1
|
Zhen L, Quiroga E, Creason SA, Chen N, Sapre TR, Snyder JM, Lindhartsen SL, Fountaine BS, Barbour MC, Faisal S, Aliseda A, Johnson BW, Himmelfarb J, Ratner BD. Synthetic vascular graft that heals and regenerates. Biomaterials 2025; 320:123206. [PMID: 40058247 DOI: 10.1016/j.biomaterials.2025.123206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
Millions of synthetic vascular grafts (sVG) are needed annually to address vascular diseases (a leading cause of death in humans) and kidney failure (as vascular access). However, in 70+ years since the first sVG in humans, we still do not have sVGs that fully endothelialize (the "holy grail" for truly successful grafts). The lack of healthy endothelium is believed to be a main cause for thrombosis, stenosis, and infection (the major reasons for graft failure). The immune-mediated foreign body response to traditional sVG materials encapsulates the materials in fibrotic scar suppressing vascularized healing. Here, we describe the first sVG optimized for vessel wall vascularization via uniform, spherical 40 μm pores. This sVG induced unprecedented rapid healing of luminal endothelium in a demanding and clinically relevant sheep model, probably by attracting and modulating macrophages and foreign body giant cells towards diverse, pro-healing phenotypes. Both this sVG and the control (PTFE grafts) remained 100 % patent during the implantation period. This advancement has broad implications beyond sVGs in tissue engineering and biocompatibility.
Collapse
Affiliation(s)
- Le Zhen
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA
| | - Elina Quiroga
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Surgery, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sharon A Creason
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA
| | - Ningjing Chen
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Tanmay R Sapre
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Michael C Barbour
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Syed Faisal
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Brian W Johnson
- Histology and Imaging Core, University of Washington, Seattle, WA, USA
| | - Jonathan Himmelfarb
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA, USA; Kidney Research Institute, Seattle, WA, 98104, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Kidney Disease Innovation at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Buddy D Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; University of Washington Engineered Biomaterials (UWEB21), University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Hudson A, Shiwarski DJ, Kramer AJ, Feinberg AW. Enhancing Viability in Static and Perfused 3D Tissue Constructs Using Sacrificial Gelatin Microparticles. ACS Biomater Sci Eng 2025; 11:2888-2897. [PMID: 40194916 PMCID: PMC12076283 DOI: 10.1021/acsbiomaterials.4c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Current limitations in engineered tissues arise from the inability to provide sufficient nutrients to cells deep within constructs, restricting their viability. This study focuses on enhancing diffusion by creating a microporous microenvironment using gelatin microparticles within collagen scaffolds. By leveraging the FRESH (Freeform Reversible Embedding of Suspended Hydrogels) 3D bioprinting technique, gelatin microparticles are utilized both as a support material and as a thermoresponsive porogen to establish interconnected pores. The results indicate that scaffolds with 75% porosity significantly increase diffusion rates and cell viability, extending beyond the conventional ∼200 μm limit. Additionally, integrating vascular-like channels with porous scaffolds and applying perfusion improved nutrient transport, leading to enhanced cell survival in larger constructs. This combination of microporosity and perfusion represents a promising approach to create thicker tissues without necrotic regions, potentially paving the way for scalable tissue engineering applications. The findings suggest that optimizing pore sizes and scaffold perfusion can bridge the gap between rapid tissue formation and slower vascularization processes, enabling the future development of functional tissue constructs at clinically relevant scales.
Collapse
Affiliation(s)
- Andrew
R. Hudson
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Daniel J. Shiwarski
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Alec J. Kramer
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Adam W. Feinberg
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Brigi C, Aghila Rani K, Selvakumar B, Hamad M, Abou Neel EA, Samsudin A. Decoding biomaterial-associated molecular patterns (BAMPs): influential players in bone graft-related foreign body reactions. PeerJ 2025; 13:e19299. [PMID: 40292103 PMCID: PMC12024449 DOI: 10.7717/peerj.19299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Bone grafts frequently induce immune-mediated foreign body reactions (FBR), which hinder their clinical performance and result in failure. Understanding biomaterial-associated molecular patterns (BAMPs), including physicochemical properties of biomaterial, adsorbed serum proteins, and danger signals, is crucial for improving bone graft outcomes. Recent studies have investigated the role of BAMPs in the induction and maintenance of FBR, thereby advancing the understanding of FBR kinetics, triggers, stages, and key contributors. This review outlines the stages of FBR, the components of BAMPs, and their roles in immune activation. It also discusses various bone grafting biomaterials, their physicochemical properties influencing protein adsorption and macrophage modulation, and the key mechanisms of protein adsorption on biomaterial surfaces. Recent advancements in surface modifications and immunomodulatory strategies to mitigate FBR are also discussed. Furthermore, the authors look forward to future studies that will focus on a comprehensive proteomic analysis of adsorbed serum proteins, a crucial component of BAMPs, to identify proteins that promote or limit inflammation. This understanding could facilitate the design of biomaterials that selectively adsorb beneficial proteins, thereby reducing the risk of FBR and enhancing bone regeneration.
Collapse
Affiliation(s)
- Carel Brigi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, University City, United Arab Emirates
| | - K.G. Aghila Rani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, University City, United Arab Emirates
| | - Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, University City, United Arab Emirates
| | - Mawieh Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, University City, United Arab Emirates
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ensanya Ali Abou Neel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, University City, United Arab Emirates
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - A.R. Samsudin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, University City, United Arab Emirates
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Tol MC, de Vries RHW, Engelse MA, Carlotti F, van Apeldoorn AA, de Koning EJP, Huurman VAL. Subcutaneous Implantation of Open Microwell Islet Delivery Devices in Pigs. Surg Innov 2025; 32:141-148. [PMID: 39670992 PMCID: PMC11894865 DOI: 10.1177/15533506241306491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
BackgroundIntraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets. We assessed the surgical feasibility, tolerability and safety of implantation of open microwell devices at subcutaneous sites with varying friction in pigs.MethodsOpen, non-immunoisolating microwell islet delivery devices were made from polyvinylidene fluoride (PVDF). Empty (n = 26) and islet-seeded devices (n = 8) were implanted subcutaneously in 6 immunocompetent pigs in low-friction sites (abdomen and lateral hip) and high-friction sites (anterior neck) for 3 months. Retrieved grafts were analyzed histologically with haematoxylin and eosin, and Masson's Trichrome staining.ResultsIslet-seeding and transportation of IDDs was free from complications with minimal islet spillage. IDDs were implanted subcutaneously using standard surgical equipment, without complications during the surgeries. IDDs implanted in the neck and IDDs co-transplanted with human islets were expelled and retrieved after 10 days. Empty IDDs were removed after 3 months. The abdominal site showed reduced signs of inflammation as compared to the neck region, while similar tissue ingrowth and vascularization of devices were found in the two locations.ConclusionsOpen microwell IDDs can safely be implanted with standard surgical equipment and successful islet-loading can be performed. Low-friction sites are preferable over high-friction sites for subcutaneous implantation in the porcine model since these lead to the least amount of foreign body reaction.
Collapse
Affiliation(s)
- Maarten C. Tol
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Rick H. W. de Vries
- Department of Cell Biology – Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marten A. Engelse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Aart A. van Apeldoorn
- Department of Cell Biology – Inspired Tissue Engineering (cBITE), MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Eelco J. P. de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Volkert A. L. Huurman
- LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Nicklow E, Pruett LJ, Singh N, Daniero JJ, Griffin DR. Exploration of biomaterial-tissue integration in heterogeneous microporous annealed particle scaffolds in subcutaneous implants over 12 months. Acta Biomater 2025; 196:183-197. [PMID: 39956304 PMCID: PMC11968225 DOI: 10.1016/j.actbio.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Microporous annealed particle (MAP) scaffolds are comprised of hydrogel microparticles with inter- and intra-particle cross-links that provide structure and cell-scale porosity, making them an increasingly attractive option for injectable tissue augmentation. Many current injectable biomaterials create a substantial foreign body response (FBR), while MAP scaffolds mitigate this response and have the potential to facilitate the formation of new tissue, though this de novo tissue formation is poorly understood. Here, we leverage a subcutaneous implant model to explore the maturation of MAP implants with and without heparin microislands (µislands) over one year to identify the effect of bioactive particles on scaffold maturation. Implants were measured and explanted after 1, 3, 6, and 12 months and analyzed using immunofluorescence staining and RNA-sequencing. No fibrous capsule or significant FBR was observed, and though a significant amount of MAP remains at 12 months, we still see a volume decrease over time. Heparin µislands facilitate increased cell infiltration and recruit a wider variety of cells at 1 month than blank MAP scaffolds, although this effect diminishes after 3 months. Transcriptomics reveal a potential activation of the complement-mediated immune response at 12 months in both groups, possibly associated with pore collapse in the implants. A single 12-month sample avoided this outcome, yielding complete cell infiltration, vascularization, and substantial matrix deposition throughout. Future work will characterize the effect of implantation site and facilitate increased matrix deposition to support the scaffold and prevent pore collapse. STATEMENT OF SIGNIFICANCE: Injectable biomaterials are increasingly used clinically for soft tissue augmentation and regeneration but still face significant issues from the foreign body reaction. While some materials intentionally promote this response to stimulate collagen deposition, porous materials like MAP scaffolds can mitigate the immune response and allow for true tissue integration. However, this integration is poorly understood, particularly on long timescales, as traditional materials are dominated by inflammatory signals. In this work, we leverage a minimally inflammatory subcutaneous implant to investigate the maturation of MAP scaffolds with and without bioactive heparin-containing particles. The results presented here contribute a better understanding of the long-term material-tissue dynamics of MAP scaffolds that can inform future material design for tissue augmentation.
