1
|
Cheng H, Ma B, Xia W, Yu Y, Li J, Zhang K, Shi L, Hu H, Gao S, Zhu Z. Synergistic photothermal and chemo-therapeutic platform utilizing Cu 2-xSe/PDA/AIPH nanoparticles for targeted tumor eradication. BIOMATERIALS ADVANCES 2025; 169:214196. [PMID: 39854998 DOI: 10.1016/j.bioadv.2025.214196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
In this study, we developed an innovative Cu2-xSe/PDA/AIPH nanoparticle platform that combines photothermal therapy and chemotherapy for effective tumor treatment. The Cu2-xSe nanoparticles, known for their strong near-infrared (NIR) absorption, were encapsulated within a polydopamine (PDA) and 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) matrix. Upon NIR irradiation, the platform triggers localized heating and subsequent thermal decomposition of AIPH, releasing ROS to induce significant oxidative damage in tumor cells. In vitro and in vivo experiments demonstrated that Cu2-xSe/PDA/AIPH nanoparticles exhibit excellent biocompatibility, effective photothermal conversion, and potent anticancer efficacy. This multifunctional nanosystem offers a promising approach for enhancing tumor therapy by combining PTT with ROS-mediated chemotherapy.
Collapse
Affiliation(s)
- Haoyan Cheng
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Beng Ma
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Wanting Xia
- College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Ying Yu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Jiayi Li
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
| | - Keke Zhang
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China.
| | - Hao Hu
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China.
| | - Zhihong Zhu
- College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Fan S, Li Y, Huang S, Wang W, Zhang B, Zhang J, Jian X, Song Z, Wu M, Tu H, Wen Y, Li H, Li S, Hu H. Microbiota-Derived L-SeMet Potentiates CD8 + T Cell Effector Functions and Facilitates Anti-Tumor Responses. Int J Mol Sci 2025; 26:2511. [PMID: 40141154 PMCID: PMC11941941 DOI: 10.3390/ijms26062511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Extensive studies have shown that gut microbiota-derived metabolites can enhance the antitumor efficacy of immunotherapy by modulating host immune responses. However, the more comprehensive spectrum of such metabolites and their mechanisms remain unclear. In this study, we demonstrated that L-selenomethionine (L-SeMet), a gut microbial metabolite, acts as a positive regulator of immunotherapy. Through screening of a repository of gut microbial metabolites, we identified that L-SeMet can effectively enhance the effector function of CD8+ T cells. Furthermore, intragastric administration of L-SeMet in mice significantly suppressed the growth of subcutaneous MC38 tumors. Mechanistically, L-SeMet enhances T cell receptor (TCR) signaling by promoting LCK phosphorylation. Collectively, our findings reveal that the gut microbial metabolite L-SeMet inhibits colorectal tumor growth by potentiating CD8+ T cell functions, providing a potential therapeutic strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Simiao Fan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Yaxin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Shaoyi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Wen Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Biyu Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Jiamei Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Xiaoxiao Jian
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Zengqing Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Yuqi Wen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Sen Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| | - Huaibin Hu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100850, China; (S.F.); (Y.L.); (S.H.); (W.W.); (B.Z.); (X.J.); (Z.S.); (M.W.); (H.T.); (Y.W.); (H.L.)
| |
Collapse
|
3
|
Xie F, Qu J, Lin D, Feng K, Tan M, Liao H, Zeng L, Xiong Q, Huang J, Chen W. Reduced Proteolipid Protein 2 promotes endoplasmic reticulum stress-related apoptosis and increases drug sensitivity in acute myeloid leukemia. Mol Biol Rep 2023; 51:10. [PMID: 38085372 DOI: 10.1007/s11033-023-08994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The Proteolipid Protein 2 (PLP2), a protein in the Endoplasmic Reticulum (ER) membrane, has been reported to be highly expressed in various tumors. Previous studies have demonstrated that the reduced PLP2 can induce apoptosis and autophagy through ER stress-related pathways, leading to a decreased proliferation and aggressiveness. However, there is no research literature on the role of PLP2 in Acute Myeloid Leukemia (AML). METHODS PLP2 expression, clinical data, genetic mutations, and karyotype changes from GEO, TCGA, and timer2.0 databases were analyzed through the R packages. The possible functions and pathways of cells were explored through GO, KEGG, and GSEA enrichment analysis using the clusterProfiler R package. Immuno-infiltration analysis was conducted using the Cibersort algorithm and the Xcell R package. RT-PCR and western blot techniques were employed to identify the PLP2 expression, examine the knockdown effects in THP-1 cells, and assess the expression of genes associated with endoplasmic reticulum stress and apoptosis. Flow cytometry was utilized to determine the apoptosis and survival rates of different groups. RESULTS PLP2 expression was observed in different subsets of AML and other cancers. Enrichment analyses revealed that PLP2 was involved in various tumor-related biological processes, primarily apoptosis and lysosomal functions. Additionally, PLP2 expression showed a strong association with immune cell infiltration, particularly monocytes. In vitro, the knockdown of PLP2 enhanced endoplasmic reticulum stress-related apoptosis and increased drug sensitivity in THP-1 cells. CONCLUSIONS PLP2 could be a novel therapeutic target in AML, in addition, PLP2 is a potential endoplasmic reticulum stress regulatory gene in AML.
Collapse
Affiliation(s)
- Fahui Xie
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia Qu
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dainan Lin
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kexin Feng
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Tan
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haixiu Liao
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Longhui Zeng
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingquan Xiong
- Department of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Weiwen Chen
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Chang J, Yan S, Geng Z, Wang Z. Inhibition of splicing factors SF3A3 and SRSF5 contributes to As 3+/Se 4+ combination-mediated proliferation suppression and apoptosis induction in acute promyelocytic leukemia cells. Arch Biochem Biophys 2023; 743:109677. [PMID: 37356608 DOI: 10.1016/j.abb.2023.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
The low-dose combination of Arsenite (As3+) and selenite (Se4+) has the advantages of lower biological toxicity and better curative effects for acute promyelocytic leukemia (APL) therapy. However, the underlying mechanisms remain unclear. Here, based on the fact that the combination of 2 μM A3+ plus 4 μM Se4+ possessed a stronger anti-leukemic effect on APL cell line NB4 as compared with each individual, we employed iTRAQ-based quantitative proteomics to identify a total of 58 proteins that were differentially expressed after treatment with As3+/Se4+ combination rather than As3+ or Se4+ alone, the majority of which were involved in spliceosome pathway. Among them, eight proteins stood out by virtue of their splicing function and significant changes. They were validated as being decreased in mRNA and protein levels under As3+/Se4+ combination treatment. Further functional studies showed that only knockdown of two splicing factors, SF3A3 and SRSF5, suppressed the growth of NB4 cells. The reduction of SF3A3 was found to cause G1/S cell cycle arrest, which resulted in proliferation inhibition. Moreover, SRSF5 downregulation induced cell apoptosis through the activation of caspase-3. Taken together, these findings indicate that SF3A3 and SRSF5 function as pro-leukemic factors and can be potential novel therapeutic targets for APL.
Collapse
Affiliation(s)
- Jiayin Chang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Reinoso-Maset E, Falk M, Bernhoft A, Ersdal C, Framstad T, Fuhrmann H, Salbu B, Oropeza-Moe M. Selenium Speciation Analysis Reveals Improved Antioxidant Status in Finisher Pigs Fed L-Selenomethionine, Alone or Combined with Sodium Selenite, and Vitamin E. Biol Trace Elem Res 2022:10.1007/s12011-022-03516-9. [PMID: 36577830 PMCID: PMC10350441 DOI: 10.1007/s12011-022-03516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Conditions associated with selenium (Se) and/or vitamin E (VitE) deficiency are still being reported in high-yielding pigs fed the recommended amounts. Here, the dietary effects of Se source (sodium selenite, NaSe, 0.40 or 0.65 mg Se/kg; L-selenomethionine, SeMet, 0.19 or 0.44 mg Se/kg; a NaSe-SeMet mixture, SeMix, 0.44-0.46 mg Se/kg) and VitE concentration (27, 50-53 or 101 mg/kg) on the antioxidant status of finisher pigs were compared with those in pigs fed non-Se-supplemented diets (0.08-0.09 mg Se/kg). Compared to NaSe-enriched diets, SeMet-supplemented diets resulted in significantly (p < 0.0018) higher plasma concentrations of total Se (14-27%) and selenospecies (GPx3, SelP, SeAlb; 7-83%), significantly increased the total Se accumulation in skeletal muscles, myocardium, liver and brain (10-650%), and enhanced the VitE levels in plasma (15-74%) and tissues (8-33%) by the end of the 80-day trial, proving better Se distribution and retention in pigs fed organic Se. Injecting lipopolysaccharide (LPS) intravenously half-way into the trial provoked a pyrogenic response in the pigs followed by a rapid increase of inorganic Se after 5-12 h, a drastic drop of SeMet levels between 12 and 24 h that recovered by 48 h, and a small increase of SeCys by 24-48 h, together with a gradual rise of GPx3, SelP and SeAlb in plasma up to 48 h. These changes in Se speciation in plasma were particularly significant (0.0024 > p > 0.00007) in pigs receiving SeMet- (0.44 mg Se/kg, above EU-legislated limits) or SeMix-supplemented (SeMet and NaSe both at 0.2 mg Se/kg, within EU-legislated limits) diets, which demonstrates Se metabolism upregulation to counteract the LPS-induced oxidative stress and a strengthened antioxidant capacity in these pigs. Overall, a Se source combination (without exceeding EU-legislated limits) and sufficient VitE supplementation (≥ 50 mg/kg) improved the pigs' antioxidant status, while doubling the allowed dietary organic Se increased the Se in tissues up to sixfold without compromising the animal's health due to toxicity. This study renders valuable results for revising the current dietary SeMet limits in swine rations.
