1
|
Polak Y, Hollak CEM, Swart EL, Kemper EM. Quality assessment of cholic acid as an active pharmaceutical ingredient: Analytical method and results. Eur J Pharm Sci 2025; 209:107083. [PMID: 40169072 DOI: 10.1016/j.ejps.2025.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Commercial cholic acid (CA) treatment is currently unavailable to Dutch patients with a bile acid synthesis defect. CA treatment has been hypothesized to correct the biochemical abnormalities associated with these disorders and potentially slowing down disease progression. To address this need, the hospital pharmacy of Amsterdam University Medical Center developed CA capsules for use in a clinical trial in The Netherlands. Challenges arose during the quality control of CA active pharmaceutical ingredient (API) as no specific substance monograph is available in the European Pharmacopoeia or other effective pharmacopoeias. In this article, we share an analytical method validated for testing the purity of CA and present the results of its quality control, offering practical guidance for ensuring adequate quality control of CA. Pharmaceutical quality tests were performed on four batches of CA following the guidance given in the European Pharmacopoeia general monograph on substances for pharmaceutical use. The results confirm the suitability of our analytical method for CA quality control and demonstrate that the CA meets the high-quality standards required for pharmaceutical use.
Collapse
Affiliation(s)
- Y Polak
- Platform Medicine for Society, Amsterdam, the Netherlands; Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - C E M Hollak
- Platform Medicine for Society, Amsterdam, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - E L Swart
- Platform Medicine for Society, Amsterdam, the Netherlands; Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - E M Kemper
- Platform Medicine for Society, Amsterdam, the Netherlands; Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Kohlmaier B, Tichy H, Blatterer J, Till H, Schlagenhauf A, Knisely AS. Extrahepatic biliary atresia and normal-range serum gamma-glutamyltranspeptidase activity: A case report. JPGN REPORTS 2024; 5:533-537. [PMID: 39610416 PMCID: PMC11600354 DOI: 10.1002/jpr3.12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 11/30/2024]
Abstract
An infant with biliary atresia had normal-range ('low') serum gamma-glutamyltranspeptidase (GGT) activity, exceptional because GGT generally is elevated in biliary atresia. Mechanisms underlying low-GGT cholestasis in biliary atresia are not defined, but the phenomenon is associated with worse clinical outcome. Testing in our patient revealed no variants in genes mutated in several disorders also associated with poor prognosis and with low-GGT cholestasis; indeed, at age 14 months she has stable disease with unremarkable biomarker values. Nonetheless, we recommend extended investigations in such patients, including genetic testing, to detect coexistent disorders and to expand understanding of GGT in biliary atresia.
Collapse
Affiliation(s)
- Benno Kohlmaier
- Department of Pediatrics and Adolescent Medicine, Division of General PediatricsMedical University of GrazGrazAustria
| | - Heidelis Tichy
- Diagnostic and Research Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Jasmin Blatterer
- Diagnostic and Research Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Holger Till
- Department of Paediatric and Adolescent SurgeryMedical University of GrazGrazAustria
| | - Axel Schlagenhauf
- Department of Pediatrics and Adolescent Medicine, Division of General PediatricsMedical University of GrazGrazAustria
| | - A. S. Knisely
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| |
Collapse
|
3
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Bile Acids-Based Therapies for Primary Sclerosing Cholangitis: Current Landscape and Future Developments. Cells 2024; 13:1650. [PMID: 39404413 PMCID: PMC11475195 DOI: 10.3390/cells13191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
4
|
Li K, Wang Y, Li X, Wang H. Comparative analysis of bile acid composition and metabolism in the liver of Bufo gargarizans aquatic larvae and terrestrial adults. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101322. [PMID: 39260083 DOI: 10.1016/j.cbd.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Bile acids are crucial for lipid metabolism and their composition and metabolism differ among species. However, there have been no data on the differences in the composition and metabolism of bile acids between aquatic larvae and terrestrial adults of amphibians. This study explored the differences in composition and metabolism of bile acid between Bufo gargarizans larvae and adults. The results demonstrated that adult liver had a lower total bile acid level and a higher conjugated/total bile acid ratio than larval liver. Meanwhile, histological analysis revealed that the larvae showed a larger cross-sectional area of bile canaliculi lumen compared with the adults. The transcriptomic analysis showed that B. gargarizans larvae synthesized bile acids through both the alternative and the 24-hydroxylase pathway, while adults only synthesized bile acids through the 24-hydroxylase pathway. Moreover, bile acid regulator-related genes FXR and RXRα were highly expressed in adult, whereas genes involved in bile acid synthesis (CYP27A1 and CYP46A1) were highly expressed in larvae. The present study will provide valuable insights into understanding metabolic disorders and exploring novel bile acid-based therapeutics.
Collapse
Affiliation(s)
- Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yufei Wang
- School of Biological Sciences, College of Science and Engineering, The University of Edinburgh, United Kingdom
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Verkade HJ, Felzen A, Keitel V, Thompson R, Gonzales E, Strnad P, Kamath B, van Mil S. EASL Clinical Practice Guidelines on genetic cholestatic liver diseases. J Hepatol 2024; 81:303-325. [PMID: 38851996 DOI: 10.1016/j.jhep.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/10/2024]
Abstract
Genetic cholestatic liver diseases are caused by (often rare) mutations in a multitude of different genes. While these diseases differ in pathobiology, clinical presentation and prognosis, they do have several commonalities due to their cholestatic nature. These Clinical Practice Guidelines (CPGs) offer a general approach to genetic testing and management of cholestatic pruritus, while exploring diagnostic and treatment approaches for a subset of genetic cholestatic liver diseases in depth. An expert panel appointed by the European Association for the Study of the Liver has created recommendations regarding diagnosis and treatment, based on the best evidence currently available in the fields of paediatric and adult hepatology, as well as genetics. The management of these diseases generally takes place in a tertiary referral centre, in order to provide up-to-date approaches and expertise. These CPGs are intended to support hepatologists (for paediatric and adult patients), residents and other healthcare professionals involved in the management of these patients with concrete recommendations based on currently available evidence or, if not available, on expert opinion.
Collapse
|
6
|
Bilson J, Scorletti E, Swann JR, Byrne CD. Bile Acids as Emerging Players at the Intersection of Steatotic Liver Disease and Cardiovascular Diseases. Biomolecules 2024; 14:841. [PMID: 39062555 PMCID: PMC11275019 DOI: 10.3390/biom14070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Affecting approximately 25% of the global population, steatotic liver disease (SLD) poses a significant health concern. SLD ranges from simple steatosis to metabolic dysfunction-associated steatohepatitis and fibrosis with a risk of severe liver complications such as cirrhosis and hepatocellular carcinoma. SLD is associated with obesity, atherogenic dyslipidaemia, and insulin resistance, increasing cardiovascular risks. As such, identifying SLD is vital for cardiovascular disease (CVD) prevention and treatment. Bile acids (BAs) have critical roles in lipid digestion and are signalling molecules regulating glucose and lipid metabolism and influencing gut microbiota balance. BAs have been identified as critical mediators in cardiovascular health, influencing vascular tone, cholesterol homeostasis, and inflammatory responses. The cardio-protective or harmful effects of BAs depend on their concentration and composition in circulation. The effects of certain BAs occur through the activation of a group of receptors, which reduce atherosclerosis and modulate cardiac functions. Thus, manipulating BA receptors could offer new avenues for treating not only liver diseases but also CVDs linked to metabolic dysfunctions. In conclusion, this review discusses the intricate interplay between BAs, metabolic pathways, and hepatic and extrahepatic diseases. We also highlight the necessity for further research to improve our understanding of how modifying BA characteristics affects or ameliorates disease.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
- Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Christopher D. Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Vakili O, Mafi A, Pourfarzam M. Liver Disorders Caused by Inborn Errors of Metabolism. Endocr Metab Immune Disord Drug Targets 2024; 24:194-207. [PMID: 37357514 DOI: 10.2174/1871530323666230623120935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/27/2023]
Abstract
Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Maekawa M. Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry. Biol Pharm Bull 2024; 47:1087-1105. [PMID: 38825462 DOI: 10.1248/bpb.b24-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.
