1
|
Han T, Luo P, Cai C, Yin X, Chen M, Chen X, Peng W, Zhan J, Jin Z, Zhu L. The influence of different stress loading on the biomechanics of motion segments in isolated rabbit spines. J Biomech 2025; 182:112592. [PMID: 39987886 DOI: 10.1016/j.jbiomech.2025.112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Intervertebral disc degeneration greatly affects daily life. Suitable mechanical stress is important for intervertebral disc health as it affects disc cells. Research shows it helps disc cell proliferation and collagen synthesis. However, the influences of forces in diverse directions on the intervertebral disc remain ambiguous. Our study aimed to investigate the impact of stress in various directions on intervertebral discs in New Zealand rabbits. The rabbit model was used because our team previously had established and validated it,which providing an effective platform for researching disc degeneration and treatment methods. We resected the spinal L3/4 and L5/6 motion segments and categorized them into 5 groups. Apart from the control group, distinct mechanical loads (pressure, traction, rotation, rotational traction) were applied to the remaining groups. After mechanical intervention, in contrast to the other groups except for the control group, it was found that the creep displacement in the rotational traction force group was the lowest (0.90 ± 0.06), the fatigue resistance was enhanced, and the tensile strength was increased, showing advantages over the other groups (p < 0.05). Histological examination revealed that the rotational traction force group had a protective effect on the intervertebral disc structure, while the cell damage in the rotational force group was the most severe. This study will help understand the unique effects of stresses in different directions on the intervertebral disc. The general public should avoid direct rotational movements in daily life. Physicians can explore the therapeutic effect of rotational movements under traction on lumbar degenerative changes.
Collapse
Affiliation(s)
- Tao Han
- Department of Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengren Luo
- Department of Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuhao Cai
- Department of Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xunlu Yin
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Chen
- Department of Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Chen
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Peng
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiawen Zhan
- Department of Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhefeng Jin
- Department of Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Liguo Zhu
- Department of Sports Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Song Z, Yan M, Zhang S, Hu B, Qing X, Shao Z, Chen S, Lv X, Liu H. Implications of circadian disruption on intervertebral disc degeneration: The mediating role of sympathetic nervous system. Ageing Res Rev 2025; 104:102633. [PMID: 39701186 DOI: 10.1016/j.arr.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.
Collapse
Affiliation(s)
- Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Binwu Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Kamel DM, Hassan M, Elsawy NA, Hashad D, Fayed AA, Elhabashy AM, Abdel-Fattah YH. Serum brain-derived neurotrophic factor level in patients with disc induced lumbosacral radiculopathy: Relation to pain severity and functional disability. J Clin Neurosci 2024; 128:110773. [PMID: 39137713 DOI: 10.1016/j.jocn.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Pain is the major cause of disability in disc induced lumbosacral radiculopathy (LSR) and is related to neurotrophins mainly brain derived neurotrophic factor (BDNF). However, to our knowledge evaluating serum BDNF in disc induced LSR has not been reported before. This study was done to investigate serum BDNF in LSR patients and its relation to pain severity and functional disability. METHODS This case-control study included 40 disc induced LSR patients and 40 age and sex matched healthy subjects. All patients were subjected to neurological examination, electrophysiological evaluation, pain severity assessment using numerical rating scale (NRS) and functional disability assessment using Modified Oswestry Low Back Pain Disability Index (ODI) and Maine-Seattle Back Questionnaire (MSBQ). According to Douleur neuropathique 4 (DN4) questionnaire, patients were divided into those with neuropathic pain and those with non-neuropathic pain. Serum BDNF was measured by enzyme-linked immunosorbent assay in all participants. RESULTS Serum BDNF was significantly higher in LSR patients than in healthy controls (U=272.5, P<0.001). Moreover, serum BDNF was significantly higher in those with neuropathic pain compared to those with non-neuropathic pain (U=35, P=0.03). Serum BDNF had a significant positive correlation with NRS score among those with acute pain (rs=0.537, P=0.026), however there was no significant correlation among those with chronic pain. Furthermore, BDNF had no significant correlation with modified ODI and MSBQ. CONCLUSION Increased serum BDNF may be associated with neuropathic pain and acute pain severity in disc induced LSR. However, it may not be related to chronic pain severity or functional disability.
Collapse
Affiliation(s)
- Dina Mansour Kamel
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Marwa Hassan
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Noha A Elsawy
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| | - Doaa Hashad
- Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Egypt
| | | | | | - Yousra Hisham Abdel-Fattah
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| |
Collapse
|
4
|
Jha R, Bernstock JD, Chalif JI, Hoffman SE, Gupta S, Guo H, Lu Y. Updates on Pathophysiology of Discogenic Back Pain. J Clin Med 2023; 12:6907. [PMID: 37959372 PMCID: PMC10647359 DOI: 10.3390/jcm12216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Discogenic back pain, a subset of chronic back pain, is caused by intervertebral disc (IVD) degeneration, and imparts a notable socioeconomic health burden on the population. However, degeneration by itself does not necessarily imply discogenic pain. In this review, we highlight the existing literature on the pathophysiology of discogenic back pain, focusing on the biomechanical and biochemical steps that lead to pain in the setting of IVD degeneration. Though the pathophysiology is incompletely characterized, the current evidence favors a framework where degeneration leads to IVD inflammation, and subsequent immune milieu recruitment. Chronic inflammation serves as a basis of penetrating neovascularization and neoinnervation into the IVD. Hence, nociceptive sensitization emerges, which manifests as discogenic back pain. Recent studies also highlight the complimentary roles of low virulence infections and central nervous system (CNS) metabolic state alteration. Targeted therapies that seek to disrupt inflammation, angiogenesis, and neurogenic pathways are being investigated. Regenerative therapy in the form of gene therapy and cell-based therapy are also being explored.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Samantha E. Hoffman
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hong Guo
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Lu Z, Zheng Z. Integrated analysis of single-cell and bulk RNA sequencing data identifies the characteristics of ferroptosis in lumbar disc herniation. Funct Integr Genomics 2023; 23:289. [PMID: 37653201 DOI: 10.1007/s10142-023-01216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Lumbar disc herniation (LDH) is the most common condition associated with low back pain, and it adversely impacts individuals' health. Ferroptosis has recently emerged as a novel factor in the pathogenesis of LDH; however, the specific impacts of ferroptosis on LDH have not been fully elucidated. Ferroptosis-related differentially expressed genes (FRDEGs) were identified from the transcriptomic datasets of LDH. Gene set enrichment analysis (GSEA) was conducted to identify biological mechanism and related pathways. LASSO and SVM-RFE algorithms were applied to detect signature genes. Function of the signature gene was confirmed by RT-qPCR. The CIBERSORT algorithm was used to compare immune infiltration between LDH and normal samples. Correlation analysis between MYB and immune cells was analyzed using the Pearson method. Additionally, we used scRNA-seq to dissect cell clusters and cellular interactions. AUCell scoring was used to analyze the ferroptosis scores of different cell types. We found that MYB, a highly expressed ferroptosis-related gene, was associated with LDH By leveraging bioinformatics analysis. In immune infiltration analysis, the abundance of monocytes and macrophages varied significantly between the LDH group and disc spondylolisthesis (DS) group. MYB was correlated with most immune cells. GSEA revealed MYB was significantly enriched in immune-related pathways. Furthermore, scRNA-seq analysis revealed the presence of eight distinct cell types. AUCell analysis showed that macrophages had a high ferroptosis score. Cell trajectory analysis revealed that chondrocyte 1 was at the beginning of the trajectory, while calcification inhibiting chondrocytes and fibrochondrocytes accumulated along the middle and tail end of the trajectory, respectively. Cell-cell communication analysis identified chondrocyte 1 had an extensive communication network with other clusters and interacted with nucleus pulposus through collagen signaling pathway. Our analysis demonstrated that MYB may be a potential therapeutic target for LDH. This study provides a resource for the orthopedics community that will facilitate additional discoveries directedly toward understanding the pathogenesis process of LDH.
Collapse
Affiliation(s)
- Ziqiang Lu
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province, Luoyang, Henan, China.
| | - Zhenyu Zheng
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province, Luoyang, Henan, China
| |
Collapse
|
6
|
Goode AP, Cleveland RJ, Kraus VB, Taylor KA, George SZ, Schwartz TA, Renner J, Huebner JL, Jordan JM, Golightly YM. Biomarkers and longitudinal changes in lumbar spine degeneration and low back pain: the Johnston County Osteoarthritis Project. Osteoarthritis Cartilage 2023; 31:809-818. [PMID: 36804589 PMCID: PMC10200763 DOI: 10.1016/j.joca.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE To determine if baseline biomarkers are associated with longitudinal changes in the worsening of disc space narrowing (DSN), vertebral osteophytes (OST), and low back pain (LBP). DESIGN Paired baseline (2003-2004) and follow-up (2006-2010) lumbar spine radiographs from the Johnston County Osteoarthritis Project were graded for severity of DSN and OST. LBP severity was self-reported. Concentrations of analytes (cytokines, proteoglycans, and neuropeptides) were quantified by immunoassay. Pressure-pain threshold (PPT), a marker of sensitivity to pressure pain, was measured with a standard dolorimeter. Binary logistic regression models were used to estimate odd ratios (OR) and 95% confidence intervals (CI) of biomarker levels with DSN, OST, or LBP. Interactions were tested between biomarker levels and the number of affected lumbar spine levels or LBP. RESULTS We included participants (n = 723) with biospecimens, PPT, and paired lumbar spine radiographic data. Baseline Lumican, a proteoglycan reflective of extracellular matrix changes, was associated with longitudinal changes in DSN worsening (OR = 3.19 [95% CI 1.22, 8.01]). Baseline brain-derived neuropathic factor, a neuropeptide, (OR = 1.80 [95% CI 1.03, 3.16]) was associated with longitudinal changes in OST worsening, which may reflect osteoclast genesis. Baseline hyaluronic acid (OR = 1.31 [95% CI 1.01, 1.71]), indicative of systemic inflammation, and PPT (OR = 1.56 [95% CI 1.02, 2.31]) were associated with longitudinal increases in LBP severity. CONCLUSION These findings suggest that baseline biomarkers are associated with longitudinal changes occurring in structures of the lumbar spine (DSN vs OST). Markers of inflammation and perceived pressure pain sensitivity were associated with longitudinal worsening of LBP.
