1
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Ismail NZ, Khairuddean M, Alidmat MM, Abubakar S, Arsad H. Investigating the potential of mono-chalcone compounds in targeting breast cancer receptors through network pharmacology, molecular docking, molecular dynamics simulation, antiproliferative effects, and gene expressions. 3 Biotech 2024; 14:151. [PMID: 38737798 PMCID: PMC11087420 DOI: 10.1007/s13205-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The study aims to investigate various aspects of synthesized mono-chalcone compounds 5 and 8 concerning breast cancer, including network pharmacology, molecular docking, molecular dynamics (MD) simulations, antiproliferative effects, and gene expressions. Initially, the compounds underwent a network pharmacology analysis targeting breast cancer-related targets, with MalaCards, SwissTargetPrediction, and PharmMapper identifying 70 breast cancer target receptors. Subsequently, protein-protein interaction (PPI) network analysis revealed two distinct target gene clusters. Survival analysis identified seven significant target genes following Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) evaluation. Molecular docking and MD simulations were conducted on these seven target genes (AKT2, BRAF, ESR1, FGFR1, IGF1, IGF1R, and KIT), revealing that compound 8 exhibited the highest binding affinities, as well as better stability and compactness when interacting with the targeted proteins. Next, the compounds underwent cell viability assay and gene expression analysis to validate the in silico findings. Both compounds demonstrated the ability to suppress breast cancer proliferation, with compound 8 showing increased selectivity in targeting breast cancer cells while causing minimal harm to normal breast cells. The suppression of breast cancer cell proliferation was attributed to decreased expression levels of AKT2, BRAF, FGFR1, IGF1, IGF1R, KIT, and ESR1. Hence, the results provide insights into the molecular interaction responsible for the anti-breast cancer capabilities of mono-chalcone compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03991-y.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, 3011 Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang Malaysia
| |
Collapse
|
3
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
4
|
Calfa CJ, Rothe M, Mangat PK, Garrett-Mayer E, Ahn ER, Burness ML, Gogineni K, Rohatgi N, Al Baghdadi T, Conlin A, Gaba A, Hamid O, Krishnamurthy J, Gavini NJ, Gold PJ, Rodon J, Rueter J, Thota R, Grantham GN, Hinshaw DC, Gregory A, Halabi S, Schilsky RL. Sunitinib in Patients With Breast Cancer With FGFR1 or FGFR2 Amplifications or Mutations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol 2024; 8:e2300513. [PMID: 38354330 DOI: 10.1200/po.23.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 02/16/2024] Open
Abstract
PURPOSE The Targeted Agent and Profiling Utilization Registry Study is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results from cohorts of patients with metastatic breast cancer (BC) with FGFR1 and FGFR2 alterations treated with sunitinib are reported. METHODS Eligible patients had measurable disease, Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options. Simon's two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16 weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival, overall survival, duration of response, duration of stable disease, and safety. RESULTS Forty patients with BC with FGFR1 (N = 30; amplification only n = 26, mutation only n = 1, both n = 3) or FGFR2 (N = 10; amplification only n = 2, mutation only n = 6, both n = 2) alterations were enrolled. Three patients in the FGFR1 cohort were not evaluable for efficacy; all patients in the FGFR2 cohort were evaluable. For the FGFR1 cohort, two patients with partial response and four with SD16+ were observed for DC and OR rates of 27% (90% CI, 13 to 100) and 7% (95% CI, 1 to 24), respectively. The null hypothesis of 15% DC rate was not rejected (P = .169). No patients achieved DC in the FGFR2 cohort (P = 1.00). Thirteen of the 40 total patients across both cohorts had at least one grade 3-4 adverse event or serious adverse event at least possibly related to sunitinib. CONCLUSION Sunitinib did not meet prespecified criteria to declare a signal of antitumor activity in patients with BC with either FGFR1 or FGFR2 alterations. Other treatments and clinical trials should be considered for these patient populations.
Collapse
Affiliation(s)
- Carmen J Calfa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | | | - Tareq Al Baghdadi
- Michigan Cancer Research Consortium, IHA Hematology Oncology, Ypsilanti, MI
| | | | | | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | | | | | | | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Irani M, Habibi-Anbouhi M, Behdani M, Kazemi-Lomedasht F. Targeting of human fibroblast growth factor receptor 2 by a novel specific nanobody. Prep Biochem Biotechnol 2023; 54:307-316. [PMID: 37452673 DOI: 10.1080/10826068.2023.2233583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Inhibition of FGFR2 signaling is promising in targeted therapy of FGFR2-related tumors. In this study, anti-FGFR2 nanobodies (Nbs) were isolated through screening of an immune camelid phage display library. Four rounds of biopanning were carried out with commercial human FGFR2 antigen and enrichment was assessed by ELISA and phage titration. The gene of Nb was sub-cloned into the expression vector, and the recombinant vector was transformed into Escherichia coli WK6 cells. The recombinant protein was purified using Ni-NTA affinity chromatography. The anti-FGFR2 Nb (C13) was characterized by SDS-PAGE, western blotting, competitive inhibition ELISA, flow cytometry, MTT, and migration assay. C13 Nb recognized FGFR2 with high specificity and no cross-reactivity was observed with other tested antigens. The affinity of C13 Nb was calculated to be 1.5 × 10-9 M. Results of cytotoxicity showed that C13 Nb (10 µg/ml) inhibited 85% of the proliferation of T-47D cells (p < 0.001). In addition, C13 inhibited the migration of 68% of T-47D toward the source of the growth factor (p < 0.01). The flow cytometry showed that C13 Nb bound to the surface of FGFR2+ cells, T-47D cell line (96%). Results indicate the potential of anti-FGFR2 Nb for targeted therapy of FGFR2-overexpressing tumors after complementary investigations.
Collapse
Affiliation(s)
- Mahboubeh Irani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Lu T, Li T, Wu MK, Zheng CC, He XM, Zhu HL, Li L, Man RJ. Molecular simulations required to target novel and potent inhibitors of cancer invasion. Expert Opin Drug Discov 2023; 18:1367-1377. [PMID: 37676052 DOI: 10.1080/17460441.2023.2254695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Computer-aided drug design (CADD) is a computational approach used to discover, develop, and analyze drugs and active molecules with similar biochemical properties. Molecular simulation technology has significantly accelerated drug research and reduced manufacturing costs. It is an optimized drug discovery method that greatly improves the efficiency of novel drug development processes. AREASCOVERED This review discusses the development of molecular simulations of effective cancer inhibitors and traces the main outcomes of in silico studies by introducing representative categories of six important anticancer targets. The authors provide views on this topic from the perspective of both medicinal chemistry and artificial intelligence, indicating the major challenges and predicting trends. EXPERT OPINION The goal of introducing CADD into cancer treatment is to realize a highly efficient, accurate, and desired approach with a high success rate for identifying potent drug candidates. However, the major challenge is the lack of a sophisticated data-filtering mechanism to verify bottom data from mixed-quality references. Consequently, despite the continuous development of algorithms, computer power, and interface optimization, specific data filtering mechanisms will become an urgent and crucial issue in the future.
Collapse
Affiliation(s)
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Xue-Mei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
8
|
Dabbs DJ, Huang RS, Ross JS. Novel markers in breast pathology. Histopathology 2023; 82:119-139. [PMID: 36468266 DOI: 10.1111/his.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Breast pathology is an ever-expanding database of information which includes markers, or biomarkers, that detect or help treat the disease as prognostic or predictive information. This review focuses on these aspects of biomarkers which are grounded in immunohistochemistry, liquid biopsies and next-generation sequencing.
Collapse
Affiliation(s)
- David J Dabbs
- PreludeDx, Laguna Hills, CA, USA.,Department of Pathology, University of Pittsburgh, Board Member, CASI (Consortium for Analytical Standardization in Immunohistochemistry), Pittsburgh, PA, USA
| | - Richard S Huang
- Clinical Development, Foundation Medicine, Cambridge, MA, USA
| | | |
Collapse
|
9
|
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 2022; 15:121. [PMID: 36038913 PMCID: PMC9422136 DOI: 10.1186/s13045-022-01341-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer (BC) with a poor prognosis. Current treatment options are limited to surgery, adjuvant chemotherapy and radiotherapy; however, a proportion of patients have missed the surgical window at the time of diagnosis. TNBC is a highly heterogeneous cancer with specific mutations and aberrant activation of signaling pathways. Hence, targeted therapies, such as those targeting DNA repair pathways, androgen receptor signaling pathways, and kinases, represent promising treatment options against TNBC. In addition, immunotherapy has also been demonstrated to improve overall survival and response in TNBC. In this review, we summarize recent key advances in therapeutic strategies based on molecular subtypes in TNBC.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700. .,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Ku GC, Chapdelaine AG, Ayrapetov MK, Sun G. Identification of Lethal Inhibitors and Inhibitor Combinations for Mono-Driver versus Multi-Driver Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:4027. [PMID: 36011019 PMCID: PMC9407008 DOI: 10.3390/cancers14164027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
There are no signaling-based targeted therapies for triple-negative breast cancer. The development of targeted cancer therapy relies on identifying oncogenic signaling drivers, understanding their contributions to oncogenesis and developing inhibitors to block such drivers. In this study, we determine that DU-4475 is a mono-driver cancer cell line relying on BRAF and the mitogen-activated protein kinase pathway for viability and proliferation. It is fully and lethally inhibited by BRAF or Mek inhibitors at low nM concentrations, but it is resistant to inhibitors targeting other signaling pathways. The inhibitory lethality caused by blocking Mek or BRAF is through apoptosis. In contrast, MDA-MB-231 is a multi-driver triple-negative breast cancer cell line dependent on both Src and the KRAS-activated mitogen-activated kinase pathway for proliferation and viability. Blocking each pathway alone only partially inhibits cell proliferation without killing them, but the combination of dasatinib, an Src inhibitor, and trametinib, a Mek inhibitor, achieves synthetic lethality. The combination is highly potent, with an IC50 of 8.2 nM each, and strikingly synergistic, with a combination index of less than 0.003 for 70% inhibition. The synthetic lethality of the drug combination is achieved by apoptosis. These results reveal a crucial difference between mono-driver and multi-driver cancer cells and suggest that pharmacological synthetic lethality may provide a basis for effectively inhibiting multi-driver cancers.