Collapse
Affiliation(s)
- Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Rm 1213, Charlottesville, VA 22903, USA
| | - Lauren J Pruett
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Rm 1213, Charlottesville, VA 22903, USA
| | - Neharika Singh
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Rm 1213, Charlottesville, VA 22903, USA
| | - James J Daniero
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia; Charlottesville, Virginia 22903 USA
| | - Donald R Griffin
- Department of Biomedical Engineering and the Department of Chemical Engineering, University of Virginia, 415 Lane Road, Rm 1111, Charlottesville, VA 22903, USA.
| |
Collapse
|
6
|
Villapún VM, Carter LN, Cox SC. Plasma-electrolytic oxidation: A rapid single step post processing approach for additively manufactured biomedical implants. BIOMATERIALS ADVANCES 2025; 169:214186. [PMID: 39826262 DOI: 10.1016/j.bioadv.2025.214186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Laser-powder bed fusion (PBF-LB) has enabled production of customised skeletal implants that incorporate porous lattices structures to enable bone ingrowth. However, the inherent surface roughness of PBF-LB, characterised by partially adhered particles and undulating sub-topography, remains a barrier to adoption. As such PBF-LB surfaces require several time-consuming post-processing steps, nevertheless, conventional finishing techniques are often limited by geometrical part complexity, making them unsuitable for porous PBF-LB parts. Herein we explore the possibility to utilise plasma-electrolytic oxidation (PEO) as a rapid, single step surface finishing method not constrained by implant design. Specifically, PEO treatment was performed in a phosphate-based electrolyte on as-printed and polished Ti-6Al-4V PBF-LB samples with complete surface coverage and chemical functionalisation, as observed by optical profilometry, SEM-EDX, XRD and XRF, achieved after only 20 min. To test the lack of geometric constraints brought by PEO, clinically relevant BCC porous lattices were also successfully PEO treated accomplishing a coating that either masked or removed surface adhered particles throughout the structure. Promisingly for medical application, no cytotoxicity was noted for MC3T3-E1 murine osteoblasts over 7 days and significantly more (p < 0.05) mineralisation was observed after 21 days compared with as-printed and polished PBF-LB controls. Still, an enhanced pro-inflammatory response, iNOS and TNF-α, was observed in murine RAW261 macrophages seeded on PEO surfaces, indicating further optimisation is required to guide the inflammatory process. Overall, these findings showcase the widespread opportunity to robustly ensure PBF-LB implant safety by using PEO to tackle partially adhered particles while also offering new avenues to enhance functionality through variations in coating chemistry.
Collapse
Affiliation(s)
- Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Luke N Carter
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
7
|
Kanter J, Garkal A, Cardakli N, Pitha I, Sabharwal J, Schein OD, Ramulu PY, Parikh KS, Johnson TV. Early Postoperative Conjunctival Complications Leading to Exposure of Surgically Implanted CorNeat EverPatch Devices. Ophthalmology 2025:S0161-6420(25)00141-1. [PMID: 40044047 DOI: 10.1016/j.ophtha.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 04/17/2025] Open
Abstract
PURPOSE To compare the early exposure and surgical revision rates between a new synthetic tissue substitute (CorNeat EverPatch) with that of human donor cornea after placement onto the scleral surface during ophthalmic surgery and study the biomaterial properties of the synthetic patch material. DESIGN Retrospective comparison study and biomaterial analyses of new and explanted synthetic patch material. PARTICIPANTS All consecutive patients who underwent ophthalmic surgery with implantation of the CorNeat EverPatch at the Wilmer Eye Institute (occurring from February through August 2024) and a comparison group who underwent ophthalmic surgery with implantation of irradiated donor cornea, matched 1:2 with patients receiving EverPatch for age, type of glaucoma, and surgeon. METHODS Retrospective review of clinical electronic medical records of patients who underwent surgery at the Wilmer Eye Institute. Materials characterization of EverPatch, including morphologic features, surface roughness, wettability, thermal stability, elemental analysis, and physical properties. MAIN OUTCOME MEASURES Early exposure (within 5 months of surgery) and surgical revision rates after CorNeat EverPatch or irradiated human donor cornea implantation during ophthalmic surgery. RESULTS Thirty patients undergoing ophthalmic surgery in 2024 received EverPatch implantation during primary tube shunt placement (n = 27), tube shunt revision (n = 2), or covering of exposed suture used for scleral fixation of an intraocular lens (n = 1). During the early postoperative period, the rate of EverPatch exposure was 48.3% and the rate of surgical revision was 27.9%. In case-matched control participants (n = 58), the rate of patch graft exposure was 1.7% (P < 0.0001) and the rate of surgical revision was 1.7% (P < 0.0001). EverPatch devices constituted a randomly aligned fibrous mesh with an average fiber diameter of 1.36 ± 0.78 μm, surface roughness of 1.3 ± 0.1 μm, pore size of 3.7 ± 0.4 μm2, and percent porosity of 37 ± 3%. Explanted EverPatch devices demonstrated varying degrees of tissue integration with significantly increased wettability and changes in thermal stability and elemental composition. CONCLUSIONS The rate of early conjunctival complications leading to exposure of the CorNeat EverPatch was higher than that of irradiated human donor corneal patch grafts. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jacob Kanter
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Atul Garkal
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nur Cardakli
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Pitha
- Moran Eye Center, University of Utah, Salt Lake City, Utah
| | | | - Oliver D Schein
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pradeep Y Ramulu
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kunal S Parikh
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Bioengineering Innovation & Design, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas V Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
8
|
Rodriguez Ayala A, Christ G, Griffin D. Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss. NPJ Regen Med 2025; 10:12. [PMID: 40025057 PMCID: PMC11873130 DOI: 10.1038/s41536-025-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025] Open
Abstract
Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.
Collapse
Affiliation(s)
- Areli Rodriguez Ayala
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Ma Q, Yin A, Wan X, Sun B, Wang H, El-Newehy M, Abdulhameed MM, Mo X, Wu J, Tu T. Chitosan and ibuprofen grafted electrospun polylactic acid/gelatin membrane mitigates inflammatory response. Biomed Mater 2025; 20:025024. [PMID: 39854846 DOI: 10.1088/1748-605x/adae48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Electrospun membranes with biomimetic fibrous structures and high specific surfaces benefit cell proliferation and tissue regeneration but are prone to cause chronic inflammation and foreign body response. To solve these problems, we herein report an approach to functionalize electrospun membranes with antibacterial and anti-inflammatory components to modulate inflammatory responses and improve implantation outcomes. Specifically, electrospun polylactic acid (PLA)/gelatin (Gel) fibers were grafted with chitosan (CS) and ibuprofen (IBU) via carbodiimide chemistry. Our results show that the surface modification strategy endows electrospun membranes with moderate antibacterial activities and sustained release of anti-inflammatory drugs. The electrospun PLA/Gel-CS-IBU membrane showed good antioxidant and anti-inflammatory activity as evidenced by suppressing M1 polarization and promoting M2 polarization of macrophagesin vitro. Similarly, it induced significantly milder chronic inflammatory responsesin vivothan unmodified electrospun membranes. Given the good anti-inflammatory and antibacterial effects, this strategy might improve the biological performance of electrospun membranes as implants in clinics.
Collapse
Affiliation(s)
- Qiaolin Ma
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Anlin Yin
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Tian Tu
- Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine. 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| |
Collapse
|
10
|
Rabbitt D, Villapún VM, Carter LN, Man K, Lowther M, O'Kelly P, Knowles AJ, Mottura A, Tang YT, Luerti L, Reed RC, Cox SC. Rethinking Biomedical Titanium Alloy Design: A Review of Challenges from Biological and Manufacturing Perspectives. Adv Healthc Mater 2025; 14:e2403129. [PMID: 39711273 PMCID: PMC11804846 DOI: 10.1002/adhm.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Current biomedical titanium alloys have been repurposed from other industries, which has contributed to several biologically driven implant failure mechanisms. This review highlights the added value that may be gained by building an appreciation of implant biological responses at the onset of alloy design. Specifically, the fundamental mechanisms associated with immune response, angiogenesis, osseointegration and the potential threat of infection are discussed, including how elemental selection can modulate these pivotal systems. With a view to expedite inclusion of these interactions in alloy design criteria, methods to analyze these performance characteristics are also summarized. While machine learning techniques are being increasingly used to unearth complex relationships between alloying elements and material properties, much is still unknown about the correlation between composition and some bio-related properties. To bridge this gap, high-throughput methods are also reviewed to validate biological response along with cutting edge manufacturing approaches that may support rapid discovery. Taken together, this review encourages the alloy development community to rethink their approach to enable a new generation of biomedical implants intrinsically designed for a life in the body, including functionality to tackle biological challenges thereby offering improved patient outcomes.
