1
|
Zhao F, Gong L, Wang P, Chen D, Cao S, Yang F, Tang M, Meng Y, Wang Y, Miao L, Li Y, Huang W. Co-encapsulation of norcantharidin prodrugs and lomitapide in nanoparticles to regulate CCL4 expression by inhibiting Wnt/β-catenin pathway for improved anti-tumor immunotherapy. J Nanobiotechnology 2025; 23:369. [PMID: 40394658 PMCID: PMC12093795 DOI: 10.1186/s12951-025-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
In the absence of tumor antigen specificity, direct chemokine administration carries the risk of significant "on-target, off-tumor" toxicities, highlighting the need for small-molecule approaches with reduced immunogenicity. This study investigates the synergistic potential of norcantharidin (NCTD) and lomitapide (lomi) in selectively restoring CCL4 expression by deactivating the tumor intrinsic β-catenin pathway. Due to its similar lipophilicity to lomi and potential to suppress β-catenin, NCTD prodrug (C12) was selected to be co-encapsulated with lomi in a nanoparticle-mediated co-delivery system (NP"C12 + lomi"). The NP"C12 + lomi" formulation exhibited a high encapsulation rate, uniform particle size, and suitability for therapeutic use. It effectively inhibited the proliferation of 4T1 cells and restored CCL4 expression. In both primary breast tumor and surgically resected tumor mouse models, NP"C12 + lomi" significantly increased the proportion of CD8+ cells in primary tumors, blood, and lung metastases, approximately doubling their presence. This led to a prolongation of median survival in mice to 59 days. Furthermore, when combined with an immune checkpoint inhibitor, NP"C12 + lomi" substantially inhibited tumor growth and lung metastasis without affecting body weight or causing major tissue or organ damage. This was attributed to the controlled dissociation of the nanoparticle and the subsequent modulation of C12 and lomi, which mitigated CCL4-related toxicity. This study provides valuable insights into the safe production of chemokines using a small-molecule pair through a nanosystem and presents a robust chemo-immunological cascade therapy strategy, demonstrating significant efficacy against malignant metastatic tumors.
Collapse
Affiliation(s)
- Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dong Chen
- Suzhou Kintor Pharmaceuticals, Inc., Suzhou, 215127, China
| | - Shijie Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feifei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuanyuan Meng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Tiwari P, Shukla RP, Yadav K, Sharma M, Bakshi AK, Panwar D, Singh N, Agarwal N, Mugale MN, Mishra PR. YIGSR Functionalized Hybrid Exosomes Spatially Target Dasatinib to Laminin Receptors for Precision Therapy in Breast Cancer. Adv Healthc Mater 2025; 14:e2402673. [PMID: 39962816 DOI: 10.1002/adhm.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/17/2024] [Indexed: 04/08/2025]
Abstract
In this study, YIGSR-functionalized exosomes (Exo) are engineered and hybridized with lipid polymeric nanoparticles (LPNPs) followed by loading of chemotherapy Dasatinib (DST) to spatially target laminin receptors on tumors. Exo derived from differentiated macrophages are engineered with YIGSR targeting peptides.These YIGSR-Exo are subsequently fused with LPNPs membranes using the freeze-thaw method, resulting in fused hybrid YIGSR-Exo, which are then loaded with DST, creating DST-FuNP@YIGSR-Exo and targeted breast cancer (BC), leading to enhanced mitochondrial membrane potential (54.50 ±5.0%), increased reactive oxygen species (59.50 ± 6.0%), and apoptosis (63 ± 6.5%), ultimately inducing cell death. Further, cellular uptake and receptor blocking studies confirm the binding affinity and interaction of DST-FuNP@YIGSR-Exo with laminin receptors, Intravenous pharmacokinetic analysis of DST-FuNP@YIGSR-Exo reveals a significant improvement in AUC0-∞, with a 20.84-fold increase compared to free DST and a 1.61-fold enhancement over DST-FuNP@Exo. This is further supported by in vivo imaging and demonstrated improved tumor localization. A tumor regression study shows a 6.8-fold reduction in tumors. Tumor tissue-specific IHC for the Ki67 proliferative marker is significantly reduced in the targeted formulation. The potential of DST-FuNP@YIGSR-Exo as an effective carrier for delivering chemotherapeutic drugs, paving the path for the advancement of biologically obtained nanocarriers for targeted breast cancer.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Neha Agarwal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
3
|
Almawash S. Oral Bioavailability Enhancement of Anti-Cancer Drugs Through Lipid Polymer Hybrid Nanoparticles. Pharmaceutics 2025; 17:381. [PMID: 40143044 PMCID: PMC11946161 DOI: 10.3390/pharmaceutics17030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer is considered as the second leading cause of death worldwide. Chemotherapy, radiotherapy, immunotherapy, and targeted drug delivery are the main treatment options for treating cancers. Chemotherapy drugs are either available for oral or parenteral use. Oral chemotherapy, also known as chemotherapy at home, is more likely to improve patient compliance and convenience. Oral anti-cancer drugs have bioavailability issues associated with lower aqueous solubility, first-pass metabolism, poor intestinal permeability and drug absorption, and degradation of the drug throughout its journey in the gastrointestinal tract. A highly developed carrier system known as lipid polymer hybrid nanoparticles (LPHNs) has been introduced. These nanocarriers enhance drug stability, solubility, and absorption, and reduce first-pass metabolism. Consequently, this will have a positive impact on oral bioavailability enhancement. This article provides an in-depth analysis of LPHNs as a novel drug delivery system for anti-cancer agents. It discusses an overview of the limited bioavailability of anti-cancer drugs, their reasons and consequences, LPHNs based anti-cancer drug delivery, conventional and modern preparation methods as well as their drug loading and entrapment efficiencies. In addition, this article also gives an insight into the mechanistic approach to oral bioavailability enhancement, potential applications in anti-cancer drug delivery, limitations, and future prospects of LPHNs in anti-cancer drug delivery.
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
4
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
6
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Dong Z, Zhang H, Chen Y, Payne PRO, Li F. Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling. Cancers (Basel) 2023; 15:4210. [PMID: 37686486 PMCID: PMC10486573 DOI: 10.3390/cancers15174210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Synergistic drug combinations provide huge potentials to enhance therapeutic efficacy and to reduce adverse reactions. However, effective and synergistic drug combination prediction remains an open question because of the unknown causal disease signaling pathways. Though various deep learning (AI) models have been proposed to quantitatively predict the synergism of drug combinations, the major limitation of existing deep learning methods is that they are inherently not interpretable, which makes the conclusions of AI models untransparent to human experts, henceforth limiting the robustness of the model conclusion and the implementation ability of these models in real-world human-AI healthcare. In this paper, we develop an interpretable graph neural network (GNN) that reveals the underlying essential therapeutic targets and the mechanism of the synergy (MoS) by mining the sub-molecular network of great importance. The key point of the interpretable GNN prediction model is a novel graph pooling layer, a self-attention-based node and edge pool (henceforth SANEpool), that can compute the attention score (importance) of genes and connections based on the genomic features and topology. As such, the proposed GNN model provides a systematic way to predict and interpret the drug combination synergism based on the detected crucial sub-molecular network. Experiments on various well-adopted drug-synergy-prediction datasets demonstrate that (1) the SANEpool model has superior predictive ability to generate accurate synergy score prediction, and (2) the sub-molecular networks detected by the SANEpool are self-explainable and salient for identifying synergistic drug combinations.
Collapse
Affiliation(s)
- Zehao Dong
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.D.); (Y.C.)
| | - Heming Zhang
- Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (H.Z.); (P.R.O.P.)
| | - Yixin Chen
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; (Z.D.); (Y.C.)
| | - Philip R. O. Payne
- Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (H.Z.); (P.R.O.P.)
| | - Fuhai Li
- Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (H.Z.); (P.R.O.P.)