Collapse
Affiliation(s)
| | | | | | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
11
|
Butner JD, Dogra P, Chung C, Ruiz-Ramírez J, Nizzero S, Plodinec M, Li X, Pan PY, Chen SH, Cristini V, Ozpolat B, Calin GA, Wang Z. Dedifferentiation-mediated stem cell niche maintenance in early-stage ductal carcinoma in situ progression: insights from a multiscale modeling study. Cell Death Dis 2022; 13:485. [PMID: 35597788 PMCID: PMC9124196 DOI: 10.1038/s41419-022-04939-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
We present a multiscale agent-based model of ductal carcinoma in situ (DCIS) to study how key phenotypic and signaling pathways are involved in the early stages of disease progression. The model includes a phenotypic hierarchy, and key endocrine and paracrine signaling pathways, and simulates cancer ductal growth in a 3D lattice-free domain. In particular, by considering stochastic cell dedifferentiation plasticity, the model allows for study of how dedifferentiation to a more stem-like phenotype plays key roles in the maintenance of cancer stem cell populations and disease progression. Through extensive parameter perturbation studies, we have quantified and ranked how DCIS is sensitive to perturbations in several key mechanisms that are instrumental to early disease development. Our studies reveal that long-term maintenance of multipotent stem-like cell niches within the tumor are dependent on cell dedifferentiation plasticity, and that disease progression will become arrested due to dilution of the multipotent stem-like population in the absence of dedifferentiation. We have identified dedifferentiation rates necessary to maintain biologically relevant multipotent cell populations, and also explored quantitative relationships between dedifferentiation rates and disease progression rates, which may potentially help to optimize the efficacy of emerging anti-cancer stem cell therapeutics.
Collapse
Affiliation(s)
- Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Javier Ruiz-Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Sara Nizzero
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Marija Plodinec
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, 4056, Switzerland
| | - Xiaoxian Li
- Department of Pathology & Laboratory Medicine, Emory University School of medicine, Atlanta, GA, 30322, USA
| | - Ping-Ying Pan
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
13
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
14
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
15
|
Goldner M, Pandolfi N, Maciel D, Lima J, Sanches S, Pondé N. Combined endocrine and targeted therapy in luminal breast cancer. Expert Rev Anticancer Ther 2021; 21:1237-1251. [PMID: 34338570 DOI: 10.1080/14737140.2021.1960160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: For decades, endocrine therapy has been the cornerstone of management for luminal breast cancer. Despite the substantial benefit derived by patients from endocrine therapy, primary and secondary resistances to endocrine therapy are serious clinical issues.Areas covered: Today, in the advanced setting, three distinct classes of targeted agents mTOR, CDK 4/6, and PI3K inhibitors, are approved for use. CDK 4/6 inhibitors have improved outcomes substantially, changing the natural history of advanced luminal breast cancer. Current studies seek to bring CDK 4/6 inhibitors to the early setting. This review will cover all available data on target therapy combinations with endocrine therapy for both the early and advanced settings, including approved drugs and agents in development.Expert opinion: Combined endocrine and target therapy has changed the landscape in advanced disease. In early disease, it is possible to have a large impact, particularly in patients with higher risk of relapse. Trials like ADAPTCYCLE seek to leverage neoadjuvant data to de-escalate treatment, substituting chemotherapy for CDK 4/6 inhibitors. In advanced diseases, studies such as PADA-1 point toward a future in which ctDNA will be used to define management before clinical progression occurs.
Collapse
Affiliation(s)
- Marcelle Goldner
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Natasha Pandolfi
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Debora Maciel
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Julianne Lima
- Fellow of the European School of Oncology, Milan, Italy
| | - Solange Sanches
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Noam Pondé
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| |
Collapse
|
16
|
Liu Y, Wang C, Li J, Zhu J, Zhao C, Xu H. Novel Regulatory Factors and Small-Molecule Inhibitors of FGFR4 in Cancer. Front Pharmacol 2021; 12:633453. [PMID: 33981224 PMCID: PMC8107720 DOI: 10.3389/fphar.2021.633453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is a tyrosine kinase receptor that is a member of the fibroblast growth factor receptor family and is stimulated by highly regulated ligand binding. Excessive expression of the receptor and its ligand, especially FGF19, occurs in many types of cancer. Abnormal FGFR4 production explains these cancer formations, and therefore, this receptor has emerged as a potential target for inhibiting cancer development. This review discusses the diverse mechanisms of oncogenic activation of FGFR4 and highlights some currently available inhibitors targeting FGFR4.
Collapse
Affiliation(s)
- Yanan Liu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Canwei Wang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jifa Li
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiandong Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huanhai Xu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Krook MA, Reeser JW, Ernst G, Barker H, Wilberding M, Li G, Chen HZ, Roychowdhury S. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer 2021; 124:880-892. [PMID: 33268819 PMCID: PMC7921129 DOI: 10.1038/s41416-020-01157-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are aberrantly activated through single-nucleotide variants, gene fusions and copy number amplifications in 5-10% of all human cancers, although this frequency increases to 10-30% in urothelial carcinoma and intrahepatic cholangiocarcinoma. We begin this review by highlighting the diversity of FGFR genomic alterations identified in human cancers and the current challenges associated with the development of clinical-grade molecular diagnostic tests to accurately detect these alterations in the tissue and blood of patients. The past decade has seen significant advancements in the development of FGFR-targeted therapies, which include selective, non-selective and covalent small-molecule inhibitors, as well as monoclonal antibodies against the receptors. We describe the expanding landscape of anti-FGFR therapies that are being assessed in early phase and randomised controlled clinical trials, such as erdafitinib and pemigatinib, which are approved by the Food and Drug Administration for the treatment of FGFR3-mutated urothelial carcinoma and FGFR2-fusion cholangiocarcinoma, respectively. However, despite initial sensitivity to FGFR inhibition, acquired drug resistance leading to cancer progression develops in most patients. This phenomenon underscores the need to clearly delineate tumour-intrinsic and tumour-extrinsic mechanisms of resistance to facilitate the development of second-generation FGFR inhibitors and novel treatment strategies beyond progression on targeted therapy.
Collapse
Affiliation(s)
- Melanie A Krook
- Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Julie W Reeser
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gabrielle Ernst
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hannah Barker
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Max Wilberding
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gary Li
- QED Therapeutics Inc., San Francisco, CA, USA
| | - Hui-Zi Chen
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sameek Roychowdhury
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
18
|
Kähkönen TE, Toriseva M, Petruk N, Virta AR, Maher A, Eigéliené N, Kaivola J, Boström P, Koskivuo I, Nees M, Tuomela JM, Ivaska KK, Härkönen PL. Effects of FGFR inhibitors TKI258, BGJ398 and AZD4547 on breast cancer cells in 2D, 3D and tissue explant cultures. Cell Oncol (Dordr) 2020; 44:205-218. [PMID: 33119860 PMCID: PMC7907049 DOI: 10.1007/s13402-020-00562-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 11/28/2022] Open
Abstract
Purpose Fibroblast growth factor receptors (FGFR) and pathways are important players in breast cancer (BC) development. They are commonly altered, and BCs exhibiting FGFR gene amplification are currently being studied for drug development. Here, we aimed to compare the effects of three FGFR inhibitors (FGFRis), i.e., non-selective TKI258 and selective BGJ398 and AZD4547, on different BC-derived cell lines (BCCs) and primary tissues. Methods The human BCCs MCF-7 and MDA-MB-231(SA) (wild-type FGFR) and MFM223 (amplified FGFR1 and FGFR2) were analyzed for FGFR expression using qRT-PCR, and the effects of FGFRis on FGFR signaling by Western blotting. The effects of FGFRis on proliferation, viability, migration and invasion of BCCs were assessed in 2D cultures using live-cell imaging, and in 3D cultures using phenotypic analysis of organoids. To study radio-sensitization, FGFRi treatment was combined with irradiation. Patient-derived BC samples were treated with FGFRis in explant cultures and immunostained for Ki67 and cleaved caspase 3. Results We found that all FGFRis tested decreased the growth and viability of BC cells in 2D and 3D cultures. BGJ398 and AZD4547 were found to be potent at low concentrations in FGFR-amplified MFM233 cells, whereas higher concentrations were required in non-amplified MCF7 and MDA-MB-231(SA) cells. TKI258 inhibited the migration and invasion, whereas BGJ398 and AZD4547 only inhibited the invasion of MDA-MB-231(SA) cells. FGFRi treatment of MCF7 and MFM223 cells enhanced the inhibitory effect of radiotherapy, but this effect was not observed in MDA-MB-231(SA) cells. FGFRi-treated primary BC explants with moderate FGFR levels showed a tendency towards decreased proliferation and increased apoptosis. Conclusions Our results indicate that, besides targeting FGFR-amplified BCs with selective FGFRis, also BCs without FGFR amplification/activation may benefit from FGFRi-treatment. Combination with other treatment modalities, such as radiotherapy, may allow the use of FGFRis at relatively low concentrations and, thereby, contribute to better BC treatment outcomes. Supplementary Information The online version of this article (10.1007/s13402-020-00562-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T E Kähkönen
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland
| | - M Toriseva
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland.,FICAN West Cancer Centre, 20520, Turku, Finland
| | - N Petruk
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland.,FICAN West Cancer Centre, 20520, Turku, Finland
| | - A-R Virta
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland
| | - A Maher
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland
| | - N Eigéliené
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland
| | - J Kaivola
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland
| | - P Boström
- Department of Pathology, Turku University Hospital, 20520, Turku, Finland
| | - I Koskivuo
- Department of Plastic and General Surgery, Turku University Hospital, 20520, Turku, Finland
| | - M Nees
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland.,Department of Biomedicine and Molecular Biology II, Uniwersytet Medyczny w Lublinie, 20-095, Lublin, Poland
| | - J M Tuomela
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland.,FICAN West Cancer Centre, 20520, Turku, Finland
| | - K K Ivaska
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland
| | - P L Härkönen
- University of Turku, Institute of Biomedicine, 20520, Turku, Finland. .,FICAN West Cancer Centre, 20520, Turku, Finland.