Collapse
Affiliation(s)
- Daisy Rabbitt
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Victor M. Villapún
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Luke N. Carter
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht3508 GAThe Netherlands
- Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584 CTThe Netherlands
| | - Morgan Lowther
- Paihau‐Robinson Research InstituteVictoria University of WellingtonWellington5010New Zealand
| | - Paraic O'Kelly
- Center for the Accelerated Maturation of MaterialsDepartment of Materials Science and EngineeringThe Ohio State University1305 Kinnear RoadColumbusOH43212USA
| | | | - Alessandro Mottura
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Yuanbo T. Tang
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Lorenzo Luerti
- Alloyed LtdUnit 15, Oxford Industrial ParkYarntonOX5 1QUUK
| | - Roger C. Reed
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
11
|
Li H, Li D, Wang X, Zeng Z, Pahlavan S, Zhang W, Wang X, Wang K. Progress in Biomaterials-Enhanced Vascularization by Modulating Physical Properties. ACS Biomater Sci Eng 2025; 11:33-54. [PMID: 39615049 DOI: 10.1021/acsbiomaterials.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Sufficient vascular system and adequate blood perfusion is crucial for ensuring nutrient and oxygen supply within biomaterials. Actively exploring the optimal physical properties of biomaterials in various application scenarios has provided clues for enhancing vascularization within materials, leading to improved outcomes in tissue engineering and clinical translation. Here we focus on reviewing the physical properties of biomaterials, including pore structure, surface topography, and stiffness, and their effects on promoting vascularization. This angiogenic capability has the potential to provide better standardized research models and personalized treatment strategies for bone regeneration, wound healing, islet transplantation and cardiac repair.
Collapse
Affiliation(s)
- Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Dayan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Ziyuan Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Hayashi Y, Fujii T, Kim S, Ozeki T, Badylak SF, D'Amore A, Mutsuga M, Wagner WR. Intervening to Preserve Function in Ischemic Cardiomyopathy with a Porous Hydrogel and Extracellular Matrix Composite in a Rat Myocardial Infarction Model. Adv Healthc Mater 2025; 14:e2402757. [PMID: 39491520 PMCID: PMC11729544 DOI: 10.1002/adhm.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Multiple hydrogels are developed for injection therapy after myocardial infarction, with some incorporating substances promoting tissue regeneration and others emphasizing mechanical effects. In this study, porosity and extracellular matrix-derived digest (ECM) are incorporated, into a mechanically optimized, thermoresponsive, degradable hydrogel (poly(N-isopropylacrylamide-co-N-vinylpyrrolidone-co-MAPLA)) and evaluate whether this biomaterial injectate can abrogate adverse remodeling in rat ischemic cardiomyopathy. After myocardial infarction, rats are divided into four groups: NP (non-porous hydrogel) without either ECM or porosity, PM (porous hydrogel) from the same synthetic copolymer with mannitol beads as porogens, and PME with porosity and ECM digest added to the synthetic copolymer. PBS injection alone is a control group. Intramyocardial injections occurred 3 days after myocardial infarction followed by serial echocardiography and histological assessments 8 weeks after infarction. Echocardiographic function and neovascularization improved in the PME group compared to the other hydrogels and PBS injection. The PME group also demonstrated improved LV geometry and macrophage polarization (toward M2) compared to PBS, whereas differences are not observed in the NP or PM groups versus control. These results demonstrate further functional improvement may be achieved in hydrogel injection therapy for ischemic cardiomyopathy by incorporating porosity and ECM digest, representing combined mechanical and biological effects.
Collapse
Affiliation(s)
- Yasunari Hayashi
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of SurgeryUniversity of PittsburghPittsburghPA15213USA
- Department of Cardiac SurgeryNagoya University Graduate School of MedicineNagoyaAichi4668550Japan
| | - Taro Fujii
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of SurgeryUniversity of PittsburghPittsburghPA15213USA
- Department of Cardiac SurgeryNagoya University Graduate School of MedicineNagoyaAichi4668550Japan
| | - Seungil Kim
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Departments of BioengineeringUniversity of PittsburghPittsburghPA15261USA
- Department of Agricultural and Biological EngineeringMississippi State UniversityMS39762USA
| | - Takahiro Ozeki
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of SurgeryUniversity of PittsburghPittsburghPA15213USA
- Department of Cardiac SurgeryNagoya University Graduate School of MedicineNagoyaAichi4668550Japan
| | - Stephen F. Badylak
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of SurgeryUniversity of PittsburghPittsburghPA15213USA
- Departments of BioengineeringUniversity of PittsburghPittsburghPA15261USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of SurgeryUniversity of PittsburghPittsburghPA15213USA
- Departments of BioengineeringUniversity of PittsburghPittsburghPA15261USA
- Fondazione RiMEDPalermo90133Italy
| | - Masato Mutsuga
- Department of Cardiac SurgeryNagoya University Graduate School of MedicineNagoyaAichi4668550Japan
| | - William R. Wagner
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of SurgeryUniversity of PittsburghPittsburghPA15213USA
- Departments of BioengineeringUniversity of PittsburghPittsburghPA15261USA
- Department of Chemical EngineeringUniversity of PittsburghPittsburghPA15213USA
| |
Collapse
|
13
|
Asadikorayem M, Weber P, Surman F, Puiggalí‐Jou A, Zenobi‐Wong M. Foreign Body Immune Response to Zwitterionic and Hyaluronic Acid Granular Hydrogels Made with Mechanical Fragmentation. Adv Healthc Mater 2025; 14:e2402890. [PMID: 39498680 PMCID: PMC11730820 DOI: 10.1002/adhm.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Granular hydrogels have recently attracted the attention for diverse tissue engineering applications due to their versatility and modularity. Despite previous studies showing enhanced viability and metabolism of cells encapsulated in these hydrogels, the in vitro immune response and long-term fibrotic response of these scaffolds have not been well characterized. Here, bulk and granular hydrogels are studied based on synthetic zwitterionic (ZI) and natural polysaccharide hyaluronic acid (HA) made with mechanical fragmentation. In vitro, immunomodulatory studies show an increased stimulatory effect of HA granular hydrogels compared to bulk, while both bulk and granular ZI hydrogels do not induce an inflammatory response. Subcutaneous implantation in mice shows that both ZI and HA granular hydrogels resulted in less collagen capsule deposition around implants compared to bulk HA hydrogels 10 weeks after implantation. Moreover, the HA granular hydrogels are infiltrated by host cells, including macrophages and mature blood vessels, in a porosity-dependent manner. However, a large number of cells, including multinucleated giant cells as well as blood vessels, surround bulk and granular ZI hydrogels and are not able to infiltrate. Overall, this study provides new insights on the long-term stability and fibrotic response of granular hydrogels, paving the way for future studies and applications.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Anna Puiggalí‐Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
14
|
Sudarsanam PK, Alsema EC, Beijer NRM, Kooten TV, Boer JD. Beyond Encapsulation: Exploring Macrophage-Fibroblast Cross Talk in Implant-Induced Fibrosis. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:596-606. [PMID: 38420650 DOI: 10.1089/ten.teb.2023.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The foreign body response (FBR) and organ fibrosis are complex biological processes involving the interaction between macrophages and fibroblasts. Understanding the molecular mechanisms underlying macrophage-fibroblast cross talk is crucial for developing strategies to mitigate implant encapsulation, a major cause of implant failure. This article reviews the current knowledge on the role of macrophages and fibroblasts in the FBR and organ fibrosis, highlighting the similarities between these processes. The FBR is characterized by the formation of a fibrotic tissue capsule around the implant, leading to functional impairment. Various factors, including material properties such as surface chemistry, stiffness, and topography, influence the degree of encapsulation. Cross talk between macrophages and fibroblasts plays a critical role in both the FBR and organ fibrosis. However, the precise molecular mechanisms remain poorly understood. Macrophages secrete a wide range of cytokines that modulate fibroblast behavior such as abundant collagen deposition and myofibroblast differentiation. However, the heterogeneity of macrophages and fibroblasts and their dynamic behavior in different tissue environments add complexity to this cross talk. Experimental evidence from in vitro studies demonstrates the impact of material properties on macrophage cytokine secretion and fibroblast physiology. However, the correlation between in vitro response and in vivo encapsulation outcomes is not robust. Adverse outcome pathways (AOPs) offer a potential framework to understand and predict process complexity. AOPs describe causal relationships between measurable events leading to adverse outcomes, providing mechanistic insights for in vitro testing and predictive modeling. However, the development of an AOP for the FBR does require a comprehensive understanding of the molecular initiating events and key event relationships to identify which events are essential. In this article, we describe the current knowledge on macrophage-fibroblast cross talk in the FBR and discuss how targeted research can help build an AOP for implant-related fibrosis. Impact statement Biomaterials are widely used to manufacture medical devices, but implantation is associated with a foreign body response (FBR), which may lead to failure of the implants. Surface properties are related to FBR severity. In this review, we zoom in on the cross talk between the two key players, macrophages and fibroblasts, and propose the use of Adverse Outcome Pathways to decipher the causal link between material properties and the severity of the FBR. This approach will help increase a mechanistic understanding of the FBR and, thus, aid in the design of immunomodulatory implant surfaces.
