthcare, electrical and electronics, and packaging industries. Thus, this review focuses on techniques for the production of biopolymers and bioplastics from microalgae. In addition, it discusses innovative and efficient strategies for large-scale bioplastic production while also providing insights into the life cycle assessment, end-of-life, and applications of bioplastics. Furthermore, some challenges affecting industrial scale bioplastics production and recommendations for future research are provided.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9301, South Africa
| | | |
Collapse
|
37
|
Baltacı NG, Baltacı MÖ, Görmez A, Örtücü S. Green alternatives to petroleum-based plastics: production of bioplastic from Pseudomonas neustonica strain NGB15 using waste carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31149-31158. [PMID: 38625463 PMCID: PMC11096215 DOI: 10.1007/s11356-024-33309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polyhydroxyalkanoates have attracted great interest as a suitable alternative to petrochemical based plastics due to their outstanding properties such as biodegradability and biocompatibility. However, the biggest problem in the production of microbial polyhydroxyalkanoates is low cost-effectiveness. In this study, polyhydroxyalkanoate production was carried out using waste substrates with local isolates. Culture conditions were optimized to increase the polyhydroxyalkanoate production potential. The produced polyhydroxyalkanoate was characterized by FTIR analyses, and its metabolic pathway was determined by real-time PCR. According to the results, the best polyhydroxyalkanoate producer bacteria was characterized as Pseudomonas neustonica NGB15. The optimal culture conditions were detected as 30 g/L banana peel powder, 25 °C temperature, pH 8, and 4-day incubation time. Under the optimized conditions, 3.34 g/L PHA production was achieved. As a result of FTIR analyses, major peaks were obtained at 1723, 1277, 1261, 1097, 1054, and 993 cm-1. These peaks represent that the type of produced polyhydroxyalkanoate was poly-β-hydroxybutyrate. According to gene expression profile of NGB15, it was determined that Pseudomonas neustonica NGB15 produces PHA using the de novo fatty acid synthesis metabolic pathway. In conclusion, poly-β-hydroxybutyrate production by Pseudomonas neustonica NGB15 using a low-cost fermentation medium has been shown to be biotechnologically promising.
Collapse
Affiliation(s)
- Nurdan Gönül Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Mustafa Özkan Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Arzu Görmez
- Department of Biology, Faculty of Science, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
38
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
39
|
Elkaliny NE, Alzamel NM, Moussa SH, Elodamy NI, Madkor EA, Ibrahim EM, Elshobary ME, Ismail GA. Macroalgae Bioplastics: A Sustainable Shift to Mitigate the Ecological Impact of Petroleum-Based Plastics. Polymers (Basel) 2024; 16:1246. [PMID: 38732716 PMCID: PMC11085313 DOI: 10.3390/polym16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The surge in global utilization of petroleum-based plastics, which notably heightened during the COVID-19 pandemic, has substantially increased its harm to ecosystems. Considering the escalating environmental impact, a pivotal shift towards bioplastics usage is imperative. Exploring and implementing bioplastics as a viable alternative could mitigate the ecological burden posed by traditional plastics. Macroalgae is a potential feedstock for the production of bioplastics due to its abundance, fast growth, and high cellulose and sugar content. Researchers have recently explored various methods for extracting and converting macroalgae into bioplastic. Some of the key challenges in the production of macroalgae bioplastics are the high costs of large-scale production and the need to optimize the extraction and conversion processes to obtain high-quality bioplastics. However, the potential benefits of using macroalgae for bioplastic production include reducing plastic waste and greenhouse gas emissions, using healthier materials in various life practices, and developing a promising area for future research and development. Also, bioplastic provides job opportunities in free enterprise and contributes to various applications such as packaging, medical devices, electronics, textiles, and cosmetics. The presented review aims to discuss the problem of petroleum-based plastic, bioplastic extraction from macroalgae, bioplastic properties, biodegradability, its various applications, and its production challenges.