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
9
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
10
|
Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv Transl Res 2022; 12:2303-2334. [DOI: 10.1007/s13346-021-01104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
11
|
Abd-Elsabour M, Assaf HF, Abo-Bakr AM, Alhamzani AG, Abou-Krisha MM, Al-Mutairi AA, Alsoghier HM. Green electro-organic synthesis of a novel catechol derivative based on o-benzoquinone nucleophilic addition. NEW J CHEM 2022. [DOI: 10.1039/d2nj04530c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this work, a green-electrochemical synthesis was applied to catechol oxidation (1) to o-benzoquinone (2) using cyclic voltammetry and potential controlled coulometry.
Collapse
Affiliation(s)
- Mohamed Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hytham F. Assaf
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Ahmed M. Abo-Bakr
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Aamal A. Al-Mutairi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hesham M. Alsoghier
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
12
|
Xu J, Ma M, Mukerabigwi JF, Luo S, Zhang Y, Cao Y, Ning L. The effect of spacers in dual drug-polymer conjugates toward combination therapeutic efficacy. Sci Rep 2021; 11:22116. [PMID: 34764340 PMCID: PMC8586145 DOI: 10.1038/s41598-021-01550-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, a great effort has been made to perfect the therapeutic effect of solid tumor, from single-agent therapy to combined therapy and many other polymer-drug conjugations with dual or more anticancer agents due to their promising synergistic effect and higher drug level accumulation towards tumor tissues. Different polymer-drug spacers present diverse therapeutic efficacy, therefore, finding an appropriate spacer is desirable. In this study, dual drugs that are doxorubicin (DOX) and mitomycin C (MMC) were conjugated onto a polymer carrier (xyloglucan) via various peptide or amide bonds, and a series of polymers drug conjugates were synthesized with different spacers and their effect on tumor treatment efficacy was studied both in vitro and in vivo. The result shows that the synergistic effect is better when using different linker to conjugate different drugs rather than using the same spacer to conjugate different drugs on the carrier. Particularly, the finding of this works suggested that, using peptide bond for MMC and amide bond for DOX to conjugate dual drugs onto single XG carrier could improve therapeutic effect and synergy effect. Therefore, in polymer-pharmaceutical formulations, the use of different spacers to optimize the design of existing drugs to enhance therapeutic effects is a promising strategy.
Collapse
Affiliation(s)
- Juan Xu
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Mengdi Ma
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jean Felix Mukerabigwi
- Department of Chemistry, College of Science and Technology, University of Rwanda, P.O Box: 3900, Kigali, Rwanda
| | - Shiying Luo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yuannian Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| | - Lifeng Ning
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China.
| |
Collapse
|
13
|
Optimizing the Design of Blood-Brain Barrier-Penetrating Polymer-Lipid-Hybrid Nanoparticles for Delivering Anticancer Drugs to Glioblastoma. Pharm Res 2021; 38:1897-1914. [PMID: 34655006 DOI: 10.1007/s11095-021-03122-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Chemotherapy for glioblastoma multiforme (GBM) remains ineffective due to insufficient penetration of therapeutic agents across the blood-brain barrier (BBB) and into the GBM tumor. Herein, is described, the optimization of the lipid composition and fabrication conditions for a BBB- and tumor penetrating terpolymer-lipid-hybrid nanoparticle (TPLN) for delivering doxorubicin (DOX) to GBM. METHODS The composition of TPLNs was first screened using different lipids based on nanoparticle properties and in vitro cytotoxicity by using 23 full factorial experimental design. The leading DOX loaded TPLNs (DOX-TPLN) were prepared by further optimization of conditions and used to study cellular uptake mechanisms, in vitro cytotoxicity, three-dimensional (3D) glioma spheroid penetration, and in vivo biodistribution in a murine orthotopic GBM model. RESULTS Among various lipids studied, ethyl arachidate (EA) was found to provide excellent nanoparticle properties e.g., size, polydispersity index (PDI), zeta potential, encapsulation efficiency, drug loading, and colloidal stability, and highest anticancer efficacy for DOX-TPLN. Further optimized EA-based TPLNs were prepared with an optimal particle size (103.8 ± 33.4 nm) and PDI (0.208 ± 0.02). The resultant DOX-TPLNs showed ~ sevenfold higher efficacy than free DOX against human GBM U87-MG-RED-FLuc cells in vitro. The interaction between the TPLNs and the low-density lipoprotein receptors also facilitated cellular uptake, deep penetration into 3D glioma spheroids, and accumulation into the in vivo brain tumor regions of DOX-TPLNs. CONCLUSION This work demonstrated that the TPLN system can be optimized by rational selection of lipid type, lipid content, and preparation conditions to obtain DOX-TPLN with enhanced anticancer efficacy and GBM penetration and accumulation.
Collapse
|
14
|
Alemayehu YA, Ilhami FB, Manayia AH, Cheng CC. Mercury-containing supramolecular micelles with highly sensitive pH-responsiveness for selective cancer therapy. Acta Biomater 2021; 129:235-244. [PMID: 34087441 DOI: 10.1016/j.actbio.2021.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Construction and manipulation of metal-based supramolecular polymers-which are based on a combination of nucleobase hydrogen bonding interactions and functional metal ions-to obtain the desired physicochemical properties and achieve the efficacy and safety required for biomedical applications remain extremely challenging. We successfully designed and synthesized a new mercury-based supramolecular polymer, Hg-BU-PPG, containing an oligomeric polypropylene glycol backbone and pH-sensitive uracil-mercury-uracil (U-Hg-U) linkages. This multifunctional metallo-supramolecular material spontaneously self-organizes into nanosized spherical micelles in aqueous solution. The micelles possess several attractive properties, including desired long-term structural stability in serum-rich conditions, unique fluorescence behavior and highly sensitive, well-controlled pH-responsiveness. Interestingly, Hg-BU-PPG micelles exhibited strong, selective cytotoxic effects towards cancer cells in vitro, without harming normal cells. The highly selective cytotoxicity can be attributed to rapid dissociation of the U-Hg-U complexes within the micelles in the mildly acidic intracellular pH of cancer cells, followed by release of inherently toxic mercury ions. Importantly, fluorescence microscopy and flow cytometry clearly demonstrated that Hg-BU-PPG selectively entered the cancer cells via endocytosis and rapidly promoted massive apoptotic cell death. In contrast, internalization of Hg-BU-PPG by normal cells was limited, resulting in high biocompatibility and no cytotoxic effects. Thus, this newly discovered 'cytotoxicity-concealing' supramolecular system could represent a viable route to enhance the safety and efficacy of cancer therapy and bioimaging via a strategy that does not require incorporation of anticancer drugs and fluorescent probes. STATEMENT OF SIGNIFICANCE: We report a significant breakthrough in the construction of mercury-containing supramolecular polymers, namely the creation of multifunctional micelles with unique chemical and physical properties conferred by pH-sensitive uracil-mercury-uracil (U-Hg-U) linkages and tunable structural and dynamical features due to the presence of hydrogen-bonded uracil moieties. Importantly, in vitro experiments clearly demonstrated that introduction of the U-Hg-U complexes into the micelles not only improved the efficiency of selective uptake via endocytosis into cancer cells, but also accelerated the induction of massive apoptotic cell death. Thus, this work provides crucial new insight for the development of metallo-supramolecular polymeric micelles that may substantially enhance the safety and efficacy of cancer therapy and bioimaging without requiring incorporation of anticancer drugs or fluorescent probes.
Collapse
|
15
|
Using response surface models to analyze drug combinations. Drug Discov Today 2021; 26:2014-2024. [PMID: 34119666 DOI: 10.1016/j.drudis.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/09/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Quantitative evaluation of how drugs combine to elicit a biological response is crucial for drug development. Evaluations of drug combinations are often performed using index-based methods, which are known to be biased and unstable. We examine how these methods can produce misleadingly structured patterns of bias, leading to erroneous judgments of synergy or antagonism. By contrast, response surface models are less prone to these defects and can be applied to a wide range of data that have appeared in recent literature, including the measurement of combination therapeutic windows and the analysis of discrete experimental measures, three-way drug combinations, and atypical response behaviors.