Collapse
Affiliation(s)
- A P Goode
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Duke University, Durham, NC, USA; Department of Population Health Sciences, Duke University, Durham, NC, USA.
| | - R J Cleveland
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - V B Kraus
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA; Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Department of Medicine, Duke University, NC, USA.
| | - K A Taylor
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Duke University, Durham, NC, USA.
| | - S Z George
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Duke University, Durham, NC, USA.
| | - T A Schwartz
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - J Renner
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
| | - J L Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| | - J M Jordan
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Orthopedics, University of North Carolina, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Y M Golightly
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Goode AP, Hu D, George SZ, Schwartz TA, Kraus VB, Huebner JL, Cleveland RJ, Taylor KA, Jordan JM, Golightly YM. Biomarker clusters differentiate phenotypes of lumbar spine degeneration and low back pain: The Johnston County Osteoarthritis Project. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100270. [PMID: 35991624 PMCID: PMC9387345 DOI: 10.1016/j.ocarto.2022.100270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Describe the association between biomarkers and lumbar spine degeneration (vertebral osteophytes [OST], facet joint osteoarthritis [FOA], and disc space narrowing [DSN]), for persons with and without low back pain (LBP) and determine whether clusters based on biomarkers differentiate lumbar spine structure with and without LBP. Methods Using data from the Johnston County Osteoarthritis Project (2006-2010), we measured serum N-cadherin, Keratin-19, Lumican, CXCL6, RANTES, HA, IL-6, BDNF, OPG, and NPY, and urinary CTX-II. Biomarkers were used to group participants using k-means cluster analysis. Logistic regression models were used to compare biomarker clusters. Results The sample consisted of 731 participants with biospecimens and lumbar spine radiographic data. Three biomarker subgroups were identified: one characterized by structural degenerative changes; another characterized by structural degenerative changes and inflammation, with pain; and a referent cluster with lower levels of biomarkers, pain, and structural degenerative changes. Compared to the referent subgroup, the structural change subgroup was associated with DSN (OR = 1.94, 95% CI 1.30-2.90) and FOA (OR = 1.72, 95% CI 1.12-2.62), and the subgroup with structural degenerative change, inflammation, and pain was associated with OST with LBP (OR = 1.60, 95% CI 1.04-2.46), FOA with LBP (OR = 1.59, 95% CI 1.04-2.45), and LBP (OR = 1.63, 95% CI 1.11-2.41). The subgroup with structural degenerative changes was more likely to have OST (OR = 1.82, 95% CI 1.06-3.13) and less likely to have FOA with LBP (OR = 0.62, 95% CI 0.40-0.96) compared to the group with inflammation and pain. Conclusion Clustering by biomarkers may assist in differentiating patients for specific clinical interventions aimed at decreasing LBP.
Collapse
Affiliation(s)
- Adam P. Goode
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - David Hu
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Steven Z. George
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Todd A. Schwartz
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Virginia B. Kraus
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, NC, USA
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca J. Cleveland
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth A. Taylor
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Joanne M. Jordan
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Orthopedics, University of North Carolina, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Yvonne M. Golightly
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Krull CM, Rife J, Klamer B, Purmessur D, Walter BA. Pericellular heparan sulfate proteoglycans: Role in regulating the biosynthetic response of nucleus pulposus cells to osmotic loading. JOR Spine 2022; 5:e1209. [PMID: 35783912 PMCID: PMC9238280 DOI: 10.1002/jsp2.1209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Daily physiologic loading causes fluctuations in hydration of the intervertebral disc (IVD); thus, the embedded cells experience cyclic alterations to their osmotic environment. These osmotic fluctuations have been described as a mechanism linking mechanics and biology, and have previously been shown to promote biosynthesis in chondrocytes. However, this phenomenon has yet to be fully interrogated in the IVD. Additionally, the specialized extracellular matrix surrounding the cells, the pericellular matrix (PCM), transduces the biophysical signals that cells ultimately experience. While it is known that the PCM is altered in disc degeneration, whether it disrupts normal osmotic mechanotransduction has yet to be determined. Thus, our objectives were to assess: (1) whether dynamic osmotic conditions stimulate biosynthesis in nucleus pulposus cells, and (2) whether pericellular heparan sulfate proteoglycans (HSPGs) modulate the biosynthetic response to osmotic loading. Methods Bovine nucleus pulposus cells isolated with retained PCM were encapsulated in 1.5% alginate beads and treated with or without heparinase III, an enzyme that degrades the pericellular HSPGs. Beads were subjected to 1 h of daily iso-osmotic, hyper-osmotic, or hypo-osmotic loading for 1, 2, or 4 weeks. At each timepoint the total amount of extracellular and pericellular sGAG/DNA were quantified. Additionally, whether osmotic loading triggered alterations to HSPG sulfation was assessed via immunohistochemistry for the heparan sulfate 6-O-sulfertransferase 1 (HS6ST1) enzyme. Results Osmotic loading significantly influenced sGAG/DNA accumulation with a hyper-osmotic change promoting the greatest sGAG/DNA accumulation in the pericellular region compared with iso-osmotic conditions. Heparanase-III treatment significantly reduced extracellular sGAG/DNA but pericellular sGAG was not affected. HS6ST1 expression was not affected by osmotic loading. Conclusion Results suggest that hyper-osmotic loading promotes matrix synthesis and that modifications to HSPGs directly influence the metabolic responses of cells to osmotic fluctuations. Collectively, results suggest degeneration-associated modifications to pericellular HSPGs may contribute to the altered mechanobiology observed in disease.
Collapse
Affiliation(s)
- Carly M. Krull
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Jordan Rife
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Brett Klamer
- Department of Biomedical Informatics, Center for BiostatisticsThe Ohio State UniversityColumbusOhioUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Spine Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Benjamin A. Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Spine Research InstituteThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
9
|
Borem R, Madeline A, Theos C, Vela R, Garon A, Gill S, Mercuri J. Angle-ply scaffold supports annulus fibrosus matrix expression and remodeling by mesenchymal stromal and annulus fibrosus cells. J Biomed Mater Res B Appl Biomater 2021; 110:1056-1068. [PMID: 34843173 DOI: 10.1002/jbm.b.34980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 11/07/2022]
Abstract
The angle-ply multilaminate structure of the annulus fibrosus is not reestablished following discectomy which leads to reherniation of the intervertebral disc (IVD). Biomimetic scaffolds developed to repair these defects should be evaluated for their ability to support tissue regeneration by endogenous and exogenous cells. Herein a collagen-based, angle-ply multilaminate patch designed to repair the outer annulus fibrosus was assessed for its ability to support mesenchymal stromal and annulus fibrosus cell viability, elongation, alignment, extracellular matrix gene expression, and scaffold remodeling. Results demonstrated that the cells remained viable, elongated, and aligned along the collagen fiber preferred direction of the scaffold, upregulated genes associated with annulus fibrosus matrix and produced collagen on the scaffold yielding biaxial mechanical properties that resembled native annulus fibrosus tissue. In conclusion, these scaffolds have demonstrated their potential to promote a living repair of defects in the annulus fibrosus and thus may be used to prevent recurrent IVD herniations.
Collapse
Affiliation(s)
- Ryan Borem
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Allison Madeline
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Chris Theos
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Ricardo Vela
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Alex Garon
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Sanjitpal Gill
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
10
|
Morris H, Gonçalves CF, Dudek M, Hoyland J, Meng QJ. Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis 2021; 80:828-839. [PMID: 33397731 DOI: 10.1136/annrheumdis-2020-219515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.