Collapse
Affiliation(s)
- Estela Reinoso-Maset
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway.
| | - Michaela Falk
- Norwegian Veterinary Institute, Svebastadveien 112, 4325, Sandnes, Norway
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433, Aas, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tore Framstad
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433, Aas, Norway
| | - Herbert Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Brit Salbu
- Centre for Environmental Radioactivity CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Elizabeth Stephansens vei 31, 1433, Aas, Norway
| | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences (PRODMED), Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| |
Collapse
|
6
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett 2022; 547:215880. [PMID: 35981569 DOI: 10.1016/j.canlet.2022.215880] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023]
Abstract
Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC). However, it is difficult to alleviate this disease process using single-agent chemotherapy. Using combination therapies for advanced HCC has become a major trend. Given that STAT3 overexpression is involved in chemotherapy resistance and the immune escape of HCC cells, it has become a potential therapeutic target for HCC in recent years. GEO database analysis showed that STAT3 levels in tumor tissues from non-responders were significantly higher than those in responders to sorafenib. Our studies demonstrated that STAT3 knockdown promoted sorafenib-induced ER stress-induced apoptosis. Importantly, the DNA released by dead HCC cells stimulated the cGAS-STING signaling pathway in CD103+ DCs and promoted type I interferon production, thus, enhancing the anti-tumor function of CD8+ T and NK cells. In conclusion, our results revealed that the combination strategy of sorafenib and STAT3 knockdown might be a potential treatment strategy for HCC, directly and efficiently disturbing the tumor features of HCC cells while improving the tumor microenvironment via the cGAS-STING-Type I IFNs axis of DCs, inducing anti-HCC immune responses.
Collapse
|
8
|
Mal’tseva VN, Goltyaev MV, Novoselov SV, Varlamova EG. Effects of Sodium Selenite and Dithiothreitol on Expression of Endoplasmic Reticulum Selenoproteins and Apoptosis Markers in MSF7 Breast Adenocarcinoma Cells. Mol Biol 2022. [DOI: 10.1134/s0026893322010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Features of the cytoprotective effect of selenium nanoparticles on primary cortical neurons and astrocytes during oxygen-glucose deprivation and reoxygenation. Sci Rep 2022; 12:1710. [PMID: 35110605 PMCID: PMC8810781 DOI: 10.1038/s41598-022-05674-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The study is aimed at elucidating the effect of selenium nanoparticles (SeNPs) on the death of cells in the primary culture of mouse cerebral cortex during oxygen and glucose deprivation (OGD). A primary cell culture of the cerebral cortex containing neurons and astrocytes was subjected to OGD and reoxygenation to simulate cerebral ischemia-like conditions in vitro. To evaluate the neuroprotective effect of SeNPs, cortical astrocytes and neurons were incubated for 24 h with SeNPs, and then subjected to 2-h OGD, followed by 24-h reoxygenation. Vitality tests, fluorescence microscopy, and real-time PCR have shown that incubation of primary cultured neurons and astrocytes with SeNPs at concentrations of 2.5–10 µg/ml under physiological conditions has its own characteristics depending on the type of cells (astrocytes or neurons) and leads to a dose-dependent increase in apoptosis. At low concentration SeNPs (0.5 µg/ml), on the contrary, almost completely suppressed the processes of basic necrosis and apoptosis. Both high (5 µg/ml) and low (0.5 µg/ml) concentrations of SeNPs, added for 24 h to the cells of cerebral cortex, led to an increase in the expression level of genes Bcl-2, Bcl-xL, Socs3, while the expression of Bax was suppressed. Incubation of the cells with 0.5 µg/ml SeNPs led to a decrease in the expression of SelK and SelT. On the contrary, 5 µg/ml SeNPs caused an increase in the expression of SelK, SelN, SelT, SelP. In the ischemic model, after OGD/R, there was a significant death of brain cells by the type of necrosis and apoptosis. OGD/R also led to an increase in mRNA expression of the Bax, SelK, SelN, and SelT genes and suppression of the Bcl-2, Bcl-xL, Socs3, SelP genes. Pre-incubation of cell cultures with 0.5 and 2.5 µg/ml SeNPs led to almost complete inhibition of OGD/R-induced necrosis and greatly reduced apoptosis. Simultaneously with these processes we observed suppression of caspase-3 activation. We hypothesize that the mechanisms of the protective action of SeNPs involve the activation of signaling cascades recruiting nuclear factors Nrf2 and SOCS3/STAT3, as well as the activation of adaptive pathways of ESR signaling of stress arising during OGD and involving selenoproteins SelK and SelT, proteins of the Bcl-2 family ultimately leading to inactivation of caspase-3 and inhibition of apoptosis. Thus, our results demonstrate that SeNPs can act as neuroprotective agents in the treatment of ischemic brain injuries.
Collapse
|
10
|
Rui T, Wang H, Li Q, Cheng Y, Gao Y, Fang X, Ma X, Chen G, Gao C, Gu Z, Song S, Zhang J, Wang C, Wang Z, Wang T, Zhang M, Min J, Chen X, Tao L, Wang F, Luo C. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res 2021; 70:e12704. [PMID: 33206394 DOI: 10.1111/jpi.12704] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence demonstrates that ferroptosis may be important in the pathophysiological process of traumatic brain injury (TBI). As a major hormone of the pineal gland, melatonin exerts many beneficial effects on TBI, but there is no information regarding the effects of melatonin on ferroptosis after TBI. As expected, TBI resulted in the time-course changes of ferroptosis-related molecules expression and iron accumulation in the ipsilateral cortex. Importantly, we found that treating with melatonin potently rescued TBI induced the changes mentioned above and improved functional deficits versus vehicle. Similar results were obtained with a ferroptosis inhibitor, liproxstatin-1. Moreover, the protective effect of melatonin is likely dependent on melatonin receptor 1B (MT2). Although ferritin plays a vital role in iron metabolism by storing excess cellular iron, its precise function in the brain, and whether it involves melatonin's neuroprotection remain unexplored. Considering ferritin H (Fth) is expressed predominantly in the neurons and global loss of Fth in mice induces early embryonic lethality, we then generated neuron-specific Fth conditional knockout (Fth-KO) mice, which are viable and fertile but have altered iron metabolism. In addition, Fth-KO mice were more susceptible to ferroptosis after TBI, and the neuroprotection by melatonin was largely abolished in Fth-KO mice. In vitro siFth experiments further confirmed the results mentioned above. Taken together, these data indicate that melatonin produces cerebroprotection, at least partly by inhibiting neuronal Fth-mediated ferroptosis following TBI, supporting the notion that melatonin is an excellent ferroptosis inhibitor and its anti-ferroptosis provides a potential therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Haochen Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Ying Cheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yuan Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xuexian Fang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuying Ma
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Guang Chen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Zhiya Gu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Shunchen Song
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zufeng Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Chen X, Chen R, Xu Y, Xia C. PLCγ1 inhibition combined with inhibition of apoptosis and necroptosis increases cartilage matrix synthesis in IL-1β-treated rat chondrocytes. FEBS Open Bio 2021; 11:435-445. [PMID: 33326693 PMCID: PMC7876495 DOI: 10.1002/2211-5463.13064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related, chronic degenerative disease. With the increasing median age of the population, this disease has become an important public health problem. New, disease-modifying therapies are needed. A potential novel molecular target is phospholipase Cγ1 (PLCγ1), a critical enzyme with important functions including calcium signaling regulation and cell proliferation. In rat chondrocytes treated with IL-1β (20 ng·mL-1 for 36 h), inhibition of PLCγ1 with U73122 (2 μm for 12 h) increased levels and expression of the cartilage matrix components Collagen2 and Aggrecan. This beneficial effect of PLCγ1 inhibition was counteracted by increased chondrocyte apoptosis and necroptosis, increased cell death, and increase levels of ROS, all potentially negative for OA. Combined treatment of IL-1β + U73122-treated chondrocytes with inhibitors of apoptosis (Z-VAD, 10 μm) and necroptosis (Nec-1, 30 μm) enhanced the increases in levels and expression of Collagen2 and Aggrecan, and prevented the increases in cell death and ROS levels. These results suggest that PLCγ1 inhibition may be a viable approach for an OA therapy, if combined with targeted inhibition of chondrocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
| | - Ri Chen
- School of MedicineXiamen UniversityChina
| | - Yang Xu
- Zhongshan HospitalXiamen UniversityChina
| | - Chun Xia
- Zhongshan HospitalXiamen UniversityChina
| |
Collapse
|
12
|
Zachariah M, Maamoun H, Milano L, Rayman MP, Meira LB, Agouni A. Endoplasmic reticulum stress and oxidative stress drive endothelial dysfunction induced by high selenium. J Cell Physiol 2020; 236:4348-4359. [PMID: 33241572 DOI: 10.1002/jcp.30175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Selenium is an essential trace element important for human health. A balanced intake is, however, crucial to maximize the health benefits of selenium. At physiological concentrations, selenium mediates antioxidant, anti-inflammatory, and pro-survival actions. However, supra-nutritional selenium intake was associated with increased diabetes risk leading potentially to endothelial dysfunction, the initiating step in atherosclerosis. High selenium causes apoptosis in cancer cells via endoplasmic reticulum (ER) stress, a mechanism also implicated in endothelial dysfunction. Nonetheless, whether ER stress drives selenium-induced endothelial dysfunction, remains unknown. Here, we investigated the effects of increasing concentrations of selenium on endothelial cells. High selenite reduced nitric oxide bioavailability and impaired angiogenesis. High selenite also induced ER stress, increased reactive oxygen species (ROS) production, and apoptosis. Pretreatment with the chemical chaperone, 4-phenylbutyrate, prevented the toxic effects of selenium. Our findings support a model where high selenite leads to endothelial dysfunction through activation of ER stress and increased ROS production. These results highlight the importance of tailoring selenium supplementation to achieve maximal health benefits and suggest that prophylactic use of selenium supplements as antioxidants may entail risk.