Collapse
|
9
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Liu H, Wang X, Deng H, Huang H, Liu Y, Zhong Z, Shen L, Cao S, Ma X, Zhou Z, Chen D, Peng G. Integrated Transcriptome and Metabolomics to Reveal the Mechanism of Adipose Mesenchymal Stem Cells in Treating Liver Fibrosis. Int J Mol Sci 2023; 24:16086. [PMID: 38003277 PMCID: PMC10671340 DOI: 10.3390/ijms242216086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| |
Collapse
|
11
|
Muto Y, Suzuki M, Takei H, Saito N, Mori J, Sugimoto S, Imagawa K, Nambu R, Oguri S, Itonaga T, Ihara K, Hayashi H, Murayama K, Kakiyama G, Nittono H, Shimizu T. Dried blood spot-based newborn screening for bile acid synthesis disorders, Zellweger spectrum disorder, and Niemann-Pick type C1 by detection of bile acid metabolites. Mol Genet Metab 2023; 140:107703. [PMID: 37802748 DOI: 10.1016/j.ymgme.2023.107703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE To examine whether it is possible to screen for bile acid synthesis disorders (BASDs) including peroxisome biogenesis disorder 1a (PBD1A) and Niemann-Pick type C1 (NPC1) at the time of newborn mass screening by measuring the intermediary metabolites of bile acid (BA) synthesis. METHODS Patients with 3β-hydroxy-ΔSuchy et al. (2021)5-C27-steroid dehydrogenase/isomerase (HSD3B7) deficiency (n = 2), 3-oxo-ΔPandak and Kakiyama (n.d.)4-steroid 5β-reductase (SRD5B1) deficiency (n = 1), oxysterol 7α-hydroxylase (CYP7B1) deficiency (n = 1), PBD1A (n = 1), and NPC1 (n = 2) with available dried blood spot (DBS) samples collected in the neonatal period were included. DBSs from healthy neonates at 4 days of age (n = 1055) were also collected for the control. Disease specific BAs were measured by newly optimized liquid chromatography-tandem mass spectrometry with short run cycle (5-min/run). The results were validated by comparing with those obtained by the conventional condition with longer run cycle (76-min/run). RESULTS In healthy specimens, taurocholic acid and cholic acid were the two major BAs which constituted approximately 80% in the measured BAs. The disease marker BAs presented <10%. In BASDs, the following BAs were determined for the disease specific markers: Glyco/tauro 3β,7α,12α-trihydroxy-5-cholenoic acid 3-sulfate for HSD3B7 deficiency (>70%); glyco/tauro 7α,12α-dihydroxy-3-oxo-4-cholenoic acid for SRD5B1 deficiency (54%); tauro 3β-hydroxy-5-cholenoic acid 3-sulfate for CYP7B1 deficiency (94%); 3α,7α,12α-trihydroxy-5β-cholestanoic acid for PBD1A (78%); and tauro 3β,7β-dihydroxy-5-cholenoic acid 3-sulfate for NPC1 (26%). *The % in the parenthesis indicates the portion found in the patient's specimen. CONCLUSIONS Early postnatal screening for BASDs, PBD1A and NPC1 is feasible with the described DBS-based method by measuring disease specific BAs. The present method is a quick and affordable test for screening for these inherited diseases.
Collapse
Affiliation(s)
- Yamato Muto
- Department of Pediatrics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, 2-1-24 Haramachi, Meguro-ku, Tokyo 152-0011, Japan
| | - Nobutomo Saito
- Department of Pediatrics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jun Mori
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka 534-0021, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuo Imagawa
- Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryusuke Nambu
- Division of Gastroenterology & Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama-city 330-8777, Japan
| | - Saori Oguri
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Oji-shinmachi, Oita 870-0819, Japan
| | - Tomoyo Itonaga
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Oji-shinmachi, Oita 870-0819, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Oji-shinmachi, Oita 870-0819, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei Murayama
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St., Richmond, VA 23298, USA; Central Virginia VA Healthcare System, 1201 Broad Rock Blvd., Richmond, VA 23249, USA
| | - Hiroshi Nittono
- Junshin Clinic Bile Acid Institute, 2-1-24 Haramachi, Meguro-ku, Tokyo 152-0011, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
12
|
Jebaying Y, Kumar K, Malhotra S, Sibal A. Novel mutation in the HSD3B7 gene causes bile acid synthetic disorder and presents as recurrent liver failure in early childhood. BMJ Case Rep 2023; 16:e245852. [PMID: 36750304 PMCID: PMC9906256 DOI: 10.1136/bcr-2021-245852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Bile acid synthetic disorders are rare inborn errors of metabolism, and presentations include neonatal cholestasis, neurological disease or deficiency of fat-soluble vitamins. Affected patients fail to produce standard bile acids but accumulate unusual bile acids and intermediates, resulting in liver failure and complications. Most of them improve with bile acid supplementation, but delaying initiating treatment is detrimental to the outcome.A young child presented to us with recurrent episodes of acute liver failure. In the first episode, both coagulopathy and encephalopathy improved on supportive treatment, but the aetiological evaluation was inconclusive. During the second presentation, whole-exome sequencing was sent, identifying a compound heterozygous novel mutation in the 3-β-hydroxysteroid dehydrogenase type 7 gene leading to bile acid synthetic defect.
Collapse
Affiliation(s)
- Yaja Jebaying
- Pediatric Gastroenterology, Indraprastha Apollo Hospital, New Delhi, Delhi, India
| | - Karunesh Kumar
- Pediatric Gastroenterology, Indraprastha Apollo Hospital, New Delhi, Delhi, India
| | - Smita Malhotra
- Pediatric Gastroenterology, Indraprastha Apollo Hospital, New Delhi, Delhi, India
| | - Anupam Sibal
- Pediatric Gastroenterology, Indraprastha Apollo Hospital, New Delhi, Delhi, India
| |
Collapse
|
13
|
Dai Y, Jia Z, Fang C, Zhu M, Yan X, Zhang Y, Wu H, Feng M, Liu L, Huang B, Li Y, Liu J, Xiao H. Polygoni Multiflori Radix interferes with bile acid metabolism homeostasis by inhibiting Fxr transcription, leading to cholestasis. Front Pharmacol 2023; 14:1099935. [PMID: 36950015 PMCID: PMC10025474 DOI: 10.3389/fphar.2023.1099935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Objective: To explore the possible mechanisms of cholestasis induced by Polygoni Multiflori Radix (PM). Methods: Low and high doses of water extract of PM were given to mice by gavage for 8 weeks. The serum biochemical indexes of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamyltransferase (GGT) alkaline phosphatase (ALP) and so on were detected in the second, fourth, sixth, and eighth weeks after administration. At the end of the eighth week of administration, the bile acid metabolic profiles of liver and bile were screened by high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS). Liver pathological changes were observed by hematoxylin and eosin staining. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA transcription of the target genes and Western blotting (WB) was used to the detect target protein expression. Results: Biochemical tests results showed the values of ALP and GGT were two and three times greater than the normal values respectively, and the value of R was less than 2. Histopathology also showed that PM caused lymphocyte infiltration, a small amount of hepatocyte necrosis and nuclear fragmentation in mouse liver. The proliferation of bile duct epithelial cells was observed in the high group. These results indicated that PM may lead to cholestatic liver injury. HPLC-QQQ-MS/MS analysis with the multivariate statistical analysis revealed significant alterations of individual bile acids in liver and gallbladder as compared to those of the control group. RT-qPCR showed that the transcription of Fxr, Shp, Bsep, Bacs, Mdr2, and Ugt1a1 were downregulated and that of Cyp7a1, Mrp3, and Cyp3a11 was significantly upregulated in the treatment group. WB demonstrated that PM also markedly downregulated the protein expression of FXR, BSEP, and MDR2, and upregulated CYP7A1. Conclusion: PM inhibited the expression of FXR, which reduced the expression of MDR2 and BSEP, leading to the obstruction of bile acids outflow, and increased the expression of CYP7A1, resulting in an increase of intrahepatic bile acid synthesis, which can lead to cholestasis.
Collapse
Affiliation(s)
- Yihang Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
| | - Cong Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meixia Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Hongbin Xiao,
| |
Collapse
|
14
|
Pietrobattista A, Spada M, Candusso M, Boenzi S, Dionisi-Vici C, Francalanci P, Morrone A, Ferri L, Indolfi G, Agolini E, Giordano G, Monti L, Maggiore G, Knisely AS. Liver transplantation in an infant with cerebrotendinous xanthomatosis, cholestasis, and rapid evolution of liver failure. Pediatr Transplant 2022; 26:e14318. [PMID: 35633129 DOI: 10.1111/petr.14318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebrotendinous xanthomatosis (CTX) is a disorder of bile acid (BA) metabolism due to biallelic mutations in CYP27A1. The deposition of cholesterol and cholestanol in multiple tissues results, manifesting as neurologic disease in adults or older children. Neonatal cholestasis (NC) as a presentation of CTX is rare; it may self-resolve or persist, evolving to require liver transplantation (LT). METHODS We present in the context of similar reports an instance of CTX manifest as NC and requiring LT. RESULTS A girl aged 4mo was evaluated for NC with normal serum gamma-glutamyl transpeptidase activity. An extensive diagnostic work-up, including liver biopsy, identified no etiology. Rapid progression to end-stage liver disease required LT aged 5mo. The explanted liver showed hepatocyte loss and micronodular cirrhosis. Bile salt export pump (BSEP), encoded by ABCB11, was not demonstrable immunohistochemically. Both severe ABCB11 disease and NR1H4 disease-NR1H4 encodes farsenoid-X receptor, necessary for ABCB11 transcription-were considered. However, selected liver disorder panel sequencing and mass-spectrometry urinary BA profiling identified CTX, with homozygosity for the predictedly pathogenic CYP27A1 variant c.646G > C p.(Ala216Pro). Variation in other genes associated with intrahepatic cholestasis was not detected. Immunohistochemical study of the liver-biopsy specimen found marked deficiency of CYP27A1 expression; BSEP expression was unremarkable. Aged 2y, the girl is free from neurologic disease. CONCLUSIONS Bile acid synthesis disorders should be routinely included in the NC/"neonatal hepatitis" work-up. The mutually supportive triple approach of BA profiling, immunohistochemical study, and genetic analysis may optimally address diagnosis in CTX, a treatable disease with widely varying presentation.