Collapse
Affiliation(s)
- Phani Krishna Sudarsanam
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Els C Alsema
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nick R M Beijer
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Theo van Kooten
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Hendow EK, Iacoviello F, Casajuana Ester M, Pellet‐Many C, Day RM. Hierarchically Structured Biodegradable Microspheres Promote Therapeutic Angiogenesis. Adv Healthc Mater 2024; 13:e2401832. [PMID: 39258380 PMCID: PMC11650400 DOI: 10.1002/adhm.202401832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Indexed: 09/12/2024]
Abstract
Promoting neovascularization is a prerequisite for many tissue engineering applications and the treatment of cardiovascular disease. Delivery of a pro-angiogenic stimulus via acellular materials offers several benefits over biological therapies but has been hampered by interaction of the implanted material with the innate immune response. However, macrophages, a key component of the innate immune response, release a plurality of soluble factors that can be harnessed to stimulate neovascularization and restore blood flow to damaged tissue. This study investigates the ability of biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres to restore tissue perfusion in a hind limb model of ischaemia. Microspheres exhibiting a hierarchical porous structure are associated with an increase in blood flow at day 21 post-implantation compared with solid microspheres composed of the same polymer. This corresponds with an increase in blood vessel density in the surrounding tissue. In vitro simulation of the foreign body response observed demonstrates M2-like macrophages incubated with the porous microspheres secreted increased amounts of vascular endothelial growth factor (VEGF) compared with M1-like macrophages providing a potential mechanism for the increased neovascularization. The results from this study demonstrate implantable biodegradable porous microspheres provide a novel approach for increasing neovascularization that could be exploited for therapeutic applications.
Collapse
Affiliation(s)
- Eseelle K. Hendow
- Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Francesco Iacoviello
- Electrochemical Innovation LabUCL Department of Chemical EngineeringUniversity College LondonRoberts BuildingLondonWC1E 7JEUK
| | - Mar Casajuana Ester
- Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Caroline Pellet‐Many
- Department of Comparative Biomedical SciencesRoyal Veterinary College4 Royal College StreetLondonNW1 0TUUK
| | - Richard M. Day
- Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
16
|
Schoberleitner I, Faserl K, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs. Biomolecules 2024; 14:1433. [PMID: 39595609 PMCID: PMC11592141 DOI: 10.3390/biom14111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Breast implant surgery has evolved significantly, yet challenges such as capsular contracture remain a persistent concern. This review presents an in-depth analysis of recent advancements in understanding the immune mechanisms and clinical implications associated with silicone mammary implants (SMIs). The article systematically examines the complex interplay between immune responses and capsular fibrosis, emphasizing the pathophysiological mechanisms of inflammation in the etiology of this fibrotic response. It discusses innovations in biomaterial science, including the development of novel anti-biofilm coatings and immunomodulatory surfaces designed to enhance implant integration and minimize complications. Emphasis is placed on personalized risk assessment strategies, leveraging molecular insights to tailor interventions and improve patient outcomes. Emerging therapeutic targets, advancements in surgical techniques, and the refinement of post-operative care are also explored. Despite notable progress, challenges such as the variability in immune responses, the long-term efficacy of new interventions, and ethical considerations remain. Future research directions are identified, focusing on personalized medicine, advanced biomaterials, and bridging preclinical findings with clinical applications. As we advance from bench to bedside, this review illuminates the path forward, where interdisciplinary collaboration and continued inquiry weave together to enhance the art and science of breast implant surgery, transforming patient care into a realm of precision and excellence.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Peltokallio NMM, Ajdary R, Reyes G, Kankuri E, Junnila JJT, Kuure S, Meller AS, Kuula J, Raussi-Lehto E, Sariola H, Laitinen-Vapaavuori OM, Rojas OJ. Comparative In Vivo Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models. Biomacromolecules 2024; 25:7298-7310. [PMID: 39376005 PMCID: PMC11558565 DOI: 10.1021/acs.biomac.4c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Despite the increasing interest in cellulose-derived materials in biomedical research, there remains a significant gap in comprehensive in vivo analyses of cellulosic materials obtained from various sources and processing methods. To explore durable alternatives to synthetic medical meshes, we evaluated the in vivo biocompatibility of bacterial nanocellulose, regenerated cellulose, and cellulose nanofibrils in a subcutaneous transplantation model, alongside incumbent polypropylene and polydioxanone. Notably, this study demonstrates the in vivo biocompatibility of regenerated cellulose obtained through alkali dissolution and subsequent regeneration. All cellulose-derived implants triggered the expected foreign body response in the host tissue, characterized predominantly by macrophages and foreign body giant cells. Porous materials promoted cell ingrowth and biointegration. Our results highlight the potential of bacterial nanocellulose and regenerated cellulose as safe alternatives to commercial polypropylene meshes. However, the in vivo fragmentation observed for cellulose nanofibril meshes suggests the need for measures to optimize their processing and preparation.
Collapse
Affiliation(s)
- Nina M. M. Peltokallio
- Department
of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, FI-00014 Helsinki University, Finland
| | - Rubina Ajdary
- Biobased
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,Finland
| | - Guillermo Reyes
- Biobased
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,Finland
| | - Esko Kankuri
- Department
of Pharmacology, Faculty of Medicine, University
of Helsinki, P.O. Box 29, Helsinki 00014, Finland
| | | | - Satu Kuure
- GM
unit, Helsinki Institute of Life Science/STEMM, Research Program′s
Unit, Faculty of Medicine, University of
Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Anna S. Meller
- Laboratory
Animal Centre, HiLIFE, University of Helsinki, P.O. Box 29, Helsinki 00014, Finland
| | - Jani Kuula
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Eija Raussi-Lehto
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Espoo, Finland
- Customer-oriented
Wellbeing and Health Services, Metropolia
University of Applied Sciences, PL 4000, FI-00079 Metropolia, Helsinki,Finland
| | - Hannu Sariola
- Department
of Pathology, Faculty of Medicine, University
of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Outi M. Laitinen-Vapaavuori
- Department
of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, FI-00014 Helsinki University, Finland
| | - Orlando J. Rojas
- Biobased
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Wood
Science, University
of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of
British Columbia, 2036
Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
18
|
Ratner BD. The Origins of Engineered Biomaterials: NSF-Funded, University of Washington Engineered Biomaterials (UWEB). Bioengineering (Basel) 2024; 11:1117. [PMID: 39593777 PMCID: PMC11591938 DOI: 10.3390/bioengineering11111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The University of Washington Engineered Biomaterials (UWEB) Engineering Research Center (ERC) was funded from 1996 to 2007 by the U.S. National Science Foundation. The mission of UWEB was to advance biomaterials by integrating modern biology with materials science. UWEB specifically focused on the healing and integration of medical implants. UWEB teamed biologists, physicians, engineers, and industry and demonstrated three paths that might advance biomaterials so they could seamlessly integrate and heal in the body. The three primary lines of investigation were precision porous scaffolds, super-non-fouling surfaces, and the control of matricellular proteins. The UWEB program set the groundwork for the modern field of immunoengineering. Also, UWEB invested significantly in training scientists/engineers who could freely integrate advances in biological sciences, state-of-the-art materials science, and medical technology. This historical summary of the UWEB program demonstrates that federal investment in interfacing forefront fields can yield dividends with benefits for society and the economy.
Collapse
Affiliation(s)
- Buddy D. Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Roosa CA, Lempke SL, Hannan RT, Nicklow E, Sturek JM, Ewald SE, Griffin D. Conjugation of IL-33 to Microporous Annealed Particle Scaffolds Enhances Type 2-Like Immune Responses In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2400249. [PMID: 38648258 PMCID: PMC11461124 DOI: 10.1002/adhm.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.
Collapse
Affiliation(s)
- Colleen A. Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Riley T. Hannan
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| |
Collapse
|
21
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
22
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
23
|
Chen AC, Ciridon W, Creason S, Ratner BD. Surface immobilized α-1 acid glycoprotein and collagen VI modulate mouse macrophage polarization and reduce the foreign body capsule. J Biomed Mater Res A 2024; 112:1241-1249. [PMID: 37877518 DOI: 10.1002/jbm.a.37627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Macrophages are widely recognized in modulating the foreign body response, and the manner in which they do so largely depends on their activation state, often referred to as their polarization. This preliminary study demonstrates that surface immobilized α-1 acid glycoprotein (AGP), as well as collagen VI (Col6) in conjunction with AGP, can direct macrophages towards the M2 polarization state in vitro and modify the foreign body response in vivo. AGP and Col6 are immobilized onto poly(2-hydroxyethyl methacrylate) (pHEMA) surfaces using carbonyl diimidazole chemistry. Mouse bone marrow derived macrophages are cultured on modified surfaces with or without lipopolysaccharide stimulation. Surface modified pHEMA discs are implanted subcutaneously into mice to observe differences in the foreign body response. After stimulation with lipopolysaccharide, macrophages cultured on AGP or Col6 modified surfaces showed a reduction in TNF-α expression compared to controls. Arg1 expression was also increased in macrophages cultured on modified surfaces. Explanted tissues showed that the foreign body capsule around implants with AGP or AGP and Col6 modification had reduced thickness, while also being more highly vascularized. These data demonstrate that α-1 acid glycoprotein and collagen VI could potentially be used for the surface modification of medical devices to influence macrophage polarization leading to a reduced and modulated foreign body response.