Collapse
Affiliation(s)
- Nehal E. Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nurah M. Alzamel
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Shaaban H. Moussa
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Nour I. Elodamy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Engy A. Madkor
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa M. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan A. Ismail
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
40
|
Salam LB. Metagenomic investigations into the microbial consortia, degradation pathways, and enzyme systems involved in the biodegradation of plastics in a tropical lentic pond sediment. World J Microbiol Biotechnol 2024; 40:172. [PMID: 38630153 DOI: 10.1007/s11274-024-03972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The exploitation of exciting features of plastics for diverse applications has resulted in significant plastic waste generation, which negatively impacts environmental compartments, metabolic processes, and the well-being of aquatic ecosystems biota. A shotgun metagenomic approach was deployed to investigate the microbial consortia, degradation pathways, and enzyme systems involved in the degradation of plastics in a tropical lentic pond sediment (APS). Functional annotation of the APS proteome (ORFs) using the PlasticDB database revealed annotation of 1015 proteins of enzymes such as depolymerase, esterase, lipase, hydrolase, nitrobenzylesterase, chitinase, carboxylesterase, polyesterase, oxidoreductase, polyamidase, PETase, MHETase, laccase, alkane monooxygenase, among others involved in the depolymerization of the plastic polymers. It also revealed that polyethylene glycol (PEG), polyhydroxyalkanoates (PHA), polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), polyethylene terephthalate (PET), and nylon have the highest number of annotated enzymes. Further annotation using the KEGG GhostKOALA revealed that except for terephthalate, all the other degradation products of the plastic polymers depolymerization such as glyoxylate, adipate, succinate, 1,4-butanediol, ethylene glycol, lactate, and acetaldehyde were further metabolized to intermediates of the tricarboxylic acid cycle. Taxonomic characterization of the annotated proteins using the AAI Profiler and BLASTP revealed that Pseudomonadota members dominate most plastic types, followed by Actinomycetota and Acidobacteriota. The study reveals novel plastic degraders from diverse phyla hitherto not reported to be involved in plastic degradation. This suggests that plastic pollution in aquatic environments is prevalent with well-adapted degrading communities and could be the silver lining in mitigating the impacts of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Lateef B Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| |
Collapse
|
41
|
Venkatesan R, Vetcher AA, Al-Asbahi BA, Kim SC. Chitosan-Based Films Blended with Tannic Acid and Moringa Oleifera for Application in Food Packaging: The Preservation of Strawberries ( Fragaria ananassa). Polymers (Basel) 2024; 16:937. [PMID: 38611195 PMCID: PMC11013215 DOI: 10.3390/polym16070937] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Biobased plastics provide a sustainable alternative to conventional food packaging materials, thereby reducing the environmental impact. The present study investigated the effectiveness of chitosan with varying levels of Moringa oleifera seed powder (MOSP) and tannic acid (TA). Chitosan (CS) biocomposite films with tannic acid acted as a cross-linker, and Moringa oleifera seed powder served as reinforcement. To enhance food packaging and film performance, Moringa oleifera seed powder was introduced at various loadings of 1.0, 3.0, 5.0, and 10.0 wt.%. Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy analyses were performed to study the structure and morphology of the CS/TA/MOSP films. The scanning electron microscopy results confirmed that chitosan/TA with 10.0 wt.% of MOSP produced a lightly miscible droplet/matrix structure. Furthermore, mechanical properties, swelling, water solubility, optical barrier, and water contact angle properties of the film were also calculated. With increasing Moringa oleifera seed powder contents, the biocomposite films' antimicrobial and antifungal activity increased at the 10.0 wt.% MOSP level; all of the observed bacteria [Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Aspergillus niger (A. niger), and Candida albicans (C. albicans)] had a notably increased percentage of growth. The film, with 10.0 wt.% MOSP content, effectively preserves strawberries' freshness, making it an ideal food packaging material.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia;
| | - Bandar Ali Al-Asbahi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
42
|
Ma X, Lin X, Chang C, Duan B. Chitinous Bioplastic Enabled by Noncovalent Assembly. ACS NANO 2024; 18:8906-8918. [PMID: 38483090 DOI: 10.1021/acsnano.3c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Natural polymeric-based bioplastics usually lack good mechanical or processing performance. It is still challenging to achieve simultaneous improvement for these two usual trade-off features. Here, we demonstrate a full noncovalent mediated self-assembly design for simultaneously improving the chitinous bioplastic processing and mechanical properties via plane hot-pressing. Tannic acid (TA) is chosen as the noncovalent mediator to (i) increase the noncovalent cross-link intensity for obtaining the tough noncovalent network and (ii) afford the dynamic noncovalent cross-links to enable the mobility of chitin molecular chains for benefiting chitinous bioplastic nanostructure rearrangement during the shaping procedure. The multiple noncovalent mediated network (chitin-TA and chitin-chitin cross-links) and the pressure-induced orientation nanofibers structure endow the chitinous bioplastics with robust mechanical properties. The relatively weak chitin-TA noncovalent interactions serve as water mediation switches to enhance the molecular mobility for endowing the chitin/TA bioplastic with hydroplastic processing properties, rendering them readily programmable into versatile 2D/3D shapes. Moreover, the fully natural resourced chitinous bioplastic exhibits superior weld, solvent resistance, and biodegradability, enabling the potential for diverse applications. The full physical cross-linking mechanism highlights an effective design concept for balancing the trade-off of the mechanical properties and processability for the polymeric materials.