Collapse
Affiliation(s)
- Andrea Pietrobattista
- Hepatology, Gastroenterology, Nutrition and Liver Transplant Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Hepatobiliary and Transplant Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Manila Candusso
- Hepatology, Gastroenterology, Nutrition and Liver Transplant Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Boenzi
- Metabolic Diseases Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Metabolic Diseases Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Amelia Morrone
- Department of Neuroscience, Laboratory of Neurometabolic Diseases, Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Ferri
- Department of Neuroscience, Laboratory of Neurometabolic Diseases, Meyer Children's Hospital, Florence, Italy
| | - Giuseppe Indolfi
- Pediatric and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Giordano
- Laboratory of Mass Spectrometry and Metabolomics, Women's and Children's Health Department, Padua University, Padua, Italy
| | - Lidia Monti
- Department of Radiology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Maggiore
- Hepatology, Gastroenterology, Nutrition and Liver Transplant Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, Österreich, Austria
| |
Collapse
|
15
|
Vij M, Shah VS. Congenital Bile Acid Synthesis Defect Type 3 With Severe Neonatal Cholestasis. Pediatr Dev Pathol 2022; 25:553-557. [PMID: 35580280 DOI: 10.1177/10935266221103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Congenital bile acid synthesis defect type 3 is a rare metabolic liver disease with only eight patients reported in literature. We describe clinical, pathological and molecular features for a ninth patient. A 4-month-old infant presented to us with conjugated hyperbilirubinemia. His liver biopsy revealed giant cell change, steatosis, and activity with diffuse fibrosis. Immunostaining with bile salt export pump showed preserved canalicular pattern and γ-glutamyl transferase 1 staining showed unusual complete membranous pattern. Genetic workup revealed homozygous single base pair duplication in exon 3 of the CYP7B1 gene. He succumbed to liver disease at 7 months of age.
Collapse
Affiliation(s)
- Mukul Vij
- Dr Rela Institute and Medical Centre, Chennai, India
| | | |
Collapse
|
16
|
Maekawa M, Miyoshi K, Narita A, Sato T, Sato Y, Kumondai M, Kikuchi M, Higaki K, Okuyama T, Eto Y, Sakamaki H, Mano N. Development of a Highly Sensitive and Rapid Liquid Chromatography–Tandem Mass Spectrometric Method Using a Basic Mobile Phase Additive to Determine the Characteristics of the Urinary Metabolites for Niemann–Pick Disease Type C. Biol Pharm Bull 2022; 45:1259-1268. [DOI: 10.1248/bpb.b22-00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Aya Narita
- Division of Child Neurology, Tottori University Hospital
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders
| | | | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
17
|
Islek A, Tumgor G. Biliary atresia and congenital disorders of the extrahepatic bile ducts. World J Gastrointest Pharmacol Ther 2022; 13:33-46. [PMID: 36051179 PMCID: PMC9297290 DOI: 10.4292/wjgpt.v13.i4.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) and choledochal cysts are diseases of the intrahepatic and extrahepatic biliary tree. While their exact etiopathogeneses are not known, they should be treated promptly due to the potential for irreversible parenchymal liver disease. A diagnosis of BA may be easy or complicated, but should not be delayed. BA is always treated surgically, and performing the surgery before the age of 2 mo greatly increases its effectiveness and extends the time until the need for liver transplantation arises. While the more common types of choledochal cysts require surgical treatment, some can be treated with endoscopic retrograde cholangiopancreatography. Choledochal cysts may cause recurrent cholangitis and the potential for malignancy should not be ignored.
Collapse
Affiliation(s)
- Ali Islek
- Department of Pediatric Gastroenterology, Cukurova University School of Medicine, Adana 01320, Turkey
| | - Gokhan Tumgor
- Department of Pediatric Gastroenterology, Cukurova University School of Medicine, Adana 01320, Turkey
| |
Collapse
|
18
|
Mo W, Wang F, Zhou C, Ma T, Pan Z, Xie M, Ren H, Xie Y. Successful treatment of an infant with congenital bile acid synthesis disorder type 3 by ursodeoxycholic acid: a case report. J Med Case Rep 2022; 16:139. [PMID: 35387662 PMCID: PMC8988363 DOI: 10.1186/s13256-022-03365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital bile acid synthesis disorder type 3 caused by oxysterol 7α-hydroxylase deficiency is an extremely rare genetic liver disease. As it may cause rapid progression to end-stage liver disease, a high cautiousness in diagnosis and early treatment are required. Here we describe the first case of congenital bile acid synthesis disorder type 3 in China that was confirmed by genetic analysis. CASE PRESENTATION A 5-month-old Chinese male infant suffered skin yellowing since birth. The patient showed significantly increased alanine transaminase, aspartate transaminase, and total and direct bilirubin levels, and enlarged liver at admission. Whole-exome sequencing confirmed homozygous mutation in the CYB7B1 gene that encodes oxysterol 7α-hydroxylase. Ursodeoxycholic acid treatment significantly mitigated the condition of the patient and lowered biochemical indicators. Unfortunately, the patient developed septicemia and gave up treatment. CONCLUSIONS The patient was successfully treated with ursodeoxycholic acid, which has not been reported previously. Ursodeoxycholic acid replacement therapy is an effective and affordable treatment for congenital bile acid synthesis disorder type 3 caused by oxysterol 7α-hydroxylase deficiency.
Collapse
Affiliation(s)
- Weiqian Mo
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China
| | - Feng Wang
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China
| | - Chuanen Zhou
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China
| | - Tinghe Ma
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China
| | - Zhaojun Pan
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China
| | - Min Xie
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China
| | - Haoyan Ren
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China.
| | - Yongwu Xie
- Department of Pediatrics, Zhuhai Women and Children's Hospital, 543 Ningxi Road, Xiangzhou District, Zhuhai, Guangdong, China.
| |
Collapse
|
19
|
Satomura Y, Bessho K, Nawa N, Kondo H, Ito S, Togawa T, Yano M, Yamano Y, Inoue T, Fukui M, Onuma S, Fukuoka T, Yasuda K, Kimura T, Tachibana M, Kitaoka T, Nabatame S, Ozono K. Novel gene mutations in three Japanese patients with ARC syndrome associated mild phenotypes: a case series. J Med Case Rep 2022; 16:60. [PMID: 35151346 PMCID: PMC8841066 DOI: 10.1186/s13256-022-03279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Arthrogryposis, renal dysfunction, and cholestasis syndrome (ARCS) is a rare autosomal recessive disorder caused by mutations in VPS33B (ARCS1) and VIPAS39 (ARCS2). As per literature, most patients with ARCS died of persistent infections and bleeding by the age of 1 year. We report the first Japanese cases with ARCS1 and ARCS2 who presented with mild phenotypes and were diagnosed via genetic testing. Case presentation Case 1: A 6-year-old boy born to nonconsanguineous Japanese parents presented with jaundice and normal serum gamma-glutamyl transferase (GGT) levels, proteinuria, bilateral nerve deafness, motor delay, failure to thrive, and persistent pruritus. After cochlear implantation for deafness at the age of 2 years, despite a normal platelet count and prothrombin time-international normalized ratio, the patient presented with persistent bleeding that required hematoma removal. Although he did not show any obvious signs of arthrogryposis, he was suspected to have ARCS based on other symptoms. Compound heterozygous mutations in VPS33B were identified using targeted next-generation sequencing (NGS), which resulted in no protein expression. Case 2: A 7-month-old boy, the younger brother of case 1, presented with bilateral deafness, renal tubular dysfunction, failure to thrive, and mild cholestasis. He had the same mutations that were identified in his brother’s VPS33B. Case 3: A 24-year-old man born to nonconsanguineous Japanese parents was suspected to have progressive familial intrahepatic cholestasis 1 (PFIC1) in his childhood on the basis of low GGT cholestasis, renal tubular dysfunction, sensory deafness, mental retardation, and persistent itching. A liver biopsy performed at the age of 16 years showed findings that were consistent with PFIC1. He developed anemia owing to intraperitoneal hemorrhage from a peripheral intrahepatic artery the day after the biopsy, and transcatheter arterial embolization was required. ARCS2 was diagnosed using targeted NGS, which identified novel compound heterozygous mutations in VIPAS39. Conclusions The first Japanese cases of ARCS1 and ARCS2 diagnosed using genetic tests were reported in this study. These cases are milder than those previously reported. For patients with ARCS, invasive procedures should be performed with meticulous care to prevent bleeding.