| |
Collapse
|
19
|
Guerini-Rocco E, Gray KP, Fumagalli C, Reforgiato MR, Leone I, Rafaniello Raviele P, Munzone E, Kammler R, Neven P, Hitre E, Jerusalem G, Simoncini E, Gombos A, Deleu I, Karlsson P, Aebi S, Chirgwin J, Di Lauro V, Thompson A, Graas MP, Barber M, Fontaine C, Loibl S, Gavilá J, Kuroi K, Müller B, O'Reilly S, Di Leo A, Goldhirsch A, Viale G, Barberis M, Regan MM, Colleoni M. Genomic Aberrations and Late Recurrence in Postmenopausal Women with Hormone Receptor-positive Early Breast Cancer: Results from the SOLE Trial. Clin Cancer Res 2020; 27:504-512. [PMID: 33082214 DOI: 10.1158/1078-0432.ccr-20-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/10/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Women with hormone receptor-positive early breast cancers have a persistent risk of relapse and biomarkers for late recurrence are needed. We sought to identify tumor genomic aberrations associated with increased late-recurrence risk. EXPERIMENTAL DESIGN In a secondary analysis of Study of Letrozole Extension trial, a case-cohort-like sampling selected 598 primary breast cancers for targeted next-generation sequencing analysis of gene mutations and copy-number gains (CNGs). Correlations of genomic aberrations with clinicopathologic factors and breast and distant recurrence-free intervals (BCFIs and DRFIs) were analyzed using weighted Cox models. RESULTS Analysis of mutations and CNGs was successfully performed for 403 and 350 samples, including 148 and 134 patients with breast cancer recurrences (median follow-up time, 5.2 years), respectively. The most frequent alterations were PIK3CA mutations (42%) and CNGs of CCND1 (15%), ERBB2 (10%), FGFR1 (8%), and MYC (8%). PIK3CA mutations and MYC CNGs were associated with lower (P = 0.03) and higher (P = 0.004) tumor grade, respectively; a higher Ki-67 was seen in tumor with CCND1, ERBB2, and MYC CNGs (P = 0.01, P < 0.001, and P = 0.03, respectively). FGFR1 CNG was associated with an increased risk of late events in univariate analyses [17/29 patients; BCFI: HR, 3.2; 95% confidence interval (CI), 1.48-6.92; P = 0.003 and DRFI: HR, 3.5; 95% CI, 1.61-7.75; P = 0.002) and in multivariable models adjusted for clinicopathologic factors. CONCLUSIONS Postmenopausal women with hormone receptor-positive early breast cancer harboring FGFR1 CNG had an increased risk of late recurrence despite extended therapy. FGFR1 CNG may represent a useful prognostic biomarker for late recurrence and a therapeutic target.
Collapse
Affiliation(s)
- Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan and University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy.
| | - Kathryn P Gray
- International Breast Cancer Study Group Statistical Center, Frontier Science Foundation, and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Caterina Fumagalli
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Rita Reforgiato
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Isabella Leone
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Rafaniello Raviele
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals, KU Leuven, Leuven, Belgium
| | - Erika Hitre
- National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy/Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Aebi
- Lucerne Cantonal Hospital and University of Bern, Bern, Switzerland
| | - Jacquie Chirgwin
- Box Hill and Maroondah Hospitals, Monash University, Melbourne, Victoria, Australia
| | | | - Alastair Thompson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | - Joaquín Gavilá
- Fundación Instituto Valenciano de Oncologia, Valencia, Spain
| | - Katsumasa Kuroi
- Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo City, Tokyo, Japan
| | - Bettina Müller
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago, Chile
| | | | | | - Aron Goldhirsch
- International Breast Cancer Study Group, Bern, Switzerland and MultiMedica, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, International Breast Cancer Study Group Central Pathology Office and University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Massimo Barberis
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Meredith M Regan
- International Breast Cancer Study Group Statistical Center, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
| | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, and the International Breast Cancer Study Group, Milan, Italy
| |
Collapse
|
20
|
Santolla MF, Maggiolini M. The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers (Basel) 2020; 12:E3029. [PMID: 33081025 PMCID: PMC7603197 DOI: 10.3390/cancers12103029] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.
Collapse
Affiliation(s)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
21
|
Schrörs B, Boegel S, Albrecht C, Bukur T, Bukur V, Holtsträter C, Ritzel C, Manninen K, Tadmor AD, Vormehr M, Sahin U, Löwer M. Multi-Omics Characterization of the 4T1 Murine Mammary Gland Tumor Model. Front Oncol 2020; 10:1195. [PMID: 32793490 PMCID: PMC7390911 DOI: 10.3389/fonc.2020.01195] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. The 4T1 murine mammary cancer cell line is one of the most widely used breast cancer models. Here, we present an integrated map of the genome, transcriptome, and immunome of 4T1. Results: We found Trp53 (Tp53) and Pik3g to be mutated. Other frequently mutated genes in breast cancer, including Brca1 and Brca2, are not mutated. For cancer related genes, Nav3, Cenpf, Muc5Ac, Mpp7, Gas1, MageD2, Dusp1, Ros, Polr2a, Rragd, Ros1, and Hoxa9 are mutated. Markers for cell proliferation like Top2a, Birc5, and Mki67 are highly expressed, so are markers for metastasis like Msln, Ect2, and Plk1, which are known to be overexpressed in triple-negative breast cancer (TNBC). TNBC markers are, compared to a mammary gland control sample, lower (Esr1), comparably low (Erbb2), or not expressed at all (Pgr). We also found testis cancer antigen Pbk as well as colon/gastrointestinal cancer antigens Gpa33 and Epcam to be highly expressed. Major histocompatibility complex (MHC) class I is expressed, while MHC class II is not. We identified 505 single nucleotide variations (SNVs) and 20 insertions and deletions (indels). Neoantigens derived from 22 SNVs and one deletion elicited CD8+ or CD4+ T cell responses in IFNγ-ELISpot assays. Twelve high-confidence fusion genes were observed. We did not observe significant downregulation of mismatch repair (MMR) genes or SNVs/indels impairing their function, providing evidence for 6-thioguanine resistance. Effects of the integration of the murine mammary tumor virus were observed at the genome and transcriptome level. Conclusions: 4T1 cells share substantial molecular features with human TNBC. As 4T1 is a common model for metastatic tumors, our data supports the rational design of mode-of-action studies for pre-clinical evaluation of targeted immunotherapies.
Collapse
Affiliation(s)
- Barbara Schrörs
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Sebastian Boegel
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Christian Albrecht
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Valesca Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Christoph Holtsträter
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Christoph Ritzel
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Katja Manninen
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Arbel D Tadmor
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Mathias Vormehr
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany.,BioNTech SE, Mainz, Germany
| | - Ugur Sahin
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany.,HI-TRON - Helmholtz-Institut für Translationale Onkologie Mainz, Mainz, Germany
| | - Martin Löwer
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| |
Collapse
|
22
|
Butner JD, Fuentes D, Ozpolat B, Calin GA, Zhou X, Lowengrub J, Cristini V, Wang Z. A Multiscale Agent-Based Model of Ductal Carcinoma In Situ. IEEE Trans Biomed Eng 2020; 67:1450-1461. [PMID: 31603768 PMCID: PMC8445608 DOI: 10.1109/tbme.2019.2938485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE we present a multiscale agent-based model of Ductal Carcinoma in Situ (DCIS) in order to gain a detailed understanding of the cell-scale population dynamics, phenotypic distributions, and the associated interplay of important molecular signaling pathways that are involved in DCIS ductal invasion into the duct cavity (a process we refer to as duct advance rate here). METHODS DCIS is modeled mathematically through a hybridized discrete cell-scale model and a continuum molecular scale model, which are explicitly linked through a bidirectional feedback mechanism. RESULTS we find that duct advance rates occur in two distinct phases, characterized by an early exponential population expansion, followed by a long-term steady linear phase of population expansion, a result that is consistent with other modeling work. We further found that the rates were influenced most strongly by endocrine and paracrine signaling intensity, as well as by the effects of cell density induced quiescence within the DCIS population. CONCLUSION our model analysis identified a complex interplay between phenotypic diversity that may provide a tumor adaptation mechanism to overcome proliferation limiting conditions, allowing for dynamic shifts in phenotypic populations in response to variation in molecular signaling intensity. Further, sensitivity analysis determined DCIS axial advance rates and calcification rates were most sensitive to cell cycle time variation. SIGNIFICANCE this model may serve as a useful tool to study the cell-scale dynamics involved in DCIS initiation and intraductal invasion, and may provide insights into promising areas of future experimental research.
Collapse
|
23
|
Kim EK, Cho YA, Koh YW, Shin HA, Cho BC, Yoon SO. Prognostic implications of Fibroblast growth factor receptor 1 (FGFR1) gene amplification and protein overexpression in hypopharyngeal and laryngeal squamous cell carcinoma. BMC Cancer 2020; 20:348. [PMID: 32326908 PMCID: PMC7181493 DOI: 10.1186/s12885-020-06792-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background The gene encoding fibroblast growth factor receptor 1 (FGFR1) is emerging as a therapeutic and prognostic biomarker in various cancer types, including head and neck squamous cell carcinoma (SCC). Here, we investigated the clinicopathologic implication of FGFR1 gene amplification and protein overexpression in hypopharyngeal and laryngeal SCC. Methods Fluorescence in situ hybridization and immunohistochemistry were performed to determine FGFR1 gene amplification and protein overexpression in 209 surgically resected cases. Results FGFR1 amplification observed in 8 (8/66, 12.1%; 6 hypopharynx and 2 larynx) patients and high FGFR1 expression in 21 (21/199, 10.6%) patients significantly correlated with lymph node metastasis and advanced pathological stages. FGFR1 amplification was also associated with worse disease-free survival in multivariate analysis (hazard ratio = 4.527, P = 0.032). High FGFR1 expression was more frequently observed, consistent with the worsening of the degree of histologic differentiation. Conclusions FGFR1 amplification may serve as an independent prognostic factor for disease-free survival in hypopharyngeal and laryngeal SCC. Aberrant FGFR signaling caused by FGFR1 gene amplification or protein overexpression may play a crucial role in the malignant evolution and progression of hypopharyngeal and laryngeal SCC, and offer novel therapeutic opportunities in patients with hypopharyngeal and laryngeal SCC that usually lack specific therapeutic targets.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang, 10444, South Korea
| | - Yoon Ah Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Department of Pathology and Translational genomics, Samsung Medical Center, Seoul, 06351, South Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyang Ae Shin
- Department of Otorhinolaryngology-Head Neck Surgery, National Health Insurance Service Ilsan Hospital, Goyang, 10444, South Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
24
|
Structure-based Identification of Endocrine Disrupting Pesticides Targeting Breast Cancer Proteins. Toxicology 2020; 439:152459. [PMID: 32278787 DOI: 10.1016/j.tox.2020.152459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
Endocrine disrupting pesticides (EDPs) are exogenous compounds that disrupt endocrine activity. Human exposure to EDPs can occur through occupational contact, and through the consumption of food, milk and water with trace amounts of these pollutants. Several EDPs are epidemiologically linked to breast cancer or are considered as possible carcinogens. However, current evidence is not fully conclusive and their mechanisms of action remain unknown. Thus, the potential interactions between 262 EDPs and 189 proteins associated with breast cancer were evaluated by using a virtual high-throughput screening approach, with AutoDock Vina 1.1.1. The molecular coordinates were previously downloaded from Protein Data Bank and EDCs DataBank, and used for preparation and optimization in Sybyl X-2.0. The best affinity score (-11.0 kcal/mol) was obtained for flucythrinate with the nuclear receptor for vitamin D (VDR). This synthetic pyrethroid, along with other EDPs, such as fluvalinate, bifenthrin, cyhalothrin and cypermethrin, are proposed as multi-target ligands of several proteins related to breast cancer. In addition, the validation of our protocol showed a good accuracy in terms of binding pose prediction and affinity estimation. This study provides a guide to prioritize EDPs for which further in vitro and in vivo analysis could be done to evaluate the risk and possible mechanisms of action of these contaminants and their potential association with breast cancer.