Collapse
Affiliation(s)
- Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Xue J, Chen H, Zhu B, Li X, Ouyang Z, Li S, Xu Z, Xie Y, Yan Y. Percutaneous spinal endoscopy with unilateral interlaminar approach to perform bilateral decompression for central lumbar spinal stenosis: radiographic and clinical assessment. BMC Musculoskelet Disord 2021; 22:236. [PMID: 33648479 PMCID: PMC7923329 DOI: 10.1186/s12891-021-04100-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Recently, a percutaneous spinal endoscopy unilateral posterior interlaminar approach to perform bilateral decompression has been proposed for use in treatment of lumbar spinal stenosis, As a development and supplement to traditional surgery, its advantages regarding therapeutic effects and prognosis, such as minor soft tissue damage, little intraoperative blood loss, and a quick return to daily life. However, there are few analyses of this surgery with a follow-up of more than 1 year,we conducted this study in order to quantitatively investigate radiographic and clinical efficacies of this surgery for central lumbar spinal stenosis. Materials and methods Forty-six patients with central lumbar spinal stenosis were enrolled from January 2017 to July 2018. The visual analog scale (VAS) for back pain and leg pain, Oswestry disability index (ODI), modified MacNab criteria were used to evaluate clinical efficiency at preoperative and postoperative time points. The intervertebral height index (IHI), cross-sectional area of the spinal canal (CSAC), calibrated disc signal (CDS) and spinal stability were examined to assess radiographic decompression efficiency via magnetic resonance imaging and X-ray at preoperative and postoperative time points. Results The VAS score for lower back pain and leg pain improved from 7.50 ± 0.78 to 1.70 ± 0.66 and from 7.30 ± 0.79 to 1.74 ± 0.68, respectively, and the ODI improved from 72.35 ± 8.15 to 16.15 ± 4.51. In terms of modified MacNab criteria, 91.3% of the patients achieved good or excellent outcomes. Furthermore, significant changes after surgery were observed for the percentage of CSAC, increasing from 125.3 ± 53.9 to 201.4 ± 78 mm2; however, no significant differences were observed for the remaining measurement indicators. Conclusions The clinical and radiographic efficacies of this surgery for central lumbar spinal stenosis were good in short-term follow-up, and this surgery did not cause meaningful changes in IHI, CDS, and spine stability in short-term follow-up. The effect of long-term follow-up needs further investigation.
Collapse
Affiliation(s)
- Jingbo Xue
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Haoxiang Chen
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Xuelin Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Zhihua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Shan Li
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Zhun Xu
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Yong Xie
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China.
| |
Collapse
|
12
|
Goode AP, Schwartz TA, Kraus VB, Huebner JL, George SZ, Cleveland RJ, Gracely R, Jimenez M, DeFrate LE, Chen J, Golightly YM, Jordan JM. Inflammatory, Structural, and Pain Biochemical Biomarkers May Reflect Radiographic Disc Space Narrowing: The Johnston County Osteoarthritis Project. J Orthop Res 2020; 38:1027-1037. [PMID: 31750565 PMCID: PMC7162706 DOI: 10.1002/jor.24534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/10/2019] [Indexed: 02/04/2023]
Abstract
The purpose of this work is to determine the relationship between biomarkers of inflammation, structure, and pain with radiographic disc space narrowing (DSN) in community-based participants. A total of 74 participants (37 cases and 37 controls) enrolled in the Johnston County Osteoarthritis Project during 2006-2010 were selected. The cases had at least mild radiographic DSN and low back pain (LBP). The controls had neither radiographic evidence of DSN nor LBP. The measured analytes from human serum included N-cadherin, Keratin-19, Lumican, CXCL6, RANTES, IL-17, IL-6, BDNF, OPG, and NPY. A standard dolorimeter measured pressure-pain threshold. The coefficients of variation were used to evaluate inter- and intra-assay reliability. Participants with similar biomarker profiles were grouped together using cluster analysis. The binomial regression models were used to estimate risk ratios (RR) and 95% confidence intervals (CI) in propensity score-matched models. Significant associations were found between radiographic DSN and OPG (RR = 3.90; 95% CI: 1.83, 8.31), IL-6 (RR = 2.54; 95% CI: 1.92, 3.36), and NPY (RR = 2.06 95% CI: 1.62, 2.63). Relative to a cluster with low levels of biomarkers, a cluster representing elevated levels of OPG, RANTES, Lumican, Keratin-19, and NPY (RR = 3.04; 95% CI: 1.22, 7.54) and a cluster representing elevated levels of NPY (RR = 2.91; 95% CI: 1.15, 7.39) were significantly associated with radiographic DSN. Clinical Significance: These findings suggest that individual and combinations of biochemical biomarkers may reflect radiographic DSN. This is just one step toward understanding the relationships between biochemical biomarkers and DSN that may lead to improved intervention delivery. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1027-1037, 2020.
Collapse
Affiliation(s)
- Adam P. Goode
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA,Duke Clinical Research Institute, Duke University, Durham, NC, USA,Department of Population Health Science, Duke University School of Medicine, Durham, NC
| | - Todd A. Schwartz
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Janet L. Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Steven Z. George
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA,Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Rebecca J. Cleveland
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rick Gracely
- Department of Endodontics, University of North Carolina, Chapel Hill, NC, USA
| | - Maria Jimenez
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Louis E. DeFrate
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jun Chen
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yvonne M. Golightly
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA,Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA,Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA,Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA
| | - Joanne M. Jordan
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA,Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA,Department of Orthopedics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Zhao C, Quan X, He J, Zhao R, Zhang Y, Li X, Sun S, Ma R, Zhang Q. Identification of significant gene biomarkers of low back pain caused by changes in the osmotic pressure of nucleus pulposus cells. Sci Rep 2020; 10:3708. [PMID: 32111963 PMCID: PMC7048739 DOI: 10.1038/s41598-020-60714-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of intervertebral disc (IVD) degeneration disease, caused by changes in the osmotic pressure of nucleus pulposus (NP) cells, increases with age. In general, low back pain is associated with IVD degeneration. However, the mechanism and molecular target of low back pain have not been elucidated, and there are no data suggesting specific biomarkers of low back pain. Therefore, the research aims to identify and verify the significant gene biomarkers of low back pain. The differentially expressed genes (DEGs) were screened in the Gene Expression Omnibus (GEO) database, and the identification and analysis of significant gene biomarkers were also performed with various bioinformatics programs. A total of 120 patients with low back pain were recruited. Before surgery, the degree of pain was measured by the numeric rating scale (NRS), which enables comparison of the pain scores from individuals. After surgery, IVD tissues were obtained, and NP cells were isolated. The NP cells were cultured in two various osmotic media, including iso-osmotic media (293 mOsm/kg H2O) to account for the morbid environment of NP cells in IVD degeneration disease and hyper-osmotic media (450 mOsm/kg H2O) to account for the normal condition of NP cells in healthy individuals. The relative mRNA expression levels of CCL5, OPRL1, CXCL13, and SST were measured by quantitative real-time PCR in the in vitro analysis of the osmotic pressure experiments. Finally, correlation analysis and a neural network module were employed to explore the linkage between significant gene biomarkers and pain. A total of 371 DEGs were identified, including 128 downregulated genes and 243 upregulated genes. Furthermore, the four genes (CCL5, OPRL1, SST, and CXCL13) were identified as significant gene biomarkers of low back pain (P < 0.001) based on univariate linear regression, and CCL5 (odds ratio, 34.667; P = 0.003) and OPRL1 (odds ratio, 19.875; P < 0.001) were significantly related to low back pain through multivariate logistic regression. The expression of CCL5 and OPRL1 might be correlated with low back pain in patients with IVD degeneration disease caused by changes in the osmotic pressure of NP cells.
Collapse
Affiliation(s)
- Changsong Zhao
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Xuemin Quan
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Jie He
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Rugang Zhao
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Yao Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Xin Li
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Sheng Sun
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Rui Ma
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Qiang Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| |
Collapse
|
14
|
Xu J, Li H, Yang K, Guo S, Wang J, Feng C, Chen H. Hyper-osmolarity environment-induced oxidative stress injury promotes nucleus pulposus cell senescence in vitro. Biosci Rep 2019; 39:BSR20191711. [PMID: 31471533 PMCID: PMC6753320 DOI: 10.1042/bsr20191711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Nucleus pulposus (NP) cell senescence is involved in disc degeneration. The in situ osmolarity within the NP region is an important regulator of disc cell's biology. However, its effects on NP cell senescence remain unclear. The present study was aimed to investigate the effects and mechanism of hyper-osmolarity on NP cell senescence. Rat NP cells were cultured in the in situ-osmolarity medium and hyper-osmolarity medium. The reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) was added along with the medium to investigate the role of oxidative injury. Cell cycle, cell proliferation, senescence associated β-galactosidase (SA-β-Gal) activity, telomerase activity, expression of senescence markers (p16 and p53) and matrix molecules (aggrecan and collagen II) were tested to assess NP cell senescence. Compared with the in situ-osmolarity culture, hyper-osmolarity culture significantly decreased cell proliferation and telomerase activity, increased SA-β-Gal activity and cell fraction in the G0/G1 phase, up-regulated expression of senescence markers (p16 and p53) and down-regulated expression of matrix molecules (aggrecan and collagen II), and increased intracellular ROS accumulation. However, addition of NAC partly reversed these effects of hyper-osmolarity culture on cellular senescence and decreased ROS content in NP cells. In conclusion, a hyper-osmolarity culture promotes NP cell senescence through inducing oxidative stress injury. The present study provides new knowledge on NP cell senescence and helps us to better understand the mechanism of disc degeneration.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Orthopedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Haopeng Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Kai Yang
- Department of Orthopedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Shuai Guo
- Department of Orthopedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jie Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Chaoshuai Feng
- Department of Orthopedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Huayou Chen
- Department of Orthopedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| |
Collapse
|
15
|
Hall AC. The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering. Curr Rheumatol Rep 2019; 21:38. [PMID: 31203465 PMCID: PMC6571082 DOI: 10.1007/s11926-019-0837-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Articular chondrocytes are exclusively responsible for the turnover of the extracellular matrix (ECM) of hyaline cartilage. However, chondrocytes are phenotypically unstable and, if they de-differentiate into hypertrophic or fibroblastic forms, will produce a defective and weak matrix. Chondrocyte volume and morphology exert a strong influence over phenotype and a full appreciation of the factors controlling chondrocyte phenotype stability is central to understanding (a) the mechanisms underlying the cartilage failure in osteoarthritis (OA), (b) the rationale for hyaline cartilage repair, and (c) the strategies for improving the engineering of resilient cartilage. The focus of this review is on the factors involved in, and the importance of regulating, chondrocyte morphology and volume as key controllers of chondrocyte phenotype. RECENT FINDINGS The visualisation of fluorescently-labelled in situ chondrocytes within non-degenerate and mildly degenerate cartilage, by confocal scanning laser microscopy (CLSM) and imaging software, has identified the marked heterogeneity of chondrocyte volume and morphology. The presence of chondrocytes with cytoplasmic processes, increased volume, and clustering suggests important early changes to their phenotype. Results from experiments more closely aligned to the normal physico-chemical environment of in situ chondrocytes are emphasising the importance of understanding the factors controlling chondrocyte morphology and volume that ultimately affect phenotype. An appreciation of the importance of chondrocyte volume and morphology for controlling the chondrocyte phenotype is advancing at a rapid pace and holds particular promise for developing strategies for protecting the chondrocytes against deleterious changes and thereby maintaining healthy and resilient cartilage.