Collapse
|
20
|
Griffiths WJ, Wang Y. Cholesterol metabolism: from lipidomics to immunology. J Lipid Res 2022; 63:100165. [PMID: 34953867 PMCID: PMC8953665 DOI: 10.1016/j.jlr.2021.100165] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols, the oxidized forms of cholesterol or of its precursors, are formed in the first steps of cholesterol metabolism. Oxysterols have interested chemists, biologists, and physicians for many decades, but their exact biological relevance in vivo, other than as intermediates in bile acid biosynthesis, has long been debated. However, in the first quarter of this century, a role for side-chain oxysterols and their C-7 oxidized metabolites has been convincingly established in the immune system. 25-Hydroxycholesterol has been shown to be synthesized by macrophages in response to the activation of Toll-like receptors and to offer protection against microbial pathogens, whereas 7α,25-dihydroxycholesterol has been shown to act as a chemoattractant to lymphocytes expressing the G protein-coupled receptor Epstein-Barr virus-induced gene 2 and to be important in coordinating the action of B cells, T cells, and dendritic cells in secondary lymphoid tissue. There is a growing body of evidence that not only these two oxysterols but also many of their isomers are of importance to the proper function of the immune system. Here, we review recent findings related to the roles of oxysterols in immunology.
Collapse
Affiliation(s)
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, United Kingdom.
| |
Collapse
|
21
|
Overview of the development of selective androgen receptor modulators (SARMs) as pharmacological treatment for osteoporosis (1998–2021). Eur J Med Chem 2022; 230:114119. [DOI: 10.1016/j.ejmech.2022.114119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
|
22
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
23
|
Special FX: Harnessing the Farnesoid-X-Receptor to Control Bile Acid Synthesis. Dig Dis Sci 2021; 66:3668-3671. [PMID: 33555516 DOI: 10.1007/s10620-021-06840-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
|
24
|
Kimura A, Mizuochi T, Takei H, Ohtake A, Mori J, Shinoda K, Hashimoto T, Kasahara M, Togawa T, Murai T, Iida T, Nittono H. Bile Acid Synthesis Disorders in Japan: Long-Term Outcome and Chenodeoxycholic Acid Treatment. Dig Dis Sci 2021; 66:3885-3892. [PMID: 33385262 DOI: 10.1007/s10620-020-06722-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND We encountered 7 Japanese patients with bile acid synthesis disorders (BASD) including 3β-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase (3β-HSD) deficiency (n = 3), Δ4-3-oxosteroid 5β-reductase (5β-reductase) deficiency (n = 3), and oxysterol 7α-hydroxylase deficiency (n = 1) over 21 years between 1996 and 2017. AIM We aimed to clarify long-term outcome in the 7 patients with BASD as well as long-term efficacy of chenodeoxycholic acid (CDCA) treatment in the 5 patients with 3β-HSD deficiency or 5β-reductase deficiency. METHODS Diagnoses were made from bile acid and genetic analyses. Bile acid analysis in serum and urine was performed using gas chromatography-mass spectrometry. Clinical and laboratory findings and bile acid profiles at diagnosis and most recent visit were retrospectively obtained from medical records. Long-term outcome included follow-up duration, treatments, growth, education/employment, complications of treatment, and other problems. RESULTS Medians with ranges of current patient ages and duration of CDCA treatment are 10 years (8 to 43) and 10 years (8 to 21), respectively. All 7 patients, who had homozygous or compound heterozygous mutations in the HSD3B7, SRD5B1, or CYP7B1 gene, are currently in good health without liver dysfunction. In the 5 patients with CDCA treatment, hepatic function gradually improved following initiation. No adverse effects were noted. CONCLUSIONS We concluded that CDCA treatment is effective in 3β-HSD deficiency and 5β-reductase deficiency, as cholic acid has been in other countries. BASD carry a good prognosis following early diagnosis and initiation of long-term CDCA treatment.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Kumamoto-Ashikita Medical Center for the Severely Disabled, Kumamoto, Japan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Akira Ohtake
- Department of Pediatrics and Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Jun Mori
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Takuji Hashimoto
- Department of Pediatrics, Toho University School of Medicine, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takao Togawa
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takashi Iida
- Department of Chemistry, College of Humanities and Science, Nihon University, Tokyo, Japan
| | | |
Collapse
|
25
|
Wang SH, Hui TC, Zhou ZW, Xu CA, Wu WH, Wu QQ, Zheng W, Yin QQ, Pan HY. Diagnosis and treatment of an inborn error of bile acid synthesis type 4: A case report. World J Clin Cases 2021; 9:7923-7929. [PMID: 34621847 PMCID: PMC8462232 DOI: 10.12998/wjcc.v9.i26.7923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inborn error of bile acid synthesis type 4 is a peroxisomal disease with impaired bile acid synthesis caused by a-methylacyl-CoA racemase (AMACR) gene mutation. The disease is usually found in children with mild to severe liver disease, cholestasis and poor fat-soluble vitamin absorption. At present, there is no report of inborn errors of bile acid synthesis type 4 in adults with liver disease and poor fat-soluble vitamin absorption.
CASE SUMMARY A 71-year-old man was hospitalized in our department for recurrent liver dysfunction. The clinical manifestations were chronic liver disease and yellow skin and sclera. Serum transaminase, bilirubin and bile acid were abnormally increased; and fat-soluble vitamins decreased. Liver cirrhosis and ascites were diagnosed by computed tomography. The patient had poor coagulation function and ascites and did not undergo liver puncture. Genetic testing showed AMACR gene missense mutation. The patient was diagnosed with inborn error of bile acid synthesis type 4. He was treated with ursodeoxycholic acid, liver protection and vitamin supplementation, and jaundice of the skin and sclera was reduced. The indicators of liver function and the quality of life were significantly improved.
CONCLUSION When adults have recurrent liver function abnormalities, physicians should be alert to genetic diseases and provide timely treatment.
Collapse
Affiliation(s)
- Shou-Hao Wang
- Zhejiang Provincial People’s Hospital, Qingdao University, Hangzhou 310014, Zhejiang Province, China
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Tian-Chen Hui
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Zhe-Wen Zhou
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Cheng-An Xu
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Wen-Hao Wu
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Qing-Qing Wu
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Wei Zheng
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Qiao-Qiao Yin
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Hong-Ying Pan
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
26
|
Mawardi M, Alalwan A, Fallatah H, Abaalkhail F, Hasosah M, Shagrani M, Alghamdi MY, Alghamdi AS. Cholestatic liver disease: Practice guidelines from the Saudi Association for the Study of Liver diseases and Transplantation. Saudi J Gastroenterol 2021; 27:S1-S26. [PMCID: PMC8411950 DOI: 10.4103/sjg.sjg_112_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 11/04/2022] Open
Abstract
Cholestatic liver diseases (CLDs) are a group of diseases characterized by jaundice and cholestasis as the main presentation with different complications, which have considerable impact on the liver and can lead to end-stage liver disease, cirrhosis, and liver-related complications. In the last few years, tremendous progress has been made in understanding the pathophysiology, diagnosis, and treatment of patients with these conditions. However, several aspects related to the management of CLDs remain deficient and unclear. Due to the lack of recommendations that can help in the management, treatment of those conditions, the Saudi Association for the Study of Liver diseases and Transplantation (SASLT) has created a task force group to develop guidelines related to CLDs management in order to provide a standard of care for patients in need. These guidelines provide general guidance for health care professionals to optimize medical care for patients with CLDs for both adult and pediatric populations, in association with clinical judgments to be considered on a case-by-case basis. These guidelines describe common CLDs in Saudi Arabia, with recommendations on the best approach for diagnosis and management of different diseases based on the Grading of Recommendation Assessment (GRADE), combined with a level of evidence available in the literature.
Collapse
Affiliation(s)
- Mohammad Mawardi
- Department of Medicine, Gastroenterology Section, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Abduljaleel Alalwan
- Department of Hepatobiliary Sciences and Liver Transplantation, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hind Fallatah
- Department of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Abaalkhail
- Department of Medicine, Gastroenterology Section, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Hasosah
- Department of Pediatrics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mohammad Shagrani
- Department of Liver and Small Bowel Transplantation, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Y Alghamdi
- Department of Medicine, Gastroenterology Unit, King Fahd Military Complex, Dhahran, Saudi Arabia
| | - Abdullah S Alghamdi
- Department of Medicine, Gastroenterology Unit, King Fahad General Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Liashevych AM, Lupaina ІS, Davydovska TL, Tsymbalyuk OV, Oksentiuk YR, Makarchuk MY. The effect of Corvitin on the content of bile acids in the liver of rats under conditions of chronic social stress. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article looks at recent research dealing with changes in the bile acid composition of the bile of outbred male rats under chronic social stress (social defeat in daily male confrontations, 14 days) when administered Corvitin (1 mg/kg, intragastrically, 7 days). Chronic social stress was created by daily agonistic interactions between animals. The main fractions of conjugated bile acids – taurocholic, taurohenodeoxycholic and taurodeoxycholic, glycocholic, glycochenodeoxycholic and glycodeoxycholic and free ones – cholic, chenodeoxycholic and deoxycholic were determined by the method of thin layer chromatography of bile. The conjugation index (ratio of the sum of conjugated cholates to the sum of free ones) and hydroxylation (ratio of the sum of trihydroxycholanic bile acids to the sum of dihydroxycholanic ones) of bile acids were calculated. The research showed that in the conditions of experimental social stress, Corvitin enhances the conjugation of bile acids with taurine and glycine, i.e. stimulates detoxification processes in hepatocytes. In the conditions of chronic social stress in male rats, the processes that had provided the flow of glycoconjugates of bile acids from hepatocytes to the bile ducts were further suppressed. The concentrations of glycocholic acid and glycochenodeoxycholic and glycodeoxycholic acids in the bile of male intruders were lower than the control values. But, as seen in the experiment, the use of Corvitin normalized these indicators. The experiment showed that in the conditions of chronic social stress, the content of cholic acid in the bile of intruder rats decreased, and when correcting the pathological condition using Corvitin, it reached the control values. The use of Corvitin simultaneously with the simulation of experimental social stress normalized the biliary secretory function of the liver, indicating the high potential of using Corvitin as a corrective factor in chronic social stress. Correction of stress-induced pathologies of liver bile-secretory function by Corvitin requires further thorough experimental studies.