Collapse
|
25
|
First-in-Human Phase I Study of Aprutumab Ixadotin, a Fibroblast Growth Factor Receptor 2 Antibody-Drug Conjugate (BAY 1187982) in Patients with Advanced Cancer. Target Oncol 2020; 14:591-601. [PMID: 31502117 PMCID: PMC6797631 DOI: 10.1007/s11523-019-00670-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Fibroblast growth factor receptor (FGFR) 2 is overexpressed in several tumor types, including triple-negative breast cancer and gastric cancer, both of which have a high unmet medical need. Aprutumab ixadotin (BAY 1187982) is the first antibody–drug conjugate (ADC) to target FGFR2 and the first to use a novel auristatin-based payload. Objective This first-in-human trial was conducted to determine the safety, tolerability, and maximum tolerated dose (MTD) of aprutumab ixadotin in patients with advanced solid tumors from cancer indications known to be FGFR2-positive. Patients and Methods In this open-label, multicenter, phase I dose-escalation trial (NCT02368951), patients with advanced solid tumors received escalating doses of aprutumab ixadotin (starting at 0.1 mg/kg body weight), administered intravenously on day 1 of every 21-day cycle. Primary endpoints included safety, tolerability, and the MTD of aprutumab ixadotin; secondary endpoints were pharmacokinetic evaluation and tumor response to aprutumab ixadotin. Results Twenty patients received aprutumab ixadotin across five cohorts, at doses of 0.1–1.3 mg/kg. The most common grade ≥ 3 drug-related adverse events were anemia, aspartate aminotransferase increase, proteinuria, and thrombocytopenia. Dose-limiting toxicities were thrombocytopenia, proteinuria, and corneal epithelial microcysts, and were only seen in the two highest dosing cohorts. The MTD was determined to be 0.2 mg/kg due to lack of quantitative data following discontinuations at 0.4 and 0.8 mg/kg doses. One patient had stable disease; no responses were reported. Conclusions Aprutumab ixadotin was poorly tolerated, with an MTD found to be below the therapeutic threshold estimated preclinically; therefore, the trial was terminated early. ClinicalTrials.gov Identifier NCT02368951. Electronic supplementary material The online version of this article (10.1007/s11523-019-00670-4) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Condorelli R, Mosele F, Verret B, Bachelot T, Bedard PL, Cortes J, Hyman DM, Juric D, Krop I, Bieche I, Saura C, Sotiriou C, Cardoso F, Loibl S, Andre F, Turner NC. Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2020; 30:365-373. [PMID: 30715161 DOI: 10.1093/annonc/mdz036] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Better knowledge of the tumor genomic landscapes has helped to develop more effective targeted drugs. However, there is no tool to interpret targetability of genomic alterations assessed by next-generation sequencing in the context of clinical practice. Our aim is to rank the level of evidence of individual recurrent genomic alterations observed in breast cancer based on the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) in order to help the clinicians to prioritize treatment. Analyses of databases suggested that there are around 40 recurrent driver alterations in breast cancer. ERBB2 amplification, germline BRCA1/2 mutations, PIK3CA mutations were classified tier of evidence IA based on large randomized trials showing antitumor activity of targeted therapies in patients presenting the alterations. NTRK fusions and microsatellite instability (MSI) were ranked IC. ESR1 mutations and PTEN loss were ranked tier IIA, and ERBB2 mutations and AKT1 mutations tier IIB. Somatic BRCA 1/2 mutations, MDM2 amplifications and ERBB 3 mutations were ranked tier III. Seventeen genes were ranked tier IV based on preclinical evidence. Finally, FGFR1 and CCND1 were ranked tier X alterations because previous studies have shown lack of actionability.
Collapse
Affiliation(s)
- R Condorelli
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France; Institute of Oncology and Breast Unit of Southern Switzerland, Bellinzona, Switzerland
| | - F Mosele
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France.
| | - B Verret
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France
| | - T Bachelot
- Department of Medical Oncology, Cancer Research Center of Lyon Inserm, Lyon, France
| | - P L Bedard
- Division of Medical Oncology & Hematolog, Department of Medicine, Princess Margaret Cancer Centre, Toronto, Canada
| | - J Cortes
- Ramon y Cajal University Hospital, Madrid & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - D M Hyman
- Memorial Sloan Kettering Cancer Center, New York
| | - D Juric
- Massachusetts General Hospital (MGH), Boston
| | - I Krop
- Dana-Farber Cancer Institute, Boston, USA
| | - I Bieche
- Department of Genetics, Curie Institute, Paris, France
| | - C Saura
- Department of Medical Oncolog, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C Sotiriou
- J.C. Heuson Breast Cancer Translational Research Laborator, Université Libre de Bruxelles, Institut Jules Bordet, Brussels, Belgium
| | - F Cardoso
- Breast Uni, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - S Loibl
- German Breast Group, Neu-Isenburg, Germany
| | - F Andre
- Department of Medical Oncolo, INSERM U981, Université Paris Sud, Gustave Roussy, Villejuif, France
| | - N C Turner
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| |
Collapse
|
27
|
Sobhani N, Fan C, O. Flores-Villanueva P, Generali D, Li Y. The Fibroblast Growth Factor Receptors in Breast Cancer: from Oncogenesis to Better Treatments. Int J Mol Sci 2020; 21:E2011. [PMID: 32188012 PMCID: PMC7139621 DOI: 10.3390/ijms21062011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Breast cancer (BC) is the most frequent form of malignancy and second only to lung cancer as cause of deaths in women. Notwithstanding many progresses made in the field, metastatic BC has a very poor prognosis. As therapies are becoming more personalized to meet the needs of patients, a better knowledge of the molecular biology leading to the disease unfolds the possibility to project more precise compounds or antibodies targeting definite alteration at the molecular level and functioning on such cancer-causing molecules expressed in cancer cells of patients, or present as antigens on the surface of cancer cell membranes. Fibroblast growth factor receptor (FGFR) is one of such druggable targets, activated by its own ligands -namely the Fibroblast Growth Factors (FGFs). This pathway provides a vast range of interesting molecular targets pursued at different levels of clinical investigation. Herein we provide an update on the knowledge of genetic alterations of the receptors in breast cancer, their role in tumorigenesis and the most recent drugs against this particular receptor for the treatment of the disease.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy;
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| | - Pedro O. Flores-Villanueva
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy;
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| |
Collapse
|
28
|
Singh S, Shukla R. Key Signaling Pathways Engaged in Cancer Management: Current Update. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394714666180904122412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
<P>Background: Till today cancer is still challenging to treat and needs more active therapeutic approaches. Participation of complex multi-pathway cell propagation instrument is a noteworthy issue in creating active anticancer therapeutic methodologies. Immune evasions, metabolic modifications, imperfect apoptotic component, modification in upstream or downstream RAS signaling, altered nuclear factor kappa B actions, imbalanced autophagy design and distortedly controlled angiogenesis are distinguishing features of cancer. </P><P> Methods: On the basis of systemic research and analysis of the current online available database, we analyzed and reported about the key signaling pathway engaged with cancer development outlining the effectiveness of different therapeutic measures and targets that have been created or are being researched to obstruct the cancer development. </P><P> Results: A number of signaling pathways, for example, resistant, metabolism, apoptosis, RAS protein, nuclear factor kappa B, autophagy, and angiogenesis have been perceived as targets for drug treatment to control the advancement, development and administration of cancer. </P><P> Conclusion: A noteworthy challenge for future medication advancement is to detail a synthesis treatment influencing distinctive targets to enhance the treatment of cancer.</P>
Collapse
Affiliation(s)
- Sanjiv Singh
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| | - Rahul Shukla
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| |
Collapse
|
29
|
Chew NJ, Nguyen EV, Su SP, Novy K, Chan HC, Nguyen LK, Luu J, Simpson KJ, Lee RS, Daly RJ. FGFR3 signaling and function in triple negative breast cancer. Cell Commun Signal 2020; 18:13. [PMID: 31987043 PMCID: PMC6986078 DOI: 10.1186/s12964-019-0486-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) accounts for 16% of breast cancers and represents an aggressive subtype that lacks targeted therapeutic options. In this study, mass spectrometry (MS)-based tyrosine phosphorylation profiling identified aberrant FGFR3 activation in a subset of TNBC cell lines. This kinase was therefore evaluated as a potential therapeutic target. Methods MS-based tyrosine phosphorylation profiling was undertaken across a panel of 24 TNBC cell lines. Immunoprecipitation and Western blot were used to further characterize FGFR3 phosphorylation. Indirect immunofluorescence and confocal microscopy were used to determine FGFR3 localization. The selective FGFR1–3 inhibitor, PD173074 and siRNA knockdowns were used to characterize the functional role of FGFR3 in vitro. The TCGA and Metabric breast cancer datasets were interrogated to identify FGFR3 alterations and how they relate to breast cancer subtype and overall patient survival. Results High FGFR3 expression and phosphorylation were detected in SUM185PE cells, which harbor a FGFR3-TACC3 gene fusion. Low FGFR3 phosphorylation was detected in CAL51, MFM-223 and MDA-MB-231 cells. In SUM185PE cells, the FGFR3-TACC3 fusion protein contributed the majority of phosphorylated FGFR3, and largely localized to the cytoplasm and plasma membrane, with staining at the mitotic spindle in a small subset of cells. Knockdown of the FGFR3-TACC3 fusion and wildtype FGFR3 in SUM185PE cells decreased FRS2, AKT and ERK phosphorylation, and induced cell death. Knockdown of wildtype FGFR3 resulted in only a trend for decreased proliferation. PD173074 significantly decreased FRS2, AKT and ERK activation, and reduced SUM185PE cell proliferation. Cyclin A and pRb were also decreased in the presence of PD173074, while cleaved PARP was increased, indicating cell cycle arrest in G1 phase and apoptosis. Knockdown of FGFR3 in CAL51, MFM-223 and MDA-MB-231 cells had no significant effect on cell proliferation. Interrogation of public datasets revealed that increased FGFR3 expression in breast cancer was significantly associated with reduced overall survival, and that potentially oncogenic FGFR3 alterations (eg mutation and amplification) occur in the TNBC/basal, luminal A and luminal B subtypes, but are rare. Conclusions These results indicate that targeting FGFR3 may represent a therapeutic option for TNBC, but only for patients with oncogenic FGFR3 alterations, such as the FGFR3-TACC3 fusion. Video abstract.