Collapse
Affiliation(s)
- Andrew C Hall
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
16
|
Ao X, Wang L, Shao Y, Chen X, Zhang J, Chu J, Jiang T, Zhang Z, Huang M. Development and Characterization of a Novel Bipedal Standing Mouse Model of Intervertebral Disc and Facet Joint Degeneration. Clin Orthop Relat Res 2019; 477:1492-1504. [PMID: 31094848 PMCID: PMC6554109 DOI: 10.1097/corr.0000000000000712] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intervertebral disc degeneration is a major cause of chronic low back pain, and excessive loading contributes to intervertebral disc degeneration. However, the lack of an effective bipedal in vivo animal model limits research about this condition. QUESTIONS/PURPOSES To evaluate the utility of a new type of bipedal standing mouse model for intervertebral disc degeneration, we asked: (1) Are there spinal degeneration changes in bipedal mice as determined by lumbar disc height, histologic features, and immunohistochemistry measures compared with control mice? (2) Are the bipedal mice comparable to aged mice for simulating the spinal degeneration caused by increased stress? METHODS Thirty-two 8-week-old male C57BL/6 mice were divided into experimental and control groups. Based on their hydrophobia, mice in the experimental group were placed in a limited water-containing space (5 mm deep) and were thereby induced to actively take a bipedal standing posture. This was conducted twice a day for a total of 6 hours a day, 7 days a week. Control mice were similarly placed in a limited but water-free space. Video surveillance was used to calculate the percentage of time spent in the bipedal stance for the two groups of mice. Compared with the control group, the percentage of time standing on both feet in the experimental group was higher (48% ± 5%, 95% confidence interval [CI], 42%-54% versus 95% ± 1%, 95% CI, 92%-97%; p < 0.001). Eight mice from both groups were then randomly euthanized at either 6 or 10 weeks and lumbar spine specimens (L3-L6) were collected. The lumbar disc height index (DHI%) of the two groups was compared using micro-CT measurements, and the extent of disc degeneration was assessed based on histologic staining (cartilage endplate height, disc degeneration score) and by immunohistochemistry (Col2a1,CollagenX, matrix metalloprotease-13 [MMP-13], osteocalcin [OCN]). In addition, the histopathologic features of spinal degeneration were compared with 12- and 18-month-old mice. A p value < 0.05 indicated a significant difference. RESULTS Lumbar disc degeneration was aggravated after 10 weeks with the DHI% decreasing (5.0% ± 0.4%; 95% CI, 4.6%-5.5% versus 4.6 ± 0.3%; 95% CI, 4.3%-4.9%; p = 0.011). Histologically, the cartilage endplate height of the experimental group was decreased compared with the control group (30 ± 6 μm; 95% CI, 24-37 μm versus 70 ± 7 μm; 95% CI, 63-79 μm; p < 0.001), and the disc degeneration score was increased (5 ± 1; 95% CI, 4-6 versus 1 ± 1; 95% CI, 0-2; p < 0.001). Expression of Col2a1, vimentin, and aggrecan in the experimental group was decreased compared with the control group, whereas the expressions of collagen X (60% ± 2%; 95% CI, 55%-66% versus 19% ± 3%; 95% CI, 17%-24%; p < 0.001), MMP-13 (54% ± 8%; 95% CI, 49%-61% versus 1% ± 1%; 95% CI, 1%-2%; p < 0.001), and OCN (41% ± 3%; 95% CI, 34%-49% versus 5% ± 1%; 95% CI, 2%-7%, p < 0.001) were increased. The spine degeneration caused by this model was primarily manifested in the degeneration of the annulus fibrosus and facet joints compared with aged mice, whereas the degree of degeneration in the nucleus pulposus tissue and cartilage endplates was mild. CONCLUSIONS We believe we have established a noninvasive and effective in vivo bipedal mouse model for studying disc degeneration and biologic signal transduction comparable to that seen in intervertebral disc degeneration. CLINICAL RELEVANCE This in vivo mouse model of intervertebral disc degeneration can simulate the pathogenesis of spinal degeneration caused by increased stress and this can be used to study questions such as disc herniation in young adults.
Collapse
Affiliation(s)
- Xiang Ao
- X. Ao, L. Wang, Y. Shao, J. Zhang, J. Chu, T. Jiang, Z. Zhang, M. Huang, Department of Orthopaedics, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China X. Ao, L. Wang, Y. Shao, J. Zhang, J. Chu, T. Jiang, Z. Zhang, M. Huang, Academy of Orthopaedics, Guangdong Province, Guangzhou, Guangdong, PR China X. Chen, Department of Orthopaedics, the First People's Hospital, Jingdezhen, Jiangxi, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang Y, Wang X, Liu Z, Xiao X, Hu W, Sun Z. Osteogenic protein-1 attenuates nucleus pulposus cell apoptosis through activating the PI3K/Akt/mTOR pathway in a hyperosmotic culture. Biosci Rep 2018; 38:BSR20181708. [PMID: 30459239 PMCID: PMC6294645 DOI: 10.1042/bsr20181708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have indicated that osteogenic protein-1 has protective effects on the biological functions of intervertebral disc cells. Hyperosmolarity is an important physicochemical factor within the disc nucleus pulposus (NP) region, which obviously promotes NP cell apoptosis. OBJECTIVE To study the effects of osteogenic protein-1 (OP-1) on NP cell apoptosis induced by hyperosmolarity and the potential signaling transduction pathway. METHODS Rat NP cells were cultured in a hyperosmotic medium with or without OP-1 addition for 7 days. Inhibitor 294002 and inhibitor FK-506 were used to investigate the role of the PI3K/Akt/mTOR pathway in this process. NP cell apoptosis were evaluated by cell apoptosis ratio, activity of caspase-3/9 and gene/protein expression of apoptosis-related molecules (Bax, Bcl-2, caspase-3/cleaved caspase-3 and cleaved PARP). RESULTS OP-1 addition obviously decreased cell apoptosis ratio and caspase-3/9 activity, down-regulated gene/protein expression of pro-apoptosis molecules (Bax, caspase-3/cleaved casepase-3 and cleaved PARP), up-regulated gene/protein expression of anti-apoptosis molecule (Bcl-2) in a hyperosmotic culture. Moreover, OP-1 addition significantly increased protein expression of p-Akt and p-mTOR. Further analysis showed that addition of LY294002 and FK-506 partly attenuated these protective effects of OP-1 against NP cell apoptosis and activation of the PI3K/Akt/mTOR pathway in a hyperosmotic culture. CONCLUSION OP-1 can attenuate NP cell apoptosis through activating the PI3K/Akt/mTOR pathway in a hyperosmotic culture. The present study sheds a new light on the protective role of OP-1 in regulating disc cell biology and provides some theoretical basis for the application of OP-1 in retarding/regenerating disc degeneration.
Collapse
Affiliation(s)
- Yan Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xiyang Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zheng Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xiao Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Wenkai Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Zhicheng Sun
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|
18
|
Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC, Grad S. Critical aspects and challenges for intervertebral disc repair and regeneration-Harnessing advances in tissue engineering. JOR Spine 2018; 1:e1029. [PMID: 30895276 PMCID: PMC6400108 DOI: 10.1002/jsp2.1029] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Low back pain represents the highest burden of musculoskeletal diseases worldwide and intervertebral disc degeneration is frequently associated with this painful condition. Even though it remains challenging to clearly recognize generators of discogenic pain, tissue regeneration has been accepted as an effective treatment option with significant potential. Tissue engineering and regenerative medicine offer a plethora of exploratory pathways for functional repair or prevention of tissue breakdown. However, the intervertebral disc has extraordinary biological and mechanical demands that must be met to assure sustained success. This concise perspective review highlights the role of the disc microenvironment, mechanical and clinical design considerations, function vs mimicry in biomaterial‐based and cell engineering strategies, and potential constraints for clinical translation of regenerative therapies for the intervertebral disc.