Collapse
Affiliation(s)
- Matshediso Zachariah
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Hatem Maamoun
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Larissa Milano
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lisiane B Meira
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Subburayan K, Thayyullathil F, Pallichankandy S, Cheratta AR, Galadari S. Superoxide-mediated ferroptosis in human cancer cells induced by sodium selenite. Transl Oncol 2020; 13:100843. [PMID: 32805675 PMCID: PMC7453065 DOI: 10.1016/j.tranon.2020.100843] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by an iron-dependent increase in reactive oxygen species (ROS). However, the role of ROS in the regulation of ferroptosis remains elusive. In this study, for the first time, we demonstrate that sodium selenite (SS), a well-established redox-active selenium compound, is a novel inducer of ferroptosis in a variety of human cancer cells. Potent ferroptosis inhibitors, such as ferrostatin-1 (Fer-1) and deferoxamine (DFO), rescue cells from SS-induced ferroptosis. Furthermore, SS down-regulates ferroptosis regulators; solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), and glutathione peroxidase 4 (GPx4), while it up-regulates iron accumulation and lipid peroxidation (LPO). These SS-induced ferroptotic responses are achieved via ROS, in particular superoxide (O2•−) generation. Antioxidants such as superoxide dismutase (SOD) and Tiron not only scavenged O2•− production, but also markedly rescued SLC7A11 down-regulation, GSH depletion, GPx4 inactivation, iron accumulation, LPO, and ferroptosis. Moreover, iron chelator DFO significantly reduces the O2•− production, indicating a positive feedback regulation between O2•− production and iron accumulation. Taken together, we have identified SS as a novel ferroptosis inducing agent in various human cancer models. Sodium selenite selectively induces ferroptosis in multiple human cancer cells. Sodium selenite inhibits system Xc− function and altered GSH homeostasis. Superoxide is the ROS molecule responsible for the sodium selenite-induced ferroptosis. Sodium selenite induces iron accumulation via superoxide dependent mechanism.
Collapse
Affiliation(s)
- Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Falk M, Bernhoft A, Reinoso-Maset E, Salbu B, Lebed P, Framstad T, Fuhrmann H, Oropeza-Moe M. Beneficial antioxidant status of piglets from sows fed selenomethionine compared with piglets from sows fed sodium selenite. J Trace Elem Med Biol 2020; 58:126439. [PMID: 31830704 DOI: 10.1016/j.jtemb.2019.126439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studies in mammals proved dietary organic selenium (Se) being superior to inorganic Se regarding effects on growth performance, antioxidative status, immune response, and Se homeostasis. However, the picture of possible effects of different Se sources and - levels can be expanded. The present field study evaluated the effects on weight gain, hematological and selected biochemical variables as well as plasma concentrations of vitamin E (vitE), total Se and selenobiomolecules in piglets throughout the suckling period. METHODS Piglets were monitored from birth to 38 days of age (d). The mother sows' diets were enriched with l-selenomethionine (SeMet-0.26 and -0.43 mg Se/kg feed) or sodium selenite (NaSe-0.40 and -0.60 mg Se/kg feed) from 1 month prior to farrowing until the end of lactation period. Piglets received pelleted feed supplemented with Se similarly to the sows' diets from one week of age. Selenite at 0.40 mg Se/kg (NaSe-0.40) represents a common Se source and -level in pig feed and served as control diet. RESULTS From 24d, piglets in SeMet-groups had higher mean body weight (BW) compared with piglets from sows fed NaSe-0.40. Furthermore, from five-d and above, piglets from sows fed NaSe-0.60 had significantly higher BW than offspring from sows fed NaSe-0.40. Neonatal piglets in group SeMet-0.43 had significantly lower red blood cell counts (RBC), hemoglobin (Hgb) and hematocrit (Hct) concentrations compared with piglets from sows fed with NaSe-0.40. Neonatal and 5d-old piglets in group SeMet-0.26 showed higher gamma-glutamyl transferase activity than piglets in group NaSe-0.40. From five d and above, group NaSe-0.60 excelled with increased specific hematological variables culminating at age 38d with increased Hct, mean corpuscular volume (MCV), and MC hemoglobin (MCH) as well as increased activities of aspartate transaminase and lactate dehydrogenase compared with the other groups. Generally, offspring in the SeMet groups had higher total Se-concentrations in plasma than those from sows fed selenite, and showed a dose-response effect on plasma Se-concentrations. Furthermore, SeMet-fed piglets had higher plasma levels of the selenoproteins (Sel) glutathione peroxidase 3 (GPx3) and SelP as well as selenoalbumin. Plasma vitE levels were significantly negatively correlated with RBC throughout trial period. CONCLUSIONS Maternal supplementation with SeMet during gestation influenced hematology and clinical biochemistry in neonatal piglets in a different way than in offspring from sows receiving selenite enriched diets. Growth performance was positively influenced by both dietary Se source and Se level. Higher plasma levels of GPx3 observed in piglets receiving SeMet probably improved the protection against birth or growth related oxidative stress. These might prime the piglets for demanding situations as indicated by higher weight gain in offspring from sows fed with SeMet-supplemented diets. Our results on some enzyme activities might indicate that piglets fed NaSe-0.60 had to cope with increased levels of oxidative stress compared with those originating from sows fed SeMet or lower dietary levels of selenite. We assume that combining inorganic and organic Se sources in complete feed for breeding sows might be beneficial fro reproduction and the offspring's performance.
Collapse
Affiliation(s)
- M Falk
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 4325, Sandnes, Norway.
| | - A Bernhoft
- Norwegian Veterinary Institute, 0454, Oslo, Norway
| | - Estela Reinoso-Maset
- Faculty of Environmental Sciences and Natural Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences (NMBU), 1433Ås, Norway
| | - B Salbu
- Faculty of Environmental Sciences and Natural Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences (NMBU), 1433Ås, Norway
| | - P Lebed
- Faculty of Environmental Sciences and Natural Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences (NMBU), 1433Ås, Norway
| | - T Framstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0454, Oslo, Norway
| | - H Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 4325, Sandnes, Norway
| |
Collapse
|
15
|
ZEA-induced autophagy in TM4 cells was mediated by the release of Ca 2+ activates CaMKKβ-AMPK signaling pathway in the endoplasmic reticulum. Toxicol Lett 2020; 323:1-9. [PMID: 31982503 DOI: 10.1016/j.toxlet.2020.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEA) is a prevalent non-steroidal estrogenic mycotoxin produced mainly by Fusarium contamination. Our previous study showed that ZEA induces the autophagy of Sertoli cells (SCs). However, the underlying mechanisms are still unknown. Several studies have indicated that the increasing level of cytoplasmic Ca2+ could induce autophagy through CaMKKβ and AMPK pathways. Thus in order to investigate the potential mechanism underlying ZEA-induced autophagy, the activity of calmodulin-dependent kinase kinase β(CaMKKβ)and AMP-activated protein kinase (AMPK) signaling pathway in ZEA-infected TM4 cells was studied. In the present study, ZEA activated the CaMKKβ and AMPK signaling pathways. The AMPK inhibitor and activator significantly inhibited and stimulated the effect of ZEA on AMPK, the transformation from LC3I to LC3II, and the distribution of LC3 dots. In addition, cytosolic calcium (Ca2+) was increased gradually with the concentration of ZEA. After treatment of ZEA-infected cells with 1, 2-bis (2-aminophenoxy) ethane-N, N, N', N'- tetraacetic acid- tetraac etoxymethyl ester (BAPTA-AM) and 2-aminoethyl diphenylborinate (2-APB), the intracellular concentration of Ca2+ reduced significantly. Also, the activities of CaMKKβ and AMPK and subsequent autophagy decreased. Moreover, the antioxidant NAC significantly decreased activities of AMPK and autophagy -related protein. Therefore, it can be speculated that ROS- mediated ER-stress induced by ZEA activates AMPK via Ca2+-CaMKKβ leading to autophagy in TM4 cells.