Collapse
Affiliation(s)
- Nicole J Chew
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shih-Ping Su
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Karel Novy
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Howard C Chan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jennii Luu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
30
|
Drago JZ, Formisano L, Juric D, Niemierko A, Servetto A, Wander SA, Spring LM, Vidula N, Younger J, Peppercorn J, Yuen M, Malvarosa G, Sgroi D, Isakoff SJ, Moy B, Ellisen LW, Iafrate AJ, Arteaga CL, Bardia A. FGFR1 Amplification Mediates Endocrine Resistance but Retains TORC Sensitivity in Metastatic Hormone Receptor-Positive (HR +) Breast Cancer. Clin Cancer Res 2019; 25:6443-6451. [PMID: 31371343 PMCID: PMC6825550 DOI: 10.1158/1078-0432.ccr-19-0138] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/24/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE While FGFR1 amplification has been described in breast cancer, the optimal treatment approach for FGFR1-amplified (FGFR1+) metastatic breast cancer (MBC) remains undefined.Experimental Design: We evaluated clinical response to endocrine and targeted therapies in a cohort of patients with hormone receptor-positive (HR+)/HER2- MBC and validated the functional role of FGFR1-amplification in mediating response/resistance to hormone therapy in vitro. RESULTS In the clinical cohort (N = 110), we identified that patients with FGFR1+ tumors were more likely to have progesterone receptor (PR)-negative disease (47% vs. 20%; P = 0.005), coexisting TP53 mutations (41% vs. 21%; P = 0.05), and exhibited shorter time to progression with endocrine therapy alone and in combination with CDK4/6 inhibitor, but not with a mTOR inhibitor (everolimus), adjusting for key prognostic variables in multivariate analysis. Furthermore, mTOR-based therapy resulted in a sustained radiological and molecular response in an index case of FGFR1+ HR+/HER2- MBC. In preclinical models, estrogen receptor-positive (ER+)/FGFR1-amplified CAMA1 human breast cancer cells were only partially sensitive to fulvestrant, palbociclib, and alpelisib, but highly sensitive to everolimus. In addition, transduction of an FGFR1 expression vector into ER+ T47D cells induced resistance to fulvestrant that could be overcome by added TORC1 inhibition, but not PI3K or CDK4/6 inhibition. CONCLUSIONS Collectively, these findings suggest that while FGFR1 amplification confers broad resistance to ER, PI3K, and CDK4/6 inhibitors, mTOR inhibitors might have a unique therapeutic role in the treatment of patients with ER+/FGFR1+ MBC.
Collapse
Affiliation(s)
- Joshua Z Drago
- Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Luigi Formisano
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Dejan Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Andrzej Niemierko
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Alberto Servetto
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Seth A Wander
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Laura M Spring
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Neelima Vidula
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Jerry Younger
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey Peppercorn
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Megan Yuen
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Giuliana Malvarosa
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Dennis Sgroi
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven J Isakoff
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Beverly Moy
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Leif W Ellisen
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Aditya Bardia
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Jafarian AH, Kooshkiforooshani M, Farzad F, Mohamadian Roshan N. The Relationship Between Fibroblastic Growth Factor Receptor-1 (FGFR1) Gene Amplification in Triple Negative Breast Carcinomas and Clinicopathological Prognostic Factors. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:299-304. [PMID: 31754359 PMCID: PMC6824770 DOI: 10.30699/ijp.2019.96713.1952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/12/2019] [Indexed: 01/08/2023]
Abstract
Background & Objective: In Triple-Negative Breast Cancers (TNBCs), estrogen receptor (ER), progesterone receptor (PR) and HER2/neu genes are not expressed. Fibroblastic Growth Factor Receptor-1 (FGFR1) gene product is a protein that acts as a receptor of thyrosin kinase. It plays a role in the proliferation, differentiation, and migration of malignant cells. The objective was to evaluate the possible relation between FGFR1 over-expression and amplification in TNBCs and other clinicopathological variables. Methods: In this cross sectional study, purposive sampling was used to collect eighty-four TNBC specimens from mastectomy specimens collected between 2013 and 2017. Tissue microarrays were evaluated for FGFR1 over-expression and amplification respectively by immunohistochemistry (IHC) staining and real time Polymerase Chain Reaction (PCR). The needed clinical and paraclinical information were obtained from patients’ files. To analyze the correlation among prognostic factors, we used a wide range of different statistic methods, namely Chi-square test, independent t-test, Fisher's exact test, and ANOVA. Results: FGFR1 over-expression was found in 15 of the 84 samples (17.9%). FGFR1 gene amplification was observed in 33.3% (28 of 84) of the samples. We found no association between FGFR1 and clinicopathological parameters, including tumor grade, stage, and patient survival (P>0.005). Conclusion: FGFR1 over-expression and amplification may not be related to clinicopathological parameters, namely age, stage, and grade of the cancer not to mention TNBC survival. Using FGFR1 as a prognostic factor in TNBCs requires further study.
Collapse
Affiliation(s)
- Amir Hossein Jafarian
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Kooshkiforooshani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzane Farzad
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nema Mohamadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Li X, Nie C, Tian B, Tan X, Han W, Wang J, Jin Y, Li Y, Guan X, Hong A, Chen X. miR-671-5p Blocks The Progression Of Human Esophageal Squamous Cell Carcinoma By Suppressing FGFR2. Int J Biol Sci 2019; 15:1892-1904. [PMID: 31523191 PMCID: PMC6743296 DOI: 10.7150/ijbs.32429] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/02/2019] [Indexed: 12/31/2022] Open
Abstract
Esophageal cancer is the eighth most common malignant tumor worldwide, of which esophageal squamous cell carcinoma (ESCC) is the dominant histological subtype. A drug shortage for ESCC therapy triggered us to explore the roles of fibroblast growth factor receptor 2 (FGFR2) and its upstream regulator miR-671-5p in ESCC progression. We compared the levels of FGFR2 and miR-671-5p between human ESCC tissues and their matched normal esophageal tissues and found an association between higher levels of FGFR2 and lower levels of miR-671-5p in ESCC tissues. High levels of FGFR2 resulted in the activation of the ERK and AKT pathways and a promotion of ESCC progression. High levels of miR-671-5p specifically reduced the expression of FGFR2 and suppressed ESCC progression in both in vitro and in vivo models. Therefore, suppressing FGFR2 and enhancing miR-671-5p expression may be the right approaches for ESCC therapy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Changjun Nie
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Baoqing Tian
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Xuan Tan
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Wei Han
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Jiakang Wang
- Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, 510090, P. R. China
| | - Yuan Jin
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Yadan Li
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - An Hong
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
33
|
Gagno S, D'Andrea MR, Mansutti M, Zanusso C, Puglisi F, Dreussi E, Montico M, Biason P, Cecchin E, Iacono D, Russo S, Cinausero M, Saracchini S, Gasparini G, Sartori D, Bari M, Collovà E, Meo R, Merkabaoui G, Spagnoletti I, Pellegrino A, Gianni L, Sandri P, Cretella E, Vattemi E, Rocca A, Serra P, Fabbri MA, Benedetti G, Foghini L, Medici M, Basso U, Amoroso V, Riccardi F, Baldelli AM, Clerico M, Bonura S, Saggia C, Innocenti F, Toffoli G. A New Genetic Risk Score to Predict the Outcome of Locally Advanced or Metastatic Breast Cancer Patients Treated With First-Line Exemestane: Results From a Prospective Study. Clin Breast Cancer 2019; 19:137-145.e4. [PMID: 30584056 DOI: 10.1016/j.clbc.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Approximately 50% of locally advanced or metastatic breast cancer (MBC) patients treated with first-line exemestane do not show objective response and currently there are no reliable biomarkers to predict the outcome of patients using this therapy. The constitutive genetic background might be responsible for differences in the outcome of exemestane-treated patients. We designed a prospective study to investigate the role of germ line polymorphisms as biomarkers of survival. PATIENTS AND METHODS Three hundred two locally advanced or MBC patients treated with first-line exemestane were genotyped for 74 germ line polymorphisms in 39 candidate genes involved in drug activity, hormone balance, DNA replication and repair, and cell signaling pathways. Associations with progression-free survival (PFS) and overall survival (OS) were tested with multivariate Cox regression. Bootstrap resampling was used as an internal assessment of results reproducibility. RESULTS Cytochrome P450 19A1-rs10046TC/CC, solute carrier organic anion transporter 1B1-rs4149056TT, adenosine triphosphate binding cassette subfamily G member 2-rs2046134GG, fibroblast growth factor receptor-4-rs351855TT, and X-ray repair cross complementing 3-rs861539TT were significantly associated with PFS and then combined into a risk score (0-1, 2, 3, or 4-6 risk points). Patients with the highest risk score (4-6 risk points) compared with ones with the lowest score (0-1 risk points) had a median PFS of 10 months versus 26.3 months (adjusted hazard ratio [AdjHR], 3.12 [95% confidence interval (CI), 2.18-4.48]; P < .001) and a median OS of 38.9 months versus 63.0 months (AdjHR, 2.41 [95% CI, 1.22-4.79], P = .012), respectively. CONCLUSION In this study we defined a score including 5 polymorphisms to stratify patients for PFS and OS. This score, if validated, might be translated to personalize locally advanced or MBC patient treatment and management.