Collapse
|
16
|
Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, Garg M, Rangappa KS. Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol 2021; 86:998-1013. [PMID: 33979675 DOI: 10.1016/j.semcancer.2021.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, 571448, Nagamangala Taluk, India
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, Noida, 201313, India
| | | |
Collapse
|
17
|
Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance? Molecules 2021; 26:2601. [PMID: 33946916 PMCID: PMC8124695 DOI: 10.3390/molecules26092601] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Despite enormous progress in the treatment of many malignancies, the development of cancer resistance is still an important reason for cancer chemotherapy failure. Increasing knowledge of cancers' molecular complexity and mechanisms of their resistance to anticancer drugs, as well as extensive clinical experience, indicate that an effective fight against cancer requires a multidimensional approach. Multi-target chemotherapy may be achieved using drugs combination, co-delivery of medicines, or designing hybrid drugs. Hybrid drugs simultaneously targeting many points of signaling networks and various structures within a cancer cell have been extensively explored in recent years. The single hybrid agent can modulate multiple targets involved in cancer cell proliferation, possesses a simpler pharmacokinetic profile to reduce the possibility of drug interactions occurrence, and facilitates the process of drug development. Moreover, a single medication is expected to enhance patient compliance due to a less complicated treatment regimen, as well as a diminished number of adverse reactions and toxicity in comparison to a combination of drugs. As a consequence, many efforts have been made to design hybrid molecules of different chemical structures and functions as a means to circumvent drug resistance. The enormous number of studies in this field encouraged us to review the available literature and present selected research results highlighting the possible role of hybrid drugs in overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Andrzej Stanczak
- Department of Community Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland;
| |
Collapse
|
18
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
19
|
Zhang Y, He Z, Li Y, Xia Q, Li Z, Hou X, Feng N. Tumor cell membrane-derived nano-Trojan horses encapsulating phototherapy and chemotherapy are accepted by homologous tumor cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111670. [PMID: 33545835 DOI: 10.1016/j.msec.2020.111670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022]
Abstract
Tumor cell membrane-derived nanostructures targeting homologous tumors are promising biomimetic drugs. Herein, curcumin (Cur) and chlorin e6 (Ce6) were co-loaded into PLGA nanoparticles (NPs), and then the NPs were coated with MCF-7 cell membranes (MCNPs). Cell membrane coating sharply increased the uptake of MCNPs by homologous cells, as compared to that with naked NPs. The NPs co-loaded with Cur and Ce6 (Cur/Ce6-NPs) showed a stronger proliferation-inhibitory effect on MCF-7 cells than the NP groups loaded with Cur and Ce6 alone. Cytotoxicity and apoptosis rates of MCF-7 cells in the Cur/Ce6-MCNPs group were significantly higher than those in the uncoated Cur/Ce6-NPs group. Both Cur/Ce6-NPs and Cur/Ce6-MCNPs significantly inhibited the migration of MCF-7cells, although Cur/Ce6-MCNPs showed a stronger effect. Compared to that of Cur/Ce6-NPs, the elimination of Cur/Ce6-MCNPs was both decreased and retarded, prolonging their in vivo systemic circulation and resulting in improved bioavailability. After intravenous administration for 24 h, the fluorescence intensity of drugs in the liver and spleen of the Cur/Ce6-MCNPs group was significantly weaker than that in the Cur/Ce6-NPs group, but that in tumor tissue was enhanced. Further, Cur/Ce6-MCNPs treatment achieved significantly better tumor-suppressive effects in vivo than Cur/Ce6-NPs, resulting in smaller tumor weights, increased apoptosis rates, and the down regulation of Ki67 protein in the tumor tissue. Thus, the tumor cell membrane-camouflaged nanocomposites have potential for homologous tumor-targeted therapy. Furthermore, photodynamic therapy combined with chemotherapy has promising future prospects.
Collapse
Affiliation(s)
- Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanyan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Harwansh RK, Bahadur S, Deshmukh R, Rahman MA. Exciting Potential of Nanoparticlized Lipidic System for Effective Treatment of Breast Cancer and Clinical Updates: A Translational Prospective. Curr Pharm Des 2020; 26:1191-1205. [PMID: 32003686 DOI: 10.2174/1381612826666200131101156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) is a multifactorial disease and becoming a major health issue in women throughout the globe. BC is a malignant type of cancer which results from transcriptional changes in proteins and genes. Besides the availability of modern medicines and detection tools, BC has become a topmost deadly disease and its cure still remains challenging. Nanotechnology based approaches are being employed for the diagnosis and treatment of BC at clinical stages. Nanosystems have a significant role in the study of the interaction of malignant cells with their microenvironment through receptor-based targeted approach. Nowadays, lipid-based nanocarriers are being popularized in the domain of pharmaceutical and medical biology for cancer therapy. Lipidic nanoparticlized systems (LNPs) have proven to have high loading efficiency, less toxicity, improved therapeutic efficacy, enhanced bioavailability and stability of the bioactive compounds compared to traditional drug delivery systems. In the present context, several LNPs based formulations have been undertaken in various phases of clinical trials in different countries. This review highlights the importance of chemotherapeutics based lipidic nanocarriers and their anticipated use for the treatment of BC. Furthermore, the clinical trials and future prospective of LNPs have been widely elaborated.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Md A Rahman
- College of Pharmacy, Taif University, Taif - 21974, Saudi Arabia
| |
Collapse
|
21
|
Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. Curr Top Med Chem 2020; 20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is the fifth (6.3% of all cancers i.e., 548,000 cases/year) and ninth (2.8% of all
cancers i.e., 244,000 cases/year) most prevalent cancer worldwide in men and women, respectively. Although
multiple choices of therapies are offered for Hepatocellular Carcinoma (HCC) like liver resection
or transplant, radiofrequency ablation, transarterial chemoembolization, radioembolization, and systemic
targeted agent, by the time of diagnosis, most of the cases of HCC are in an advanced stage, which
renders therapies like liver transplant or resection and local ablation impractical; and targeted therapy
has its shortcomings like general toxicity, imprecise selectivity, several adversative reactions, and resistance
development. Therefore, novel drugs with specificity and selectivity are needed to provide the potential
therapeutic response. Various researches have shown the potential of phytomedicines in liver
cancer by modulating cell growth, invasion, metastasis, and apoptosis. However, their therapeutic potential
is held up by their unfavorable properties like stability, poor water solubility, low absorption, and
quick metabolism. Nonetheless, the advancement of nanotechnology-based innovative nanocarrier formulations
has improved the phytomedicines’ profile to be used in the treatment of liver cancer. Nanocarriers
not only improve the solubility and stability of phytomedicines but also extend their residence in
plasma and accomplish specificity. In this review, we summarize the advancements introduced by
nanotechnology in the treatment of liver cancer. In particular, we discuss quite a few applications of
nanophytomedicines like curcumin, quercetin, epigallocatechin-3-gallate, berberine, apigenin, triptolide,
and resveratrol in liver cancer treatment.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakshi Bajaj
- Department of Herbal Drug Technology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Satish Manchanda
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Himangini Bansal
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| |
Collapse
|
22
|
Harwansh RK, Deshmukh R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit Rev Oncol Hematol 2020; 154:103070. [PMID: 32871325 DOI: 10.1016/j.critrevonc.2020.103070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a heterogeneous disease, occurs due to transcriptional changes in genetic and epigenetic including numerous genes and proteins. Worldwide, breast cancer (BC) is the life-threatening malignancies in women, is characterized by the occurrence of more than one molecular alteration. The incidence and mortality of BC are growing every day because of the adoption of western living standards, metropolitanization, and more life expectancy. Even though many modern approaches are available for the detection and treatment of BC, despite of these, it remains the topmost cause of death in women. This review highlights various approaches, including the importance of clinical, pathological, and molecular aspects of BC. Moreover, risk factors, biomarkers, immunotherapy, investigational drugs, and their role through tumor targets and immune systems have been discussed for management of BC. Furthermore, various targeting approaches for tumors through nanocarriers and their clinical trials have been elaborated in BC challenges and future perspectives.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| |
Collapse
|
23
|
Omer ME, Halwani M, Alenazi RM, Alharbi O, Aljihani S, Massadeh S, Al Ghoribi M, Al Aamery M, Yassin AE. Novel Self-Assembled Polycaprolactone-Lipid Hybrid Nanoparticles Enhance the Antibacterial Activity of Ciprofloxacin. SLAS Technol 2020; 25:598-607. [PMID: 32734812 DOI: 10.1177/2472630320943126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ciprofloxacin (CIP), a widely used antibiotic, is a poor biopharmaceutical resulting in low bioavailability. We optimized a CIP polymer-lipid hybrid nanoparticle (CIP-PLN) delivery system to enhance its biopharmaceutical attributes and the overall therapeutic performance. CIP-PLN formulations were prepared by a direct emulsification-solvent-evaporation method. Varying the type and ratio of lipid was tried to optimize a CIP-PLN formulation. All the prepared formulations were evaluated for their particle size, polydispersity index, zeta potential, physical stability, and drug entrapment efficiency. The drug in vitro release profile was also studied. Antibacterial activities were tested by the agar diffusion method for all CIP-PLN formulations against an Escherichia coli clinical bacterial isolate (EC04). CIP-PLN formulations showed average sizes in the range of 133.9 ± 1.7 nm to 217.1 ± 0.8 nm, exhibiting high size uniformity as indicated by polydispersity indices lower than 0.25. The entrapment efficiency was close to 80% for all formulations. The differential scanning calorimetry (DSC) thermograms indicated the existence of CIP in the amorphous state in all PLN formulations. Fourier transform infrared spectra indicated deep incorporation of molecular CIP within the polymer matrix. The release profile of CIP from PLN formulas showed a uniform prolonged drug profile, extended for a week from most formulations with a zero-order kinetics. The antibacterial activity of CIP-PLN formulations showed significantly higher antibacterial activity only with F4 containing lecithin as the lipid component. In conclusion, we successfully optimized a CIP-PLN formulation with a low nanoparticle size in a close range, high percentage of entrapment efficiency and drug loading, uniform prolonged release rate, and higher antibacterial activity against the EC04 clinical isolate.