Collapse
Affiliation(s)
- Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin Dublin Ireland.,School of Engineering, Trinity College Dublin The University of Dublin Dublin Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin Dublin Ireland
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine University of Manchester Manchester UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway Ireland
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA
| | | |
Collapse
|
19
|
Abstract
Mechanical loading of the intervertebral disc (IVD) initiates cell-mediated remodeling events that contribute to disc degeneration. Cells of the IVD, nucleus pulposus (NP) and anulus fibrosus (AF), will exhibit various responses to different mechanical stimuli which appear to be highly dependent on loading type, magnitude, duration, and anatomic zone of cell origin. Cells of the NP, the innermost region of the disc, exhibit an anabolic response to low-moderate magnitudes of static compression, osmotic pressure, or hydrostatic pressure, while higher magnitudes promote a catabolic response marked by increased protease expression and activity. Cells of the outer AF are responsive to physical forces in a manner that depends on frequency and magnitude, as are cells of the NP, though they experience different forces, deformations, pressure, and osmotic pressure in vivo. Much remains to be understood of the mechanotransduction pathways that regulate IVD cell responses to loading, including responses to specific stimuli and also differences among cell types. There is evidence that cytoskeletal remodeling and receptor-mediated signaling are important mechanotransduction events that can regulate downstream effects like gene expression and posttranslational biosynthesis, all of which may influence phenotype and bioactivity. These and other mechanotransduction events will be regulated by known and to-be-discovered cell-matrix and cell-cell interactions, and depend on composition of extracellular matrix ligands for cell interaction, matrix stiffness, and the phenotype of the cells themselves. Here, we present a review of the current knowledge of the role of mechanical stimuli and the impact upon the cellular response to loading and changes that occur with aging and degeneration of the IVD.
Collapse
Affiliation(s)
- Bailey V Fearing
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Paula A Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, Texas
| | - Lori A Setton
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nadeen O Chahine
- Department of Orthopedic Surgery & Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
20
|
Ahmadyan S, Kabiri M, Hanaee-Ahvaz H, Farazmand A. Osmolyte Type and the Osmolarity Level Affect Chondrogenesis of Mesenchymal Stem Cells. Appl Biochem Biotechnol 2017; 185:507-523. [PMID: 29196933 DOI: 10.1007/s12010-017-2647-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 01/20/2023]
Abstract
The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis. We briefly assessed whether such conditions would differentially affect hypertrophy and angiogenesis during MSC chondrogenesis. Chondrogenic and hypertrophic marker expression along with VEGF secretion during adipose-derived (AD)-MSC chondrogenesis under three osmolarity levels (350, 450, and 550 mOsm) using three different osmolytes (NaCl, sorbitol, and PEG) were assessed. MTT assay, qRT-PCR, immunocytochemistry, Alcian Blue staining, ELISA, and ALP assays proved osmolyte-type dependent effects of hyperosmolarity on chondrogenesis, hypertrophy, and angiogenesis. At same osmolarity level, PEG had least cytotoxic/cytostatic effect and most prohibitive effects on angiogenesis. As expected, all hyperosmolar conditions led to enhanced chondrogenesis with slightly varying degrees. PEG and sorbitol had higher chondro-promotive and hypertrophy-suppressive effects compared to NaCl, while NaCl had exacerbated hypertrophy. We observed that TonEBP was involved in osmoadaptation of all treatments in varying degrees. Of importance, we highlighted differential effects of hyperosmolarity obtained by different osmolytes on the efficacy of chondrogenesis and more remarkably on the induction/suppression of cartilage pathologic markers. Our study underlies the need for a more vigilant exploitation of physicobiochemical inducers in order to maximize chondrogenesis while restraining unwanted hypertrophy and angiogenesis.
Collapse
Affiliation(s)
- Sorour Ahmadyan
- Department of Biotechnology, College of Science, University of Tehran, P.O.Box: 14155-6455, Tehran, Iran
- Department of Cellular and Molecular Biology, Kish International Campus, Kish Island, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, P.O.Box: 14155-6455, Tehran, Iran.
| | | | - Ali Farazmand
- Department of Cellular and Molecular Biology, Kish International Campus, Kish Island, Iran
- Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Ni G, Liu G, Yu K. Identification of key genes associated with the effect of osmotic stimuli on intervertebral discs using microarray analysis. Oncol Lett 2017; 14:4249-4255. [PMID: 28943935 DOI: 10.3892/ol.2017.6657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to explore the effect of osmotic stimuli on intervertebral discs (IVDs) using microarray analysis. Gene expression dataset GSE1648 was downloaded from the Gene Expression Omnibus database. There were 11 IVD cell samples in this dataset, which included 4 hyperosmotic stimuli samples, 3 hypoosmotic stimuli samples and 4 isosmotic stimuli samples. The differentially expressed genes (DEGs) in hyperosmotic or hypoosmotic IVD cells (designated DEGs-hyper or DEGs-hypo) were identified, compared with isosmotic cells, using the limma package of R software. The Database for Annotation, Visualization and Integrated Discovery was used to perform a Gene Ontology (GO) term enrichment analysis for the DEG sets. Protein-protein interaction (PPI) network and microRNA (miRNA) gene-regulatory network data for the DEG sets were obtained using the Human Protein Reference Database (HPRD) and the TargetScan database, respectively, and these networks were constructed and visualized using Cytoscape software. There was a total of 43 DEGs in DEGs-hyper and 9 in DEGs-hypo. Analysis of DEGs-hyper revealed that 41 GO terms were significantly enriched. In total, 376 pairs and 382 nodes were involved in the PPI network, and 1,314 miRNA-gene pairs and 422 nodes were contained in the miRNA-gene-regulated network. The results of the present study indicated that potential target genes (including NCOA3, SOS1, XPO1, ZBTB18, EFNB2 and SOBP) may be involved in the effect of osmotic stimuli on IVD, and the biological processes of apoptosis and cell death may be associated with the effect of high osmolality on IVD disease. The potential targets identified in the present study are more reliable than those identified by previous studies.
Collapse
Affiliation(s)
- Guangxiao Ni
- Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guobin Liu
- Department of Orthopaedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Kunlun Yu
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
22
|
Bezci SE, Nandy A, O'Connell GD. Effect of Hydration on Healthy Intervertebral Disk Mechanical Stiffness. J Biomech Eng 2016; 137:101007. [PMID: 26300418 DOI: 10.1115/1.4031416] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Indexed: 11/08/2022]
Abstract
The intervertebral disk has an excellent swelling capacity to absorb water, which is thought to be largely due to the high proteoglycan composition. Injury, aging, degeneration, and diurnal loading are all noted by a significant decrease in water content and tissue hydration. The objective of this study was to evaluate the effect of hydration, through osmotic loading, on tissue swelling and compressive stiffness of healthy intervertebral disks. The wet weight of nucleus pulposus (NP) and annulus fibrosus (AF) explants following swelling was 50% or greater, demonstrating significant ability to absorb water under all osmotic loading conditions (0.015 M-3.0 M phosphate buffered saline (PBS)). Estimated NP residual strains, calculated from the swelling ratio, were approximately 1.5 × greater than AF residual strains. Compressive stiffness increased with hyperosmotic loading, which is thought to be due to material compaction from osmotic-loading and the nonlinear mechanical behavior. Importantly, this study demonstrated that residual strains and material properties are greatly dependent on osmotic loading. The findings of this study support the notion that swelling properties from osmotic loading will be important for accurately describing the effect of degeneration and injury on disk mechanics. Furthermore, the tissue swelling will be an important consideration for developing biological repair strategies aimed at restoring mechanical behavior toward a healthy disk.