Collapse
|
16
|
Varlamova EG, Goltyaev MV, Fesenko EE. Protein Partners of Selenoprotein SELM and the Role of Selenium Compounds in Regulation of Its Expression in Human Cancer Cells. DOKL BIOCHEM BIOPHYS 2019; 488:300-303. [PMID: 31768845 DOI: 10.1134/s1607672919050065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 11/22/2022]
Abstract
The search for potential partners of human SELM in lysates of two cancer cell lines, HT-1080 (fibrosarcoma) and MCF-7 (breast adenocarcinoma), was carried out. Two cytoplasmic actin isoforms-cytoplasmic actin 1 (cytoskeleton β-actin) and cytoplasmic actin 2 (cytoskeletal γ-actin)-were identified as partners. In addition, the influence of two widely used antitumor selenium compounds (sodium selenite and methylseleninic acid) on the expression of SELM in cancer cells was studied. On the basis of the results obtained by real-time PCR and Western blotting, we concluded that 1 μM and 10 μM sodium selenite did not affect the expression of SELM in fibrosarcoma cells, whereas in breast adenocarcinoma cells 1 μM sodium selenite slightly increased expression and 10 μM sodium selenite significantly (approximately 2 times) decreased it. Methylseleninic acid in both cancer cell lines increased the SELM gene expression; the most pronounced effect was observed when fibrosarcoma cells were treated with 10 µM MSA (the expression of the hSelm gene increased almost 4 times).
Collapse
Affiliation(s)
- E G Varlamova
- Institute of Cell Biophysics Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia.
| | - M V Goltyaev
- Institute of Cell Biophysics Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - E E Fesenko
- Institute of Cell Biophysics Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| |
Collapse
|
17
|
Cai M, Yang Q, Li G, Sun S, Chen Y, Tian L, Dong H. Activation of cannabinoid receptor 1 is involved in protection against mitochondrial dysfunction and cerebral ischaemic tolerance induced by isoflurane preconditioning. Br J Anaesth 2019; 119:1213-1223. [PMID: 29045576 DOI: 10.1093/bja/aex267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background Isoflurane preconditioning (IPC) induces cerebral ischaemic tolerance, but the mechanism remains poorly understood. The aim of this study was to determine changes in mitochondrial function in the brain after IPC, and whether the cannabinoid receptor 1 (CB1R) could be involved in the mechanism of mitochondrial protection mediated by IPC. Methods Adult male Sprague-Dawley rats were pretreated with isoflurane 2% for 1 h day -1 , for 5 days consecutively, and then subjected to 120 min right middle cerebral artery occlusion. Cannabinoid receptor 1 expression in the cellular and mitochondrial membrane was measured. The CB1R agonist HU-210 was administered alone, or the antagonists AM251 and SR141716A were given to the animals before each preconditioning. Neurological scores, infarct volume, apoptosis, and mitochondrial function were examined after middle cerebral artery occlusion. Results Expression of CB1R on cellular and mitochondrial membranes was increased 6 h after preconditioning. Both IPC and HU-210 administration before middle cerebral artery occlusion improved neurological outcomes and reduced infarct volume. Isoflurane preconditioning increased the expression of the anti-apoptotic proteins Bcl-2 and Bcl-X L and reduced apoptosis in neurones. Isoflurane preconditioning and HU-210 also markedly preserved the activity of respiratory chain complexes, reduced mitochondrial radical generation, preserved mitochondrial membrane potential, and inhibited mitochondrial permeability transition pore opening. Cannabinoid receptor 1 antagonists abolished the improvement in mitochondrial function and the neuroprotective effects induced by IPC. Conclusions Our results indicate that IPC elicits brain ischaemic tolerance and mitochondrial protection by activating the CB1R, which provides a new mechanism for IPC-induced neuroprotection against cerebral ischaemia.
Collapse
Affiliation(s)
- M Cai
- Department of Anaesthesiology and Perioperative Medicine.,Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Q Yang
- Department of Anaesthesiology and Perioperative Medicine
| | - G Li
- Department of Anaesthesiology and Perioperative Medicine
| | - S Sun
- Department of Anaesthesiology and Perioperative Medicine
| | - Y Chen
- Department of Anaesthesiology and Perioperative Medicine
| | - L Tian
- Department of Anaesthesiology and Perioperative Medicine
| | - H Dong
- Department of Anaesthesiology and Perioperative Medicine
| |
Collapse
|
18
|
Li Q, Jia Y, Burris WR, Bridges PJ, Matthews JC. Forms of selenium in vitamin-mineral mixes differentially affect the expression of genes responsible for prolactin, ACTH, and α-MSH synthesis and mitochondrial dysfunction in pituitaries of steers grazing endophyte-infected tall fescue. J Anim Sci 2019; 97:631-643. [PMID: 30476104 DOI: 10.1093/jas/sky438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
The goal of this study was to test the hypothesis that sodium selenite (inorganic Se, ISe), SEL-PLEX (organic forms of Se, OSe), vs. a 1:1 blend (MIX) of ISe and OSe in a basal vitamin-mineral (VM) mix would differentially alter pituitary transcriptome profiles in growing beef steers grazing an endophyte-infected tall fescue (E+) pasture. Predominately Angus steers (BW = 183 ± 34 kg) were randomly selected from fall-calving cows grazing E+ pasture and consuming VM mixes that contained 35 ppm Se as ISe, OSe, or MIX forms. Steers were weaned, depleted of Se for 98 d, and subjected to summer-long common grazing of a 10.1 ha E+ pasture containing 0.51 ppm ergot alkaloids. Steers were assigned (n = 8 per treatment) to the same Se-form treatments on which they were raised. Selenium treatments were administered by daily top-dressing 85 g of VM mix onto 0.23 kg soyhulls, using in-pasture Calan gates. As previously reported, serum prolactin was greater for MIX (52%) and OSe (59%) steers vs. ISe. Pituitaries were collected at slaughter and changes in global and selected mRNA expression patterns determined by microarray and real-time reverse transcription PCR analyses, respectively. The effects of Se treatment on relative gene expression were subjected to one-way ANOVA. The form of Se affected the expression of 542 annotated genes (P < 0.005). Integrated pathway analysis found a canonical pathway network between prolactin and pro-opiomelanocortin (POMC)/ACTH/α-melanocyte-stimulating hormone (α-MSH) synthesis-related proteins and that mitochondrial dysfunction was a top-affected canonical pathway. Targeted reverse transcription-PCR analysis found that the relative abundance of mRNA encoding prolactin and POMC/ACTH/α-MSH synthesis-related proteins was affected (P < 0.05) by the form of Se, as were (P ≤ 0.05) mitochondrial dysfunction-related proteins (CYB5A, FURIN, GPX4, and PSENEN). OSe steers appeared to have a greater prolactin synthesis capacity (more PRL mRNA) vs. ISe steers through decreased dopamine type two receptor signaling (more DRD2 mRNA), whereas MIX steers had a greater prolactin synthesis capacity (more PRL mRNA) and release potential by increasing thyrotropin-releasing hormone concentrations (less TRH receptor mRNA) than ISe steers. OSe steers also had a greater ACTH and α-MSH synthesis potential (more POMC, PCSK2, CPE, and PAM mRNA) than ISe steers. We conclude that form of Se in VM mixes altered expression of genes responsible for prolactin and POMC/ACTH/α-MSH synthesis, and mitochondrial function, in pituitaries of growing beef steers subjected to summer-long grazing an E+ pasture.
Collapse
Affiliation(s)
- Qing Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Yang Jia
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Walter R Burris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Xiao Y, Xu S, Zhao S, Liu K, Lu Z, Hou Z. Protective effects of selenium against zearalenone-induced apoptosis in chicken spleen lymphocyte via an endoplasmic reticulum stress signaling pathway. Cell Stress Chaperones 2019; 24:77-89. [PMID: 30374880 PMCID: PMC6363622 DOI: 10.1007/s12192-018-0943-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se), an antioxidant agent, provides significant protection from reactive oxygen species (ROS)-induced cell damage in vivo and in vitro. However, it is unclear whether Se can protect against zearalenone (ZEN)-induced apoptosis in chicken spleen lymphocyte. In this study, we investigated the underlying mechanism of the apoptosis induced by ZEN in chicken spleen lymphocyte and further evaluated the protective mechanism of Se on ZEN-induced apoptosis. The results show that ZEN induced an increase in ROS generation and lipid peroxidation, and a decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH). The results of apoptosis morphologically from acridine orange/ethidium bromide (AO/EB) fluorescent staining and flow cytometry analysis show apparent apoptosis in the ZEN-treated group, and was confirmed by the upregulation of caspase-3, -12 and downregulation of Bcl-2. Meanwhile, ZEN activated the endoplasmic reticulum (ER) stress by upregulating ER stress-related molecular sensors (GRP78, ATF6, ATF4, IRE). However, co-treatment with Se effectively blocked ROS generation, improved antioxdative capacity, and reversed apoptosis and ER stress-related genes and protein expression. Taken together, these data suggest that oxidative stress and ER stress play a vital role in ZEN-induced apoptosis, and Se had a significant preventive effect on ZEN-induced apoptosis in chicken spleen lymphocyte via ameliorating the ER stress signaling pathway.
Collapse
Affiliation(s)
- Yinxia Xiao
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Northeast Agricultural 8 University, Harbin, 150030, China
| | - Shiwen Xu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Northeast 11 Agricultural University, Harbin, 150030, China
| | - Shuchen Zhao
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Northeast Agricultural 8 University, Harbin, 150030, China
| | - Kexiang Liu
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Northeast Agricultural 8 University, Harbin, 150030, China
| | - Zhanjun Lu
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Northeast Agricultural 8 University, Harbin, 150030, China
| | - Zhenzhong Hou
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Northeast Agricultural 8 University, Harbin, 150030, China.