Collapse
Affiliation(s)
- Mustafa E Omer
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Majed Halwani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Rayan M Alenazi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Omar Alharbi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Shokran Aljihani
- King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Salam Massadeh
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Majed Al Ghoribi
- King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Manal Al Aamery
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Alaa Eldeen Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Comparetti EJ, Romagnoli GG, Gorgulho CM, Pedrosa VDA, Kaneno R. Anti-PSMA monoclonal antibody increases the toxicity of paclitaxel carried by carbon nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111254. [PMID: 32806261 DOI: 10.1016/j.msec.2020.111254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Multiple-wall carbon nanotubes (CNTs) were functionalized with polyethyleneimine in order to incorporate paclitaxel (PTX), the first line chemotherapeutic agent for prostate cancer. These particles were then covered with antibodies for the prostate-specific membrane antigen (PSMA), to address them to prostate cancer cells. LNCaP prostate cancer cells (PSMA+), HCT-116 and CaCo-2 colon cancer cells (PSMA-), as well as human peripheral monocytes and lymphocytes (PSMA-), were in vitro exposed to fluorescent CNT composites. The interaction/adherence of those composites to target cells was analyzed by fluorescence microscopy and flow cytometry, showing a diffuse interaction of CNTs and CNT-PTX with all cell types. Analysis of cytotoxicity revealed that both prostate (PSMA+) and colorectal cancer cells (PSMA-) were more susceptible to PTX complexed with CNTs than to pure PTX or CNTs alone, while the incorporation of anti-PSMA (CNT-PTX-PSMA) improved the toxicity on LNCaP cells but not on PSMA- targets. No toxicity was observed in human monocytes and lymphocytes but composites induced phenotypical changes in monocytes. Our results demonstrate the feasibility of using anti-PSMA antibody to address drug-loaded CNT to cancer cells as a strategy for improving the effectiveness of antineoplastic agents.
Collapse
Affiliation(s)
- Edson José Comparetti
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil; São Paulo State University - UNESP, School of Medicine of Botucatu - Department of Pathology, Botucatu, SP, Brazil; UNOESTE - Oeste Paulista University, Department of Health Sciences, Jaú, SP, Brazil
| | - Carolina Mendonça Gorgulho
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil; São Paulo State University - UNESP, School of Medicine of Botucatu - Department of Pathology, Botucatu, SP, Brazil
| | - Valber de Albuquerque Pedrosa
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Ramon Kaneno
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Twarog NR, Connelly M, Shelat AA. A critical evaluation of methods to interpret drug combinations. Sci Rep 2020; 10:5144. [PMID: 32198459 PMCID: PMC7083968 DOI: 10.1038/s41598-020-61923-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Combination therapy is increasingly central to modern medicine. Yet reliable analysis of combination studies remains an open challenge. Previous work suggests that common methods of combination analysis are too susceptible to noise to support robust scientific conclusions. In this paper, we use simulated and real-world combination datasets to demonstrate that traditional index methods are unstable and biased by pharmacological and experimental conditions, whereas response-surface approaches such as the BRAID method are more consistent and unbiased. Using a publicly-available data set, we show that BRAID more accurately captures variations in compound mechanism of action, and is therefore better able to discriminate between synergistic, antagonistic, and additive interactions. Finally, we applied BRAID analysis to identify a clear pattern of consistently enhanced AKT sensitivity in a subset of cancer cell lines, and a far richer array of PARP inhibitor combination therapies for BRCA1-deficient cancers than would be identified by traditional synergy analysis.
Collapse
Affiliation(s)
- Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michele Connelly
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
26
|
Gabizon A, Shmeeda H, Tahover E, Kornev G, Patil Y, Amitay Y, Ohana P, Sapir E, Zalipsky S. Development of Promitil®, a lipidic prodrug of mitomycin c in PEGylated liposomes: From bench to bedside. Adv Drug Deliv Rev 2020; 154-155:13-26. [PMID: 32777239 DOI: 10.1016/j.addr.2020.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Several liposome products have been approved for the treatment of cancer. In all of them, the active agents are encapsulated in the liposome water phase passively or by transmembrane ion gradients. An alternative approach in liposomal drug delivery consists of chemically modifying drugs to form lipophilic prodrugs with strong association to the liposomal bilayer. Based on this approach, we synthesized a mitomycin c-derived lipidic prodrug (MLP) which is entrapped in the bilayer of PEGylated liposomes (PL-MLP, Promitil®), and activated by thiolytic cleavage. PL-MLP is stable in plasma with thiolytic activation of MLP occurring exclusively in tissues and is more effective and less toxic than conventional chemotherapy in various tumor models. PL-MLP has completed phase I clinical development where it has shown a favorable safety profile and a 3-fold reduction in toxicity as compared to free mitomycin c. Clinical and pharmacokinetic studies in patients with advanced colo-rectal carcinoma have indicated a significant rate of disease stabilization (39%) in this chemo-refractory population and significant prolongation of median survival in patients attaining stable disease (13.9 months) versus progressive disease patients (6.35 months). The pharmacokinetics of MLP was typically stealth with long T½ (~1 day), slow clearance and small volume of distribution. Interestingly, a longer T½, and slower clearance were both correlated with disease stabilization and longer survival. This association of pharmacokinetic parameters with patient outcome suggests that arrest of tumor growth is related to the enhanced tumor localization of long-circulating liposomes and highlights the importance of personalized pharmacokinetic evaluation in the clinical use of nanomedicines. Another important area where PL-MLP may have an added value is in chemoradiotherapy, where it has shown a strong radiosensitizing effect in animal models based on a unique mechanism of enhanced prodrug activation and encouraging results in early human testing.