Collapse
|
23
|
Mavrogonatou E, Papadimitriou K, Urban JP, Papadopoulos V, Kletsas D. Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells. J Cell Physiol 2015; 230:3037-48. [PMID: 25967398 DOI: 10.1002/jcp.25040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022]
Abstract
Intervertebral disc cells are constantly exposed to a hyperosmotic environment. Among cellular responses towards this stress is the inhibition of proliferation through the activation of p38 MAPK and p53. In an effort to further elucidate the biochemical pathways triggered by hyperosmotic stress, we assessed the high osmolality-induced transcriptional changes of bovine nucleus pulposus cells using whole-genome arrays. A 5- and a 24-h hyperosmotic treatment led to the differential expression of >100 and >200 genes, respectively, including nine genes encoding transporters (SLC4A11, SLC5A3, ATP1A1, SLC38A2, KCNK17, KCTD20, KCTD11, SLC7A5, and CLCA2). Differences in the transcriptional profile of these selected genes, as indicated by the microarrays experiments, were validated by qRT-PCR in 2D and 3D cell cultures, under hyperosmolar salt and sorbitol conditions, revealing the presence of a common triggering signal for osmotic adaptation. The key signaling molecules p38 MAPK and p53 were demonstrated to differently participate in the regulation of the aforementioned transporters. Finally, siRNA-mediated knocking-down of each one of the three transporters with the highest and sustained over-expression (i.e., SLC4A11, SLC5A3, and ATP1A1) had a distinct outcome on the transcriptional profile of the other transporters, on p38 MAPK and p53 phosphorylation and consequently on cell cycle progression. The inhibition of ATP1A1 had the most prominent effect on the transcription of the rest of the transporters and was found to enhance the anti-proliferative effect of hyperosmotic conditions through an increased G2/M cell cycle block, ascribing to this pump a central role in the osmoregulatory response of nucleus pulposus cells.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantinos Papadimitriou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - Jill P Urban
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
24
|
Tripathi BK, Lowy DR, Zelenka PS. The Cdk5 activator P39 specifically links muskelin to myosin II and regulates stress fiber formation and actin organization in lens. Exp Cell Res 2014; 330:186-98. [PMID: 25128817 DOI: 10.1016/j.yexcr.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
Cyclin dependent kinase 5 (Cdk5), a proline-directed serine/threonine kinase, requires p39 for its enzymatic activity, and is implicated in cytoskeletal organization and contraction in numerous cell types. The C-terminus of p39 binds muskelin, a multi-domain scaffolding protein known to affect cytoskeletal organization, but the mechanisms by which muskelin affects cytoskeletal organization remain unclear. The present study sought to determine whether p39 might serve as an adaptor protein that links muskelin to stress fibers and to investigate the possible biological relevance of such an interaction. Double immunoprecipitation showed that muskelin, p39, and myosin II are components of a single intracellular complex, and suppressing p39 abrogated the interaction between muskelin and the myosin subunits, demonstrating that p39 is required to link muskelin to myosin II. Muskelin is colocalized with myosin regulatory light chain (MRLC) and on stress fibers. The suppression of muskelin reduced Rho-GTP, MRLC phosphorylation, disrupted stress fiber organization, and promoted cell migration, all of which closely mimic the effect of Cdk5 inhibition. Moreover, suppressing muskelin and inhibiting Cdk5 together have no additional effect, indicating that muskelin plays an important role in Cdk5-dependent signaling. p39 is necessary and sufficient for Cdk5-dependent regulation of MRLC phosphorylation, as suppression of p39, but not p35, reduces MRLC phosphorylation. Together, these results demonstrate that p39 specifically links muskelin to myosin II and consequently, to stress fibers and reveal a novel role for muskelin in regulating myosin phosphorylation and cytoskeletal organization.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA; Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA
| | - Peggy S Zelenka
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Effect of yoga on pain, brain-derived neurotrophic factor, and serotonin in premenopausal women with chronic low back pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:203173. [PMID: 25120574 PMCID: PMC4120477 DOI: 10.1155/2014/203173] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/02/2022]
Abstract
Background. Serotonin and brain-derived neurotrophic factor (BDNF) are known to be modulators of nociception. However, pain-related connection between yoga and those neuromodulators has not been investigated. Therefore, we aimed to evaluate the effect of yoga on pain, BDNF, and serotonin. Methods. Premenopausal women with chronic low back pain practiced yoga three times a week for 12 weeks. At baseline and after 12 weeks, back pain intensity was measured using visual analogue scale (VAS), and serum BDNF and serotonin levels were evaluated. Additionally, back flexibility and level of depression were assessed. Results. After 12-week yoga, VAS decreased in the yoga group (P < 0.001), whereas it increased (P < 0.05) in the control group. Back flexibility was improved in the yoga group (P < 0.01). Serum BDNF increased in the yoga group (P < 0.01), whereas it tended to decrease in the control group (P = 0.05). Serum serotonin maintained in the yoga group, while it reduced (P < 0.01) in the control group. The depression level maintained in the yoga group, whereas it tended to increase in the control group (P = 0.07). Conclusions. We propose that BDNF may be one of the key factors mediating beneficial effects of yoga on chronic low back pain.
Collapse
|
26
|
Zhang W, Li X, Shang X, Zhao Q, Hu Y, Xu X, He R, Duan L, Zhang F. Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray. Eur J Med Res 2013; 18:62. [PMID: 24369767 PMCID: PMC3911967 DOI: 10.1186/2047-783x-18-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/06/2013] [Indexed: 12/02/2022] Open
Abstract
Background Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method. Methods Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis. Results A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells. Conclusions We anticipate that our results will provide new thoughts and methods for the study of IVD disease.
Collapse
Affiliation(s)
| | - Xu Li
- Department of Orthopaedics, Anhui Provincial Hospital, No, 17, Road Lujiang, Hefei 230001, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li Z, Shen J, Wu WKK, Yu X, Liang J, Qiu G, Liu J. The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells. J Orthop Res 2013; 31:847-57. [PMID: 23335226 PMCID: PMC3664408 DOI: 10.1002/jor.22308] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/12/2012] [Indexed: 02/04/2023]
Abstract
Obesity is an important risk factor for intervertebral disc degeneration and leptin is a biomarker of obesity. However, the expression of leptin receptors has not been determined in disc tissue. It is not known whether leptin has a direct effect on the nucleus pulposus (NP) cells. To determine whether the NP tissues and cells express leptin receptors (OBRa and OBRb) and whether leptin affects the organization and the expression of major cytoskeletal elements in NP cells. Messenger RNA (mRNA) and protein levels of OBRa and OBRb were measured by real-time PCR and Western blot, respectively, in NP tissues and cells. Immunofluorescence and real-time PCR and Western blot were performed to investigate the effect of leptin on cytoskeleton reorganization and expression. Results show that mRNA and proteins of OBRa and OBRb were expressed in all NP tissues and cells, and that OBRb expression was correlated with patients' body weight. Increased expression of β-actin and reorganization of F-actin were evident in leptin-stimulated NP cells. Leptin also induced vimentin expression but had no effect on β-tubulin in NP cells. These findings provide novel evidence supporting the possible involvement of leptin in the pathogenesis of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - William Ka Kei Wu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, The Chinese University of Hong KongHong Kong, China
| | - Xin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jiaming Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| |
Collapse
|
28
|
García-Cosamalón J, Fernández-Fernández J, González-Martínez E, Ibáñez-Plágaro J, Robla Costales J, Martínez-Madrigal M, López Muñíz A, del Valle ME, Vega JA. La inervación del disco intervertebral. Neurocirugia (Astur) 2013; 24:121-9. [DOI: 10.1016/j.neucir.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/04/2012] [Indexed: 12/31/2022]
|
29
|
Huang YC, Leung VYL, Lu WW, Luk KDK. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J 2013; 13:352-362. [PMID: 23340343 DOI: 10.1016/j.spinee.2012.12.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 07/08/2012] [Accepted: 12/09/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recent studies have demonstrated new therapeutic strategy using transplantation of mesenchymal stem cells (MSCs), especially bone marrow-derived MSCs (BM-MSCs), to preserve intervertebral disc (IVD) structure and functions. It is important to understand whether and how the MSCs survive and thrive in the hostile microenvironment of the degenerated IVD. Therefore, this review majorly examines how resident disc cells, hypoxia, low nutrition, acidic pH, mechanical loading, endogenous proteinases, and cytokines regulate the behavior of the exogenous MSCs. PURPOSE To review and summarize the effect of the microenvironment in biological characteristics of BM-MSCs for IVD regeneration; the presence of endogenous stem cells and the state of the art in the use of BM-MSCs to regenerate the IVD in vivo were also discussed. STUDY DESIGN Literature review. METHODS MEDLINE electronic database was used to search for articles concerning stem/progenitor cell isolation from the IVD, regulation of the components of microenvironment for MSCs, and MSC-based therapy for IVD degeneration. The search was limited to English language. RESULTS Stem cells are probably resident in the disc, but exogenous stem cells, especially BM-MSCs, are currently the most popular graft cells for IVD regeneration. The endogenous disc cells and the biochemical and biophysical components in the degenerating disc present a complicated microenvironment to regulate the transplanted BM-MSCs. Although MSCs regenerate the mildly degenerative disc effectively in the experimental and clinical trials, many underlying questions are in need of further investigation. CONCLUSIONS There has been a dramatic improvement in the understanding of potential MSC-based therapy for IVD regeneration. The use of MSCs for IVD degeneration is still at the stage of preclinical and Phase 1 studies. The effects of the disc microenvironment in MSCs survival and function should be closely studied for transferring MSC transplantation from bench to bedside successfully.
Collapse
Affiliation(s)
- Yong-Can Huang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, 5/F Professor Block, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
30
|
Shoukry M, Li J, Pei M. Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells Dev 2013; 22:1162-76. [PMID: 23259403 DOI: 10.1089/scd.2012.0597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nucleus pulposus (NP) plays a prominent role in both the onset and progression of intervertebral disc degeneration. While autologous repair strategies have demonstrated some success, their in vitro culture system is outdated and insufficient for maintaining optimally functioning cells through the required extensive passaging. Consequently, the final population of cells may be unsuitable for the overwhelming task of repairing tissue in vivo and could result in subpar clinical outcomes. Recent work has identified synovium-derived stem cells (SDSCs) as a potentially important new candidate. This population of precursors can promote matrix regeneration and additionally restore the balance of catabolic and anabolic metabolism of surrounding cells. Another promising application is their ability to produce an extracellular matrix in vitro that can be modified via decellularization to produce a tissue-specific substrate for efficient cell expansion, while retaining chondrogenic potential. When combined with hypoxia, soluble factors, and other environmental regulators, the resultant complex microenvironment will more closely resemble the in vivo niche, which further improves the cell capacity, even after extensive passaging. In this review, the adaptive mechanisms NP cells utilize in vivo are considered for insight into what factors are important for constructing a tissue-specific in vitro niche. Evidence for the use of SDSCs for NP regeneration is also discussed. Many aspects of NP behavior are still unknown, which could lead to future work yielding key information on producing sufficient numbers of a high-quality NP-specific population that is able to regenerate deteriorated NP in vivo.