Collapse
Affiliation(s)
- Sara Gagno
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | | | - Mauro Mansutti
- Department of Oncology, University Hospital of Udine, Udine, Italy
| | - Chiara Zanusso
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Fabio Puglisi
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy; Medical Oncology, Department of Medicine, University of Udine, Udine, Italy
| | - Eva Dreussi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Marcella Montico
- Scientific Directorate, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Paola Biason
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy; Medical Oncology Unit 1, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Donatella Iacono
- Department of Oncology, University Hospital of Udine, Udine, Italy
| | - Stefania Russo
- Department of Oncology, University Hospital of Udine, Udine, Italy
| | - Marika Cinausero
- Department of Oncology, University Hospital of Udine, Udine, Italy
| | - Silvana Saracchini
- Medical Oncology Unit, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | | | - Donata Sartori
- Medical Oncology Department, General Hospital, Mirano, Italy
| | - Mario Bari
- Medical Oncology Department, General Hospital, Mirano, Italy
| | - Elena Collovà
- Oncology Operative Unit, ASST Ovest Milanese, Ospedale di Legnano, Legnano, Italy
| | - Rosa Meo
- Medical Oncology Unit, Presidio Ospedaliero Sant'Alfonso Maria dei Liguori, Cerreto Sannita, Italy
| | - Ghassan Merkabaoui
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Federico II di Napoli, Napoli, Italy
| | - Ilaria Spagnoletti
- Medical Oncology Unit, Ospedale Sacro Cuore di Gesù, Fatebenefratelli, Benevento, Italy
| | - Arianna Pellegrino
- Medical Oncology Unit, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | | | - Paolo Sandri
- Medical Oncology Unit, San Vito al Tagliamento Hospital, Pordenone, Italy
| | | | - Emanuela Vattemi
- Medical Oncology, Azienda Sanitaria dell'Alto Adige, Bolzano, Italy
| | - Andrea Rocca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Patrizia Serra
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Maria Agnese Fabbri
- Division of Oncology, Complesso Ospedaliero Belcolle, AUSL Viterbo, Viterbo, Italy
| | | | | | - Michele Medici
- Department of Medical Oncology, Azienda ULSS 3 Serenissima, Mestre, Italy
| | - Umberto Basso
- Medical Oncology Unit 1, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Vito Amoroso
- Medical Oncology Unit, Spedali Civili Hospital, Brescia, Italy
| | | | - Anna Maria Baldelli
- Medical Oncology Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, San Salvatore Hospital, Pesaro, Italy
| | - Mario Clerico
- Department of Oncology, Ospedale degli Infermi, Biella, Italy
| | | | - Chiara Saggia
- Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | | | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy.
| |
Collapse
|
34
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
35
|
Zhang T, Feng F, Zhao W, Yao Y, Tian J, Zhou C, Zang C, Liu C, Wang X, Sun C. Comparative efficacy of different targeted therapies plus fulvestrant for advanced breast cancer following progression on prior endocrine therapy: a network meta-analysis. Cancer Manag Res 2018; 10:5869-5880. [PMID: 30510455 PMCID: PMC6248378 DOI: 10.2147/cmar.s176172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background We performed a network meta-analysis of randomized controlled trials (RCTs) to indirectly compare the efficacy of different targeted agents with fulvestrant for patients with hormone-receptor-positive (HR+) and human epidermal growth factor receptor type 2-negative (HER2-) advanced breast cancer (ABC) following progression on prior endocrine therapy. Methods The titles/abstracts were searched from the PubMed, EMBASE, and the Cochrane Library databases for RCTs to evaluate the efficacy of palbociclib plus fulvestrant vs alternative targeted therapies plus fulvestrant for postmenopausal HR+/HER2- ABC following progression on prior endocrine therapy. In addition, the primary measured outcome was progression-free survival (PFS) and objective response rate. The surface under the cumulative ranking (SUCRA) value of each treatment was calculated to achieve the best ranking for each treatment. Results A total of 11 studies, including 4,178 patients in the network meta-analysis, were included and analyzed. In terms of the pooled hazard ratios (HRs) for PFS, palbociclib plus fulvestrant was superior to other target agents plus fulvestrant (HR=0.62, 95% credible interval [CrI]: 0.40-0.96; HR=0.62, 95% CrI: 0.47-0.96; for pictilisib plus fulvestrant and buparlisib plus fulvestrant, respectively). Ribociclib plus fulvestrant has no difference in abemaciclib plus fulvestrant and palbociclib plus fulvestrant (HR =1.02, 95% CrI =0.72-1.45; HR =1.22, 95% CrI =0.84-1.78). In terms of objective response rate, compared with placebo plus fulvestrant, abemaciclib plus fulvestrant, dovitinib plus fulvestrant, buparlisib plus fulvestrant, and palbociclib plus fulvestrant had a significant difference (odds ratio [OR] =2.84, 95% CrI =1.91- 4.31; OR =3.62, 95% CrI =1.21-12.48; OR =1.80, 95% CrI =1.25-2.60; and OR =2.52, 95% CrI =1.43- 4.72, respectively). Conclusion According to the present study, palbociclib plus fulvestrant may be the optimal treatment for HR+/HER2- postmenopausal women with ABC after disease progression following endocrine therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China,
| | - Wenge Zhao
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yan Yao
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China,
| | - Chuanxin Zang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xue Wang
- Medical Colleges, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China, .,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China,
| |
Collapse
|
36
|
Abstract
FGF19 is a noncanonical FGF ligand that can control a broad spectrum of physiological responses, which include bile acid homeostasis, liver metabolism and glucose uptake. Many of these responses are mediated by FGF19 binding to its FGFR4/β-klotho receptor complex and controlling activation of an array of intracellular signaling events. Overactivation of the FGF19/FGFR4 axis has been implicated in tumorigenic formation, progression and metastasis, and inhibitors of this axis have recently been developed for single agent use or in combination with other anticancer drugs. Considering the critical role of this receptor complex in cancer, this review focuses on recent developments and applications of FGF19/FGFR4-targeted therapeutics.
Collapse
|
37
|
Kim SH, Ryu H, Ock CY, Suh KJ, Lee JY, Kim JW, Lee JO, Kim JW, Kim YJ, Lee KW, Bang SM, Kim JH, Lee JS, Ahn JB, Kim KJ, Rha SY. BGJ398, A Pan-FGFR Inhibitor, Overcomes Paclitaxel Resistance in Urothelial Carcinoma with FGFR1 Overexpression. Int J Mol Sci 2018; 19:ijms19103164. [PMID: 30326563 PMCID: PMC6214101 DOI: 10.3390/ijms19103164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX) is commonly used to treat urothelial carcinoma (UC) after platinum-based chemotherapy has failed. However, single-agent taxane therapy is not sufficient to inhibit tumor progression and drug resistance in advanced UC. Epithelial-to-mesenchymal transition (EMT) induced by fibroblast growth factor receptor (FGFR)1 signaling has been proposed as a mechanism of PTX resistance, but it is unclear whether this can be overcome by FGFR1 inhibition. The present study investigated whether FGFR1 overexpression contributes to PTX resistance and whether FGFR inhibition can enhance PTX efficacy in UC. The effects of PTX combined with the FGFR inhibitor BGJ398 were evaluated in UC cell lines by flow cytometry; Western blot analysis; cell viability, migration, and colony forming assays; and RNA interference. PTX+BGJ398 induced cell cycle arrest and apoptosis in UC cells with mesenchymal characteristics was accompanied by downregulation of cyclin D1 protein and upregulation of gamma-histone 2A family member X and cleaved poly(ADP-ribose) polymerase. Additionally, PTX+BGJ398 synergistically suppressed UC cell migration and colony formation via regulation of EMT-associated factors, while FGFR1 knockdown enhanced the antitumor effect of PTX. These findings provide a basis for development of effective strategies for overcoming PTX resistance in UC through inhibition of FGFR1 signaling.
Collapse
Affiliation(s)
- Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
- Department of Medicine, Graduate School of Yonsei University, Seoul 03722, Korea.
| | - Haram Ryu
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam 13605, Korea.
| | - Chan-Young Ock
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Ji Yun Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Ji-Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jeong-Ok Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jin Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Keun-Wook Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Soo-Mee Bang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jong Seok Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Kui-Jin Kim
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam 13605, Korea.
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
38
|
Mikhaylenko DS, Alekseev BY, Zaletaev DV, Goncharova RI, Nemtsova MV. Structural Alterations in Human Fibroblast Growth Factor Receptors in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2018; 83:930-943. [PMID: 30208830 DOI: 10.1134/s0006297918080059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fibroblast growth factor (FGF) plays an important role in human embryogenesis, angiogenesis, cell proliferation, and differentiation. Carcinogenesis is accompanied by aberrant constitutive activation of FGF receptors (FGFRs) resulting from missense mutation in the FGFR1-4 genes, generation of chimeric oncogenes, FGFR1-4 gene amplification, alternative splicing shift toward formation of mesenchymal FGFR isoforms, and FGFR overexpression. Altogether, these alterations contribute to auto- and paracrine stimulation of cancer cells and neoangiogenesis. Certain missense mutations are found at a high rate in urinary bladder cancer and can be used for non-invasive cancer recurrence diagnostics by analyzing urine cell pellet DNA. Chimeric FGFR1/3 and amplified FGFR1/2 genes can predict cell response to the targeted therapy in various oncological diseases. In recent years, high-throughput sequencing has been used to analyze exomes of virtually all human tumors, which allowed to construct phylogenetic trees of clonal cancer evolution with special emphasis on driver mutations in FGFR1-4 genes. At present, FGFR blockers, such as multi-kinase inhibitors, specific FGFR inhibitors, and FGF ligand traps are being tested in clinical trials. In this review, we discuss current data on the functioning of the FGFR family proteins in both normal and cancer cells, mutations in the FGFR1-4 genes, and mechanisms underlying their oncogenic potential, which might be interesting to a broad range of scientists searching for specific tumor markers and targeted anti-cancer drugs.
Collapse
Affiliation(s)
- D S Mikhaylenko
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia. .,Lopatkin Research Institute of Urology and Interventional Radiology, Branch of the National Medical Research Center of Radiology, Ministry of Health of Russian Federation, Moscow, 105425, Russia.,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - B Y Alekseev
- Lopatkin Research Institute of Urology and Interventional Radiology, Branch of the National Medical Research Center of Radiology, Ministry of Health of Russian Federation, Moscow, 105425, Russia
| | - D V Zaletaev
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, Belorussian National Academy of Sciences, Minsk, 220072, Belarus
| | - M V Nemtsova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Research Centre for Medical Genetics, Moscow, 115478, Russia
| |
Collapse
|
39
|
Omarini C, Bettelli S, Caprera C, Manfredini S, Caggia F, Guaitoli G, Moscetti L, Toss A, Cortesi L, Kaleci S, Maiorana A, Cascinu S, Conte PF, Piacentini F. Clinical and molecular predictors of long-term response in HER2 positive metastatic breast cancer patients. Cancer Biol Ther 2018; 19:879-886. [PMID: 30067438 DOI: 10.1080/15384047.2018.1480287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND HER2+ metastatic breast cancer (MBC) is a poor prognosis disease, unusually curable. To date, no predictive factors have been clearly correlated with long-term response to anti-HER2 agents. METHODS 54 HER2+ MBC patients treated with HER2 targeted therapy as first line treatment were analysed: 40 with a time to progression longer than 3 years in Long Responders (LR) group and 14 with a progression disease within one year of anti-HER2 therapy in a control group named Early Progressors (EP). The expression of 770 genes and 13 molecular pathways were evaluated using Nanostring PanCancer pathway panel performed on FFPE BC tissues. RESULTS Considering baseline patients and tumor characteristics, EP women had more CNS spread and more metastatic burden of disease compared to LR (p > 0.05). Gene expression analysis identified 30 genes with significantly different expression in the two cohorts; five were driver genes (BRCA1, PDGFRA, AR, PHF6 and MSH2). The majority of these genes were over-expressed, mainly in LR patients, and encoded growth factors, pro- or anti-inflammatory interleukins and DNA repair factors. Only four genes were down regulated, all in EP group (TNFSF10, CACNG1, IL20RB and BRCA1). Most of these genes were involved in MAPK and PI3K pathways. MAPK pathway was differently expressed between LR and EP (p = 0.05). PI3K was the only pathway overexpressed in EP patients. CONCLUSIONS Whole genome expression analysis comparing LR vs. EP identified a group of genes that may predict more favourable long-term outcomes. Up-regulation of MAPK and down-regulation of PI3K pathway could be a positive predictive factors. Further clinical implications are warranted. ABBREVIATIONS BC: breast cancer; MBC: metastatic breast cancer; LR: long responder; EP: early progressor; FFPE: formalin-fixed paraffin-embedded; CNS: central nervous system; PFS: progression free survival; OS: overall survival.