Collapse
|
28
|
Caballeria-Casals A, Micó-Carnero M, Rojano-Alfonso C, Maroto-Serrat C, Casillas-Ramírez A, Álvarez-Mercado AI, Gracia-Sancho J, Peralta C. Role of FGF15 in Hepatic Surgery in the Presence of Tumorigenesis: Dr. Jekyll or Mr. Hyde? Cells 2021; 10:1421. [PMID: 34200439 PMCID: PMC8228386 DOI: 10.3390/cells10061421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
The pro-tumorigenic activity of fibroblast growth factor (FGF) 19 (FGF15 in its rodent orthologue) in hepatocellular carcinoma (HCC), as well as the unsolved problem that ischemia-reperfusion (IR) injury supposes in liver surgeries, are well known. However, it has been shown that FGF15 administration protects against liver damage and regenerative failure in liver transplantation (LT) from brain-dead donors without tumor signals, providing a benefit in avoiding IR injury. The protection provided by FGF15/19 is due to its anti-apoptotic and pro-regenerative properties, which make this molecule a potentially beneficial or harmful factor, depending on the disease. In the present review, we describe the preclinical models currently available to understand the signaling pathways responsible for the apparent controversial effects of FGF15/19 in the liver (to repair a damaged liver or to promote tumorigenesis). As well, we study the potential pharmacological use that has the activation or inhibition of FGF15/19 pathways depending on the disease to be treated. We also discuss whether FGF15/19 non-pro-tumorigenic variants, which have been developed for the treatment of liver diseases, might be promising approaches in the surgery of hepatic resections and LT using healthy livers and livers from extended-criteria donors.
Collapse
Affiliation(s)
- Albert Caballeria-Casals
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (M.M.-C.); (C.R.-A.)
| | - Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (M.M.-C.); (C.R.-A.)
| | | | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Ana I. Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (M.M.-C.); (C.R.-A.)
| |
Collapse
|
29
|
Koyama S, Sekijima Y, Ogura M, Hori M, Matsuki K, Miida T, Harada-Shiba M. Cerebrotendinous Xanthomatosis: Molecular Pathogenesis, Clinical Spectrum, Diagnosis, and Disease-Modifying Treatments. J Atheroscler Thromb 2021; 28:905-925. [PMID: 33967188 PMCID: PMC8532057 DOI: 10.5551/jat.rv17055] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive lipid storage disorder caused by mutations in the
CYP27A1
gene, which encodes the mitochondrial enzyme sterol 27-hydroxylase. Decreased sterol 27-hydroxylase activity results in impaired bile acid synthesis, leading to reduced production of bile acids, especially chenodeoxycholic acid (CDCA), as well as elevated serum cholestanol and urine bile alcohols. The accumulation of cholestanol and cholesterol mainly in the brain, lenses, and tendons results in the characteristic clinical manifestations of CTX. Clinical presentation is characterized by systemic symptoms including neonatal jaundice or cholestasis, refractory diarrhea, juvenile cataracts, tendon xanthomas, osteoporosis, coronary heart disease, and a broad range of neuropsychiatric manifestations. The combinations of symptoms vary from patient to patient and the presenting symptoms, especially in the early disease phase, may be nonspecific, which leads to a substantial diagnostic delay or underdiagnosis. Replacement of CDCA has been approved as a first-line treatment for CTX, and can lead to biochemical and clinical improvements. However, the effect of CDCA treatment is limited once significant neuropsychiatric manifestations are established. The age at diagnosis and initiation of CDCA treatment correlate with the prognosis of patients with CTX. Therefore, early diagnosis and subsequent treatment initiation are essential.
Collapse
Affiliation(s)
- Shingo Koyama
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine.,Institute for Biomedical Sciences, Shinshu University
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
30
|
Yutuc E, Dickson AL, Pacciarini M, Griffiths L, Baker PRS, Connell L, Öhman A, Forsgren L, Trupp M, Vilarinho S, Khalil Y, Clayton PT, Sari S, Dalgic B, Höflinger P, Schöls L, Griffiths WJ, Wang Y. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry. Anal Chim Acta 2021; 1154:338259. [PMID: 33736801 PMCID: PMC7988461 DOI: 10.1016/j.aca.2021.338259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient. Absolute quantification of oxysterols and cholestenoic acids. Methodology applicable to plasma and cerebrospinal fluid. Data generated for non-esterified and total sterols. Diastereoisomers at C-24 and C-25 separated and quantified.
Collapse
Affiliation(s)
- Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Manuela Pacciarini
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lauren Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | | | - Anders Öhman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Philip Höflinger
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
31
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
32
|
Fu X, Xiao Y, Golden J, Niu S, Gayer CP. Serum bile acids profiling by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application on pediatric liver and intestinal diseases. ACTA ACUST UNITED AC 2020; 58:787-797. [DOI: 10.1515/cclm-2019-0354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023]
Abstract
AbstractBackgroundA method for bile acid profiling measuring 21 primary and secondary bile acids in serum samples was developed and validated with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample preparation included spiking with internal standards followed by protein precipitation, centrifugation, drying under nitrogen gas and reconstitution. Extracted samples were injected onto a Phenomenex Kinetex C18 column (150 × 4.60 mm, 2.6 μm).MethodsData was collected with LC-MS/MS operated in negative ion mode with multiple reaction monitoring (MRM) and single reaction monitoring (SRM). The analytical run time was 12 min.ResultsThe method showed excellent linearity with high regression coefficients (>0.99) over a range of 0.05 and 25 μM for all analytes tested. The method also showed acceptable intra-day and inter-day accuracy and precision. As a proof of concept, the analytical method was applied to patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), biliary atresia (BA), and necrotizing enterocolitis (NEC), and distinct bile acids profiles were demonstrated.ConclusionsThe method could be poised to identify possible biomarkers for non-invasive early diagnosis of these disorders.
Collapse
Affiliation(s)
- Xiaowei Fu
- Department of Pathology and Laboratory Medicine, LeBonheur Children’s Hospital, University of Tennessee Health Science Center, 50 N Dunlap St, Memphis, TN 38103, USA, E-mail:
| | - Yi Xiao
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Jamie Golden
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sizhe Niu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher P. Gayer
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
MAEKAWA M, MANO N. Identification and Evaluation of Biomarkers for Niemann-Pick Disease Type C Based on Chemical Analysis Techniques. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2020.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Nariyasu MANO
- Department of Pharmaceutical Sciences, Tohoku University Hospital
| |
Collapse
|
34
|
Yıldız Y, Sivri HS. Inborn errors of metabolism in the differential diagnosis of fatty liver disease. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:3-16. [PMID: 32009609 DOI: 10.5152/tjg.2019.19367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease across all age groups. Obesity, diabetes, and metabolic syndrome, are the primary causes that are closely linked with the development of NAFLD. However, in young children, rare inborn errors of metabolism are predominant secondary causes of NAFLD. Furthermore, inborn errors of metabolism causing hepatosteatosis are often misdiagnosed as NAFLD in adolescents and adults. Many inborn errors of metabolism are treatable disorders and therefore require special consideration. This review aims to summarize the basic characteristics and diagnostic clues of inborn errors of metabolism associated with fatty liver disease. A suggested clinical and laboratory diagnostic approach is also discussed.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Pediatric Metabolic Diseases Unit, Dr. Sami Ulus Training and Research Hospital for Maternity and Children's Health and Diseases, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Metabolic Diseases, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
35
|
Fitzgerald BL, Molins CR, Islam MN, Graham B, Hove PR, Wormser GP, Hu L, Ashton LV, Belisle JT. Host Metabolic Response in Early Lyme Disease. J Proteome Res 2020; 19:610-623. [PMID: 31821002 PMCID: PMC7262776 DOI: 10.1021/acs.jproteome.9b00470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lyme disease is a tick-borne bacterial illness that occurs in areas of North America, Europe, and Asia. Early infection typically presents as generalized symptoms with an erythema migrans (EM) skin lesion. Dissemination of the pathogen Borrelia burgdorferi can result in multiple EM skin lesions or in extracutaneous manifestations such as Lyme neuroborreliosis. Metabolic biosignatures of patients with early Lyme disease can potentially provide diagnostic targets as well as highlight metabolic pathways that contribute to pathogenesis. Sera from well-characterized patients diagnosed with either early localized Lyme disease (ELL) or early disseminated Lyme disease (EDL), plus healthy controls (HC), from the United States were analyzed by liquid chromatography-mass spectrometry (LC-MS). Comparative analyses were performed between ELL, or EDL, or ELL combined with EDL, and the HC to develop biosignatures present in early Lyme disease. A direct comparison between ELL and EDL was also performed to develop a biosignature for stages of early Lyme disease. Metabolic pathway analysis and chemical identification of metabolites with LC-tandem mass spectrometry (LC-MS/MS) demonstrated alterations of eicosanoid, bile acid, sphingolipid, glycerophospholipid, and acylcarnitine metabolic pathways during early Lyme disease. These metabolic alterations were confirmed using a separate set of serum samples for validation. The findings demonstrated that infection of humans with B. burgdorferi alters defined metabolic pathways that are associated with inflammatory responses, liver function, lipid metabolism, and mitochondrial function. Additionally, the data provide evidence that metabolic pathways can be used to mark the progression of early Lyme disease.