Collapse
Affiliation(s)
- Xiao Ma
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| |
Collapse
|
43
|
Zhang Y, Cao Y, Chen B, Dong G, Zhao Y, Zhang B. Marine biodegradation of plastic films by Alcanivorax under various ambient temperatures: Bacterial enrichment, morphology alteration, and release of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170527. [PMID: 38286285 DOI: 10.1016/j.scitotenv.2024.170527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The global ocean has been receiving massive amounts of plastic wastes. Marine biodegradation, influenced by global climate, naturally breaks down these wastes. In this study, we systematically compared the biodegradation performance of petroleum- and bio-based plastic films, i.e., low-density polyethylene (LDPE), polylactic acid (PLA), and polyhydroxyalkanoates (PHAs) under three ambient temperatures (4, 15, and 22 °C). We deployed the our previously isolated cold-tolerant plastic-degrading Alcanivorax to simulate the accelerated marine biodegradation process and evaluated the alteration of bacterial growth, plastic films, and released degradation products. Notably, we found that marine biodegradation of PHA films enriched more bacterial amounts, induced more conspicuous morphological damage, and released more microplastics (MPs) and dissolved organic carbon (DOC) under all temperatures compared to LDPE and PLA. Particularly, MPs were released from film edges and cracks with a mean size of 2.8 μm under all temperatures. In addition, the degradation products released by biodegradation of PHA under 22 °C induced the highest acute toxicity to Vibrio fischeri. Our results highlighted that: (1) marine biodegradation of plastics would release millions of MPs per cm2 exposed surface area even in cold environments within 60 days; (2) different marine biodegradation scenarios of these plastics may raise disparate impacts and mitigation-related studies.
Collapse
Affiliation(s)
- Yuanmei Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
44
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Ahmad K, Ahmed I, Qaisrani MM, Khan J. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. ENVIRONMENTAL RESEARCH 2024; 244:117949. [PMID: 38109961 DOI: 10.1016/j.envres.2023.117949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Laoshan Campus, Qingdao, Shandong Province, 266100, PR China
| | - Muther Mansoor Qaisrani
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
45
|
Chandran AJ, Rangappa SM, Suyambulingam I, Siengchin S. Waste chicken feather biofiller reinforced bioepoxy resin based biocomposites - A waste to wealth experimental approach. Int J Biol Macromol 2024; 261:129708. [PMID: 38272404 DOI: 10.1016/j.ijbiomac.2024.129708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Utilizing poultry wastes, particularly chicken feathers, in biopolymer composites is seen as an important aspect in lowering the environmental pollution and paving a new path to sustainability. The main objective of this experimental study is to develop polymer composites reinforced with waste chicken feather fillers and evaluate their physical, mechanical, and thermal characteristics. The composites were fabricated through an open mold casting process using bio epoxy (SR-33 Greenpoxy) as the matrix and chicken feather filler as a reinforcement in three distinct weight fractions (2.5, 5, and 7.5 wt%). To evaluate the effects of filler content on the mechanical properties of the fabricated bio-epoxy composites, they were subjected to tensile, flexural, impact, and hardness tests. The findings from the experimental studies demonstrated that the composites containing 2.5 wt% of chicken feather filler had improved mechanical properties, thermal stability, and crystallization behaviour. The thermal attributes of samples included a greater melting point, lower recrystallization temperature, higher glass transition temperature, and quicker crystallization rates. The Scanning Electron Microscope analysis of the fracture surface morphology of the biocomposites showed a better interfacial adhesion between the filler and matrix. It could be concluded from the results that the waste chicken feather can be used as potential filler reinforcements for begetting natural composites for various low- and medium-density structural and non-structural applications.