Collapse
Affiliation(s)
- Mark Shoukry
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506-9196, USA
| | | | | |
Collapse
|
31
|
Diurnal variations in articular cartilage thickness and strain in the human knee. J Biomech 2012; 46:541-7. [PMID: 23102493 DOI: 10.1016/j.jbiomech.2012.09.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 11/21/2022]
Abstract
Due to the biphasic viscoelastic nature of cartilage, joint loading may result in deformations that require times on the order of hours to fully recover. Thus, cartilaginous tissues may exhibit cumulative strain over the course of each day. The goal of this study was to assess the magnitude and spatial distribution of strain in the articular cartilage of the knee with daily activity. Magnetic resonance (MR) images of 10 asymptomatic subjects (six males and four females) with mean age of 29 years were obtained at 8:00 AM and 4:00 PM on the same day using a 3T magnet. These images were used to create 3D models of the femur, tibia, and patella from which cartilage thickness distributions were quantified. Cartilage thickness generally decreased from AM to PM in all areas except the patellofemoral groove and was associated with significant compressive strains in the medial condyle and tibial plateau. From AM to PM, cartilage of the medial tibial plateau exhibited a compressive strain of -5.1±1.0% (mean±SEM) averaged over all locations, while strains in the lateral plateau were slightly lower (-3.1±0.6%). Femoral cartilage showed an average strain of -1.9±0.6%. The findings of this study show that human knee cartilage undergoes diurnal changes in strain that vary with site in the joint. Since abnormal joint loading can be detrimental to cartilage homeostasis, these data provide a baseline for future studies investigating the effects of altered biomechanics on diurnal cartilage strains and cartilage physiology.
Collapse
|
32
|
Ma H, Xie Y, Zhao J, Ye B. Small molecule-enrichment analysis in response to osmotic stimuli in the intervertebral disc. GENETICS AND MOLECULAR RESEARCH 2012; 11:3668-75. [DOI: 10.4238/2012.october.9.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Tew SR, Vasieva O, Peffers MJ, Clegg PD. Post-transcriptional gene regulation following exposure of osteoarthritic human articular chondrocytes to hyperosmotic conditions. Osteoarthritis Cartilage 2011; 19:1036-46. [PMID: 21640843 DOI: 10.1016/j.joca.2011.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osmolarity is a major biophysical regulator of chondrocyte function. Modulation of chondrocytic marker gene expression occurs at the post-transcriptional level following exposure of human articular chondrocytes (HAC) to hyperosmotic conditions. This study aims to further characterise the post-transcriptional response of HAC to hyperosmolarity. METHODS Gene expression and microRNA (miRNA) levels in freshly isolated HAC after 5h under control or hyperosmotic conditions were measured using microarrays. Regulated genes were checked for the presence of AU rich elements (AREs) in their 3' untranslated regions (3'UTR), whilst gene ontology was examined using Ingenuity Pathway Analysis (IPA). RNA decay rates of candidate ARE-containing genes were determined in HAC using actinomycin D chase experiments and the involvement of the p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways were investigated using pharmacological inhibitors. RESULTS Hyperosmolarity led to the regulation of a wide variety of genes. IPA identified enrichment of genes involved with cell stress responses, cell signalling and transforming growth factor β (TGFβ) signalling. Importantly, upregulated genes were over-represented with those containing AREs, and RNA decay analysis demonstrated that many of these were regulated post-transcriptionally by hyperosmolarity in HAC. Analysis of miRNA levels in HAC indicated that they are only modestly regulated by hyperosmotic conditions, whilst inhibitor studies showed that p38 MAPK and ERK1/2 were able to block hyperosmotic induction of many of these genes. CONCLUSION Through microarray and bioinformatics analysis we have identified genes which are post-transcriptionally regulated in HAC following exposure to hyperosmotic conditions. These genes have a range of functions, and their regulation involves transduction through the p38 MAPK and ERK1/2 pathways. Interestingly, our results suggest that miRNA regulation is not key to the process. Overall, this work illustrates the range of processes regulated in chondrocytes by changes in their osmotic environment, and underlines the importance of post-transcriptional mRNA regulation to chondrocyte function.
Collapse
Affiliation(s)
- S R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire, UK.
| | | | | | | |
Collapse
|
34
|
Chan SCW, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1796-812. [PMID: 21541667 DOI: 10.1007/s00586-011-1827-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 03/21/2011] [Accepted: 04/20/2011] [Indexed: 01/08/2023]
Abstract
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
Collapse
Affiliation(s)
- Samantha C W Chan
- ARTORG Center for Biomedical Engineering, Spine Research Center, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland
| | | | | |
Collapse
|
35
|
Wang F, Zhu Y. Aquaporin-1: a potential membrane channel for facilitating the adaptability of rabbit nucleus pulposus cells to an extracellular matrix environment. J Orthop Sci 2011; 16:304-12. [PMID: 21451971 DOI: 10.1007/s00776-011-0055-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/24/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND During the process of degenerative aging of the intervertebral disc (IVD), the extracellular matrix (ECM) environment changes, with osmolarity and oxygen (O(2)) concentration important components of such changes. The IVD cells respond to maintain the homeostasis and function of the IVD by several mechanisms. Aquaporin-1 (AQP-1) is a transmembrane channel protein that is permeable to water and O(2), which prevents rapid volume deformation under osmotic stress and facilitates O(2) diffusion across the plasma membrane. One hypothesis is that AQP-1 has potential roles in aging degeneration of IVDs. METHODS In this study, AQP-1 expression levels were investigated in aging rabbit nucleus pulposus (NP) cells using immunohistochemistry and Western blotting in vivo, and different osmolarities and O(2) concentrations in vitro by quantitative real-time PCR. RESULTS The results showed that AQP-1 was expressed at different levels in aging rabbit's NPs and AQP-1 was regulated by the NP cells in different ECM environmental conditions. AQP-1 was downregulated under hypo-osmotic stress to prevent rapid swelling deformation and was upregulated under hypoxic stress to facilitate O(2) utilization. CONCLUSION It is suggested that AQP-1 may reflect the status of aged IVDs and have a potential role in reflecting the adaptability of NP cells under different adverse ECM environments in aging degenerated IVDs.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedics, The First Hospital of China Medical University, No. 155 Nanjingbei Road, Heping District, Shenyang 110001, People's Republic of China
| | | |
Collapse
|
36
|
Molecular characterization of putative chordoma cell lines. Sarcoma 2010; 2010:630129. [PMID: 21253487 PMCID: PMC3022207 DOI: 10.1155/2010/630129] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/28/2010] [Accepted: 11/22/2010] [Indexed: 01/15/2023] Open
Abstract
Immortal tumor cell lines are an important model system for cancer research, however, misidentification and cross-contamination of cell lines are a common problem. Seven chordoma cell lines are reported in the literature, but none has been characterized in detail. We analyzed gene expression patterns and genomic copy number variations in five putative chordoma cell lines (U-CH1, CCL3, CCL4, GB60, and CM319). We also created a new chordoma cell line, U-CH2, and provided genotypes for cell lines for identity confirmation. Our analyses revealed that CCL3, CCL4, and GB60 are not chordoma cell lines, and that CM319 is a cancer cell line possibly derived from chordoma, but lacking expression of key chordoma biomarkers. U-CH1 and U-CH2 both have gene expression profiles, copy number aberrations, and morphology consistent with chordoma tumors. These cell lines also harbor genetic changes, such as loss of p16, MTAP, or PTEN, that make them potentially useful models for studying mechanisms of chordoma pathogenesis and for evaluating targeted therapies.
Collapse
|
37
|
García-Cosamalón J, del Valle ME, Calavia MG, García-Suárez O, López-Muñiz A, Otero J, Vega JA. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 2010; 217:1-15. [PMID: 20456524 DOI: 10.1111/j.1469-7580.2010.01227.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs.
Collapse
|
38
|
Nerurkar NL, Elliott DM, Mauck RL. Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 2010; 43:1017-30. [PMID: 20080239 PMCID: PMC2849875 DOI: 10.1016/j.jbiomech.2009.12.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering.
Collapse
Affiliation(s)
- Nandan L. Nerurkar
- McKay Orthopaedic Research Laboratory University of Pennsylvania, Philadelphia, PA 19104
| | - Dawn M. Elliott
- McKay Orthopaedic Research Laboratory University of Pennsylvania, Philadelphia, PA 19104
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
39
|
Leckie S, Sowa G. Emerging technologies for degenerative disk disease: potential synergy between biochemical signaling and spinal biomechanics. PM R 2009; 1:466-70. [PMID: 19627934 DOI: 10.1016/j.pmrj.2009.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/20/2009] [Accepted: 02/26/2009] [Indexed: 01/07/2023]
Abstract
Interventional spinal procedures are performed with increasing frequency, and they remain an important tool for physiatrists treating patients with spine pain. As the potential treatment options expand with novel technologies on the horizon, such as gene- and cell-based therapies, the physiatrist will be uniquely poised to deliver such treatments in conjunction with exercise-based therapies. Therefore, the development of novel technologies requires particular attention to the potential synergy between biochemical signaling and spinal biomechanics. It is hoped that such insight will result in improved treatment options for patients with pain related to degenerative disk disease, leading to improved nonoperative outcomes. This article reviews the current knowledge of precipitants of disk degeneration, the effects of beneficial and traumatic levels of disk loading, and how each of these can be impacted by novel treatment options.