Collapse
Affiliation(s)
| | - Claudia R. Molins
- Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - M. Nurul Islam
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Petronella R. Hove
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Linden Hu
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Laura V. Ashton
- Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - John T. Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
36
|
Chen JY, Wu JF, Kimura A, Nittono H, Liou BY, Lee CS, Chen HS, Chiu YC, Ni YH, Peng SSF, Lee WT, Tsai IJ, Chang MH, Chen HL. AKR1D1 and CYP7B1 mutations in patients with inborn errors of bile acid metabolism: Possibly underdiagnosed diseases. Pediatr Neonatol 2020; 61:75-83. [PMID: 31337596 DOI: 10.1016/j.pedneo.2019.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/22/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Inborn errors of bile acid metabolism (IEBAM) cause rare but treatable genetic disorders that can present as neonatal cholestasis or neurological diseases. Without timely primary bile acid treatment, patients may develop liver failure early in life. This study aimed to analyze the types and treatment outcomes of IEBAM in Taiwanese infants and document the allele frequency of CYP7B1 hot spot mutations in the population. METHODS Urine samples from patients with infantile intrahepatic cholestasis and suspected IEBAM were subjected to urinary bile acid analysis by gas chromatography-mass spectrometry (GC/MS). Genetic diagnoses were made using direct sequencing or next-generation sequencing. We also tested healthy control subjects for a probable hot spot point mutation of CYP7B1. RESULTS Among the 75 patients with infantile intrahepatic cholestasis tested during 2000 -2016, three had ∆4-3-oxosteroid 5β-reductase deficiency with AKR1D1 mutations, and three had oxysterol-7α-hydroxylase deficiency with CYP7B1 mutation. Two patients with ∆4-3-oxosteroid 5β-reductase deficiency were successfully treated with cholic acid. The three unrelated infants with oxysterol 7α-hydroxylase deficiencies had the same p.R112X homozygous CYP7B1 mutation. Two had mild renal or neurological involvement. Among 608 healthy control subjects, the allele frequency of the heterozygous mutation for p.R112X was 2/1216 (0.16%). The only surviving patient with oxysterol 7α-hydroxylase deficiency recovered from liver failure after chenodeoxycholic acid (CDCA) treatment beginning at 3 months of age. CONCLUSION Distinct types of IEBAM disease were found in the Taiwanese population. Patients with early diagnosis and early treatment had a favorable outcome. IEBAM prevalence rates may be higher than expected due to the presence of heterozygous mutations in the general population.
Collapse
Affiliation(s)
- Ju-Yin Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | | | - Bang-Yu Liou
- Hepatitis Research Centre, National Taiwan University Hospital, Taipei, Taiwan
| | - Chee-Seng Lee
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Ho-Sheng Chen
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Yu-Chun Chiu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Centre, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Jung Tsai
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Centre, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Centre, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Education and Bioethics, Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
37
|
Degrassi I, Amoruso C, Giordano G, Del Puppo M, Mignarri A, Dotti MT, Naturale M, Nebbia G. Case Report: Early Treatment With Chenodeoxycholic Acid in Cerebrotendinous Xanthomatosis Presenting as Neonatal Cholestasis. Front Pediatr 2020; 8:382. [PMID: 32766184 PMCID: PMC7381104 DOI: 10.3389/fped.2020.00382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Cerebrotendinous xanthomatosis (CTX) is an inborn disorder of bile acid synthesis which causes progressive accumulation of toxic metabolites in various organs, particularly in brain and tendons. Most cases are diagnosed and treated in the second or third decade of life, when neurological involvement appears. We describe a case of CTX presenting as neonatal cholestasis. Results: The child presented cholestasis at 2 months of life. In the following months jaundice slowly disappeared, with a normalization of bilirubin and aminotransferases, respectively, at 6 and 8 months. A LC-Mass Spectrometry of the urines showed the presence of cholestanepentols glucuronide, which led to the suspicion of cerebrotendinous xanthomatosis. The diagnosis was confirmed by the dosage of cholestanol in serum and the molecular genetic analysis of the CYP27A1 gene. Therapy with chenodeoxycholic acid (CDCA) was started at 8 months and is still ongoing. The child was monitored for 13 years by dosage of serum cholestanol and urinary cholestanepentols. A strictly biochemical and neurological follow up was performed and no sign of neurological impairment was observed. Conclusions: Prompt diagnosis and treatment of CTX presenting as neonatal cholestasis may prevent further neurological impairment.
Collapse
Affiliation(s)
- Irene Degrassi
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Amoruso
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Giordano
- Mass Spectrometry Laboratory, Women's and Children' Health Department, University of Padua, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marina Del Puppo
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrea Mignarri
- Unit of Neurology and Neurometabolic Diseases, Departement of Neurological and Motor Sciences, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Diseases, Departement of Neurological and Motor Sciences, University of Siena, Siena, Italy
| | - Mauro Naturale
- Mass Spectrometry Laboratory, Women's and Children' Health Department, University of Padua, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Gabriella Nebbia
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
38
|
Clayton PT. The effectiveness of correcting abnormal metabolic profiles. J Inherit Metab Dis 2020; 43:2-13. [PMID: 31222759 PMCID: PMC7041635 DOI: 10.1002/jimd.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/12/2023]
Abstract
Inborn errors of metabolism cause disease because of accumulation of a metabolite before the blocked step or deficiency of an essential metabolite downstream of the block. Treatments can be directed at reducing the levels of a toxic metabolite or correcting a metabolite deficiency. Many disorders have been treated successfully first in a single patient because we can measure the metabolites and adjust treatment to get them as close as possible to the normal range. Examples are drawn from Komrower's description of treatment of homocystinuria and the author's trials of treatment in bile acid synthesis disorders (3β-hydroxy-Δ5 -C27 -steroid dehydrogenase deficiency and Δ4 -3-oxosteroid 5β-reductase deficiency), neurotransmitter amine disorders (aromatic L-amino acid decarboxylase [AADC] and tyrosine hydroxylase deficiencies), and vitamin B6 disorders (pyridox(am)ine phosphate oxidase deficiency and pyridoxine-dependent epilepsy [ALDH7A1 deficiency]). Sometimes follow-up shows there are milder and more severe forms of the disease and even variable clinical manifestations but by measuring the metabolites we can adjust the treatment to get the metabolites into the normal range. Biochemical measurements are not subject to placebo effects and will also show if the disorder is improving spontaneously. The hypothesis that can then be tested for clinical outcome is whether getting metabolite(s) into a target range leads to an improvement in an outcome parameter such as abnormal liver function tests, hypokinesia, epilepsy control etc. The metabolite-guided approach to treatment is an example of personalized medicine and is a better way of determining efficacy for disorders of variable severity than a randomized controlled clinical trial.