Collapse
Affiliation(s)
- Arulmozhivarman Joseph Chandran
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
| | - Indran Suyambulingam
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
| |
Collapse
|
46
|
Kumar R, Lalnundiki V, Shelare SD, Abhishek GJ, Sharma S, Sharma D, Kumar A, Abbas M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions. ENVIRONMENTAL RESEARCH 2024; 244:117707. [PMID: 38008206 DOI: 10.1016/j.envres.2023.117707] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
The production and utilization of plastics may prove beneficial, but the environmental impact suggests the opposite. The single-use plastics (SUP) and conventional plastics are harmful to the environment and need prompt disposal. Bioplastics are increasingly being considered as a viable alternative to conventional plastics due to their potential to alleviate environmental concerns such as greenhouse gas emissions and pollution. However, the previous reviews revealed a lack of consistency in the methodologies used in the Life Cycle Assessments (LCAs), making it difficult to compare the results across studies. The current study provides a systematic review of LCAs that assess the environmental impact of bioplastics. The different mechanical characteristics of bio plastics, like tensile strength, Young's modulus, flexural modulus, and elongation at break are reviewed which suggest that bio plastics are comparatively much better than synthetic plastics. Bioplastics have more efficient mechanical properties compared to synthetic plastics which signifies that bioplastics are more sustainable and reliable than synthetic plastics. The key challenges in bioplastic adoption and production include competition with food production for feedstock, high production costs, uncertainty in end-of-life management, limited biodegradability, lack of standardization, and technical performance limitations. Addressing these challenges requires collaboration among stakeholders to drive innovation, reduce costs, improve end-of-life management, and promote awareness and education. Overall, the study suggests that while bioplastics have the potential to reduce environmental impact, further research is needed to better understand their life cycle and optimize their end-of-life (EoL) management and production to maximize their environmental benefits.
Collapse
Affiliation(s)
- Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - V Lalnundiki
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sagar D Shelare
- Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, M.S, 440019, India.
| | - Galla John Abhishek
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Shubham Sharma
- Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; School of Mechanical and Automotive Engineering, Qingdao University of Technology, 266520, Qingdao, China; Department of Mechanical Engineering, Lebanese American University, Kraytem, 1102-2801, Beirut, Lebanon; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Deepti Sharma
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, 248007, India.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia.
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia.
| |
Collapse
|
47
|
Yang S, Chen R, Zhang P, Yuan M, Li H, Jiang D. Fabrication and characterization of poly(lactic acid-trimethylene carbonate) based biodegradable composite films. Int J Biol Macromol 2024; 262:130148. [PMID: 38354929 DOI: 10.1016/j.ijbiomac.2024.130148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Two biobased composite films have been prepared with poly (lactic acid-trimethylene carbonate), polylactic acid and Laponite by solvent evaporation method. The 1H NMR and FTIR spectrums illustrate that P (LA-TMC) polymer is successfully synthesized and designed composite films are produced. Morphometric analyses demonstrate that the roughnesses of the film's surface and cross-section are on the increase with higher PLA and Laponite content. Mechanical performances reveal that the rise in tensile strength and modulus while maintaining excellent elongation at break is mainly due to the increase in the content of polylactic acid and Laponite. By utilizing the nano effect of Laponite, the maximum tensile strength of the composite film reaches 34.59 MPa. Thermal property results illustrate that the Tg and initial decomposition temperature are on the growth with the increase of PLA content. However, it is not significant on the effect of Laponite on the initial decomposition temperature. The water vapor permeability measurements prove that the barrier property of P(LA-TMC)/PLA/Laponite composite film is on the ascent with the Laponite addition. Hydrolytic degradation tests indicate that PLA and Laponite play avital part in accelerating the degradation rate of composite films and alkaline media is superior acidic and neutral conditions.