Collapse
Affiliation(s)
- Steven Leckie
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
40
|
Abstract
1. The monocarboxylate transporter (MCT, SLC16) family comprises 14 members, of which to date only MCT1-4 have been shown to carry monocarboxylates, transporting important metabolic compounds such as lactate, pyruvate and ketone bodies in a proton-coupled manner. The transport of such compounds is fundamental for metabolism, and the tissue locations, properties and regulation of these isoforms is discussed. 2. Of the other members of the MCT family, MCT8 (a thyroid hormone transporter) and TAT1 (an aromatic amino acid transporter) have been characterized more recently, and their physiological roles are reviewed herein. The endogenous substrates and functions of the remaining members of the MCT family await elucidation. 3. The MCT proteins have the typical twelve transmembrane-spanning domain (TMD) topology of membrane transporter proteins, and their structure-function relationship is discussed, especially in relation to the future impact of the single nucleotide polymorphism (SNP) databases and, given their ability to transport pharmacologically relevant compounds, the potential impact for pharmacogenomics.
Collapse
Affiliation(s)
- D Meredith
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK.
| | | |
Collapse
|
41
|
Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc. Arthritis Res Ther 2008; 10:R99. [PMID: 18727839 PMCID: PMC2575613 DOI: 10.1186/ar2487] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/23/2008] [Accepted: 08/27/2008] [Indexed: 01/20/2023] Open
Abstract
Introduction The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD. Methods Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P. Results Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only. Conclusion Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain.
Collapse
|
42
|
Valiyaveettil M, Bentley AA, Gursahaney P, Hussien R, Chakravarti R, Kureishy N, Prag S, Adams JC. Novel role of the muskelin-RanBP9 complex as a nucleocytoplasmic mediator of cell morphology regulation. J Cell Biol 2008; 182:727-39. [PMID: 18710924 PMCID: PMC2518711 DOI: 10.1083/jcb.200801133] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 07/23/2008] [Indexed: 12/22/2022] Open
Abstract
The evolutionarily conserved kelch-repeat protein muskelin was identified as an intracellular mediator of cell spreading. We discovered that its morphological activity is controlled by association with RanBP9/RanBPM, a protein involved in transmembrane signaling and a conserved intracellular protein complex. By subcellular fractionation, endogenous muskelin is present in both the nucleus and the cytosol. Muskelin subcellular localization is coregulated by its C terminus, which provides a cytoplasmic restraint and also controls the interaction of muskelin with RanBP9, and its atypical lissencephaly-1 homology motif, which has a nuclear localization activity which is regulated by the status of the C terminus. Transient or stable short interfering RNA-based knockdown of muskelin resulted in protrusive cell morphologies with enlarged cell perimeters. Morphology was specifically restored by complementary DNAs encoding forms of muskelin with full activity of the C terminus for cytoplasmic localization and RanBP9 binding. Knockdown of RanBP9 resulted in equivalent morphological alterations. These novel findings identify a role for muskelin-RanBP9 complex in pathways that integrate cell morphology regulation and nucleocytoplasmic communication.
Collapse
Affiliation(s)
- Manojkumar Valiyaveettil
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gruber HE, Ingram JA, Hoelscher G, Zinchenko N, Norton HJ, Hanley EN. Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc. Arthritis Res Ther 2008; 10:R82. [PMID: 18637190 PMCID: PMC2575628 DOI: 10.1186/ar2456] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/17/2008] [Accepted: 07/17/2008] [Indexed: 02/08/2023] Open
Abstract
Introduction Brain-derived neurotrophic factor (BDNF) was first identified in the intervertebral disc (IVD) when its molecular upregulation was observed in sections of nucleus pulposus cultured under conditions of increased osmolarity. BDNF is now known to be involved in a number of biologic functions, including regulation of differentiation/survival of sensory neurons, regulation of nociceptive function and central pain modulation, and modulation of inflammatory pain hypersensitivity. In addition, more recent investigations show that BDNF can induce the recruitment of endothelial cells and the formation of vascular structures. The objectives of the present study were to use immunocytochemistry to determine the distribution of BDNF and its receptor (BDNF-tropomyosine receptor kinase B) in the human IVD, and to test for gene expression of BDNF and its receptor in cultured human annulus fibrosus cells. Methods We studied immunohistochemical localization of BDNF and its receptor in the human annulus, quantified the percentage of outer annulus and inner annulus cells and nucleus cells positive for BDNF immunolocalization, and studied the gene expression of BDNF and its receptor using microarray analysis. Results The percentage (mean ± standard error of the mean) of cells positive for BDNF localization was significantly greater in the outer annulus (32.3 ± 2.7%, n = 22) compared with either the inner annulus (8.1 ± 1.5%, n = 6) or the nucleus (10.4 ± 2.8%, n = 3) (P < 0.0001). BDNF-receptor immunolocalization showed a pattern similar to that of BDNF, but was not quantitatively assessed. BDNF gene expression levels from cultured annulus cells showed a significant positive correlation with increasing levels of IVD degeneration (P = 0.011). Conclusion These findings provide data on the presence of BDNF and its receptor in the human IVD at the translational level, and on the expression of BDNF and its receptor by cultured human annulus cells. Our findings point to the need for further studies to define the role of BDNF in the human IVD and to investigate regulatory events within the disc that control the expression of BDNF and its receptor.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Gruber HE, Mougeot JL, Hoelscher G, Ingram JA, Hanley EN. Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc. Spine (Phila Pa 1976) 2007; 32:1181-7. [PMID: 17495774 DOI: 10.1097/brs.0b013e318053ec89] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Five Thompson Grade I/II discs (Group 1), 7 Grade III discs (Group 2), and 3 Grade IV discs (Group IV) were studied here in a project approved by the authors' Human Subjects Institutional Review Board. OBJECTIVES Our objective was to use laser capture microdissection (LCM) to harvest cells from the human anulus and to derive gene expression profiles using microarray analysis. SUMMARY OF BACKGROUND DATA Appropriate gene expression is essential in the intervertebral disc for maintenance of extracellular matrix (ECM), ECM remodeling, and maintenance of a viable disc cell population. During disc degeneration, cell numbers drop, making gene expression studies challenging. METHODS LCM was used to harvest cells from paraffin-embedded sections of human anulus tissue. Gene profiling used Affymetrix GeneChip Human X3P arrays. ANOVA and SAM permutation analysis were applied to dCHIP normalized, filtered, and log-transformed gene expression data ( approximately 33,500 probes), and data analyzed to identify genes that were significantly differentially expressed between the 3 groups. RESULTS We identified 47 genes that were significantly differentially expressed between the 3 groups (P < 0.001 and lowest q values). Compared with the healthiest discs (Grade I/II), 13 genes were up-regulated and 19 down-regulated in both the Grade III and the Grade IV discs. Genes with biologic significance regulated during degeneration involved cell senescence, low cell division rates, hypoxia-related genes, heat-shock protein 70 interacting protein, neuropilin 2, and interleukin-23p19 (interleukin-12 family). CONCLUSIONS Results expand our understanding of disc aging and degeneration and show that LCM is a valuable technique that can be used to collect mRNA amounts adequate for microarray analysis from the sparse cell population of the human anulus.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Mechanical loading of the intervertebral disc may contribute to disc degeneration by initiating degeneration or by regulating cell-mediated remodeling events that occur in response to the mechanical stimuli of daily activity. This article is a review of the current knowledge of the role of mechanical stimuli in regulating intervertebral disc cellular responses to loading and the cellular changes that occur with degeneration. Intervertebral disc cells exhibit diverse biologic responses to mechanical stimuli, depending on the loading type, magnitude, duration, and anatomic zone of cell origin. The innermost cells respond to low-to-moderate magnitudes of static compression, osmotic pressure, or hydrostatic pressure with increases in anabolic cell responses. Higher magnitudes of loading may give rise to catabolic responses marked by elevated protease gene or protein expression or activity. The key regulators of these mechanobiologic responses for intervertebral disc cells will be the micromechanical stimuli experienced at the cellular level, which are predicted to differ from that measured for the extracellular matrix. Large hydrostatic pressures, but little volume change, are predicted to occur for cells of the nucleus pulposus during compression, while the highly oriented cells of the anulus fibrosus may experience deformations in tension or compression during matrix deformations. In general, the pattern of biologic response to applied loads suggests that the cells of the nucleus pulposus and inner portion of the anulus fibrosus experience comparable micromechanical stimuli in situ and may respond more similarly than cells of the outer portion of the anulus fibrosus. Changes in these features with degeneration are critically understudied, particularly degeneration-associated changes in cell-level mechanical stimuli and the associated mechanobiology. Little is known of the mechanisms that regulate cellular responses to intervertebral mechanobiology, nor is much known with regard to the precise mechanical stimuli experienced by cells during loading. Mechanical factors appear to regulate responses of the intervertebral disc cells through mechanisms involving intracellular Ca(2+) transients and cytoskeletal remodeling that may regulate downstream effects such as gene expression and posttranslational biosynthesis. Future studies should address the broader biologic responses to mechanical stimuli in intervertebral disc mechanobiology, the involved signaling mechanisms, and the apparently important interactions among mechanical factors, genetic factors, cytokines, and inflammatory mediators that may be critical in the regulation of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Lori A Setton
- Cartilage Mechanics and Tissue Engineering Laboratory, Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA.
| | | |
Collapse
|