- College of Veterinary Medicine, Northeast Agricultural University, Animal Hospital, NO.59 Wood Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
20
|
Xu S, Zheng J, Wu Z, Liu M, Wang Z. Degradation of p-chloroaniline using an electrochemical ceramic microfiltration membrane with built-in electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Falk M, Bernhoft A, Framstad T, Salbu B, Wisløff H, Kortner TM, Kristoffersen AB, Oropeza-Moe M. Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. J Trace Elem Med Biol 2018; 50:527-536. [PMID: 29673733 DOI: 10.1016/j.jtemb.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 01/31/2023]
Abstract
The study was conducted to compare effects of different dietary Se sources (sodium selenite [NaSe], Se-enriched yeast [Se yeast] or L-selenomethionine [SeMet]) and one Se-deficient control diet on the expression of selected genes, hematological and clinical biochemical parameters, and muscle morphology in two parallel trials with finisher pigs. Se concentrations in blood plasma and tissues were also monitored. From the pigs in one of the parallel groups, muscle samples obtained from Musculus longissimus dorsi (LD) before and during the trial were examined. The pigs in the other parallel group were challenged once with lipopolysaccharide (LPS) intravenously. Transcriptional analyses of LD showed that selenogenes SelenoW and H were higher expressed in pigs fed Se-supplemented diets compared with control. Furthermore, the expression of interferon gamma and cyclooxygenase 2 was lower in the Se-supplemented pigs versus control. In whole blood samples prior to LPS, SelenoN, SelenoS and thioredoxin reductase 1 were higher expressed in pigs fed NaSe supplemented feed compared with the other groups, possibly indicating a higher level of oxidative stress. After LPS exposure glutathione peroxidase 1 and SelenoN were more reduced in pigs fed NaSe compared with pigs fed organic Se. Products of most above-mentioned genes are intertwined with the oxidant-antioxidant system. No significant effects of Se-source were found on hematologic parameters or microscopic anatomy. The Se-concentrations in various skeletal muscles and heart muscle were significantly different between the groups, with highest concentrations in pigs fed SeMet, followed by those fed Se yeast, NaSe, and control diet. Consistent with previous reports our results indicate that dietary Se at adequate levels can support the body's antioxidant system. Our results indicate that muscle fibers of pigs fed organic Se are less vulnerable to oxidative stress compared with the other groups.
Collapse
Affiliation(s)
- Michaela Falk
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Kyrkjevegen 332/334, 4325, Sandnes, Norway.
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway.
| | - Tore Framstad
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Campus Adamstuen, NMBU, P.O. Box 8146 Dep, NO-0033, Oslo, Norway.
| | - Brit Salbu
- Department of Environmental Sciences/CERAD CoE, Campus Ås, NMBU, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Helene Wisløff
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway.
| | - Trond M Kortner
- Department of Basic Science and Aquatic Medicine, NMBU, P.O. Box 8146 Dep, NO-0033, Oslo, Norway.
| | | | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Kyrkjevegen 332/334, 4325, Sandnes, Norway.
| |
Collapse
|
22
|
Zhang T, Zhao G, Zhu X, Jiang K, Wu H, Deng G, Qiu C. Sodium selenite induces apoptosis via ROS-mediated NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis in 4T1 cells. J Cell Physiol 2018; 234:2511-2522. [PMID: 30218457 DOI: 10.1002/jcp.26783] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
Sodium selenite (SSE), a source of inorganic selenium, has been widely used as a clinical cancer treatment, but the precise molecular mechanisms of SSE remain to be elucidated. Our in vitro experiments have confirmed that SSE treatment causes a transient increase in intracellular reactive oxygen species (ROS) levels, resulting in the inhibition of nuclear transcription factor-κB (NF-κB) signaling and p65 and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha phosphorylation levels in 4T1 cells. The inhibition of NF-κB subsequently increased the expression of the apoptosis gene B-cell lymphoma-2-associated X (Bax) and downregulated the transcription of antiapoptosis genes, such as B-cell lymphoma-2, cellular inhibitor of apoptosis 1, and X-linked inhibitor of apoptosis. Additionally, the accumulation of ROS caused mitochondrial dysfunction, leading to the activation of caspase-9 and -3, thereby resulting in apoptosis. However, modulation of the ROS level by the chemical inhibitor N-acetyl-cysteine reversed these events. Similarly, in vitro murine syngeneic breast tumor models showed that SSE inhibits tumor growth by promoting apoptosis. These results indicate that SSE induces apoptosis via ROS-mediated inhibition of NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages. Biomaterials 2018; 178:517-526. [DOI: 10.1016/j.biomaterials.2018.03.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/25/2022]
|
24
|
Kuznetsova YP, Goltyaev MV, Gorbacheva OS, Novoselov SV, Varlamova EG, Fesenko EE. Influence of Sodium Selenite on the mRNA Expression of the Mammalian Selenocysteine-Containing Protein Genes in Testicle and Prostate Cancer Cells. DOKL BIOCHEM BIOPHYS 2018; 480:131-134. [PMID: 30008092 DOI: 10.1134/s1607672918030018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/21/2022]
Abstract
The sodium selenite concentration that reduces the viability of Du-145 human prostate adenocarcinoma cells and F-9 mouse testicular teratocarcinoma cells was determined. We investigated the effect of sodium selenite on the mRNA expression level of the genes encoding mammalian selenocysteine-containing glutathione peroxidases and thioredoxin reductases (key antioxidant enzymes involved in the regulation of intracellular thiol redox balance), endoplasmic reticulum selenoproteins, and selenoproteins located in the testes and prostate.
Collapse
Affiliation(s)
- Yu P Kuznetsova
- Voronezh State University of Engineering Technology, Voronezh, 394036, Russia
| | - M V Goltyaev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia.
| | - O S Gorbacheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - S V Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - E G Varlamova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - E E Fesenko
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| |
Collapse
|
25
|
Varlamova EG, Goltyaev MV, Kuznetsova JP. Effect of Sodium Selenite on Gene Expression of SELF, SELW, and TGR Selenoproteins in Adenocarcinoma Cells of the Human Prostate. Mol Biol 2018. [DOI: 10.1134/s0026893318030147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Inhibitory effects of selenium on cadmium-induced cytotoxicity in PC12 cells via regulating oxidative stress and apoptosis. Food Chem Toxicol 2018; 114:180-189. [DOI: 10.1016/j.fct.2018.02.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/30/2022]
|
27
|
Rahman MM, Uson-Lopez RA, Sikder MT, Tan G, Hosokawa T, Saito T, Kurasaki M. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis. CHEMOSPHERE 2018; 196:453-466. [PMID: 29324385 DOI: 10.1016/j.chemosphere.2017.12.149] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Graduate School of Environmental Science, Hokkaido University, Japan; Department of Environmental Sciences, Jahangirnagar University, Bangladesh
| | | | | | - Gongxun Tan
- Graduate School of Environmental Science, Hokkaido University, Japan
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Japan; Faculty of Environmental Earth Science, Hokkaido University, Japan.
| |
Collapse
|
28
|
Koronowicz AA, Drozdowska M, Wielgos B, Piasna-Słupecka E, Domagała D, Dulińska-Litewka J, Leszczyńska T. The effect of "NutramilTM Complex," food for special medical purpose, on breast and prostate carcinoma cells. PLoS One 2018; 13:e0192860. [PMID: 29444163 PMCID: PMC5812662 DOI: 10.1371/journal.pone.0192860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
NutramilTM Complex is a multicomponent food product that meets the requirements of a food for special medical purpose. As a complete, high-energy diet it consists of properly balanced nutrients, vitamins and minerals. The aim of this study was to assess the effect of NutramilTM Complex on breast and prostate carcinoma cells. Our results showed that NutramilTM Complex reduced the viability and proliferation of breast and prostate cancer cells and that this process was associated with the induction of apoptosis via activation of caspase signalling. Data showed elevated levels of p53 tumour suppressor, up-regulation of p38 MAPK and SAPK / JNK proteins and downregulation of anti-apoptotic ERK1/2, AKT1 and HSP27. Treatment with NutramilTM Complex also affected the expression of the BCL2 family genes. Results also showed down-regulation of anti-apoptotic BCL-2 and up-regulation of pro-apoptotic members such as BAX, BAD, BID. In addition, we also observed regulation of many other genes, including Iκβα, Chk1 and Chk2, associated with apoptotic events. Taken together, our results suggest activation of the mitochondrial apoptotic pathway as most likely mechanism of anti-carcinogenic activity of NutramilTM Complex.