Collapse
|
27
|
E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials 2019; 230:119618. [PMID: 31757530 DOI: 10.1016/j.biomaterials.2019.119618] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022]
Abstract
Drug-loaded implants have attracted considerable attention in cancer treatment due to their precise delivery of drugs into cancer tissues. Contrary to injected drug delivery, the application of drug-loaded implants remains underutilized given the requirement for a surgical operation. Nevertheless, drug-loaded implants have several advantages, including a reduction in frequency of drug administration, minimal systemic toxicity, and increased delivery efficacy. Herein, we developed a new, precise, drug delivery device for orthotopic breast cancer therapy able to suppress breast tumor growth and reduce pulmonary metastasis using combination chemotherapy. Poly-lactic-co-glycolic acid scaffolds were fabricated by 3D printing to immobilize 5-fluorouracil and NVP-BEZ235. The implantable scaffolds significantly reduced the required drug dosages and ensured curative drug levels near tumor sites for prolonged period, while drug exposure to normal tissues was minimized. Moreover, long-term drug release was achieved, potentially allowing one-off implantation and, thus, a major reduction in the frequency of drug administration. This drug-loaded scaffold has great potential in anti-tumor treatment, possibly paving the way for precise, effective, and harmless cancer therapy.
Collapse
|
28
|
Fisusi FA, Akala EO. Drug Combinations in Breast Cancer Therapy. Pharm Nanotechnol 2019; 7:3-23. [PMID: 30666921 PMCID: PMC6691849 DOI: 10.2174/2211738507666190122111224] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/27/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer therapy involves a multidisciplinary approach comprising surgery, radiotherapy, neoadjuvant and adjuvant therapy. Effective therapy of breast cancer requires maximum therapeutic efficacy, with minimal undesirable effects to ensure a good quality of life for patients. The carefully selected combination of therapeutic interventions provides patients with the opportunity to derive maximum benefit from therapy while minimizing or eliminating recurrence, resistance and toxic effects, as well as ensuring that patients have a good quality of life. This review discusses therapeutic options for breast cancer treatments and various combinations that had been previously exploited. The review will also give an insight into the potential application of the nanotechnology platform for codelivery of therapeutics in breast cancer therapy.
Collapse
Affiliation(s)
- Funmilola A Fisusi
- Center for Drug Research and Development, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC, United States.,Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Emmanuel O Akala
- Center for Drug Research and Development, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC, United States
| |
Collapse
|
29
|
Zhang T, Lip H, He C, Cai P, Wang Z, Henderson JT, Rauth AM, Wu XY. Multitargeted Nanoparticles Deliver Synergistic Drugs across the Blood-Brain Barrier to Brain Metastases of Triple Negative Breast Cancer Cells and Tumor-Associated Macrophages. Adv Healthc Mater 2019; 8:e1900543. [PMID: 31348614 DOI: 10.1002/adhm.201900543] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Patients with brain metastases of triple negative breast cancer (TNBC) have a poor prognosis owing to the lack of targeted therapies, the aggressive nature of TNBC, and the presence of the blood-brain barrier (BBB) that blocks penetration of most drugs. Additionally, infiltration of tumor-associated macrophages (TAMs) promotes tumor progression. Here, a terpolymer-lipid hybrid nanoparticle (TPLN) system is designed with multiple targeting moieties to first undergo synchronized BBB crossing and then actively target TNBC cells and TAMs in microlesions of brain metastases. In vitro and in vivo studies demonstrate that covalently bound polysorbate 80 in the terpolymer enables the low-density lipoprotein receptor-mediated BBB crossing and TAM-targetability of the TPLN. Conjugation of cyclic internalizing peptide (iRGD) enhances cellular uptake, cytotoxicity, and drug delivery to brain metastases of integrin-overexpressing TNBC cells. iRGD-TPLN with coloaded doxorubicin (DOX) and mitomycin C (MMC) (iRGD-DMTPLN) exhibits higher efficacy in reducing metastatic burden and TAMs than nontargeted DMTPLN or a free DOX/MMC combination. iRGD-DMTPLN treatment reduces metastatic burden by 6-fold and 19-fold and increases host median survival by 1.3-fold and 1.6-fold compared to DMTPLN or free DOX/MMC treatments, respectively. These findings suggest that iRGD-DMTPLN is a promising multitargeted drug delivery system for the treatment of integrin-overexpressing brain metastases of TNBC.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Hoyin Lip
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ping Cai
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Zhigao Wang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Jeffrey T. Henderson
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation OncologyUniversity of Toronto 610 University Ave Toronto Ontario M5G 2M9 Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| |
Collapse
|
30
|
Varshosaz J, Sarrami N, Aghaei M, Aliomrani M, Azizi R. LHRH Targeted Chonderosomes of Mitomycin C in Breast Cancer: An In Vitro/ In Vivo Study. Anticancer Agents Med Chem 2019; 19:1405-1417. [PMID: 30987576 DOI: 10.2174/1871520619666190415165849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mitomycin C (MMC) is an anti-cancer drug used for the treatment of breast cancer with limited therapeutic index, extreme gastric adverse effects and bone marrow suppression. The purpose of the present study was the preparation of a dual-targeted delivery system of MMC for targeting CD44 and LHRH overexpressed receptors of breast cancer. METHODS MMC loaded LHRH targeted chonderosome was prepared by precipitation method and was characterized for their physicochemical properties. Cell cycle arrest and cytotoxicity tests were studied on cell lines of MCF-7, MDA-MB231 and 4T1 (as CD44 and LHRH positive cells) and BT-474 cell line (as CD44 negative receptor cells). The in vivo histopathology and antitumor activity of MMC-loaded chonderosomes were compared with free MMC in 4T1 cells inducing breast cancer in Balb-c mice. RESULTS MMC loaded LHRH targeted chonderosomes caused 3.3 and 5.5 fold more cytotoxicity on MCF-7 and 4T1 cells than free MMC at concentrations of 100μM and 10μM, respectively. However, on BT-474 cells the difference was insignificant. The cell cycle test showed no change for MMC mechanism of action when it was loaded in chonderosomes compared to free MMC. The in vivo antitumor studies showed that MMC loaded LHRH targeted chonderosomes were 6.5 fold more effective in the reduction of tumor volume than free MMC with the most severe necrosis compared to non-targeted chonderosomes in pathological studies on harvested tumors. CONCLUSION The developed MMC loaded LHRH targeted chonderosomes were more effective in tumor growth suppression and may be promising for targeted delivery of MMC in breast cancer.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Sarrami
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Azizi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
32
|
Wang Z, Zhang RX, Zhang T, He C, He R, Ju X, Wu XY. In Situ Proapoptotic Peptide-Generating Rapeseed Protein-Based Nanocomplexes Synergize Chemotherapy for Cathepsin-B Overexpressing Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41056-41069. [PMID: 30387987 DOI: 10.1021/acsami.8b14001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intracellular activation of nanomaterials within cancer cells presents a powerful means to enhance anticancer specificity and efficacy. In light of upregulated lysosomal protease cathepsin-B (CathB) in many types of invasive cancer cells, herein, we exploit CathB-catalyzed biodegradation of acetylated rapeseed protein isolate (ARPI) to design polymer-drug nanocomplexes that can produce proapoptotic peptides in situ and synergize chemotherapy. ARPI forms nanocomplexes with chitosan (CS) and anticancer drug doxorubicin (DOX) [DOX-ARPI/CS nanoparticles (NPs)] by ionic self-assembly. The dual acidic pH- and CathB-responsive properties of the nanocomplexes and CathB-catalyzed biodegradation of ARPI enable efficient lysosomal escape and nuclei trafficking of released DOX, resulting in elevated cytotoxicity in CathB-overexpressing breast cancer cells. The ARPI-derived bioactive peptides exhibit synergistic anticancer effect with DOX by regulating pro- and antiapoptotic-relevant proteins ( p53, Bax, Bcl-2, pro-caspase-3) at mitochondria. In an orthotopic breast tumor model of CathB-overexpressing breast cancer, DOX-ARPI/CS NPs remarkably inhibit tumor growth, enhance tumor cell apoptosis and prolong host survival without eliciting any systemic toxicity. These results suggest that exploitation of multifunctional biomaterials to specifically produce anticancer agents inside cancer cells and trigger drug release to the subcellular target sites is a promising strategy for designing effective synergistic nanomedicines with minimal off-target toxicity.