Collapse
Affiliation(s)
- Alex C Chen
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Winston Ciridon
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Sharon Creason
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Buddy D Ratner
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Rajeev A, Kansara K, Bhatia D. Navigating the challenges and exploring the perspectives associated with emerging novel biomaterials. Biomater Sci 2024; 12:3565-3581. [PMID: 38832912 DOI: 10.1039/d4bm00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The field of biomaterials is a continuously evolving interdisciplinary field encompassing biological sciences, materials sciences, chemical sciences, and physical sciences with a multitude of applications realized every year. However, different biomaterials developed for different applications have unique challenges in the form of biological barriers, and addressing these challenges simultaneously is also a challenge. Nevertheless, immense progress has been made through the development of novel materials with minimal adverse effects such as DNA nanostructures, specific synthesis strategies based on supramolecular chemistry, and modulating the shortcomings of existing biomaterials through effective functionalization techniques. This review discusses all these aspects of biomaterials, including the challenges at each level of their development and application, proposed countermeasures for these challenges, and some future directions that may have potential benefits.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Krupa Kansara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Dhiraj Bhatia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| |
Collapse
|
25
|
Zhou X, Wang Y, Ji J, Zhang P. Materials Strategies to Overcome the Foreign Body Response. Adv Healthc Mater 2024; 13:e2304478. [PMID: 38666550 DOI: 10.1002/adhm.202304478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The foreign body response (FBR) is an immune-mediated reaction that can occur with most biomaterials and biomedical devices. The FBR initiates a deterioration in the performance of implantable devices, representing a longstanding challenge that consistently hampers their optimal utilization. Over the last decade, significant strides are achieved based on either hydrogel design or surface modifications to mitigate the FBR. This review delves into recent material strategies aimed at mitigating the FBR. Further, the authors look forward to future novel anti-FBR materials from the perspective of clinical translation needs. Such prospective materials hold the potential to attenuate local immune responses, thereby significantly enhancing the overall performance of implantable devices.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| |
Collapse
|
26
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
27
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
28
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Pawelec KM, Hix JML, Troia A, MacRenaris KW, Kiupel M, Shapiro EM. In vivo micro-computed tomography evaluation of radiopaque, polymeric device degradation in normal and inflammatory environments. Acta Biomater 2024; 181:222-234. [PMID: 38648912 PMCID: PMC11144086 DOI: 10.1016/j.actbio.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Polymeric biomedical implants are an important clinical tool, but degradation remains difficult to determine post-implantation. Computed tomography (CT) could be a powerful tool for device monitoring, but polymers require incorporation of radiopaque contrast agents to be distinguishable from tissue. In addition, immune response to radiopaque devices must be characterized as it modulates device function. Radiopaque devices and films were produced by incorporating 0-20 wt% TaOx nanoparticles into polymers: polycaprolactone (PCL) and poly(lactide-co-glycolide) (PLGA). In vitro inflammatory responses of mouse bone marrow-derived macrophages to polymer matrix incorporating TaOx nanoparticles was determined by monitoring cytokine secretion. Nanoparticle addition stimulated a slight inflammatory reaction, increasing TNFα secretion, mediated by changes in polymer matrix properties. Subsequently, devices (PLGA 50:50 + 20 wt% TaOx) were implanted subcutaneously in a mouse model of chronic inflammation, that featured a sustained increase in inflammatory response local to the implant site over 12 weeks. No changes to device degradation rates or foreign body response were noted between a normal and chronically stimulated inflammatory environment. Serial CT device monitoring post-implantation provided a detailed timeline of device collapse, with no rapid, spontaneous release of nanoparticles that occluded matrix visualization. Importantly, repeat CT sessions did not ablate the immune system or alter degradation kinetics. Thus, polymer devices incorporating radiopaque nanoparticles can be used for in situ monitoring and be readily combined with other medical imaging techniques, for a dynamic view biomaterial and tissue interactions. STATEMENT OF SIGNIFICANCE: A growing number of implantable devices are in use in the clinic, exposing patients to inherent risks of implant movement, collapse, and infection. The ability to monitor implanted devices would enable faster diagnosis of failure and open the door for personalized rehabilitation therapies - both of which could vastly improve patient outcomes. Unfortunately, polymeric materials which make up most biomedical devices are not radiologically distinguishable from tissue post-implantation. The introduction of radiopaque nanoparticles into polymers allows for serial monitoring via computed tomography, without affecting device degradation. Here we demonstrate for the first time that nanoparticles do not undergo burst release from devices post-implantation and that inflammatory responses - a key determinant of device function in vivo - are also unaffected by nanoparticle addition.
Collapse
Affiliation(s)
- Kendell M Pawelec
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeremy M L Hix
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Arianna Troia
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Keith W MacRenaris
- Quantitative Bio Element Analysis and Mapping (QBEAM) Center, Michigan State University, East Lansing, MI 48824, USA
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
30
|
Zhou X, Hao H, Chen Y, Cao W, Zhu Z, Ni Y, Liu Z, Jia F, Wang Y, Ji J, Peng Zhang. Covalently grafted human serum albumin coating mitigates the foreign body response against silicone implants in mice. Bioact Mater 2024; 34:482-493. [PMID: 38292409 PMCID: PMC10827492 DOI: 10.1016/j.bioactmat.2024.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Implantable biomaterials and biosensors are integral components of modern medical systems but often encounter hindrances due to the foreign body response (FBR). Herein, we report an albumin coating strategy aimed at addressing this challenge. Using a facile and scalable silane coupling strategy, human serum albumin (HSA) is covalently grafted to the surface of polydimethylsiloxane (PDMS) implants. This covalently grafted albumin coating remains stable and resistant to displacement by other proteins. Notably, the PDMS with covalently grafted HSA strongly resists the fibrotic capsule formation following a 180-day subcutaneous implantation in C57BL/6 mice. Furthermore, the albumin coating led to reduced recruitment of macrophages and triggered a mild immune activation pattern. Exploration of albumin coatings sourced from various mammalian species has shown that only HSA exhibited a promising anti-FBR effect. The albumin coating method reported here holds the potential to improve and extend the function of silicone-based implants by mitigating the host responses to subcutaneously implanted biomaterials.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Hongye Hao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, PR China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, PR China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Yanwen Ni
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Zuolong Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, PR China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, PR China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
31
|
Chan NR, Hwang B, Mulligan MS, Ratner BD, Bryers JD. Porous Precision-Templated 40 μm Pore Scaffolds Promote Healing through Synergy in Macrophage Receptor with Collagenous Structure and Toll-Like Receptor Signaling. Tissue Eng Part A 2024; 30:287-298. [PMID: 38205652 PMCID: PMC11040183 DOI: 10.1089/ten.tea.2023.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 01/12/2024] Open
Abstract
Porous precision-templated scaffolds (PTS) with uniform, interconnected, 40 μm pores have shown favorable healing outcomes and a reduced foreign body reaction (FBR). Macrophage receptor with collagenous structure (MARCO) and toll-like receptors (TLRs) have been identified as key surface receptors in the initial inflammatory phase of wound healing. However, the role of MARCO and TLRs in modulating monocyte and macrophage phenotypes within PTS remains uncharacterized. In this study, we demonstrate a synergetic relationship between MARCO and TLR signaling in cells inhabiting PTS, where induction with TLR3 or TLR4 agonists to 40 μm scaffold-resident cells upregulates the transcription of MARCO. Upon deletion of MARCO, the prohealing phenotype within 40 μm PTS polarizes to a proinflammatory and profibrotic phenotype. Analysis of downstream TLR signaling shows that MARCO is required to attenuate nuclear factor kappa B (NF-κB) inflammation in 40 μm PTS by regulating the transcription of inhibitory NFKB inhibitor alpha (NFKBIA) and interleukin-1 receptor-associated kinase 3 (IRAK-M), primarily through a MyD88-dependent signaling pathway. Investigation of implant outcome in the absence of MARCO demonstrates an increase in collagen deposition within the scaffold and the development of tissue fibrosis. Overall, these results further our understanding of the molecular mechanisms underlying MARCO and TLR signaling within PTS. Impact statement Monocyte and macrophage phenotypes in the foreign body reaction (FBR) are essential for the development of a proinflammatory, prohealing, or profibrotic response to implanted biomaterials. Identification of key surface receptors and signaling mechanisms that give rise to these phenotypes remain to be elucidated. In this study, we report a synergistic relationship between macrophage receptor with collagenous structure (MARCO) and toll-like receptor (TLR) signaling in scaffold-resident cells inhabiting porous precision-templated 40 μm pore scaffolds through a MyD88-dependent pathway that promotes healing. These findings advance our understanding of the FBR and provide further evidence that suggests MARCO, TLRs, and fibrosis may be interconnected.