Collapse
Affiliation(s)
- Shilong Yang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Rongying Chen
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Penghao Zhang
- College of Material Science and Engineering, Changchun University of Technology, Changchun 130000, China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Hongli Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Dengbang Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| |
Collapse
|
48
|
Shin N, Kim SH, Oh J, Kim S, Lee Y, Shin Y, Choi S, Bhatia SK, Kim YG, Yang YH. Reproducible Polybutylene Succinate (PBS)-Degrading Artificial Consortia by Introducing the Least Type of PBS-Degrading Strains. Polymers (Basel) 2024; 16:651. [PMID: 38475335 DOI: 10.3390/polym16050651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Polybutylene succinate (PBS) stands out as a promising biodegradable polymer, drawing attention for its potential as an eco-friendly alternative to traditional plastics due to its biodegradability and reduced environmental impact. In this study, we aimed to enhance PBS degradation by examining artificial consortia composed of bacterial strains. Specifically, Terribacillus sp. JY49, Bacillus sp. JY35, and Bacillus sp. NR4 were assessed for their capabilities and synergistic effects in PBS degradation. When only two types of strains, Bacillus sp. JY35 and Bacillus sp. NR4, were co-cultured as a consortium, a notable increase in degradation activity toward PBS was observed compared to their activities alone. The consortium of Bacillus sp. JY35 and Bacillus sp. NR4 demonstrated a remarkable degradation yield of 76.5% in PBS after 10 days. The degradation of PBS by the consortium was validated and our findings underscore the potential for enhancing PBS degradation and the possibility of fast degradation by forming artificial consortia, leveraging the synergy between strains with limited PBS degradation activity. Furthermore, this study demonstrated that utilizing only two types of strains in the consortium facilitates easy control and provides reproducible results. This approach mitigates the risk of losing activity and reproducibility issues often associated with natural consortia.
Collapse
Affiliation(s)
- Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
49
|
Plota-Pietrzak A, Czechowski L, Masek A. Influence of a Biofiller, Polylactide, on the General Characteristics of Epoxy-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1069. [PMID: 38473541 DOI: 10.3390/ma17051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The aim of this work was to obtain epoxy-based composite structures with good mechanical performance, high aging resistance, and an improved degradability profile. For this purpose, powdered polylactide in the amount of 5, 10, 20, 30, and 40 phr was introduced into the epoxy resin, and the composites were fabricated by a simple method, which is similar to that used on an industrial scale in the fabrication of these products. The first analysis concerned the study of the effect of PLA addition to epoxy resin-based composites on their mechanical properties. One-directional tensile tests of samples were performed for three directions (0, 90, and 45 degrees referring to the plate edges). Another aspect of this research was the assessment of the resistance of these composites to long-term exposure to solar radiation and elevated temperature. Based on the obtained results, it was observed that the samples containing 20 or 40 phr of polylactide were characterized by the lowest resistance to the solar aging process. It was therefore concluded that the optimal amount of polylactide in the epoxy resin composite should not be greater than 10 phr to maintain its mechanical behavior and high aging resistance. In the available literature, there are many examples in which scientists have proposed the use of various biofillers (e.g., lignin, starch, rice husk, coconut shell powder) in epoxy composites; however, the impact of polylactide on the general characteristics of the epoxy resin has not been described so far. Therefore, this work perfectly fills the gaps in the literature and may contribute to a more widespread use of additives of natural origin, which may constitute an excellent alternative to commonly used non-renewable compounds.
Collapse
Affiliation(s)
- Angelika Plota-Pietrzak
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland
| | - Leszek Czechowski
- Department of Strength of Materials, Lodz University of Technology, 90-537 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
50
|
Kalia VC, Patel SKS, Karthikeyan KK, Jeya M, Kim IW, Lee JK. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers (Basel) 2024; 16:410. [PMID: 38337299 DOI: 10.3390/polym16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.
Collapse
Affiliation(s)
- Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kugalur K Karthikeyan
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Marimuthu Jeya
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|