Collapse
Affiliation(s)
- Aneta A. Koronowicz
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Mariola Drozdowska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | | | - Ewelina Piasna-Słupecka
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Dominik Domagała
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | | | - Teresa Leszczyńska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| |
Collapse
|
29
|
Gao X, Guo W, Ge L, Kong F, Xu K, Tang B. Double-ratiometric fluorescence imaging of H2Se and O2˙− under hypoxia for exploring Na2SeO3-induced HepG2 cells' apoptosis. RSC Adv 2018; 8:40984-40988. [PMID: 35557927 PMCID: PMC9091642 DOI: 10.1039/c8ra08142e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Sodium selenite (Na2SeO3), as an anti-tumor drug for inducing tumor cells' apoptosis, has been widely studied under normoxic conditions and has been shown to exhibit oxidative stress process-induced apoptosis. However, since the real tumor environment is hypoxic, the actual mechanism is still unclear. Hence, considering the main metabolite of Na2SeO3 in the metabolic process to be hydrogen selenide (H2Se) and also that it can be converted to superoxide anion (O2˙−) instantaneously in the presence of oxygen, a dual-ratiometric fluorescence imaging system for simultaneous monitoring of the changes of H2Se and O2˙− induced by Na2SeO3-guided tumor cell apoptosis under hypoxic conditions was constructed. Two molecular probes NIR-H2Se and dihydroethidium were used to detect H2Se and O2˙−, respectively, whereas Rhodamine 110 was used as the reference fluorophore. Notably, H2Se levels significantly increased under hypoxic conditions, but there was no change in the level of O2˙−, which is inconsistent with the results of the previous researches. Therefore, we hypothesize that the mechanism of Na2SeO3-induced apoptosis for tumor cells is caused by reductive stress; also, this method can be applied for the future study of other anti-cancer selenium compounds. Sodium selenite (Na2SeO3), as an anti-tumor drug for inducing tumor cells' apoptosis, has been widely studied under normoxic conditions and has been shown to exhibit oxidative stress process-induced apoptosis.![]()
Collapse
Affiliation(s)
- Xiaonan Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Wenfei Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Lihong Ge
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Fanpeng Kong
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Kehua Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| |
Collapse
|
30
|
Bi L, Yan X, Yang Y, Qian L, Tian Y, Mao JH, Chen W. The component formula of Salvia miltiorrhiza and Panax ginseng induces apoptosis and inhibits cell invasion and migration through targeting PTEN in lung cancer cells. Oncotarget 2017; 8:101599-101613. [PMID: 29254189 PMCID: PMC5731899 DOI: 10.18632/oncotarget.21354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Lung cancer still remains the leading cause of cancer-related death worldwide. It is an urgent need for development of novel therapeutic agents to improve current treatment of this disease. Here we investigate whether the effective component formula of traditional Chinese Medicine could serve as new potential therapeutic drugs to treat lung cancer. We optimize the most effective component formula of Salvia miltiorrhiza and Panax Ginseng (FMG), which is composed of Salvianolic acid A, 20(S)-Ginsenoside and Ginseng polysaccharide. We discovered that FMG selectively inhibited lung cancer cell proliferation and induced apoptosis but had no any cytotoxic effects on normal lung epithelial BEAS-2B cells. Moreover, FMG inhibited lung cancer cell migration and invasion. Mechanistically, we found that FMG significantly promoted p-PTEN expression and subsequently inhibited PI3K/AKT signaling pathway. The phosphatase activity of PTEN protein was increased after FMG bound to PTEN protein, indicating that PTEN is one of the FMG targeted proteins. In addition, FMG regulated expression of some marker proteins relevant to cell apoptosis, migration and invasion. Collectively, these results provide mechanistic insight into the anti-NSCLC of FMG by enhancing the phosphatase activity of PTEN, and suggest that FMG could be as a potential option for lung cancer treatment.
Collapse
Affiliation(s)
- Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaojing Yan
- Changzhou Affiliated Hospital, Nanjing University of Chinese Medicine, Changzhou 213003, China
| | - Ye Yang
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Qian
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan Tian
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weiping Chen
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
31
|
Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget 2017; 8:18832-18847. [PMID: 27902968 PMCID: PMC5386651 DOI: 10.18632/oncotarget.13600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Glutaminolysis is important for metabolism and biosynthesis of cancer cells, and GLS is essential in the process. Selenite is widely regarded as a chemopreventive agent against cancer risk. Emerging evidence suggests that it also has chemotherapeutic potential in various cancer types, but the mechanism remains elusive. We demonstrate for the first time that supranutritional dose of selenite suppresses glutaminolysis by promoting GLS1 protein degradation and apoptosis. Mechanistically, selenite promotes association of APC/C-CDH1 with GLS1 and leads to GLS1 degradation by ubiquitination, this process is related to induction of PTEN expression. In addition, GLS1 expression is increased in human colorectal cancer tissues compared with normal mucosae. Our data provide a novel mechanistic explanation for the anti-cancer effect of selenite from a perspective of cell metabolism. Moreover, our results indicate that glutaminolysis especially GLS1 could be an attractive therapeutic target in colorectal cancer.
Collapse
|
32
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
33
|
Zhao G, Jiang K, Wu H, Qiu C, Deng G, Peng X. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFκB signalling. J Cell Mol Med 2017; 21:2796-2808. [PMID: 28524642 PMCID: PMC5661256 DOI: 10.1111/jcmm.13194] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes severe inflammation in various infectious diseases, leading to high mortality. The clinical application of antibiotics has gained a significant curative effect. However, it has led to the emergence of various resistant bacteria. Therefore, in this study, we investigated the protective effect of polydatin (PD), a traditional Chinese medicine extract, on S. aureus lipoteichoic acid (LTA)-induced injury in vitro and in vivo. First, a significant improvement in the pathological conditions of PD in vivo was observed, suggesting that PD had a certain protective effect on LTA-induced injury in a mouse model. To further explore the underlying mechanisms of this protective effect of PD, LTA-induced murine macrophages were used in this study. The results have shown that PD could reduce the NF-κB p65, and IκBα phosphorylation levels increased by LTA, resulting in a decrease in the transcription of pro-inflammatory factors, such as TNF-α, IL-1β and IL-6. However, LTA can not only activate NF-κB through the recognition of TLR2 but also increase the level of intracellular reactive oxygen species (ROS), thereby activating NF-κB signalling. We also detected high levels of ROS that activate caspases 9 and 3 to induce apoptosis. In addition, using a specific NF-κB inhibitor that could attenuate apoptosis, namely NF-κB p65, acted as a pro-apoptotic transcription factor in LTA-induced murine macrophages. However, PD could inhibit the generation of ROS and NF-κB p65 activation, suggesting that PD suppressed LTA-induced injury by attenuating ROS generation and TLR2-NFκB signalling.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Shigemi Z, Manabe K, Hara N, Baba Y, Hosokawa K, Kagawa H, Watanabe T, Fujimuro M. Methylseleninic acid and sodium selenite induce severe ER stress and subsequent apoptosis through UPR activation in PEL cells. Chem Biol Interact 2017; 266:28-37. [PMID: 28161410 DOI: 10.1016/j.cbi.2017.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 01/30/2017] [Indexed: 11/15/2022]
Abstract
Selenium compounds such as methylseleninic acid (MSA) and sodium selenite (SS) have been widely evaluated as potential anti-cancer agents in the clinical setting. Primary effusion lymphoma (PEL) is a non-Hodgkin's B-cell lymphoma, associated with immunosuppressed individuals, such as post-transplant or AIDS patients. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of PEL and Kaposi's sarcoma. Here, we found that MSA and SS markedly inhibited the growth of PEL cells compared with KSHV-uninfected B cells. MSA and SS caused ER stress, inducing the unfolded protein response (UPR) pathway in PEL cells that resulted in pro-apoptotic UPR, and finally apoptosis. The expression of UPR-related molecules (GRP78 and GADD34) and pro-apoptotic UPR molecules (CHOP, Bim, or Puma) were augmented in PEL cells treated with MSA or SS. In addition, these compounds induced the activation of caspase-4, an ER stress specific caspase, as well as caspase-3,-7, and -9 in PEL cells. We confirmed that thapsigargin which is an inducer of ER stress, dramatically decreased the viability of PEL cells, compared with KSHV-uninfected Ramos cells. We also investigated whether MSA or SS caused oxidization of cellular proteins in PEL cells. MSA and SS increased the levels of oxidative proteins in PEL cells, and the anti-oxidant agent (N-acetyl-l-cysteine) restored cell viability and suppressed caspase-7 activation in PEL cells treated with MSA or SS. Finally, we confirmed that MSA and SS induced neither lytic replication nor viral production in PEL cells. Taken together, MSA and SS could serve as lead compounds for the development of novel and effective drugs against PEL without the risk of de novo KSHV production.
Collapse
Affiliation(s)
- Zenpei Shigemi
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan
| | - Kazuki Manabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan
| | - Naoko Hara
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan
| | - Yusuke Baba
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan
| | - Hiroki Kagawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan
| | - Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412, Japan.
| |
Collapse
|
35
|
Jiang ZH, Lin HJ, Yao HD, Zhang ZW, Fu J, Xu SW. SelW protects against H2O2-induced liver injury in chickens via inhibiting inflammation and apoptosis. RSC Adv 2017. [DOI: 10.1039/c6ra27911b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selenium (Se) is recognized as a necessary trace mineral in animal diets. Se deficiency induces a number of diseases and injuries in chickens including liver damage, which is related to oxidative stress.