Collapse
Affiliation(s)
- Zhigao Wang
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| | - Rui Xue Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , People's Republic of China
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing , Nanjing University of Finance and Economics , Nanjing 210003 , People's Republic China
| | - Xingrong Ju
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing , Nanjing University of Finance and Economics , Nanjing 210003 , People's Republic China
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto M5S 3M2 , Canada
| |
Collapse
|
33
|
Padmaja P, Anireddy JS, Reddy PN. Synthesis and Antiproliferative Activity of Novel Pyranocarbazoles. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2354-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, Ahmed T, Lip H, Rauth AM, Wu XY. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples. Acta Pharmacol Sin 2018; 39:825-844. [PMID: 29698389 DOI: 10.1038/aps.2018.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
Abstract
Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.
Collapse
|
35
|
Bhandari P, Novikova G, Goergen CJ, Irudayaraj J. Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Sci Rep 2018; 8:3112. [PMID: 29449656 PMCID: PMC5814559 DOI: 10.1038/s41598-018-20363-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022] Open
Abstract
New intravesical treatment approaches for bladder cancer are needed as currently approved treatments show several side effects and high tumor recurrence rate. Our study used MB49 murine urothelial carcinoma model to evaluate oxygen encapsulated cellulosic nanobubbles as a novel agent for imaging and ultrasound guided drug delivery. In this study, we show that oxygen nanobubbles (ONB) can be propelled (up to 40 mm/s) and precisely guided in vivo to the tumor by an ultrasound beam. Nanobubble velocity can be controlled by altering the power of the ultrasound Doppler beam, while nanobubble direction can be adjusted to different desired angles by altering the angle of the beam. Precise ultrasound beam steering of oxygen nanobubbles was shown to enhance the efficacy of mitomycin-C, resulting in significantly lower tumor progression rates while using a 50% lower concentration of chemotherapeutic drug. Further, dark field imaging was utilized to visualize and quantify the ONB ex vivo. ONBs were found to localize up to 500 µm inside the tumor using beam steering. These results demonstrate the potential of an oxygen nanobubble drug encapsulated system to become a promising strategy for targeted drug delivery because of its multimodal (imaging and oxygen delivery) and multifunctional (targeting and hypoxia programming) properties.
Collapse
Affiliation(s)
- Pushpak Bhandari
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States
| | - Gloriia Novikova
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, 47907, United States.
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, United States.
- Department of Bioengineering, UIUC, Urbana, IL 61801, United States.
| |
Collapse
|
36
|
Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release 2017; 271:60-73. [PMID: 29273320 DOI: 10.1016/j.jconrel.2017.12.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 01/11/2023]
Abstract
Cancer remained a major cause of death providing diversified challenges in terms of treatment including non-specific toxicity, chemoresistance and relapse. Nanotechnology- based delivery systems grabbed tremendous attention for delivering cancer therapeutics as they provide benefits including controlled drug release, improved biological half-life, reduced toxicity and targeted delivery. Majority of the nanocarriers consists of either a polymer or a lipid component along with other excipients to stabilize the colloidal system. Lipid-based systems provide advantages like better entrapment efficiency, scalability and low- cost raw materials, however, suffer from limitations including instability, a burst release of the drug, and limited surface functionalization. On the other hand, polymeric systems provide an excellent diversity of chemical modifications, stability, controlled release, however limited drug loading capacities and scale up limit their use. Hybrid nanocarriers consisting of lipid and polymer were able to overcome some of these disadvantages while retaining the advantages of both the systems. Designing a stable lipid-polymer hybrid system requires a thorough understanding of the material properties and their behavior in in vitro and in vivo environments. This review highlights the current status and future prospects of lipid-polymer hybrid systems with a particular focus on cancer nanotherapeutics.
Collapse
Affiliation(s)
- Tushar Date
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Vaishnavi Nimbalkar
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Jyostna Kamat
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, NE 68198-6125, United States
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS), Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
37
|
Abstract
In 2015, cancer was the cause of almost 22% of deaths worldwide. The high frequency of relapsing diseases and metastasis requires the development of new diagnostic and therapeutic approaches, and the use of nanomaterials is a promising tool for fighting cancer. Among the more extensively studied nanomaterials are carbon nanotubes (CNTs), synthesized as graphene sheets, whose spiral shape is varied in length and thickness. Their physicochemical features, such as the resistance to tension, and thermal and electrical conductivity, allow their application in several fields. In this review, we show evidence supporting the applicability of CNTs in biomedical practice as nanocarriers for drugs and immunomodulatory material, emphasizing their potential for use in cancer treatment.
Collapse
|
38
|
Franco MS, Oliveira MC. Ratiometric drug delivery using non-liposomal nanocarriers as an approach to increase efficacy and safety of combination chemotherapy. Biomed Pharmacother 2017; 96:584-595. [PMID: 29035823 DOI: 10.1016/j.biopha.2017.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022] Open
Abstract
The observation that different drug ratios of the same drug combination can lead to synergistic or antagonistic effects when tested against the same cancer cell line in vitro gave rise to a new trend, the ratiometric delivery. This strategy consists of co-encapsulating a specific synergistic ratio of a drug combination into a nanocarrier so that synergism observed in vitro will be faithfully translated to in vivo, optimizing combination therapy. In this review we focus on how to quantify synergism in vitro, followed by how this affected the evolution of nanocarriers culminating in the ratiometric delivery, and finally we summarize the results of the non-liposomal formulations that were built upon this concept.