Collapse
|
39
|
Lipiński P, Ciara E, Jurkiewicz D, Pollak A, Wypchło M, Płoski R, Cielecka-Kuszyk J, Socha P, Pawłowska J, Jankowska I. Targeted Next-Generation Sequencing in Diagnostic Approach to Monogenic Cholestatic Liver Disorders-Single-Center Experience. Front Pediatr 2020; 8:414. [PMID: 32793533 PMCID: PMC7393978 DOI: 10.3389/fped.2020.00414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: To evaluate the clinical utility of panel-based NGS in the diagnostic approach of monogenic cholestatic liver diseases. Study design: Patients with diagnosis of chronic cholestatic liver disease of an unknown etiology underwent NGS of targeted genes panel. Group 1 included five patients (prospectively recruited) hospitalized from January to December 2017 while group 2 included seventeen patients (retrospectively recruited) hospitalized from 2010 to 2017 presenting with low-GGT PFIC phenotype (group 2a, 11 patients) or indeterminant cholestatic liver cirrhosis (group 2b, 6 patients). Results: Among 22 patients enrolled into the study, 21 various pathogenic variants (including 11 novel) in 5 different genes (including ABCB11, ABCB4, TJP2, DGUOK, CYP27A1) were identified. The molecular confirmation was obtained in 15 out of 22 patients (68%). In group 1, two out of five patients presented with low-GGT cholestasis, and were diagnosed with BSEP deficiency. Out of three patients presenting with high-GGT cholestasis, one patient was diagnosed with PFIC-3, and the remaining two were not molecularly diagnosed. In group 2a, seven out of eleven patients, were diagnosed with BSEP deficiency and two with TJP-2 deficiency. In group 2b, three out of six patients were molecularly diagnosed; one with PFIC-3, one with CYP27A1 deficiency, and one with DGUOK deficiency. Conclusions: Panel-based NGS appears to be a very useful tool in diagnosis of monogenic cholestatic liver disorders in cases when extrahepatic causes have been primarily excluded. NGS presented the highest diagnosis rate to identify the molecular background of cholestatic liver diseases presenting with a low-GGT PFIC phenotype.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Jurkiewicz
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Maria Wypchło
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
40
|
Maekawa M, Jinnoh I, Narita A, Iida T, Saigusa D, Iwahori A, Nittono H, Okuyama T, Eto Y, Ohno K, Clayton PT, Yamaguchi H, Mano N. Investigation of diagnostic performance of five urinary cholesterol metabolites for Niemann-Pick disease type C. J Lipid Res 2019; 60:2074-2081. [PMID: 31586016 DOI: 10.1194/jlr.m093971] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder characterized by progressive nervous degeneration. Because of the diversity of clinical symptoms and onset age, the diagnosis of this disease is difficult. Therefore, biomarker tests have attracted significant attention for earlier diagnostics. In this study, we developed a simultaneous analysis method for five urinary conjugated cholesterol metabolites, which are potential diagnostic biomarkers for a rapid, convenient, and noninvasive chemical diagnosis, using LC/MS/MS. By the method, their urinary concentrations were quantified and the NPC diagnostic performances were evaluated. The developed LC/MS/MS method showed high accuracy and satisfied all analytical method validation criteria. When the urine of healthy controls and patients with NPC was analyzed, three of five urinary conjugated cholesterol metabolite concentrations corrected by urinary creatinine were significantly higher in the patients with NPC. As a result of receiver operating characteristics analysis, these urinary metabolites might have excellent diagnostic marker performance. 3β-Sulfooxy-7β-hydroxy-5-cholenoic acid showed particularly excellent diagnostic performance with both 100% clinical sensitivity and specificity, suggesting that it is a useful NPC diagnostic marker. The urinary conjugated cholesterol metabolites exhibited high NPC diagnostic marker performance and could be used for NPC diagnosis.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan
| | - Isamu Jinnoh
- Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Aya Narita
- Division of Child Neurology, Tottori University Hospital, Yonago, Tottori 683-8503, Japan
| | - Takashi Iida
- College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan
| | - Daisuke Saigusa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
| | - Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Hiroshi Nittono
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo 152-0011, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshikatsu Eto
- Advanced Clinical Research Center, Institute for Neurological Disorders, Asou-ku, Kawasaki, Kanagawa 215-0026, Japan
| | - Kousaku Ohno
- Division of Child Neurology, Tottori University Hospital, Yonago, Tottori 683-8503, Japan
| | - Peter T Clayton
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Aoba-ku, Sendai 980-8574, Japan.,Faculty of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
41
|
Guerrero RB, Kloke KM, Salazar D. Inborn Errors of Metabolism and the Gastrointestinal Tract. Gastroenterol Clin North Am 2019; 48:183-198. [PMID: 31046970 DOI: 10.1016/j.gtc.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Inborn errors of metabolism (IEMs) are usually recognized by characteristic neurologic and metabolic manifestations and sometimes by dysmorphism. However, IEMs can present with a wide variety of gastrointestinal manifestations, whether as the primary or a minor clinical symptom. Regardless, gastrointestinal and hepatic manifestations of IEMs are important clinical features that can help identify an underlying defect; these disorders should be taken into consideration as part of a patient's clinical assessment. It is prudent to include metabolic disorders in the differential diagnosis because in some cases, gastrointestinal symptoms may be the only presenting feature in a patient with an underlying IEM.
Collapse
Affiliation(s)
| | - Karen M Kloke
- Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Denise Salazar
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, CA 92690, USA
| |
Collapse
|
42
|
Ferreira CR, Cassiman D, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. II. Metabolic liver diseases. Mol Genet Metab 2019; 127:117-121. [PMID: 31005404 PMCID: PMC10515611 DOI: 10.1016/j.ymgme.2019.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Inherited metabolic diseases account for about one third of pediatric patients with hepatomegaly, acute liver failure, cirrhosis or cholestasis. Specifically for pediatric acute liver failure, they account for 10-15% of cases, with a mortality of 22-65%. The percentage of acute liver failure caused by an inherited metabolic disease in children <2-3 years of age is even higher, ranging from a third to half of all cases. Metabolic liver disease accounts for 8-13% of all pediatric liver transplantations. Despite this high burden of disease, underdiagnosis remains common. We reviewed and updated the list of known metabolic etiologies associated with various types of metabolic liver involvement, and found 142 relevant inborn errors of metabolism. This represents the second of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University of Leuven, Leuven, Belgium.
| | - Nenad Blau
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Heidelberg, Germany; Division of Metabolism, Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
43
|
Nikolaou N, Gathercole LL, Kirkwood L, Dunford JE, Hughes BA, Gilligan LC, Oppermann U, Penning TM, Arlt W, Hodson L, Tomlinson JW. AKR1D1 regulates glucocorticoid availability and glucocorticoid receptor activation in human hepatoma cells. J Steroid Biochem Mol Biol 2019; 189:218-227. [PMID: 30769091 PMCID: PMC7375835 DOI: 10.1016/j.jsbmb.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
Abstract
Steroid hormones, including glucocorticoids and androgens, have potent actions to regulate many cellular processes within the liver. The steroid A-ring reductase, 5β-reductase (AKR1D1), is predominantly expressed in the liver, where it inactivates steroid hormones and, in addition, plays a crucial role in bile acid synthesis. However, the precise functional role of AKR1D1 to regulate steroid hormone action in vitro has not been demonstrated. We have therefore hypothesised that genetic manipulation of AKR1D1 has the potential to regulate glucocorticoid availability and action in human hepatocytes. In both liver (HepG2) and non-liver cell (HEK293) lines, AKR1D1 over-expression increased glucocorticoid clearance with a concomitant decrease in the activation of the glucocorticoid receptor and the down-stream expression of glucocorticoid target genes. Conversely, knockdown of AKR1D1 using siRNA decreased glucocorticoid clearance and reduced the generation of 5β-reduced metabolites. In addition, the two 5α-reductase inhibitors finasteride and dutasteride failed to effectively inhibit AKR1D1 activity in either cell-free or hepatocellular systems. Through manipulation of AKR1D1 expression and activity, we have demonstrated its potent ability to regulate glucocorticoid availability and receptor activation within human hepatoma cells. These data suggest that AKR1D1 may have an important role in regulating endogenous (and potentially exogenous) glucocorticoid action that may be of particular relevance to physiological and pathophysiological processes affecting the liver.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Lucy Kirkwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - James E Dunford
- Botnar Research Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Beverly A Hughes
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Udo Oppermann
- Botnar Research Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 1315 BRB II/III 421 Curie Blvd, Philadelphia, PA, 19104-6160, United States
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.
| |
Collapse
|
44
|
Naritaka N, Suzuki M, Takei H, Chen HL, Oh SH, Kaewplang P, Zhang C, Murai T, Kurosawa T, Kimura A, Shimizu T, Nittono H. Use of dried urine spots for screening of inborn errors of bile acid synthesis. Pediatr Int 2019; 61:489-494. [PMID: 30921489 DOI: 10.1111/ped.13852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND In pediatric patients with cholestasis of unknown cause, inborn errors of bile acid (BA) synthesis (IEBAS) may be considered. For the initial screening for IEBAS, clarification of the urine BA profile is essential. The transportation of urine in a frozen state via air delivery, however, is laborious and costly. This study assessed the feasibility of using dried urine spots (DUS) to establish a more convenient and affordable method of IEBAS screening. METHODS We created DUS using urine samples from patients with 3β-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase deficiency (3β-HSD) and Δ4-3-oxo-steroid 5β-reductase deficiency as standard preparations. We started accepting DUS specimens by regular mail. RESULTS The ratio of unusual to usual BA is essential for the initial detection of IEBAS, and the recovery rates of abnormal BA were acceptable. The recovery rate of Δ4-BA on day 28 decreased to 31.8% at 25°C, and to 19.6% at 37°C. Therefore, the sending of DUS should be avoided under conditions of high temperature. Of a total of 49 children with cholestasis, eight new patients were diagnosed with IEBAS using this screening method. CONCLUSION The mailing screening system is expected to facilitate the shipment, from regions outside of Japan, of samples for IEBAS screening.