Collapse
Affiliation(s)
- Zhi-Hui Jiang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Hong-Jin Lin
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Hai-Dong Yao
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Zi-Wei Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Jing Fu
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Shi-Wen Xu
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| |
Collapse
|
36
|
Pan GZ, Zhai FX, Lu Y, Fang ZG, Fan RF, Liu XF, Lin DJ. RUNX3 plays an important role in As2O3‑induced apoptosis and allows cells to overcome MSC‑mediated drug resistance. Oncol Rep 2016; 36:1927-38. [PMID: 27498627 DOI: 10.3892/or.2016.5005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/22/2016] [Indexed: 11/05/2022] Open
Abstract
The interaction between bone marrow stromal cells and leukemia cells is critical for the persistence and progression of leukemia, and this interaction may account for residual disease. However, the link between leukemia cells and their environment is still poorly understood. In our study, runt‑related transcription factor 3 (RUNX3) was identified as a novel target gene affected by As2O3 and involved in mesenchymal stem cell (MSC)‑mediated protection of leukemia cells from As2O3‑induced apoptosis. We observed induction of RUNX3 expression and the translocation of RUNX3 into the nucleus after As2O3 treatment in leukemia cells. In K562 chronic myeloid leukemia cells, downregulation of endogenous RUNX3 compromised As2O3‑induced growth inhibition, cell cycle arrest, and apoptosis. In the presence of MSC, As2O3‑induced expression of RUNX3 was reduced significantly and this reduction was modulated by CXCL12/CXCR4 signaling. Furthermore, overexpression of RUNX3 restored, at least in part, the sensitivity of leukemic cells to As2O3. We conclude that RUNX3 plays an important role in As2O3‑induced cellular responses and allows cells to overcome MSC‑mediated drug resistance. Therefore, RUNX3 is a promising target for therapeutic approaches to overcome MSC‑mediated drug resistance.
Collapse
Affiliation(s)
- Guo-Zheng Pan
- Renal Transplantation Center, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Feng-Xian Zhai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yin Lu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi-Gang Fang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Rui-Fang Fan
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang-Fu Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dong-Jun Lin
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
37
|
Guerram M, Jiang ZZ, Yousef BA, Hamdi AM, Hassan HM, Yuan ZQ, Luo HW, Zhu X, Zhang LY. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget 2016; 6:21865-77. [PMID: 26068969 PMCID: PMC4673132 DOI: 10.18632/oncotarget.4156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/14/2015] [Indexed: 01/21/2023] Open
Abstract
Increased lipogenesis and protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression and is under intense investigation as a potential antineoplastic target. Acetyltanshinone IIA (ATA) is a compound that was obtained from chemical modifications of tanshinone IIA (TIIA), a potent anticancer agent extracted from the dried roots of the Chinese herbal medicine Salvia miltiorrhiza Bunge. A previous investigation indicated that ATA is more effective in inhibiting the growth of breast cancer especially cells with HER2 overexpression. However, the molecular mechanism(s) mediating this cytotoxic effect on HER2-positive breast cancer remained undefined. Studies described here report that ATA induced G1/S phase arrest and apoptosis in the HER2-positive MDA-MB-453, SK-BR-3, and BT-474 breast cancer cell lines. Mechanistic investigations revealed that the ATA-induced apoptosis effect is associated with remarkably down-regulation of receptor tyrosine kinases (RTKs) EGFR/HER2 and inhibition of their downstream pro-survival signaling pathways. Interestingly, ATA was found to trigger oxidative and endoplasmic reticulum (ER) stresses and to activate AMP activated protein kinase (AMPK) leading to inactivation of key enzymes involved in lipid and protein biogenesis. Intraperitoneal administration of ATA significantly inhibited the growth of MDA-MB-453 xenografts in athymic mice without causing weight loss and any other side effects. Additionally, transwell migration, invasion, and wound healing assays revealed that ATA could suppress tumor angiogenesis in vitro. Taken together, our data suggest that ATA may have broad utility in the treatment of HER2-overexpressed breast cancers.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Bashir Alsiddig Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Aida Mejda Hamdi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hozeifa Mohamed Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Qiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Hou-Wei Luo
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiong Zhu
- Medical and Chemical Institute, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
38
|
Venkatesan R, Subedi L, Yeo EJ, Kim SY. Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway. Neurochem Int 2016; 99:133-146. [PMID: 27346436 DOI: 10.1016/j.neuint.2016.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
Cholinergic activity plays a vital role in cognitive function, and is reduced in individuals with neurodegenerative diseases. Scopolamine, a muscarinic cholinergic antagonist, has been employed in many studies to understand, identify, and characterize therapeutic targets for Alzheimer's disease (AD). Scopolamine-induced dementia is associated with impairments in memory and cognitive function, as seen in patients with AD. The current study aimed to investigate the molecular mechanisms underlying scopolamine-induced cholinergic neuronal dysfunction and the neuroprotective effect of lactucopicrin, an inhibitor of acetylcholine esterase (AChE). We investigated apoptotic cell death, caspase activation, generation of reactive oxygen species (ROS), mitochondrial dysfunction, and the expression levels of anti- and pro-apoptotic proteins in scopolamine-treated C6 cells. We also analyzed the expression levels of antioxidant enzymes and nuclear factor (erythroid-derived 2)-like 2 (NRF2) in C6 cells and neurite outgrowth in N2a neuroblastoma cells. Our results revealed that 1 h scopolamine pre-treatment induced cytotoxicity by increasing apoptotic cell death via oxidative stress-mediated caspase 3 activation and mitochondrial dysfunction. Scopolamine also downregulated the expression the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase, and the transcription factor NRF2. Lactucopicrin treatment protected C6 cells from scopolamine-induced toxicity by reversing the effects of scopolamine on those markers of toxicity. In addition, scopolamine attenuated the secretion of neurotrophic nerve growth factor (NGF) in C6 cells and neurite outgrowth in N2a cells. As expected, lactucopicrin treatment enhanced NGF secretion and neurite outgrowth. Our study is the first to show that lactucopicrin, a potential neuroprotective agent, ameliorates scopolamine-induced cholinergic dysfunction via NRF2 activation and subsequent expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Ramu Venkatesan
- Lab of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Lalita Subedi
- Lab of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, #191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun Yeou Kim
- Lab of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Inchon 21565, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
39
|
Yan X, Zhang L, Cao Y, Yao W, Tang Y, Ding A. An Ingenol Derived from Euphorbia kansui Induces Hepatocyte Cytotoxicity by Triggering G0/G1 Cell Cycle Arrest and Regulating the Mitochondrial Apoptosis Pathway in Vitro. Molecules 2016; 21:molecules21060813. [PMID: 27338329 PMCID: PMC6274136 DOI: 10.3390/molecules21060813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022] Open
Abstract
Natural product lingenol, a purified diterpenoid compound derived from the root of Euphorbia kansui, exerts serious hepatotoxicity; however, the molecular mechanisms remain to be defined. In the present study, cell counting Kit-8 (CCK-8), inverted phase contrast microscope and flow cytometry were used to demonstrate that lingenol significantly inhibited L-O2 cells proliferation, and induced cell cycle arrest and apoptosis. Moreover, the results investigated that lingenol markedly disrupted mitochondrial functions by high content screening (HCS). In addition, the up-regulation of cytochrome c, AIF and Apaf-1 and activation of caspases were found in L-O2 cells detected by Western blotting and ELISA assay, which was required for lingenol activation of cytochrome c-mediated caspase cascades and AIF-mediated DNA damage. Mechanistic investigations revealed that lingenol significantly down-regulated the Bcl-2/Bax ratio and enhanced the reactive oxygen species (ROS) in L-O2 cells. These data collectively indicated that lingenol modulation of ROS and Bcl-2/Bax ratio led to cell cycle arrest and mitochondrial-mediated apoptosis in L-O2 cells in vitro. All of these results will be helpful to reveal the hepatotoxicity mechanism of Euphorbia kansui and to effectively guide safer and better clinical application of this herb.
Collapse
Affiliation(s)
- Xiaojing Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou 213003, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Anwei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
40
|
Wang Q, Li W, Qian D, Li Y, Bao N, Gu H, Yu C. Paper–based analytical device for detection of extracellular hydrogen peroxide and its application to evaluate drug–induced apoptosis. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Abstract
Stress granules (SGs) are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se) induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1). In this work, we show that human immunodeficiency virus type 1 (HIV-1) Gag is able to block the assembly of type II noncanonical SGs to facilitate continued Gag protein synthesis. We demonstrate that expression of Gag reduces the amount of hypophosphorylated 4EBP1 associated with the 5′ cap potentially through an interaction with its target, eIF4E. These results suggest that the assembly of SGs is an important host antiviral defense that HIV-1 has evolved for inhibition through several distinct mechanisms. The antiviral stress response is an important host defense that many viruses, including HIV-1, have evolved to evade. Selenite induces a block in translation and leads to stress granule assembly through the sequestration of eIF4E by binding hypophosphorylated 4EBP1. In this work, we demonstrate that in the face of selenite-induced stress, HIV-1 is able to maintain Gag mRNA translation and to elicit a blockade to selenite-induced stress granule assembly by altering the amount of hypophosphorylated 4EBP1 on the 5′ cap.
Collapse
|
42
|
Kim J, Yun M, Kim E, Jung D, Won G, Kim B, Jung JH, Kim S. Decursin enhances TRAIL-induced apoptosis through oxidative stress mediated- endoplasmic reticulum stress signalling in non-small cell lung cancers. Br J Pharmacol 2016; 173:1033-44. [PMID: 26661339 PMCID: PMC5341238 DOI: 10.1111/bph.13408] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL-induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. EXPERIMENTAL APPROACH Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. KEY RESULTS Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL-resistant non-small-cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer-binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down-regulated expression of survivin and Bcl-xL in TRAIL-resistant NSCLC cells. CONCLUSIONS AND IMPLICATIONS ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL-resistant NSCLC cell lines, partly via up-regulation of DR5.