Collapse
Affiliation(s)
- Marina Santiago Franco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Zhang RX, Zhang T, Chen K, Cheng J, Lai P, Rauth AM, Pang KS, Wu XY. Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice. J Vis Exp 2017. [PMID: 29053672 DOI: 10.3791/56159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Combination chemotherapy is frequently used in the clinic for cancer treatment; however, associated adverse effects to normal tissue may limit its therapeutic benefit. Nanoparticle-based drug combination has been shown to mitigate the problems encountered by free drug combination therapy. Our previous studies have shown that the combination of two anticancer drugs, doxorubicin (DOX) and mitomycin C (MMC), produced a synergistic effect against both murine and human breast cancer cells in vitro. DOX and MMC co-loaded polymer-lipid hybrid nanoparticles (DMPLN) bypassed various efflux transporter pumps that confer multidrug resistance and demonstrated enhanced efficacy in breast tumor models. Compared to conventional solution forms, such superior efficacy of DMPLN was attributed to the synchronized pharmacokinetics of DOX and MMC and increased intracellular drug bioavailability within tumor cells enabled by the nanocarrier PLN. To evaluate the pharmacokinetics and bio-distribution of co-administered DOX and MMC in both free solution and nanoparticle forms, a simple and efficient multi-drug analysis method using reverse-phase high performance liquid chromatography (HPLC) was developed. In contrast to previously reported methods that analyzed DOX or MMC individually in the plasma, this new HPLC method is able to simultaneously quantitate DOX, MMC and a major cardio-toxic DOX metabolite, doxorubicinol (DOXol), in various biological matrices (e.g., whole blood, breast tumor, and heart). A dual fluorescent and ultraviolet absorbent probe 4-methylumbelliferone (4-MU) was used as an internal standard (I.S.) for one-step detection of multiple drug analysis with different detection wavelengths. This method was successfully applied to determine the concentrations of DOX and MMC delivered by both nanoparticle and solution approaches in whole blood and various tissues in an orthotopic breast tumor murine model. The analytical method presented is a useful tool for pre-clinical analysis of nanoparticle-based delivery of drug combinations.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Tian Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - King Chen
- Department of Pharmaceutical Sciences, University of Toronto
| | - Ji Cheng
- Department of Pharmaceutical Sciences, University of Toronto
| | - Paris Lai
- Department of Pharmaceutical Sciences, University of Toronto
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario Cancer Institute, University Health Network
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Xiao Yu Wu
- Department of Pharmaceutical Sciences, University of Toronto;
| |
Collapse
|
40
|
Andrade LM, Silva LAD, Krawczyk-Santos AP, Amorim ICDS, Rocha PBRD, Lima EM, Anjos JLV, Alonso A, Marreto RN, Taveira SF. Improved tacrolimus skin permeation by co-encapsulation with clobetasol in lipid nanoparticles: Study of drug effects in lipid matrix by electron paramagnetic resonance. Eur J Pharm Biopharm 2017. [DOI: 10.1016/j.ejpb.2017.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Zhitnyak IY, Bychkov IN, Sukhorukova IV, Kovalskii AM, Firestein KL, Golberg D, Gloushankova NA, Shtansky DV. Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32498-32508. [PMID: 28857548 DOI: 10.1021/acsami.7b08713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein we study the effect of doxorubicin-loaded BN nanoparticles (DOX-BNNPs) on cell lines that differ in the multidrug resistance (MDR), namely KB-3-1 and MDR KB-8-5 cervical carcinoma lines, and K562 and MDR i-S9 leukemia lines. We aim at revealing the possible differences in the cytotoxic effect of free DOX and DOX-BNNP nanoconjugates on these types of cells. The spectrophotometric measurements have demonstrated that the maximum amount of DOX in the DOX-BNNPs is obtained after saturation in alkaline solution (pH 8.4), indicating the high efficiency of BNNPs saturation with DOX. DOX release from DOX-BNNPs is a pH-dependent and DOX is more effectively released in acid medium (pH 4.0-5.0). Confocal laser scanning microscopy has shown that the DOX-BNNPs are internalized by neoplastic cells using endocytic pathway and distributed in cell cytoplasm near the nucleus. The cytotoxic studies have demonstrated a higher sensitivity of the leukemia lines to DOX-BNNPs compared with the carcinoma lines: IC50(DOX-BNNPs) is 1.13, 4.68, 0.025, and 0.14 μg/mL for the KB-3-1, MDR KB-8-5, K562, and MDR i-S9 cell lines, respectively. To uncover the mechanism of cytotoxic effect of nanocarriers on MDR cells, DOX distribution in both the nucleus and cytoplasm has been studied. The results indicate that the DOX-BNNP nanoconjugates significantly change the dynamics of DOX accumulation in the nuclei of both KB-3-1 and KB-8-5 cells. Unlike free DOX, the utilization of DOX-BNNPs nanoconjugates allows for maintaining a high and stable level of DOX in the nucleus of MDR KB-8-5 cells.
Collapse
Affiliation(s)
- Irina Y Zhitnyak
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Igor N Bychkov
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Irina V Sukhorukova
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| | - Andrey M Kovalskii
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| | - Konstantin L Firestein
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , Second George Street, Brisbane, Queensland 4000, Australia
| | - Dmitri Golberg
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , Second George Street, Brisbane, Queensland 4000, Australia
- Intrenational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
| | - Natalya A Gloushankova
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| |
Collapse
|
42
|
Alves Rico SR, Abbasi AZ, Ribeiro G, Ahmed T, Wu XY, de Oliveira Silva D. Diruthenium(ii,iii) metallodrugs of ibuprofen and naproxen encapsulated in intravenously injectable polymer-lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells. NANOSCALE 2017; 9:10701-10714. [PMID: 28678269 DOI: 10.1039/c7nr01582h] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A unique class of diruthenium(ii,iii) metallodrugs containing non-steroidal anti-inflammatory drug (NSAID), Ru2(NSAID), have been reported to show anticancer activity in glioma models in vitro and in vivo. This work reports the encapsulation of the lead metallodrug of ibuprofen (HIbp), [Ru2(Ibp)4Cl] or RuIbp, and also of the new analogue of naproxen (HNpx), [Ru2(Npx)4Cl] or RuNpx, in novel intravenously (i.v.) injectable solid polymer-lipid nanoparticles (SPLNs). A rationally selected composition of lipids/polymers rendered nearly spherical Ru2(NSAID)-SPLNs with a mean size of 120 nm and zeta potential of about -20 mV. The Ru2(NSAID)-SPLNs are characterized by spectroscopic techniques and the composition in terms of ruthenium-drug species is analyzed by mass spectrometry. The metallodrug-loaded nanoparticles showed high drug loading (17-18%) with ∼100% drug loading efficiency, and good colloidal stability in serum at body temperature. Fluorescence-labeled SPLNs were taken up by the cancer cells in a time- and energy-dependent manner as analyzed by confocal microscopy and fluorescence spectrometry. The Ru2(NSAID)-SPLNs showed enhanced cytotoxicity (IC50 at 60-100 μmol L-1 ) in relation to the corresponding Ru2(NSAID) metallodrugs in breast (EMT6 and MDA-MB-231) and prostate (DU145) cancer cells in vitro. The cell viability of both metallodrug nanoformulations is also compared with those of the parent NSAIDs, HIbp and HNpx, and their corresponding NSAID-SPLNs. In vivo and ex vivo fluorescence imaging revealed good biodistribution and high tumor accumulation of fluorescence-labeled SPLNs following i.v. injection in an orthotopic breast tumor model. The enhanced anticancer activity of the metallodrug-loaded SPLNs in these cell lines can be associated with the advantages of the nanoformulations, assigned mainly to the stability of the colloidal nanoparticles suitable for i.v. injection and enhanced cellular uptake. The findings of this work encourage future in vivo efficacy studies to further exploit the potential of the novel Ru2(NSAID)-SPLN nanoformulations for clinical application.
Collapse
Affiliation(s)
- Samara R Alves Rico
- Laboratory for Synthetic and Structural Inorganic Chemistry - Bioinorganic and Metallodrugs, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, B2 T, 05508-000, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
43
|
Zhang T, Prasad P, Cai P, He C, Shan D, Rauth AM, Wu XY. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol Sin 2017; 38:835-847. [PMID: 28216624 PMCID: PMC5520182 DOI: 10.1038/aps.2016.166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022]
Abstract
Lung metastasis is the major cause of death in patients with triple negative breast
cancer (TNBC), an aggressive subtype of breast cancer with no effective therapy at
present. It has been proposed that dual-targeted therapy, ie, targeting
chemotherapeutic agents to both tumor vasculature and cancer cells, may offer some
advantages. The present work was aimed to develop a dual-targeted synergistic drug
combination nanomedicine for the treatment of lung metastases of TNBC. Thus,
Arg-Gly-Asp peptide (RGD)-conjugated, doxorubicin (DOX) and mitomycin C (MMC)
co-loaded polymer-lipid hybrid nanoparticles (RGD-DMPLN) were prepared and
characterized. The synergism between DOX and MMC and the effect of RGD-DMPLN on cell
morphology and cell viability were evaluated in human MDA-MB-231 cells in
vitro. The optimal RGD density on nanoparticles (NPs) was identified based on
the biodistribution and tumor accumulation of the NPs in a murine lung metastatic
model of MDA-MB-231 cells. The microscopic distribution of RGD-conjugated NPs in lung
metastases was examined using confocal microscopy. The anticancer efficacy of
RGD-DMPLN was investigated in the lung metastatic model. A synergistic ratio of DOX
and MMC was found in the MDA-MB-231 human TNBC cells. RGD-DMPLN induced morphological
changes and enhanced cytotoxicity in vitro. NPs with a median RGD density
showed the highest accumulation in lung metastases by targeting both tumor
vasculature and cancer cells. Compared to free drugs, RGD-DMPLN exhibited
significantly low toxicity to the host, liver and heart. Compared to non-targeted
DMPLN or free drugs, administration of RGD-DMPLN (10 mg/kg, iv) resulted in a
4.7-fold and 31-fold reduction in the burden of lung metastases measured by
bioluminescence imaging, a 2.4-fold and 4.0-fold reduction in the lung metastasis
area index, and a 35% and 57% longer median survival time, respectively.