Collapse
Affiliation(s)
- Claudia Omarini
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| | - Stefania Bettelli
- b Division of Pathological Anatomy, Department of Diagnostic, Clinical Medicine and Public Health , University Hospital of Modena , Modena , Italy
| | - Cecilia Caprera
- b Division of Pathological Anatomy, Department of Diagnostic, Clinical Medicine and Public Health , University Hospital of Modena , Modena , Italy
| | - Samantha Manfredini
- b Division of Pathological Anatomy, Department of Diagnostic, Clinical Medicine and Public Health , University Hospital of Modena , Modena , Italy
| | - Federica Caggia
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| | - Giorgia Guaitoli
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| | - Luca Moscetti
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| | - Angela Toss
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| | - Laura Cortesi
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| | - Shaniko Kaleci
- b Division of Pathological Anatomy, Department of Diagnostic, Clinical Medicine and Public Health , University Hospital of Modena , Modena , Italy
| | - Antonino Maiorana
- b Division of Pathological Anatomy, Department of Diagnostic, Clinical Medicine and Public Health , University Hospital of Modena , Modena , Italy
| | - Stefano Cascinu
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| | - Pier Franco Conte
- c Department of Surgery, Oncology, and Gastroenterology , University of Padova , Padova , Italy
| | - Federico Piacentini
- a Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults , University Hospital of Modena , Modena , Italy
| |
Collapse
|
40
|
Sobhani N, Ianza A, D'Angelo A, Roviello G, Giudici F, Bortul M, Zanconati F, Bottin C, Generali D. Current Status of Fibroblast Growth Factor Receptor-Targeted Therapies in Breast Cancer. Cells 2018; 7:76. [PMID: 30011957 PMCID: PMC6071019 DOI: 10.3390/cells7070076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy and second only to lung cancer in terms of mortality in women. Despite the incredible progress made in this field, metastatic breast cancer has a poor prognosis. In an era of personalized medicine, there is an urgent need for better knowledge of the biology leading to the disease, which can lead to the design of increasingly accurate drugs against patients' specific molecular aberrations. Among one of the actionable targets is the fibroblast growth factor receptor (FGFR) pathway, triggered by specific ligands. The Fibroblast Growth Factor Receptors/Fibroblast Growth Factors (FGFRs/FGFs) axis offers interesting molecular targets to be pursued in clinical development. This mini-review will focus on the current knowledge of FGFR mutations, which lead to tumor formation and summarizes the state-of-the-art therapeutic strategies for targeted treatments against the FGFRs/FGFs axis in the context of BC.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medical, Surgical & Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
- Department of Medical, Surgery & Health Sciences, University of Trieste, 34129 Trieste, Italy.
| | - Anna Ianza
- Department of Medical, Surgery & Health Sciences, University of Trieste, 34129 Trieste, Italy.
| | - Alberto D'Angelo
- Department of Medical, Surgical & Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
| | - Giandomenico Roviello
- Division of Medical Oncology, Department of Onco-Hematology, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), 85028 Rionero, Italy.
| | - Fabiola Giudici
- Department of Medical, Surgical & Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
| | - Marina Bortul
- Department of Medical, Surgical & Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
| | - Fabrizio Zanconati
- Department of Medical, Surgical & Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
| | - Cristina Bottin
- Department of Medical, Surgical & Health Sciences, University of Trieste, Cattinara Teaching Hospital, 34149 Trieste, Italy.
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy; Breast Cancer Unit and Translational Research Unit, ASST Cremona, Viale Concordia 1, C.A.P. 26100 Cremona, Italy.
| |
Collapse
|
41
|
Synergistic anti-angiogenic treatment effects by dual FGFR1 and VEGFR1 inhibition in FGFR1-amplified breast cancer. Oncogene 2018; 37:5682-5693. [DOI: 10.1038/s41388-018-0380-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
42
|
Ghedini GC, Ronca R, Presta M, Giacomini A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther 2018; 18:861-872. [PMID: 29936878 DOI: 10.1080/14737140.2018.1491795] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Deregulation of the fibroblast growth factor (FGF)/FGF receptor (FGFR) network occurs frequently in tumors due to gene amplification, activating mutations, and oncogenic fusions. Thus, the development of FGF/FGFR-targeting therapies is the focus of several basic, preclinical, and clinical studies. Areas covered: This review will recapitulate the status of current FGF/FGFR-targeted drugs. Expert commentary: Non-selective FGF/FGFR inhibitors have been approved for cancer treatment but evidence highlights various complications affecting their use in the clinical practice. It appears mandatory to identify FGF/FGFR alterations and appropriate biomarkers that may predict and monitor response to treatment, to establish the contribution of the FGF/FGFR system to the onset of mechanisms of drug resistance, and to develop effective combinations of FGF/FGFR inhibitors with other targeted therapies.
Collapse
Affiliation(s)
- Gaia Cristina Ghedini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Roberto Ronca
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Marco Presta
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Arianna Giacomini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| |
Collapse
|
43
|
Sahores A, Figueroa V, May M, Liguori M, Rubstein A, Fuentes C, Jacobsen BM, Elía A, Rojas P, Sequeira GR, Álvarez MM, González P, Gass H, Hewitt S, Molinolo A, Lanari C, Lamb CA. Increased High Molecular Weight FGF2 in Endocrine-Resistant Breast Cancer. Discov Oncol 2018; 9:338-348. [PMID: 29956066 DOI: 10.1007/s12672-018-0339-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Endocrine resistance may develop as a consequence of enhanced growth factor signaling. Fibroblast growth factor 2 (FGF2) consists of a low and several high molecular weight forms (HMW-FGF2). We previously demonstrated that antiprogestin-resistant mammary carcinomas display lower levels of progesterone receptor A isoforms (PRA) than B isoforms (PRB). Our aim was to evaluate the role of FGF2 isoforms in breast cancer progression. We evaluated FGF2 expression, cell proliferation, and pathway activation in models with different PRA/PRB ratios. We performed lentiviral infections of different FGF2 isoforms using the human hormone-responsive T47D-YA cells, engineered to only express PRA, and evaluated tumor growth, metastatic dissemination, and endocrine responsiveness. We assessed FGF2 expression and localization in 81 human breast cancer samples. Antiprogestin-resistant experimental mammary carcinomas with low PRA/PRB ratios and T47D-YB cells, which only express PRB, displayed higher levels of HMW-FGF2 than responsive variants. HMW-FGF2 overexpression in T47D-YA cells induced increased tumor growth, lung metastasis, and antiprogestin resistance compared to control tumors. In human breast carcinomas categorized by their PRA/PRB ratio, we found nuclear FGF2 expression in 55.6% of tumor cells. No differences were found between nuclear FGF2 expression and Ki67 proliferation index, tumor stage, or tumor grade. In low-grade tumor samples, moderate to high nuclear FGF2 levels were associated to carcinomas with low PRA/PRB ratio. In conclusion, we show that HMW-FGF2 isoforms are PRB targets which confer endocrine resistance and are localized in the nuclei of breast cancer samples. Hence, targeting intracellular FGF2 may contribute to overcome tumor progression.
Collapse
Affiliation(s)
- Ana Sahores
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María May
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marcos Liguori
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Argentina
| | | | - Cynthia Fuentes
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrés Elía
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Paola Rojas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Gonzalo R Sequeira
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Michelle M Álvarez
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Pedro González
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Argentina
| | - Hugo Gass
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Argentina
| | | | - Alfredo Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Godone RLN, Leitão GM, Araújo NB, Castelletti CHM, Lima-Filho JL, Martins DBG. Clinical and molecular aspects of breast cancer: Targets and therapies. Biomed Pharmacother 2018; 106:14-34. [PMID: 29945114 DOI: 10.1016/j.biopha.2018.06.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022] Open
Abstract
Breast Cancer is a complex disease characterized by the occurrence of multiple molecular alterations. Currently, some molecular markers are in use for breast cancer diagnostic, prognostic, and predictive purposes. Thus, genetic signatures are available for improving the decision-making. The biomarkers are also essential as therapeutic approaches, but many questions remain due to the lack of efficacy on breast cancer treatment, mainly for triple-negative breast cancer subtype. Since the genetic profile of breast cancer can also be related to different ethnic groups and geographic areas, the reference populations of the genetic assays and clinical trials need to include a broader population beyond the European and North American patients. In this review, we analyzed the current and potential molecular markers that could help to improve the strategies for breast cancer therapy.