Collapse
Affiliation(s)
- Nathan R. Chan
- Molecular Engineering and Sciences Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Billanna Hwang
- Department of Surgery, Center for Lung Biology, University of Washington, Seattle, Washington, USA
- Department of Surgery, and University of Washington, Seattle, Washington, USA
| | - Michael S. Mulligan
- Department of Surgery, Center for Lung Biology, University of Washington, Seattle, Washington, USA
- Department of Surgery, and University of Washington, Seattle, Washington, USA
| | - Buddy D. Ratner
- Molecular Engineering and Sciences Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - James D. Bryers
- Molecular Engineering and Sciences Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Sanati M, Amin Yavari S. Liposome-integrated hydrogel hybrids: Promising platforms for cancer therapy and tissue regeneration. J Control Release 2024; 368:703-727. [PMID: 38490373 DOI: 10.1016/j.jconrel.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/10/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Drug delivery platforms have gracefully emerged as an indispensable component of novel cancer chemotherapy, bestowing targeted drug distribution, elevating therapeutic effects, and reducing the burden of unwanted side effects. In this context, hybrid delivery systems artfully harnessing the virtues of liposomes and hydrogels bring remarkable benefits, especially for localized cancer therapy, including intensified stability, excellent amenability to hydrophobic and hydrophilic medications, controlled liberation behavior, and appropriate mucoadhesion to mucopenetration shift. Moreover, three-dimensional biocompatible liposome-integrated hydrogel networks have attracted unprecedented interest in tissue regeneration, given their tunable architecture and physicochemical properties, as well as enhanced mechanical support. This review elucidates and presents cutting-edge developments in recruiting liposome-integrated hydrogel systems for cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
33
|
Liu Y, Suarez-Arnedo A, Caston EL, Riley L, Schneider M, Segura T. Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304049. [PMID: 37721722 PMCID: PMC10874253 DOI: 10.1002/adma.202304049] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows the authors to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, the immune cell profile within confined and unconfined biomaterials is studied using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. This work uncovered that MAP scaffolds impart regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds made with large microgels promote a balanced pro-regenerative macrophage response, resulting in enhanced wound healing with mature collagen regeneration and reduced inflammation levels.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Alejandra Suarez-Arnedo
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Eleanor L.P. Caston
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Michelle Schneider
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
- Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
34
|
Fu M, Yang C, Sun G. Recent advances in immunomodulatory hydrogels biomaterials for bone tissue regeneration. Mol Immunol 2023; 163:48-62. [PMID: 37742359 DOI: 10.1016/j.molimm.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There is a high incidence of fractures in clinical practice and therapy. The repairment of critical size defects in the skeletal system remains a huge challenge for surgeons and researchers, which can be overcame by the application of bone tissue-engineered biomaterials. An increasing number of investigations have revealed that the immune system plays a vital role in the repair of bone defects, especially macrophages, which can modulate the integration of biomaterials and bone regeneration in multiple ways. Therefore, it has become increasingly important in regenerative medicine to regulate macrophage polarization to prevent inflammation caused by biomaterial implantation. Recent studies have stressed the importance of hydrogel-based modifications and the incorporation of various cellular and molecular signals for regulating immune responses to promote bone tissue regeneration and integrate biomaterials. In this review, we first elaborate briefly on the described the general physiological mechanism and process of bone tissue regeneration. Then, we summarized the immunomodulatory role macrophages play in bone repair. In addition, the role of hydrogel-based immune modification targeting macrophage modulation in accelerating and enhancing bone tissue regeneration was also discussed. Finally, we highlighted future directions and research strategies related to hydrogel optimization for the regulation of the immune response during bone regeneration and healing.
Collapse
Affiliation(s)
- Mei Fu
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chensong Yang
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guixin Sun
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
35
|
Pawelec KM, Hix JML, Troia A, Kiupel M, Shapiro E. In vivo Biomedical Imaging of Immune Tolerant, Radiopaque Nanoparticle-Embedded Polymeric Device Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564238. [PMID: 37961412 PMCID: PMC10634892 DOI: 10.1101/2023.10.26.564238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Biomedical implants remain an important clinical tool for restoring patient mobility and quality of life after trauma. While polymers are often used for devices, their degradation profile remains difficult to determine post-implantation. CT monitoring could be a powerful tool for in situ monitoring of devices, but polymers require the introduction of radiopaque contrast agents, like nanoparticles, to be distinguishable from native tissue. As device function is mediated by the immune system, use of radiopaque nanoparticles for serial monitoring therefore requires a minimal impact on inflammatory response. Radiopaque polymer composites were produced by incorporating 0-20wt% TaOx nanoparticles into synthetic polymers: polycaprolactone (PCL) and poly(lactide-co-glycolide) (PLGA). In vitro inflammatory response to TaOx was determined by monitoring mouse bone marrow derived macrophages on composite films. Nanoparticle addition stimulated only a slight inflammatory reaction, namely increased TNFα secretion, mediated by changes to the polymer matrix properties. When devices (PLGA 50:50 + 20wt% TaOx) were implanted subcutaneously in a mouse model of chronic inflammation, no changes to device degradation were noted although macrophage number was increased over 12 weeks. Serial CT monitoring of devices post-implantation provided a detailed timeline of device structural collapse, with no burst release of the nanoparticles from the implant. Changes to the device were not significantly altered with monitoring, nor was the immune system ablated when checked via blood cell count and histology. Thus, polymer devices incorporating radiopaque TaOx NPs can be used for in situ CT monitoring, and can be readily combined with multiple medical imaging techniques, for a truly dynamic view biomaterials interaction with tissues throughout regeneration, paving the way for a more structured approach to biomedical device design.
Collapse
Affiliation(s)
- Kendell M Pawelec
- Department of Radiology, Michigan State University, East Lansing, MI 48823, USA
| | - Jeremy M L Hix
- Department of Radiology, Michigan State University, East Lansing, MI 48823, USA
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Arianna Troia
- Department of Radiology, Michigan State University, East Lansing, MI 48823, USA
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48823, USA
| | - Erik Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI 48823, USA
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
36
|
Gonthier A, Botvinick EL, Grosberg A, Mohraz A. Effect of Porous Substrate Topographies on Cell Dynamics: A Computational Study. ACS Biomater Sci Eng 2023; 9:5666-5678. [PMID: 37713253 PMCID: PMC10565724 DOI: 10.1021/acsbiomaterials.3c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Controlling cell-substrate interactions via the microstructural characteristics of biomaterials offers an advantageous path for modulating cell dynamics, mechanosensing, and migration, as well as for designing immune-modulating implants, all without the drawbacks of chemical-based triggers. Specifically, recent in vivo studies have suggested that a porous implant's microscale curvature landscape can significantly impact cell behavior and ultimately the immune response. To investigate such cell-substrate interactions, we utilized a 3D computational model incorporating the minimum necessary physics of cell migration and cell-substrate interactions needed to replicate known in vitro behaviors. This model specifically incorporates the effect of membrane tension, which was found to be necessary to replicate in vitro cell behavior on curved surfaces. Our simulated substrates represent two classes of porous materials recently used in implant studies, which have markedly different microscale curvature distributions and pore geometries. We found distinct differences between the overall migration behaviors, shapes, and actin polymerization dynamics of cells interacting with the two substrates. These differences were correlated to the shape energy of the cells as they interacted with the porous substrates, in effect interpreting substrate topography as an energetic landscape interrogated by cells. Our results demonstrate that microscale curvature directly influences cell shape and migration and, therefore, is likely to influence cell behavior. This supports further investigation of the relationship between the surface topography of implanted materials and the characteristic immune response, a complete understanding of which would broadly advance principles of biomaterial design.
Collapse
Affiliation(s)
- Alyse
R. Gonthier
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Elliot L. Botvinick
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Beckman
Laser Institute and Medical Clinic, University
of California, Irvine, Irvine, California 92697, United States
- Department
of Surgery,University of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Anna Grosberg
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- The
NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ali Mohraz
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
37
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
38
|
Zhang Z, Zhang X, Zheng Z, Xin J, Han S, Qi J, Zhang T, Wang Y, Zhang S. Latest advances: Improving the anti-inflammatory and immunomodulatory properties of PEEK materials. Mater Today Bio 2023; 22:100748. [PMID: 37600350 PMCID: PMC10432209 DOI: 10.1016/j.mtbio.2023.100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Excellent biocompatibility, mechanical properties, chemical stability, and elastic modulus close to bone tissue make polyetheretherketone (PEEK) a promising orthopedic implant material. However, biological inertness has hindered the clinical applications of PEEK. The immune responses and inflammatory reactions after implantation would interfere with the osteogenic process. Eventually, the proliferation of fibrous tissue and the formation of fibrous capsules would result in a loose connection between PEEK and bone, leading to implantation failure. Previous studies focused on improving the osteogenic properties and antibacterial ability of PEEK with various modification techniques. However, few studies have been conducted on the immunomodulatory capacity of PEEK. New clinical applications and advances in processing technology, research, and reports on the immunomodulatory capacity of PEEK have received increasing attention in recent years. Researchers have designed numerous modification techniques, including drug delivery systems, surface chemical modifications, and surface porous treatments, to modulate the post-implantation immune response to address the regulatory factors of the mechanism. These studies provide essential ideas and technical preconditions for the development and research of the next generation of PEEK biological implant materials. This paper summarizes the mechanism by which the immune response after PEEK implantation leads to fibrous capsule formation; it also focuses on modification techniques to improve the anti-inflammatory and immunomodulatory abilities of PEEK. We also discuss the limitations of the existing modification techniques and present the corresponding future perspectives.