Collapse
Affiliation(s)
- Nakayuki Naritaka
- Department of Pediatrics, Faculty of Medicine, Juntendo University, Bunkyo, Tokyo, Japan.,Junshin Clinic BA Institute, Meguro, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Faculty of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hajime Takei
- Junshin Clinic BA Institute, Meguro, Tokyo, Japan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Seek-Hi Oh
- Department of Pediatrics, Asan Medical Center, Songpa, Seoul, Korea
| | | | - Chunhua Zhang
- Matsumoto Institute of Life Science (MILS) International, Ishikawa, Kanazawa, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Science, Health Science University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Takao Kurosawa
- School of Pharmaceutical Science, Health Science University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Faculty of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | | |
Collapse
|
45
|
Moreira-Silva H, Maio I, Bandeira A, Gomes-Martins E, Santos-Silva E. Metabolic liver diseases presenting with neonatal cholestasis: at the crossroad between old and new paradigms. Eur J Pediatr 2019; 178:515-523. [PMID: 30693370 DOI: 10.1007/s00431-019-03328-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
Metabolic liver diseases (MLD) are an important group of disorders presenting with neonatal cholestasis (NC). The spectrum of liver involvement is wide and the presumptive diagnosis is traditionally based on clinical and laboratory findings. Recently, next-generation sequencing (NGS) panels have emerged as an appealing tool to diagnose neonatal/infantile cholestatic disorders. The aim of this study was to identify clinical phenotypes of liver injury and contribute to find a diagnostic methodology that integrates new molecular diagnostic tools. We retrospectively analyzed the clinical and biochemical features of 16 patients with MLD and NC. Patients were categorized into three groups: A-NC with liver failure (N = 8): tyrosinemia type I (n = 2), classic galactosemia (n = 5), mitochondrial DNA depletion syndrome (n = 1); B-NC evolving with chronic liver disease (N = 5): argininemia (n = 2); mitochondrial cytopathy (n = 1); congenital disorders of glycosylation type Ia (n = 1); Zellweger syndrome (n = 1); and C-transient NC (N = 3): Niemann-Pick type C (n = 2), citrullinemia type II (n = 1).Conclusion: MLD presenting with NC can be categorized into three main clinical phenotypes of liver injury. We highlight transient NC as a clue for MLD that must be pursued. New molecular diagnostic tools can play a key role, but application criteria must be established to make them cost-effective. What is Known: • Metabolic liver diseases are an important group of disorders presenting with neonatal cholestasis. • The diagnostic approach is challenging and traditionally based on clinical and laboratory findings. Next-generation sequencing is a recent and rapidly developing tool in pediatric hepatology. What is New: • We provide a liver-targeted characterization of metabolic liver diseases presenting with neonatal cholestasis, categorizing them into three clinical phenotypes that may narrow the diagnostic possibilities. • A clinical decision-making algorithm is proposed, in which the NGS technology is integrated.
Collapse
Affiliation(s)
- Helena Moreira-Silva
- Pediatric Gastroenterology Unit, Centro Materno Infantil do Norte - CMIN, Centro Hospitalar Universitário do Porto, Largo da Maternidade de Júlio Dinis, 4050-651, Porto, Portugal
| | - Inês Maio
- Pediatric Gastroenterology Unit, Centro Materno Infantil do Norte - CMIN, Centro Hospitalar Universitário do Porto, Largo da Maternidade de Júlio Dinis, 4050-651, Porto, Portugal
| | - Anabela Bandeira
- Pediatric Metabolic Unit, Centro Materno Infantil do Norte - CMIN, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Esmeralda Gomes-Martins
- Pediatric Metabolic Unit, Centro Materno Infantil do Norte - CMIN, Centro Hospitalar Universitário do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Ermelinda Santos-Silva
- Pediatric Gastroenterology Unit, Centro Materno Infantil do Norte - CMIN, Centro Hospitalar Universitário do Porto, Largo da Maternidade de Júlio Dinis, 4050-651, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal.
| |
Collapse
|
46
|
Kolarić TO, Ninčević V, Smolić R, Smolić M, Wu GY. Mechanisms of Hepatic Cholestatic Drug Injury. J Clin Transl Hepatol 2019; 7:86-92. [PMID: 30944824 PMCID: PMC6441637 DOI: 10.14218/jcth.2018.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Drug-induced cholestasis represents a form of drug-induced liver disease that can lead to severe impairment of liver function. Numerous drugs have been shown to cause cholestasis and consequently bile duct toxicity. However, there is still lack of therapeutic tools that can prevent progression to advanced stages of liver injury. This review focuses on the various pathological mechanisms by which drugs express their hepatotoxic effects, as well as consequences of increased bile acid and toxin accumulation in the hepatocytes.
Collapse
Affiliation(s)
- Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Vjera Ninčević
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Robert Smolić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
| | - Martina Smolić
- Department of Pharmacology, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pharmacology, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
47
|
Diagnostic performance evaluation of sulfate-conjugated cholesterol metabolites as urinary biomarkers of Niemann-Pick disease type C. Clin Chim Acta 2019; 494:58-63. [PMID: 30876856 DOI: 10.1016/j.cca.2019.03.1610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is an autosomal recessive inherited disorder with progressive neuronal degeneration. Because conventional diagnostic methods are complicated and invasive, biomarker tests have drawn attention. We aimed to evaluate three urinary conjugated cholesterol metabolites as diagnostic biomarkers for NPC. METHODS Urine samples from 23 patients with NPC, 28 healthy controls, and 7 patients with inherited metabolic disorders were analyzed. 3β-Sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its glycine and taurine conjugates in urine were quantified by liquid chromatography-tandem mass spectrometry. The diagnostic performance of the three metabolites and their total concentration was evaluated. RESULT Creatinine-corrected concentrations of three metabolites and their total concentration were all significantly higher in NPC patients (0.0098 < P < .0448). The area under the receiver operating curve for all metabolites exceeded 0.95, the clinical specificity was 92-100%, and the clinical sensitivity was ~95%. In the urine of patients with other inherited metabolic diseases, the concentrations of the metabolites were lower than those in the urine of patients with NPC. CONCLUSION These conjugated cholesterol metabolites in urine can serve as useful diagnostic markers for noninvasive screening of NPC.
Collapse
|
48
|
Developing an Enzyme-Assisted Derivatization Method for Analysis of C 27 Bile Alcohols and Acids by Electrospray Ionization-Mass Spectrometry. Molecules 2019; 24:molecules24030597. [PMID: 30736477 PMCID: PMC6384595 DOI: 10.3390/molecules24030597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Enzyme-assisted derivatization for sterol analysis (EADSA) is a technology designed to enhance sensitivity and specificity for sterol analysis using electrospray ionization⁻mass spectrometry. To date it has only been exploited on sterols with a 3β-hydroxy-5-ene or 3β-hydroxy-5α-hydrogen structure, using bacterial cholesterol oxidase enzyme to convert the 3β-hydroxy group to a 3-oxo group for subsequent derivatization with the positively charged Girard hydrazine reagents, or on substrates with a native oxo group. Here we describe an extension of the technology by substituting 3α-hydroxysteroid dehydrogenase (3α-HSD) for cholesterol oxidase, making the method applicable to sterols with a 3α-hydroxy-5β-hydrogen structure. The 3α-HSD enzyme works efficiently on bile alcohols and bile acids with this stereochemistry. However, as found by others, derivatization of the resultant 3-oxo group with a hydrazine reagent does not go to completion in the absence of a conjugating double bond in the sterol structure. Nevertheless, Girard P derivatives of bile alcohols and C27 acids give an intense molecular ion ([M]⁺) upon electrospray ionization and informative fragmentation spectra. The method shows promise for analysis of bile alcohols and 3α-hydroxy-5β-C27-acids, enhancing the range of sterols that can be analyzed at high sensitivity in sterolomic studies.
Collapse
|
49
|
Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019; 24:112-128. [DOI: 10.1016/j.drudis.2018.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
50
|
Hong J, Oh SH, Yoo HW, Nittono H, Kimura A, Kim KM. Complete Recovery of Oxysterol 7α-Hydroxylase Deficiency by Living Donor Transplantation in a 4-Month-Old Infant: the First Korean Case Report and Literature Review. J Korean Med Sci 2018; 33:e324. [PMID: 30546280 PMCID: PMC6291407 DOI: 10.3346/jkms.2018.33.e324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Oxysterol 7α-hydroxylase deficiency is a very rare liver disease categorized as inborn errors of bile acid synthesis, caused by CYP7B1 mutations. As it may cause rapid progression to end-stage liver disease even in early infancy, a high index of suspicion is required to prevent fatal outcomes. We describe the case of a 3-month-old boy with progressive cholestatic hepatitis and severe hepatic fibrosis. After excluding other etiologies for his early liver failure, we found that he had profuse urinary excretion of 3β-monohydroxy-Δ5-bile acid derivatives by gas chromatography/mass spectrometry analysis with dried urine spots on filter paper. He was confirmed to have a compound heterozygous mutation (p.Arg388Ter and p.Tyr469IlefsX5) of the CYP7B1 gene. After undergoing liver transplantation (LT) from his mother at 4 months of age, his deteriorated liver function completely normalized, and he had normal growth and development until the current follow-up at 33 months of age. We report the first Korean case of oxysterol 7α-hydroxylase deficiency in the youngest infant reported to undergo successful living donor LT to date.
Collapse
Affiliation(s)
- Jeana Hong
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|