Dual-targeted RGD-DMPLN, with optimal RGD density, significantly inhibited the
progression of lung metastasis and extended host survival.
Collapse
|
44
|
Narayana Reddy P, Padmaja P, Ramana Reddy B, Singh Jadav S. Synthesis, in vitro antiproliferative activity, antioxidant activity and molecular modeling studies of new carbazole Mannich bases. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1927-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. NANOSCALE 2017; 9:1334-1355. [PMID: 27973629 DOI: 10.1039/c6nr08486a] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Lily Yi Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Jason Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Azhar Z Abbasi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| |
Collapse
|
46
|
Oliveira MS, Goulart GCA, Ferreira LAM, Carneiro G. Hydrophobic ion pairing as a strategy to improve drug encapsulation into lipid nanocarriers for the cancer treatment. Expert Opin Drug Deliv 2016; 14:983-995. [DOI: 10.1080/17425247.2017.1266329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mariana Silva Oliveira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Castro Assis Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| |
Collapse
|
47
|
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240:489-503. [PMID: 27287891 PMCID: PMC5064882 DOI: 10.1016/j.jconrel.2016.06.012] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| | - Ho Lun Wong
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - June Young Eoh
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| |
Collapse
|
48
|
Twarog NR, Stewart E, Hammill CV, Shelat AA. BRAID: A Unifying Paradigm for the Analysis of Combined Drug Action. Sci Rep 2016; 6:25523. [PMID: 27160857 PMCID: PMC4861905 DOI: 10.1038/srep25523] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
With combination therapies becoming increasingly vital to understanding and combatting disease, a reliable method for analyzing combined dose response is essential. The importance of combination studies both in basic and translational research necessitates a method that can be applied to a wide range of experimental and analytical conditions. However, despite increasing demand, no such unified method has materialized. Here we introduce the Bivariate Response to Additive Interacting Doses (BRAID) model, a response surface model that combines the simplicity and intuitiveness needed for basic interaction classifications with the versatility and depth needed to analyze a combined response in the context of pharmacological and toxicological constraints. We evaluate the model in a series of simulated combination experiments, a public combination dataset, and several experiments on Ewing’s Sarcoma. The resulting interaction classifications are more consistent than those produced by traditional index methods, and show a strong relationship between compound mechanisms and nature of interaction. Furthermore, analysis of fitted response surfaces in the context of pharmacological constraints yields a more concrete prediction of combination efficacy that better agrees with in vivo evaluations.
Collapse
Affiliation(s)
- Nathaniel R Twarog
- Departments of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Elizabeth Stewart
- Developmental Neurobiology St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Courtney Vowell Hammill
- Departments of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Anang A Shelat
- Departments of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
49
|
Xiao H, Yang T, Lin Q, Liu GQ, Zhang L, Yu F, Chen Y. Acetylated starch nanocrystals: Preparation and antitumor drug delivery study. Int J Biol Macromol 2016; 89:456-64. [PMID: 27156696 DOI: 10.1016/j.ijbiomac.2016.04.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
In this study, we developed a new nanoparticulate system for acetylated starch nanocrystals (ASN) using broken rice. ASN with different degrees of substitution (DS) of 0.04, 0.08 and 0.14 were prepared using acetic anhydride as acetylating agent through reaction with starch nanocrystals (SN). The resulting ASN were investigated for the capability to load and release doxorubicin hydrochloride (DOX), and the antitumor activities of DOX-loaded SN and DOX-loaded ASN were evaluated as potential drug delivery systems for cancer therapy. Cellular uptake and cytotoxicity of nanocrystals and the DOX-loaded nanocrystals were investigated using fluorescence microscopy and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. Compared with acetylated starches (AS) and native starches (NS), ASN with DS 0.14 loaded up to 6.07% of DOX with a higher loading efficiency of 91.1% and had steadier drug-release rates. Toxicity analysis using the rat hepatocytes model suggested that ASN was biocompatible and could be used for drug delivery. Furthermore, ASN were taken up by cancer cells in vitro and significantly enhanced the cytotoxicity of DOX against HeLa human cervical carcinoma cells. The IC50 value of DOX-loaded ASN-DS 0.14 was 3.8μg/mL for 24h of treatment, which was significantly lower than that of free DOX (21μg/mL). These results indicate that the prepared ASN using broken rice is a promising vehicle for the controlled delivery of DOX for cancer therapy.
Collapse
Affiliation(s)
- Huaxi Xiao
- National Engineering Laboratory for Rice and By-Products Further Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Tao Yang
- National Engineering Laboratory for Rice and By-Products Further Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-Products Further Processing, Central South University of Forestry & Technology, Changsha 410004, PR China.
| | - Gao-Qiang Liu
- National Engineering Laboratory for Rice and By-Products Further Processing, Central South University of Forestry & Technology, Changsha 410004, PR China.
| | - Lin Zhang
- National Engineering Laboratory for Rice and By-Products Further Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| | - Fengxiang Yu
- Department of Food Science and Technology, Hunan Biological Electromechanical Polytechnic, Changsha 410000, PR China
| | - Yuejiao Chen
- National Engineering Laboratory for Rice and By-Products Further Processing, Central South University of Forestry & Technology, Changsha 410004, PR China
| |
Collapse
|
50
|
Jiang J, Wang X, Cheng K, Zhao W, Hua Y, Xu C, Yang Z. Psoralen reverses the P-glycoprotein-mediated multidrug resistance in human breast cancer MCF-7/ADR cells. Mol Med Rep 2016; 13:4745-50. [PMID: 27082231 DOI: 10.3892/mmr.2016.5098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/04/2016] [Indexed: 11/06/2022] Open
Abstract
The resistance of cancer to chemotherapeutic agents is a major obstacle during chemotherapy. Clinical multidrug resistance (MDR) is commonly mediated by membrane drug efflux pumps, including ATP‑binding cassette subfamily B member 1, also termed P-glycoprotein (P-gp). P-gp is a membrane transporter encoded by the MDR1 gene. The current study aimed to investigate the impact of psoralen on the expression and function of P‑gp. The 10% inhibitory concentration (IC10) of psoralen, and its capacity to reduce MDR in adriamycin (ADR)‑resistant MCF‑7/ADR cells were determined using MTT assay. The ability of psoralen to modulate the transport activity of P‑gp in MCF‑7/ADR cells was evaluated by measuring the accumulation and efflux of rhodamine 123 (Rh 123) and adriamycin with flow cytometry. The present study evaluated the mRNA level of MDR1 in MCF‑7 and MCF‑7/ADR cells treated with psoralen using reverse transcription-quantitative polymerase chain reaction. The protein expression level of P‑gp was examined by western blot analysis. The current study demonstrated that the IC10 of psoralen in MCF‑7/ADR cells was 8 µg/ml. At 8 µg/ml, psoralen reduced MDR and the sensitivity of the MCF‑7/ADR cells to ADR compared with untreated cells. Additionally, psoralen significantly increased the intracellular accumulation of ADR and Rh 123. However, the IC10 of psoralen did not affect the protein expression levels of P‑gp or mRNA levels of MDR1 (P>0.05). Psoralen reduces MDR by inhibiting the efflux function of P‑gp, which may be important for increasing the efficiency of chemotherapy and improving the clinical protocols aiming to reverse P-gp-mediated MDR.
Collapse
Affiliation(s)
- Jingru Jiang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Binzhou University of Medicine, Binzhou, Shandong 256603, P.R. China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Binzhou University of Medicine, Binzhou, Shandong 256603, P.R. China
| | - Kai Cheng
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Binzhou University of Medicine, Binzhou, Shandong 256603, P.R. China
| | - Wanzhong Zhao
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Binzhou University of Medicine, Binzhou, Shandong 256603, P.R. China
| | - Yitong Hua
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Binzhou University of Medicine, Binzhou, Shandong 256603, P.R. China
| | - Chengfeng Xu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Binzhou University of Medicine, Binzhou, Shandong 256603, P.R. China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Binzhou University of Medicine, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|