Collapse
Affiliation(s)
- Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| |
Collapse
|
39
|
Karinja SJ, Bernstein JL, Mukherjee S, Jin J, Lin A, Abadeer A, Kaymakcalan O, Veiseh O, Spector JA. An Antifibrotic Breast Implant Surface Coating Significantly Reduces Periprosthetic Capsule Formation. Plast Reconstr Surg 2023; 152:775-785. [PMID: 36847657 DOI: 10.1097/prs.0000000000010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND The body responds to prosthetic materials with an inflammatory foreign body response and deposition of a fibrous capsule, which may be deleterious to the function of the device and cause significant discomfort for the patient. Capsular contracture (CC) is the most common complication of aesthetic and reconstructive breast surgery. The source of significant patient morbidity, it can result in pain, suboptimal aesthetic outcomes, implant failure, and increased costs. The underlying mechanism remains unknown. Treatment is limited to reoperation and capsule excision, but recurrence rates remain high. In this study, the authors altered the surface chemistry of silicone implants with a proprietary anti-inflammatory coating to reduce capsule formation. METHODS Silicone implants were coated with Met-Z2-Y12, a biocompatible, anti-inflammatory surface modification. Uncoated and Met-Z2-Y12-coated implants were implanted in C57BL/6 mice. After 21, 90, or 180 days, periprosthetic tissue was removed for histologic analysis. RESULTS The authors compared mean capsule thickness at three time points. At 21, 90, and 180 days, there was a statistically significant reduction in capsule thickness of Met-Z2-Y12-coated implants compared with uncoated implants ( P < 0.05). CONCLUSIONS Coating the surface of silicone implants with Met-Z2-Y12 significantly reduced acute and chronic capsule formation in a mouse model for implant-based breast augmentation and reconstruction. As capsule formation obligatorily precedes CC, these results suggest contracture itself may be significantly attenuated. Furthermore, as periprosthetic capsule formation is a complication without anatomical boundaries, this chemistry may have additional applications beyond breast implants, to a myriad of other implantable medical devices. CLINICAL RELEVANCE STATEMENT Coating of the silicone implant surface with Met-Z2-Y12 alters the periprosthetic capsule architecture and significantly reduces capsule thickness for at least 6 months postoperatively in a murine model. This is a promising step forward in the development of a therapy to prevent capsular contracture.
Collapse
Affiliation(s)
- Sarah J Karinja
- From the Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medical College
- Department of Surgery, Division of Plastic Surgery
| | - Jaime L Bernstein
- From the Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medical College
- Department of Surgery, Division of Plastic Surgery
| | | | - Julia Jin
- From the Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medical College
- Department of Surgery, Division of Plastic Surgery
| | - Alexandra Lin
- From the Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medical College
- Department of Surgery, Division of Plastic Surgery
| | - Andrew Abadeer
- From the Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medical College
- Department of Surgery, Division of Plastic Surgery
| | - Omer Kaymakcalan
- From the Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medical College
- Department of Surgery, Division of Plastic Surgery
| | - Omid Veiseh
- Department of Bioengineering, Rice University
- Sigilon Therapeutics
| | - Jason A Spector
- From the Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medical College
- Department of Surgery, Division of Plastic Surgery
- Meinig School of Biomedical Engineering, Cornell University
| |
Collapse
|
40
|
Chan NR, Hwang B, Waworuntu RL, Tran AJ, Ratner BD, Bryers JD. Novel HALO® image analysis to determine cell phenotype in porous precision-templated scaffolds. J Biomed Mater Res A 2023; 111:1459-1467. [PMID: 37029696 PMCID: PMC10524297 DOI: 10.1002/jbm.a.37547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Image analysis platforms have gained increasing popularity in the last decade for the ability to automate and conduct high-throughput, multiplex, and quantitative analyses of a broad range of pathological tissues. However, imaging tissues with unique morphology or tissues containing implanted biomaterial scaffolds remain a challenge. Using HALO®, an image analysis platform specialized in quantitative tissue analysis, we have developed a novel method to determine multiple cell phenotypes in porous precision-templated scaffolds (PTS). PTS with uniform spherical pores between 30 and 40 μm in diameter have previously exhibited a specific immunomodulation of macrophages toward a pro-healing phenotype and an overall diminished foreign body response (FBR) compared to PTS with larger or smaller pore sizes. However, signaling pathways orchestrating this pro-healing in 40 μm PTS remain unclear. Here, we use HALO® to phenotype PTS resident cells and found a decrease in pro-inflammatory CD86 and an increase in pro-healing CD206 expression in 40 μm PTS compared to 100 μm PTS. To understand the mechanisms that drive these outcomes, we investigated the role of myeloid-differentiation-primary-response gene 88 (MyD88) in regulating the pro-healing phenomenon observed only in 40 μm PTS. When subcutaneously implanted in MyD88KO mice, 40 μm PTS reduced the expression of CD206, and the scaffold resident cells displayed an average larger nuclear size compared to 40 μm PTS implanted in mice expressing MyD88. Overall, this study demonstrates a novel image analysis method for phenotyping cells within PTS and identifies MyD88 as a critical mediator in the pore-size-dependent regenerative healing and host immune response to PTS.
Collapse
Affiliation(s)
- Nathan R. Chan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Billanna Hwang
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | | | - An J. Tran
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | - Buddy D. Ratner
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - James D. Bryers
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Hady TF, Hwang B, Waworuntu RL, Ratner BD, Bryers JD. Cells resident to precision templated 40-µm pore scaffolds generate small extracellular vesicles that affect CD4 + T cell phenotypes through regulatory TLR4 signaling. Acta Biomater 2023; 166:119-132. [PMID: 37150279 PMCID: PMC10330460 DOI: 10.1016/j.actbio.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Precision porous templated scaffolds (PTS) are a hydrogel construct of uniformly sized interconnected spherical pores that induce a pro-healing response (reducing the foreign body reaction, FBR) exclusively when the pores are 30-40µm in diameter. Our previous work demonstrated the necessity of Tregs in the maintenance of PTS pore size specific differences in CD4+ T cell phenotype. Work here characterizes the role of Tregs in the responses to implanted 40µm and 100µm PTS using WT and FoxP3+ cell (Treg) depleted mice. Proteomic analyses indicate that integrin signaling, monocytes/macrophages, cytoskeletal remodeling, inflammatory cues, and vesicule endocytosis may participate in Treg activation and the CD4+ T cell equilibrium modulated by PTS resident cell-derived small extracellular vesicles (sEVs). The role of MyD88-dependent and MyD88-independent TLR4 activation in PTS cell-derived sEV-to-T cell signaling is quantified by treating WT, TLR4ko, and MyD88ko splenic T cells with PTS cell-derived sEVs. STAT3 and mTOR are identified as mechanisms for further study for pore-size dependent PTS cell-derived sEV-to-T cell signaling. STATEMENT OF SIGNIFICANCE: Unique cell populations colonizing only within 40µm pore size PTS generate sEVs that resolve inflammation by modifying CD4+ T cell phenotypes through TLR4 signaling.
Collapse
Affiliation(s)
- T F Hady
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - B Hwang
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - R L Waworuntu
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - B D Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - J D Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
42
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
43
|
Doloff JC, Ma M, Sadraei A, Tam HH, Farah S, Hollister-Lock J, Vegas AJ, Veiseh O, Quiroz VM, Rakoski A, Aresta-DaSilva S, Bader AR, Griffin M, Weir GC, Brehm MA, Shultz LD, Langer R, Greiner DL, Anderson DG. Identification of a humanized mouse model for functional testing of immune-mediated biomaterial foreign body response. SCIENCE ADVANCES 2023; 9:eade9488. [PMID: 37327334 PMCID: PMC10275594 DOI: 10.1126/sciadv.ade9488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites. Human innate immune macrophages were verified as essential to biomaterial rejection in this model and were capable of cross-talk with mouse fibroblasts for collagen matrix deposition. Cytokine and cytokine receptor array analysis confirmed core signaling in the fibrotic cascade. Foreign body giant cell formation, often unobserved in mice, was also prominent. Last, high-resolution microscopy coupled with multiplexed antibody capture digital profiling analysis supplied spatial resolution of rejection responses. This model enables the study of human immune cell-mediated fibrosis and interactions with implanted biomaterials and devices.