Collapse
Affiliation(s)
- R L N Godone
- Molecular Prospection and Bioinformatics Group, Laboratory Keizo Asami of Immunopathology (LIKA), Federal University of Pernambuco (UFPE), Brazil
| | - G M Leitão
- Molecular Prospection and Bioinformatics Group, Laboratory Keizo Asami of Immunopathology (LIKA), Federal University of Pernambuco (UFPE), Brazil; Clinical Hospital of Pernambuco - Professor Romero Marques, Federal University of Pernambuco (UFPE), Brazil
| | - N B Araújo
- Molecular Prospection and Bioinformatics Group, Laboratory Keizo Asami of Immunopathology (LIKA), Federal University of Pernambuco (UFPE), Brazil
| | - C H M Castelletti
- Molecular Prospection and Bioinformatics Group, Laboratory Keizo Asami of Immunopathology (LIKA), Federal University of Pernambuco (UFPE), Brazil; Agronomic Institute of Pernambuco (IPA), Recife, Pernambuco, Brazil
| | - J L Lima-Filho
- Laboratory Keizo Asami of Immunopathology (LIKA), Federal University of Pernambuco (UFPE), Brazil; Department of Biochemistry, Federal University of Pernambuco (UFPE), Brazil
| | - D B G Martins
- Molecular Prospection and Bioinformatics Group, Laboratory Keizo Asami of Immunopathology (LIKA), Federal University of Pernambuco (UFPE), Brazil; Department of Biochemistry, Federal University of Pernambuco (UFPE), Brazil.
| |
Collapse
|
45
|
Laszlo V, Valko Z, Kovacs I, Ozsvar J, Hoda MA, Klikovits T, Lakatos D, Czirok A, Garay T, Stiglbauer A, Helbich TH, Gröger M, Tovari J, Klepetko W, Pirker C, Grusch M, Berger W, Hilberg F, Hegedus B, Dome B. Nintedanib Is Active in Malignant Pleural Mesothelioma Cell Models and Inhibits Angiogenesis and Tumor Growth In Vivo. Clin Cancer Res 2018; 24:3729-3740. [PMID: 29724868 DOI: 10.1158/1078-0432.ccr-17-1507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/22/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Malignant pleural mesothelioma (MPM) is an aggressive thoracic tumor type with limited treatment options and poor prognosis. The angiokinase inhibitor nintedanib has shown promising activity in the LUME-Meso phase II MPM trial and thus is currently being evaluated in the confirmatory LUME-Meso phase III trial. However, the anti-MPM potential of nintedanib has not been studied in the preclinical setting.Experimental Design: We have examined the antineoplastic activity of nintedanib in various in vitro and in vivo models of human MPM.Results: Nintedanib's target receptors were (co)expressed in all the 20 investigated human MPM cell lines. Nintedanib inhibited MPM cell growth in both short- and long-term viability assays. Reduced MPM cell proliferation and migration and the inhibition of Erk1/2 phosphorylation were also observed upon nintedanib treatment in vitro Additive effects on cell viability were detected when nintedanib was combined with cisplatin, a drug routinely used for systemic MPM therapy. In an orthotopic mouse model of human MPM, survival of animals receiving nintedanib per os showed a favorable trend, but no significant benefit. Nintedanib significantly reduced tumor burden and vascularization and prolonged the survival of mice when it was administered intraperitoneally. Importantly, unlike bevacizumab, nintedanib demonstrated significant in vivo antivascular and antitumor potential independently of baseline VEGF-A levels.Conclusions: Nintedanib exerts significant antitumor activity in MPM both in vitro and in vivo These data provide preclinical support for the concept of LUME-Meso trials evaluating nintedanib in patients with unresectable MPM. Clin Cancer Res; 24(15); 3729-40. ©2018 AACR.
Collapse
Affiliation(s)
- Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Zsuzsanna Valko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Ildiko Kovacs
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Ozsvar
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Dora Lakatos
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Tamas Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
| | - Alexander Stiglbauer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Marion Gröger
- Core Facility Imaging, Core Facilities, Medical University Vienna, Austria
| | - Jozsef Tovari
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary.,Kineto Lab Ltd., Budapest, Hungary
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | | | - Balazs Hegedus
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria. .,2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.,Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Germany
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria. .,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| |
Collapse
|
46
|
Augusto TV, Correia-da-Silva G, Rodrigues CMP, Teixeira N, Amaral C. Acquired resistance to aromatase inhibitors: where we stand! Endocr Relat Cancer 2018. [PMID: 29530940 DOI: 10.1530/erc-17-0425] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aromatase inhibitors (AIs) are one of the principal therapeutic approaches for estrogen receptor-positive (ER+) breast cancer in postmenopausal women. They block estrogen biosynthesis through aromatase inhibition, thus preventing tumour progression. Besides the therapeutic success of the third-generation AIs, acquired resistance may develop, leading to tumour relapse. This resistance is thought to be the result of a change in the behaviour of ER in these breast cancer cells, presumably by PI3K/AKT pathway enhancement along with alterations in other signalling pathways. Nevertheless, biological mechanisms, such as apoptosis, autophagy, cell cycle modulation and activation of androgen receptor (AR), are also implicated in acquired resistance. Moreover, clinical evidence demonstrated that there is a lack of cross-resistance among AIs, although the reason is not fully understood. Thus, there is a demand to understand the mechanisms involved in endocrine resistance to each AI, since the search for new strategies to surpass breast cancer acquired resistance is of major concern.
Collapse
Affiliation(s)
- Tiago Vieira Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Computational Simulation Studies on the Binding Selectivity of 1-(1H-Benzimidazol-5-yl)-5-aminopyrazoles in Complexes with FGFR1 and FGFR4. Molecules 2018; 23:molecules23040767. [PMID: 29584670 PMCID: PMC6017917 DOI: 10.3390/molecules23040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) has become a potential target for the treatment of cancer. Designing FGFR1-selective inhibitors remains fundamental to the development of anti-cancer drugs because of highly sequential homology among FGFR subtypes. In present work, four inhibitors were examined with intermolecular interaction patterns with FGFR1 and FGFR4, respectively, for the exploration of binding mechanisms by applying a combined approach of computational techniques, including flexible docking, binding site analyses, electronic structure computations, molecular dynamic simulations, and binding free energy predictions. Molecular simulation-predicted binding conformations and pharmacophoric features of these molecules in the active pocket of either FGFR1 or FGFR4. MMPB(GB)SA-calculated binding free energies were accordant with the ordering of their tested potency values. Furthermore, in silico mutations of two residues (FGFR1: Tyr563 and Ser565) were also performed to check their impact on ligand binding by applying MD simulations and binding free energy calculations. The present studies may provide a structural understanding of the FGFR1-selective mechanism. The viewpoints from computational simulations would be valuable guidelines for the development of novel FGFR1-selective inhibitors.
Collapse
|
48
|
Zhang Y, Zeng X, Liu P, Hong R, Lu H, Ji H, Lu L, Li Y. Association between FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphism and breast cancer susceptibility: a meta-analysis. Oncotarget 2018; 8:3454-3470. [PMID: 27966449 PMCID: PMC5356895 DOI: 10.18632/oncotarget.13839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
The association between fibroblast growth factor receptor 2 (FGFR2) polymorphism and breast cancer (BC) susceptibility remains inconclusive. The purpose of this systematic review was to evaluate the relationship between FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphism and BC risk. PubMed, Web of science and the Cochrane Library databases were searched before October 11, 2015 to identify relevant studies. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the strength of associations. Sensitivity and subgroup analyses were conducted. Thirty-five studies published from 2007 to 2015 were included in this meta-analysis. The pooled results showed that there was significant association between all the 3 variants and BC risk in any genetic model. Subgroup analysis was performed on rs2981582 and rs2420946 by ethnicity and Source of controls, the effects remained in Asians, Caucasians, population-based and hospital-based groups. We did not carryout subgroup analysis on rs2981578 for the variant included only 3 articles. This meta-analysis of case-control studies provides strong evidence that FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphisms were significantly associated with the BC risk. For rs2981582 and rs2420946, the association remained significant in Asians, Caucasians, general populations and hospital populations. However, further large scale multicenter epidemiological studies are warranted to confirm this finding and the molecular mechanism for the association need to be elucidated further.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xianling Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Pengdi Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ruofeng Hong
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
49
|
Liu H, Murphy CJ, Karreth FA, Emdal KB, White FM, Elemento O, Toker A, Wulf GM, Cantley LC. Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Discov 2018; 8:354-369. [PMID: 29203461 PMCID: PMC5907916 DOI: 10.1158/2159-8290.cd-17-0679] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancers (TNBC) are genetically characterized by aberrations in TP53 and a low rate of activating point mutations in common oncogenes, rendering it challenging in applying targeted therapies. We performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) to identify somatic genetic alterations in mouse models of TNBCs driven by loss of Trp53 alone or in combination with Brca1 Amplifications or translocations that resulted in elevated oncoprotein expression or oncoprotein-containing fusions, respectively, as well as frameshift mutations of tumor suppressors were identified in approximately 50% of the tumors evaluated. Although the spectrum of sporadic genetic alterations was diverse, the majority had in common the ability to activate the MAPK/PI3K pathways. Importantly, we demonstrated that approved or experimental drugs efficiently induce tumor regression specifically in tumors harboring somatic aberrations of the drug target. Our study suggests that the combination of WES and RNA-seq on human TNBC will lead to the identification of actionable therapeutic targets for precision medicine-guided TNBC treatment.Significance: Using combined WES and RNA-seq analyses, we identified sporadic oncogenic events in TNBC mouse models that share the capacity to activate the MAPK and/or PI3K pathways. Our data support a treatment tailored to the genetics of individual tumors that parallels the approaches being investigated in the ongoing NCI-MATCH, My Pathway Trial, and ESMART clinical trials. Cancer Discov; 8(3); 354-69. ©2017 AACR.See related commentary by Natrajan et al., p. 272See related article by Matissek et al., p. 336This article is highlighted in the In This Issue feature, p. 253.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Charles J Murphy
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kristina B Emdal
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Alex Toker
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, and Ludwig Center at Harvard, Boston, Massachusetts
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
50
|
Wu J, Du X, Li W, Zhou Y, Bai E, Kang Y, Chen Q, Fu W, Yun D, Xu Q, Qiu P, Jin R, Cai Y, Liang G. A novel non-ATP competitive FGFR1 inhibitor with therapeutic potential on gastric cancer through inhibition of cell proliferation, survival and migration. Apoptosis 2018; 22:852-864. [PMID: 28315172 DOI: 10.1007/s10495-017-1361-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1), belonging to receptor tyrosine kinases (RTKs), possesses various biological functions. Over-expression of FGFR1 has been observed in multiple human malignancies. Hence, targeting FGFR1 is an attractive prospect for the advancement of cancer treatment options. Here, we present a novel small molecular FGFR1 inhibitor L16H50, which can inhibit FGFR1 kinase in an ATP-independent manner. It potently inhibits FGFR1-mediated signaling in a gastric cancer cell line, resulting in inhibition of cell growth, survival and migration. It also displays an outstanding anti-tumor activity in a gastric cancer xenograft tumor model by targeting FGFR1 signaling. These results show that L16H50 is a potent non-ATP-competitive FGFR1 inhibitor and may provide strong rationale for its evaluation in gastric cancer patients.
Collapse
Affiliation(s)
- Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Xiaojing Du
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wulan Li
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- College of Information Science and Computer Engineering, the First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yangyang Zhou
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Encheng Bai
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yanting Kang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuxiang Chen
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weitao Fu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Di Yun
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Qing Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Peihong Qiu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Rong Jin
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Yuepiao Cai
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|