Collapse
Affiliation(s)
- Jaekwang Kim
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Miyong Yun
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Eun‐Ok Kim
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Deok‐Beom Jung
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Gunho Won
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Bonglee Kim
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Ji Hoon Jung
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Sung‐Hoon Kim
- College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
43
|
Role of MnSOD in propofol protection of human umbilical vein endothelial cells injured by heat stress. J Anesth 2016; 30:410-9. [DOI: 10.1007/s00540-015-2129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/20/2015] [Indexed: 12/25/2022]
|
44
|
Wang Y, Hao H, Liu H, Wang Y, Li Y, Yang G, Ma J, Mao C, Zhang S. Selenite-Releasing Bone Mineral Nanoparticles Retard Bone Tumor Growth and Improve Healthy Tissue Functions In Vivo. Adv Healthc Mater 2015; 4:1813-8. [PMID: 26101804 DOI: 10.1002/adhm.201500307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/24/2015] [Indexed: 01/15/2023]
Abstract
Selenite-doped bone mineral nanoparticles can retard the growth of osteosarcoma in a nude mice model, through sustained release of selenite ions. The selenite ions released from the nanoparticles through a degradation-mediated fashion inhibit tumor metastasis. Blood routine analysis indicates that selenite ions can also improve the functions of liver, kidney, and heart.
Collapse
Affiliation(s)
- Yanhua Wang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Haoming Liu
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Yifan Wang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Yan Li
- Department of Oncology; Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center; Wuhan 430074 China
| | - Gaojie Yang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jun Ma
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry; Stephenson Life Sciences Research Center; University of Oklahoma; Norman Oklahoma 73019 USA
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Biomedical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| |
Collapse
|
45
|
Hong YH, Uddin MH, Jo U, Kim B, Song J, Suh DH, Kim HS, Song YS. ROS Accumulation by PEITC Selectively Kills Ovarian Cancer Cells via UPR-Mediated Apoptosis. Front Oncol 2015; 5:167. [PMID: 26284193 PMCID: PMC4517521 DOI: 10.3389/fonc.2015.00167] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/08/2015] [Indexed: 12/11/2022] Open
Abstract
Unfolded protein response (UPR) is crucial for both survival and death of mammalian cells, which is regulated by reactive oxygen species (ROS) and nutrient depletion. In this study, we demonstrated the effect of ROS-accumulation, induced by β-phenethyl isothiocyanate (PEITC), on UPR-mediated apoptosis in ovarian cancer cells. We used ovarian cancer cell lines, PA-1 and SKOV-3, with different p53 status (wild- and null-type, respectively). PEITC caused increased ROS-accumulation and inhibited proliferation selectively in ovarian cancer cells, and glutathione (GSH) depletion in SKOV-3. However, PEITC did not cause any effect in normal ovarian epithelial cells and peripheral blood mononuclear cells. After 48 h of PEITC treatment (5 μM), apoptotic cell death was shown to increase significantly in the ovarian cancer cells and not in the normal cells. The key regulator of UPR-mediated apoptosis, CHOP/GADD153 and endoplasmic reticulum resident chaperone BiP/GRP78 were parallely up-regulated with activation of two major sensors of the UPR [PERK and ATF-6 in PA-1; PERK, and IRE1α in SKOV-3) in response to ROS accumulation induced by PEITC (5 μM). ROS scavenger, N-acetyl-L-cysteine (NAC), attenuated the effect of PEITC on UPR signatures (P-PERK, IRE1α, CHOP/GADD153, and BiP/GRP78), suggesting the involvement of ROS in UPR-mediated apoptosis. Altogether, PEITC induces UPR-mediated apoptosis in ovarian cancer cells via accumulation of ROS in a cancer-specific manner.
Collapse
Affiliation(s)
- Yoon-Hee Hong
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Md. Hafiz Uddin
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Untek Jo
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Boyun Kim
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jiyoung Song
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yong Sang Song
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
46
|
Lim EJ, Heo J, Kim YH. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression. Apoptosis 2015; 20:1087-98. [DOI: 10.1007/s10495-015-1135-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Li Z, Shi K, Guan L, Jiang Q, Yang Y, Xu C. Activation of p53 by sodium selenite switched human leukemia NB4 cells from autophagy to apoptosis. Oncol Res 2015; 21:325-31. [PMID: 25198662 DOI: 10.3727/096504014x14024160459087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It was revealed by our previous research that sodium selenite repressed autophagy accompanied by the induction of apoptosis in human leukemia NB4 cells. The inhibition of autophagy exerted a facilitative effect on apoptosis. In the present study, we further explored the mechanisms underlying the switch from autophagy to apoptosis and elucidated p53 played a key role. Selenite induced phosphorylation of p53 at the vital site Ser15 via p38MAPK and ERK. Subsequently p53 dissociated with its inhibitory protein mouse double minute 2 (MDM2). Meanwhile, the nucleolar protein B23 transferred from the nucleolus to the nucleoplasm and associated with MDM2, probably stabilizing p53. The active p53 participated in the decrease of autophagic protein Beclin-1 and LC-3, as well as activation of apoptosis-related caspases. Furthermore, in p53 mutant U937 leukemia cells, selenite could not elicit such a switch from autophagy to apoptosis, laying emphasis on the crucial role p53 played in this process.
Collapse
Affiliation(s)
- Zhushi Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
48
|
Salvianolic acid A attenuates TNF-α- and d-GalN-induced ER stress-mediated and mitochondrial-dependent apoptosis by modulating Bax/Bcl-2 ratio and calcium release in hepatocyte LO2 cells. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:817-30. [DOI: 10.1007/s00210-015-1116-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
|
49
|
Cui Z, Li C, Li X, Zhang Q, Zhang Y, Shao J, Zhou K. Sodium selenite (Na2SeO3) induces apoptosis through the mitochondrial pathway in CNE-2 nasopharyngeal carcinoma cells. Int J Oncol 2015; 46:2506-14. [PMID: 25891011 DOI: 10.3892/ijo.2015.2968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
This study investigated the effect of sodium selenite (Na2SeO3) on proliferation, cell cycle, apoptosis as well as the underlying mechanism in CNE-2 nasopharyngeal carcinoma (NPC) cells. The CNE-2 cell line was treated with different concentrations of Na2SeO3, and the effects of Na2SeO3 on cell viability and proliferation were evaluated using Cell Counting kit-8 (CCK-8) assay. Cellular apoptosis and cell cycle were evaluated by flow cytometry following Annexin V‑FITC/PI double staining and PI single staining respectively; nuclei morphology stained with DAPI and Hoechst 333258 was observed under a fluorescence microscope, while DNA fragmentation was detected by agarose gel electrophoresis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed using fluorescent staining assays. Expression of Bcl-XL, Bax, Bak, and caspase-3 activation were examined by western blotting. The results showed that Na2SeO3 inhibited proliferation and induced apoptosis of CNE-2 cells in a dose- and time-dependent manner. Na2SeO3 at low concentrations induced cell cycle arrest at S phase, while high concentrations of Na2SeO3 induced cell cycle arrest at G0/G1 phase. Furthermore, Na2SeO3 increased ROS level and decreased MMP, upregulated caspase-3 activity and the expression of Bak and Bax but simultaneously downregulated Bcl-XL. In conclusion, our studies demonstrated that Na2SeO3 had significant anti-proliferative and apoptosis-inducing effects via arresting cell cycle and regulating mitochondria-mediated intrinsic caspase pathway in CNE-2 NPC cells, suggesting that Na2SeO3 might have therapeutic potentials in the treatment of NPC.
Collapse
Affiliation(s)
- Zhongyi Cui
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Caihong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Qunzhou Zhang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Yuefei Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Jingjing Shao
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| | - Keyuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
50
|
Dose-dependent effects of selenite (Se(4+)) on arsenite (As(3+))-induced apoptosis and differentiation in acute promyelocytic leukemia cells. Cell Death Dis 2015; 6:e1596. [PMID: 25590806 PMCID: PMC4669761 DOI: 10.1038/cddis.2014.563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 12/14/2022]
Abstract
To enhance the therapeutic effects and decrease the adverse effects of arsenic on the treatment of acute promyelocytic leukemia, we investigated the co-effects of selenite (Se4+) and arsenite (As3+) on the apoptosis and differentiation of NB4 cells and primary APL cells. A 1.0-μM concentration of Se4+ prevented the cells from undergoing As3+-induced apoptosis by inhibiting As3+ uptake, eliminating As3+-generated reactive oxygen species, and repressing the mitochondria-mediated intrinsic apoptosis pathway. However, 4.0 μM Se4+ exerted synergistic effects with As3+ on cell apoptosis by promoting As3+ uptake, downregulating nuclear factor-кB, and activating caspase-3. In addition to apoptosis, 1.0 and 3.2 μM Se4+ showed contrasting effects on As3+-induced differentiation in NB4 cells and primary APL cells. The 3.2 μM Se4+ enhanced As3+-induced differentiation by promoting the degradation of promyelocytic leukemia protein–retinoic acid receptor-α (PML–RARα) oncoprotein, but 1.0 μM Se4+ did not have this effect. Based on mechanistic studies, Se4+, which is similar to As3+, might bind directly to Zn2+-binding sites of the PML RING domain, thus controlling the fate of PML–RARα oncoprotein.
Collapse
|