Collapse
Affiliation(s)
- Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Minglin Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Arturo J. Vegas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Victor M. Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Stephanie Aresta-DaSilva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Andrew R. Bader
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
| | - Gordon C. Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Michael A. Brehm
- Program in Molecular Medicine, Diabetes Centre of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Centre of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, Maarof M, Thomas S, Motta A, Fauzi MB. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol 2023; 11:1160577. [PMID: 37292094 PMCID: PMC10245056 DOI: 10.3389/fbioe.2023.1160577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaima Maliha Riha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn Bhd Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Blessy Joseph
- Business Innovation and Incubation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabu Thomas
- International and Inter University Centre for Nanosciences and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Xiao H, Chen X, Shan J, Liu X, Sun Y, Shen J, Chai Y, We G, Yu Y. A spatiotemporal release hydrogel based on an M1-to-M2 immunoenvironment for wound management. J Mater Chem B 2023; 11:3994-4004. [PMID: 37165902 DOI: 10.1039/d3tb00463e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cutaneous wounds remain a major clinical challenge that urgently requires the development of advanced and functional wound dressings. During the wound healing process, macrophages are well known to exhibit temporal dynamics with a pro-inflammatory phenotype at early stages and a pro-healing phenotype at late stages, thus playing an important role in regulating inflammatory responses and tissue regeneration. Meanwhile, disrupted temporal dynamics of macrophages caused by poor wound local conditions and deficiency of macrophage function always impair the wound-healing progression. Here in this work, we proposed a novel controllable strategy to construct a spatiotemporal dynamical immune-microenvironment for the treatment of cutaneous wounds. To achieve this goal, a concentric decellularized dermal hydrogel was constructed with the combination of type 1 and type 2 macrophage-associated cytokine complexes in the sheath portion and core portion, respectively. The in vitro degradation experiment exhibited a sequential cascade release of pro-inflammatory cytokines and pro-healing cytokines. The enhanced cell biocompatibility and tube formation of HUVECs were confirmed. A full-thickness skin defect model of rats was developed to analyze the effect of the spatiotemporal dynamical bioactive hydrogels on wound healing. Remarkable angiogenesis, rapid wound restoration, moderate extracellular matrix deposition and obvious skin appendage neogenesis were identified at different time points after treatment with the macrophage cytokine-based decellularized hydrogels. Consequently, the concentric decellularized hydrogels with spatiotemporal dynamics of immune cytokines have considerable potential for cell-free therapy for wound healing.
Collapse
Affiliation(s)
- Huimin Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xin Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jianyang Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen We
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
46
|
Sanz-Horta R, Retegi-Carrion S, Ruiz-Hernandez R, Khatami N, Elvira C, Martinez-Campos E, Rodríguez-Hernández J, Abarrategi A. Polycaprolactone with multiscale porosity and patterned surface topography prepared using sacrificial 3D printed moulds: Towards tailor-made scaffolds. BIOMATERIALS ADVANCES 2023; 151:213465. [PMID: 37236118 DOI: 10.1016/j.bioadv.2023.213465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Biocompatible three-dimensional porous scaffolds are widely used in multiple biomedical applications. However, the fabrication of tailor-made 3D structures with controlled and combined multiscale macroscopic-microscopic, surface and inner porosities in a straightforward manner is still a current challenge. Herein, we use multimaterial fused deposition modeling (FDM) to generate poly (vinyl alcohol) (PVA) sacrificial moulds filled with poly (Ɛ-caprolactone) (PCL) to generate well defined PCL 3D objects. Further on, the supercritical CO2 (SCCO2) technique, as well as the breath figures mechanism (BFs), were additionally employed to fabricate specific porous structures at the core and surfaces of the 3D PCL object, respectively. The biocompatibility of the resulting multiporous 3D structures was tested in vitro and in vivo, and the versatility of the approach was assessed by generating a vertebra model fully tunable at multiple pore size levels. In sum, the combinatorial strategy to generate porous scaffolds offers unique possibilities to fabricate intricate structures by combining the advantages of additive manufacturing (AM), which provides flexibility and versatility to generate large sized 3D structures, with advantages of the SCCO2 and BFs techniques, which allow to finely tune the macro and micro porosity at material surface and material core levels.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Institute of Polymer Science and Technology, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Sugoi Retegi-Carrion
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Neda Khatami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Carlos Elvira
- Institute of Polymer Science and Technology, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Martinez-Campos
- Institute of Polymer Science and Technology, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Institute of Polymer Science and Technology, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
47
|
Morrison RA, Brookes S, Puls TJ, Cox A, Gao H, Liu Y, Voytik-Harbin SL. Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses. Biomater Sci 2023; 11:3278-3296. [PMID: 36942875 PMCID: PMC10152923 DOI: 10.1039/d3bm00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials.
Collapse
Affiliation(s)
- Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
48
|
Schreib CC, Jarvis MI, Terlier T, Goell J, Mukherjee S, Doerfert MD, Wilson TA, Beauregard M, Martins KN, Lee J, Solis LS, Vazquez E, Oberli MA, Hanak BW, Diehl M, Hilton I, Veiseh O. Lipid Deposition Profiles Influence Foreign Body Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205709. [PMID: 36871193 PMCID: PMC10309593 DOI: 10.1002/adma.202205709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/09/2022] [Indexed: 05/26/2023]
Abstract
Fibrosis remains a significant cause of failure in implanted biomedical devices and early absorption of proteins on implant surfaces has been shown to be a key instigating factor. However, lipids can also regulate immune activity and their presence may also contribute to biomaterial-induced foreign body responses (FBR) and fibrosis. Here it is demonstrated that the surface presentation of lipids on implant affects FBR by influencing reactions of immune cells to materials as well as their resultant inflammatory/suppressive polarization. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) is employed to characterize lipid deposition on implants that are surface-modified chemically with immunomodulatory small molecules. Multiple immunosuppressive phospholipids (phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin) are all found to deposit preferentially on implants with anti-FBR surface modifications in mice. Significantly, a set of 11 fatty acids is enriched on unmodified implanted devices that failed in both mice and humans, highlighting relevance across species. Phospholipid deposition is also found to upregulate the transcription of anti-inflammatory genes in murine macrophages, while fatty acid deposition stimulated the expression of pro-inflammatory genes. These results provide further insights into how to improve the design of biomaterials and medical devices to mitigate biomaterial material-induced FBR and fibrosis.
Collapse
Affiliation(s)
- Christian C. Schreib
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Maria I. Jarvis
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Present address: Lonza Inc. 14905 Kirby Drive, Houston, TX 77047
| | - Tanguy Terlier
- SIMS laboratory, Shared Equipment Authority, Rice University, 6500 Main Street, Houston, TX 77030
| | - Jacob Goell
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Present address: School of Biomedial Engineering, ITT (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Michael D. Doerfert
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Taylor Anne Wilson
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Michael Beauregard
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Kevin N. Martins
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Jared Lee
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005
| | - Leo Sanchez Solis
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Esperanza Vazquez
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204
| | - Matthias A. Oberli
- Sigilon Therapeutics, 200 Dexter Avenue, Watertown, MA 02472
- Present address: Xibus systems Inc. 200 Dexter Avenue, Watertown, MA 02472
| | - Brian W. Hanak
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Michael Diehl
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Isaac Hilton
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Program of Synthetic, Systems and Physical Biology, Rice University, 6500 Main Street, Houston, TX 77030
| | - Omid Veiseh
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Program of Synthetic, Systems and Physical Biology, Rice University, 6500 Main Street, Houston, TX 77030
| |
Collapse
|
49
|
Lowen JM, Bond GC, Griffin KH, Shimamoto NK, Thai VL, Leach JK. Multisized Photoannealable Microgels Regulate Cell Spreading, Aggregation, and Macrophage Phenotype through Microporous Void Space. Adv Healthc Mater 2023; 12:e2202239. [PMID: 36719946 PMCID: PMC10198868 DOI: 10.1002/adhm.202202239] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/06/2023] [Indexed: 02/02/2023]
Abstract
Microgels are an emerging platform for in vitro models and guiding cell fate due to their inherent porosity and tunability. This work describes a light-based technique for rapidly annealing microgels across a range of diameters. Utilizing 8-arm poly(ethylene) glycol-vinyl sulfone, the number of arms available for crosslinking, functionalization, and annealing is stoichiometrically controlled. Small and large microgels are fabricated to explore how microgel diameter impacts void space and the role of porosity on cell spreading, cell aggregation, and macrophage polarization. Mesenchymal stromal cells spread rapidly in both formulations, yet the smaller microgels permit a higher cell density. When seeded with macrophages, the smaller microgels promote an M1 phenotype, while larger microgels promote an M2 phenotype. As another application, the inherent porosity of annealed microgels is leveraged to induce cell aggregation. Finally, the microgels are implanted to examine how different size microgels influence endogenous cell invasion and macrophage polarization. The use of ultraviolet light allows for microgels to be noninvasively injected into a desired mold or wound defect before annealing, and microgels of different properties combined to create a heterogeneous scaffold. This approach is clinically relevant given its tunability and fast annealing time.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Gabriella C. Bond
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| | - Katherine H. Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- School of Veterinary Medicine, University of California, Davis, CA 95616
| | | | - Victoria L. Thai
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| |
Collapse
|
50
|
Liu Y, Suarez-Arnedo A, Caston E, Riley L, Schneider M, Segura T. Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538879. [PMID: 37162980 PMCID: PMC10168413 DOI: 10.1101/2023.04.30.538879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows us to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating the macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, we studied the immune cell profile within confined and unconfined biomaterials using small (40 μm), medium (70 μm), and large (130 μm) diameter spherical microgels, respectively. We discovered that MAP scaffolds imparted regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds generated from 130 μm diameter microgels have a median pore size that can accommodate ∼40 µm diameter spheres induced a more balanced pro-regenerative macrophage response and better wound healing outcomes with more mature collagen regeneration and reduced levels of inflammation.
Collapse
|